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ABSTRACT

Line-images in non-central cameras contain much richer information of the original 3D line than line
projections in central cameras. The projection surface of a 3D line in most catadioptric non-cen-
tral cameras is a ruled surface, encapsulating the complete information of the 3D line. The resulting
line-image is a curve which contains the 4 degrees of freedom of the 3D line. That means a qualitative
advantage with respect to the central case, although extracting this curve is quite difficult. In this pa-
per, we focus on the analytical description of the line-images in non-central catadioptric systems with
symmetry of revolution. As a direct application we present a method for automatic line-image ex-
traction for conical and spherical calibrated catadioptric cameras. For designing this method we have
analytically solved the metric distance from point to line-image for non-central catadioptric systems.
We also propose a distance we call effective baseline measuring the quality of the reconstruction of
a 3D line from the minimum number of rays. This measure is used to evaluate the different random
attempts of a robust scheme allowing to reduce the number of trials in the process. The proposal is
tested and evaluated in simulations and with both synthetic and real images.

c© 2018 Elsevier Ltd. All rights reserved.
The final publication is available at https://doi.org/10.1016/j.cviu.2018.01.003 .

1. Introduction

In central systems the projection surface of a 3D line is a
plane passing through the viewpoint of the camera. In this class
of projection some of the information of the 3D line is lost be-
cause any 3D line lying on this plane is projected on the same
line-image. In other words, a 3D line occludes any other line
located behind because the projection surface is a plane.

By contrast, in non-central systems the projection rays do not
intersect a common viewpoint. The locus of the viewpoint is, in
general, tangent to a caustic (Agrawal et al. (2010)) which is an
envelope surface of the projection rays. In particular, when the
non-central system is axial and has symmetry of revolution the
projection rays intersects the axis of symmetry (see Fig. 1) and
the projection surface of a 3D line is composed by skew lines
forming a ruled surface. If we consider a set of 4 skew projec-
tion rays, being generic lines 1, there exist only two lines inter-
secting the given set (Teller and Hohmeyer (1999)):the original
3D line and, if the system is axially symmetric, the axis of rev-
olution. This means that no additional line can intersect the set
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(a) (b)

Fig. 1. (a) Central camera: All the projection rays intersect the optical
center O. (b) Non-central axial catadioptric camera: Depending on the
3D point X the projection rays intersect a different point of the axis of
revolution.
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Fig. 2. (a) Conical catadioptric system. (b) Spherical catadioptric system.

of projection rays. Hence in axial non-central projections, it is
not possible to occlude a 3D line with other line. Main conse-
quence of this property is that the complete geometry of a 3D
line is mapped on a single non-central image. Therefore, if the
system is calibrated, the 3D line can be completely recovered
from at least 4 line-image points or projection rays. On the con-
trary, image-points do not provide 3D information since points
always occlude other 3D points along the projection ray.

This property implies a great geometric advantage of lines
with respect to points in non-central cameras and generates new
possibilities in line-features based 3D vision and entails promis-
ing applications in robotics and scene modelling. The richer
information about the localization of the line in the space facil-
itates the tracking of the features even if the photometric infor-
mation is not very discriminative. Notice also that line features
usually represent boundaries of the scene that remain even in
texture-less scenes. These advantages have a direct influence in
robot pose estimation and Simultaneous Localization and Map-
ping(SLAM) where texture-less scenes can induce drift in pose
estimation due to the lack of significant features.

Some previous approaches have tried to fit 3D lines from a
single image in non-central catadioptric systems. The approach
presented by Teller and Hohmeyer (1999) exploits the intersec-
tion operator between lines for defining a linear system from
4 rays computing the two incident lines. Since in non-central
systems with symmetry of revolution one of these lines is the
axis of revolution, this approach is used in Caglioti and Gas-
parini (2005); Caglioti et al. (2007a); Gasparini and Caglioti
(2011) for estimating 3D lines from line projections of non-
central catadioptric images and studying the degeneracies and
singular configurations. In Lanman et al. (2006) the same ap-
proach is used with spherical catadioptric mirrors for 3D re-
construction. Work in Swaminathan et al. (2008) extends the
approach from lines to planar curves. In Agrawal et al. (2010)
the line-image for spherical catadioptric systems is indirectly
shown as the epipolar curve. This epipolar curve represents in
fact the projection of a 3D line (the epipolar ray of other system)
an is represented through a second order line complex. Some
simplifications have been used to improve the reconstructions

1Four lines are generic if no two of them are coplanar, no three of them are
coconical or cocylindrical, and the four are not cohyperbolic, i.e. do not lie on
the same ruled quadric surface.

by reducing the DOFs of the problem: considering horizon-
tal lines (Pinciroli et al. (2005); Chen et al. (2011)), exploiting
cross-ratio properties (Perdigoto and Araujo (2012)) or impos-
ing additional constraints such as parallelism or perpendicular-
ity (Bermudez-Cameo et al. (2014a)).

Line projections have been also used to estimate the calibra-
tion of non-central systems in a generalization of the plumb-
line approach. For example in Caglioti et al. (2007b) they ex-
ploit that there exists less ambiguity when the system is off-axis
with impressive results. However, that approach does not al-
low to obtain an analytical expression of the line projection. In
Agrawal and Ramalingam (2013) they exploit particular geo-
metric properties of spherical mirrors for computing extrinsic
calibration parameters. As application, the pose of non-central
catadioptric systems is estimated in an image sequence (Mi-
raldo and Araujo (2014); Miraldo et al. (2015)) using known
3D lines.

In Perdigoto and Araujo (2016) a method for estimating
the mirror shape and extrinsic parameters for axial non-central
catadioptric systems is presented. For the particular case of
spherical mirrors quartic curves representing line projections
are fitted. For this fitting they propose using the geometric dis-
tance by using a generic constrained optimization.

Automatically extracting the projection of a line in non-
central images is a challenging task. In omnidirectional cen-
tral systems the problem differs if the system is calibrated (Puig
et al. (2012)) or not. It has been recently solved for calibrated
images (Bazin et al. (2010); Ying and Zha (2005)) and for un-
calibrated axially symmetric images (Bermudez-Cameo et al.
(2015); Tardif et al. (2006)). In non-central images the diffi-
culty of the extraction increases due to the high distortions in-
duced on line-images, the elevated number of degrees of free-
dom involved in the extraction and the lack of effective base-
line of current non-central systems. This problem has been
successfully addressed for non-central circular panoramas in
Bermudez-Cameo et al. (2017).

In this paper, we study the robust fitting of line projections in
non-central catadioptric cameras with symmetry of revolution
and present a method for automatic extraction of these line pro-
jections. Up to our knowledge, this is the first work addressing
this problem in non-central catadioptric cameras. The proposal
has been developed for conical catadioptric and spherical cata-
dioptric systems. This procedure automatically segments the
collection of edges corresponding to line-images. The complete
3D localization of a line is also recovered from the extraction
in a single image even if the accuracy of the result is sensitive
to noise. The contributions of this work are the following:

• A unified framework for describing line-images in non-
central systems with revolution symmetry.

• Polynomial expressions of the line-images for conical and
spherical catadioptric systems.

• A closed-form solution for computing the geometry of the
mirror from 5 points lying on a line-image in conical cata-
dioptric systems.

• Solutions based on polynomial roots for computing the
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Fig. 3. Euclidean interpretation of Plücker coordinates.

Euclidean distance from point to line-image for conical
and spherical catadioptric systems.

• A feature for measuring effective baseline in a set of rays
in non-central systems.

• An algorithm for automatic line-image extraction in non-
central images.

• Accuracy comparison of line reconstruction between cata-
dioptric systems of similar sizes.

Preliminary results of this work have been presented in
Bermudez-Cameo et al. (2014b) where we show the equation of
the line-image and the metric distance for conical catadioptric
systems. In this paper we extend the approach to spherical cata-
dioptric systems developing the equation of the line-image and
the metric distance. We also contribute with the measure of the
effective baseline of a set of rays and the automatic line-image
extraction procedure. The proposed approaches have been in-
dependently validated with a set of simulations. Then the com-
plete pipeline has been tested with synthetic and real images.

In Section 2 we introduce the required background of our
proposal. In Section 3 we present our unified framework for
describing rays and line projections in non-central systems with
symmetry of revolution. In Section 4 we present the proposed
description of the line-image for conical catadioptric system
and we introduce the computing of the mirror geometry param-
eter from 5 points of the line-image. In Section 5 we show
the polynomial description of the line-image for spherical cata-
dioptric systems and we particularize the corresponding metric
distance for this case. In Section 6 we analytically solve the
metric distance from a point to the line-image. We particular-
ize the corresponding metric distance for conical and spherical
catadioptric systems. In Section 7 we present the algorithm for
line-image extraction in non-central images including the pro-
posed feature for measuring the effective baseline of a set of
rays. In Section 8 we evaluate the method with synthetic and
real images. Finally in Section 9 we present the conclusions.

2. Background

In this section, we introduce the relevant geometric concepts
and notation used in this paper. In particular, we summarize
the description used for lines, which is based on Grassmann-
Cayley algebra (Kanatani (2015)), the transformations between
systems of references, and the side operator between two lines.

2.1. Plücker coordinates
The Plücker coordinates of a 3D line (Selig (2004); Pottmann

and Wallner (2001)) is an homogeneous representation of a
line L ∈ P5 defined by the null space of two P3 points X =

(X1, X2, X3, X4)T and Y = (Y1,Y2,Y3,Y4)T. When correctly ar-
ranged, this representation can be decomposed in two R3 vec-
tors L =

(
lT, l̄T

)T
defined as

l = X4

 Y1
Y2
Y3

 − Y4

 X1
X2
X3

 , l̄ =

 X1
X2
X3

 ×
 Y1

Y2
Y3

 . (1)

These vectors have geometrical meaning in Euclidean geom-
etry. l ∈ R3 is called the direction vector and represents the
direction of the line. l̄ ∈ R3 is called the moment vector and
represents the normal to a plane passing through the 3D line
and the origin of the reference system O. Not all elements of P5

correspond to 3D lines. Any point of P5 corresponding to a line
in P5 must satisfy lT l̄ = 0 which is known as Plücker identity.
The Euclidean interpretation of this identity is the orthogonality
between the direction vector l and the projection plane vector l̄
(see Fig. 3). The minimum distance from the origin O to the
3D line is computed as dl =

‖l̄‖
‖l‖ .

2.2. Change of reference of Plücker coordinates
Consider X ∈ P3 the representation of a 3D point in ho-

mogeneous coordinates in an Euclidean reference system and
X′ ∈ P3 the representation in another Euclidean reference sys-
tem; the transformation describing the Euclidean transforma-
tion between both reference systems is represented by the ma-
trix

T =

(
R t
0T 1

)
such that X = TX′ and X′ = T−1X, (2)

where R ∈ S O3 is a rotation matrix and t ∈ E3 a translation
vector. The corresponding transformation for changing the ref-
erence of a line L ∈ P5 expressed in Plücker coordinates is

G =

(
R 0

[t]× R R

)
: L = GL′ and L′ = G−1L, (3)

where [t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 is the skew-symmetric matrix

operator.

2.3. The side operator
Given two 3D lines expressed in Plücker coordinates Li =(

liT, l̄Ti
)T

and L j =
(
l j

T, l̄Tj
)T

, the side operator (Pottmann and
Wallner (2001)) between them is defined as

side
(
Li,L j

)
= liT l̄ j + l j

T l̄i. (4)

The operator side
(
Li,L j

)
is a signed distance whose sign de-

fines the side of the line L j with respect the line Li, such that
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Fig. 4. Distance dE between two skew rays.

|side
(
Li,L j

)
| = dEi j‖li‖‖l j‖| sinα| (5)

where dEi j is the metric distance between the closest point of
both lines and α the angle between li and l j (see Fig. 4).

3. Line projection in non-central systems

In this section, we present a unified framework for describing
rays and line projections in non-central systems with symmetry
of revolution.

3.1. Back-projection ray model in non-central systems with
revolution symmetry

To exploit the revolution symmetry property we assume that
image points x = (x, y, z)T ∈ P2 are homogeneous coordinates
expressed in a reference centred in the projection of the axis
of revolution. This coordinate system is normalized with the
camera parameters. The relation between these coordinates and
final image coordinates (u, v) is

(u, v, 1)T ∼ Kc distort (Rcamx) (6)

where Kc ∈ R3 × R3 is an affine transformation involving fo-
cal length, Rcam ∈ SO(3) is a rotation matrix and distort is a
function introducing a radial distortion model. x can be ex-
pressed in polar coordinates (r, θ, z) such that r =

√
x2 + y2 and

θ = atan2 (y, x).
In a general non-central system each ray Ξ (x) corresponding

to an image point is defined by two points (Sturm et al. (2011)),
e.g. the 3D point and a point in which the ray is tangent to a
surface called caustic. When the system has symmetry of rev-
olution any ray can be expressed in terms of three parameters:
elevation angle φ, azimuth angle θ and distance from the ori-
gin O to the intersection between the ray and the vertical axis
Zr (see Figure 5). We name both the azimuth angle and the
polar coordinate presented before as θ because they are equiv-
alent (see Figure 5). The representation of this ray in Plücker
coordinates is

Ξ =

(
ξ
ξ̄

)
=



sin φ cos θ
sin φ sin θ

cos φ
−Zr sin φ sin θ
Zr sin φ cos θ

0


(7)

Fig. 5. Back projection of a point (r, θ, z) in non-central catadioptric axial
system.

Conical Spherical

cot φ = z+r tan 2τ
z tan 2τ−r cot φ =

−ζ
δ

Zr = Zc + Rc cot φ Zr = Zs
δ+ε
δ

Table 1. Overview of expressions Zr and cot φ. Details in Sections 4 and 5.

with ξ = (ξ1, ξ2, ξ3)T and ξ̄ =
(
ξ̄1, ξ̄2, ξ̄3

)T
.

The elevation angle φ (r, z) and distance Zr (r, z) have a differ-
ent expression for computing depending on the kind of system
and embed the calibration of the whole system (see Table 1).

3.2. Line projection in non-central systems with revolution
symmetry

Consider an image point x. Its corresponding projecting ray

Ξ =
(
ξT, ξ̄

T)T
intersects a 3D line L =

(
lT, l̄T

)T
when

side (Ξ,L) = ξT l̄ + ξ̄
Tl = 0 . (8)

Having at least four points and their corresponding rays, the
intersection of the projection rays Ξi, i = 1..4 with the line L
is described by a linear system. In Teller and Hohmeyer (1999)
and Gasparini and Caglioti (2011) the solution of this system
of equations is used to compute the Plücker representation of
the 3D line. Since Plücker coordinates is an over-parametrized
representation, the null space of the solution has one dimension.
However, not all six-element vectors correspond to a Plücker
line. By imposing the Plücker line constraint (lT l̄ = 0) two
solutions are obtained. One is the axis of symmetry and the
other is the sought line.

Notice that there exist some degenerated cases in which pro-
jecting surfaces are planes (called Planar Viewing Surfaces
(PVS) in Gasparini and Caglioti (2011)) and the geometry of
the 3D line cannot be recovered. These degenerated cases are:
the Axial-PVS case when the line is coplanar with the axis of
symmetry and the Horizontal-PVS case when all the projection
rays lie in an horizontal plane (φ = π

2 ).
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A line-image is a curve on a two dimensional projected space
which defines the collection of rays intersecting a 3D line. This
curve is obtained by embedding the back-projection model (7)
in equation (8) obtaining

Zr (l2 cos θ − l1 sin θ) sin φ +
(
l̄1 cos θ + l̄2 sin θ

)
sin φ + l̄3 cos φ = 0 ,

where l1,l2,l3 are the components of l and l̄1,l̄2,l̄3 are the com-
ponents of l̄. This equation can be expressed in terms of image
coordinates by substituting cos θ = x

r , sin θ =
y
r and multiplying

by radius r obtaining

Zr (l2x − l1y) +
(
l̄1x + l̄2y

)
+ l̄3r cot φ = 0 . (9)

which is generalization for non-central systems of the frame-
work proposed in Bermudez-Cameo et al. (2015). With at least
4 points of the line-image we can compute the 3D line in a di-
rect way by solving the linear system

(−Zriyi,Zrixi, xi, yi, ri cot φi)Λ = 0 , for i = 1, ..., 4 , (10)

where Λ =
(
l1, l2, l̄1, l̄2, l̄3

)T
. Notice that l3 has disappeared in

the equation and we are obtaining an element of P4 because the
system has revolution symmetry and ξ̄3 = 0. As a consequence,
the null space is a single solution instead of the one dimen-
sion space obtained when solving (8) in Teller and Hohmeyer
(1999). Actually, the Plücker identity used to reduce this space
in Teller and Hohmeyer (1999) allows us to compute l3 due to
the redundancy in Plücker coordinates representation.

4. Conical Mirror Systems

In conical catadioptric systems with the camera located in the
axis of revolution of the mirror, the locus of viewpoint is a circle
of radius Rc centred in the vertical axis at height Zc (Baker and
Nayar (2001); López-Nicolás and Sagüés (2014)). The locus
of this circle, which depends on the distance Zm between the
camera and the vertex of the mirror, and the aperture angle τ of
the mirror, is

Rc = Zm sin 2τ , Zc = Zm (1 − cos 2τ) . (11)

4.1. The forward projection model

Since the viewpoint locus is a circle and there exist revolu-
tion symmetry the forward projection is unambiguous and di-
rect. Given a 3D point X = (X1, X2, X3, X4)T ∈ P3 in the camera
reference, the non-central projection ray lies in a plane contain-
ing the axis of revolution of the mirror (See Fig. 6). This ray
intersects the circle in a point C placed in the opposite side of
the plane (See Fig. 6). The projection ray Ξ is completely de-
fined by X and C. The reflection of Ξ on the mirror is projected
onto point x ∈ P2 on the normalized plane.

Fig. 6. Conical catadioptric projection of a point X.

x =

(
sin 2τ (X3−ZmX4)√

X2
1 +X2

2

− cos 2τ
)

X1

y =

(
sin 2τ (X3−ZmX4)√

X2
1 +X2

2

− cos 2τ
)

X2

z = ZmX4 + (X3 − ZmX4) cos 2τ +

√
X2

1 + X2
2 sin 2τ

(12)

This projection is related to the image plane with a perspective
camera model involving a linear transformation and a distortion
model. We use the projection model of the perspective camera
(see (6)) to transform the coordinates of the normalized plane
(x, y, z) ∈ P2 to the image coordinates (u, v) ∈ R2.

4.2. The back projection model
In conical catadioptric systems Zr depends on cot φ

Zr = Zc + Rc cot φ (13)

which is related with r by

cot φ =
z + r tan 2τ
z tan 2τ − r

. (14)

Substituting these expressions in (7) the equation of the back
projection model becomes

Ξ =



x (z tan 2τ − r)
y (z tan 2τ − r)
r (z + r tan 2τ)

−y (Zc (z tan 2τ − r) + Rc (z + r tan 2τ))
x (Zc (z tan 2τ − r) + Rc (z + r tan 2τ))

0


. (15)
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4.3. Line-images in Conical Catadioptric Systems

When particularizing expression (9) to the conical catadiop-
tric system, the line image equation results on a polynomial
expression of degree 4 (a quartic described by 15 monomials in
general). However, when the equation is expressed in polar co-
ordinates (x = r cos θ, y = r sin θ) this expression can be written
in a compact form with 6 parameters encapsulating the Plücker
coordinates of the line and the mirror parameters of the system.
The line-image is then written as

(r cos θ, r sin θ, r, z cos θ, z sin θ, z)ω = 0 (16)

where

ω =



ω1
ω2
ω3
ω4
ω5
ω6


=



(1 − cos 2τ) Zml2 − l̄1 cos 2τ
− (1 − cos 2τ) Zml1 − l̄2 cos 2τ

l̄3 sin 2τ
sin 2τ

(
l̄1 + Zml2

)
sin 2τ

(
l̄2 − Zml1

)
l̄3 cos 2τ


. (17)

This expression allows us to linearly compute the line-image
from five or more points without knowing neither the aperture
angle of the mirror τ nor the distance to the mirror Zm, by solv-
ing

(
rixi, riyi, r2

i , xizi, yizi, rizi

)
ω = 0 for i = 1, ..., 5 . (18)

Once the line-image ω ∈ P5 is estimated τ is computed from
tan 2τ = ω3/ω6. Notice that the distance to the mirror Zm is
coupled with direction vector l so it is not possible to separate
them. Because of this, we conclude that in conical catadiop-
tric mirrors, if the distance of the camera to the mirror Zm is
unknown, it is not possible to reconstruct the scale of a scene
from line-images in a single image.

4.3.1. Parametric Description and Singularity
A parametric description of the line equation can be used for

depicting the line projection. Expression (16) allows expressing
r in terms of θ

r = z
− (ω4 cos θ + ω5 sin θ + ω6)
ω1 cos θ + ω2 sin θ + ω3

(19)

therefore, the parametric expression of the line-image curve be-
comes

x (θ) = − (ω4 cos θ + ω5 sin θ + ω6) cos θ (20)
y (θ) = − (ω4 cos θ + ω5 sin θ + ω6) sin θ (21)

z (θ) = ω1 cos θ + ω2 sin θ + ω3 . (22)

In conical catadioptric systems the vertex cone projection
(x = 0, y = 0) is a singularity for line-images passing through
it. If the line-image lies on this point, equation (19) returns
negative values of r for some values of θ. At the singularity, the
curve is continuous but not derivable. Considering the points

Fig. 7. Detail of two line projections A and B in a non-central catadioptric
image with conical mirror. Line A (in red) passes through the singularity
at the principal point (dotted points correspond to negative radius).

with negative radius the curve is derivable on the singularity.
Actually, these points are not obtained on the real catadioptric
image (dotted points in Figure 7 ).

From equation (19) we can determine the range of values of
θ in which the radius is negative. The values of θ limiting this
range are computed from

ω4 cos θ + ω5 sin θ + ω6 = 0 , (23)

by substituting cos θ = 1
√

1+tan2 θ
and sin θ = tan θ

√
1+tan2 θ

in (23)
obtaining the following quadratic equation

(
ω2

5 − ω
2
6

)
tan2 θ + 2ω4ω5 tan θ +

(
ω2

4 − ω
2
6

)
= 0 , (24)

with solution

tan θ =
−ω4ω5 ± ω6

√
ω2

4 + ω2
5 − ω

2
6

ω2
5 − ω

2
6

. (25)

Notice that it does not exist a real solution if the value inside the
square root is negative. In other words, all θ values (19) give
r > 0 and the line-image does not belong to the singularity. So,
we can state that a line-image passes through the singularity if
and only if ω2

4 + ω2
5 > ω

2
6.

5. Spherical Mirror Systems

A spherical catadioptric system is a non-central system com-
posed by a spherical mirror and a perspective camera. Due to
the symmetry of the sphere there exist symmetry of revolution
wherever the perspective camera is located. The system is char-
acterized by the radius of the sphere Rs, the distance from the
camera to the center of the sphere Zs, the intrinsic parameters of
the perspective camera and the relative rotation of the camera
with respect to the axis of revolution. This axis is defined by the
center of the sphere and the location of the perspective camera.

5.1. The forward projection model

The forward projection in spherical catadioptric systems is
tackled in Agrawal and Ramalingam (2013); Agrawal et al.
(2011); Gonçalves (2010); Gonçalves and Nogueira (2009).
The solution of the forward projection model in this case can
be considered as the roots of a polynomial of degree 4. The
multiple possible solutions must be tested to identify the one
with physical meaning.
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Fig. 8. Spherical catadioptric projection of a point X.

5.2. The back projection model
Equation (7) can be particularized to the case of the spher-

ical catadioptric system obtaining the back projection model.
The back-projection model in a catadioptric spherical system
is obtained by computing the reflection of an incident ray Ξi

on the sphere following the Snell’s law. Consider a reference
system placed in O the center of the sphere with radius Rs and
described by XTQsX = 0, where X are 3D points in P3 and

Qs =

(
I3×3 0
0T −R2

s

)
. (26)

Consider also a projective point x = (x, y, z)T in the reference
of a perspective camera aligned with the axis of revolution and
placed a distance Zs in X0 = (0, 0,−Zs, 1)T and defining an in-
cident ray Ξi with direction ξi = (x, y, z)T equal to x (see Fig.
8).

The intersection of Ξi with the sphere (see Appendix A)
gives two points X± where only X− is visible. The expressions
of these points are

X± =


−xRs (ZRel − 1)
−yRs (ZRel − 1)
Rs

(
z ∓ ZRel

√
γ
)

±
√
γ − ZRelz

 (27)

where ZRel =
Zs
Rs

is the ratio between the distance from the
camera and the sphere center and the radius of the sphere,
r2 = x2 + y2 , ρ2 = x2 + y2 + z2 and γ =

(
−r2Z2

Rel + ρ2
)
. To

compute the reflection we consider the plane UT =
(
uT, u0

)T

tangent to the sphere in X− such that

UT = QsX− =


−x (ZRel − 1)
−y (ZRel − 1)
z + ZRel

√
γ

Rs

(√
γ + ZRelz

)
 . (28)

On the other hand, the Snell’s reflection law in Plücker coor-
dinates is defined as

ξ = ξiu
Tu − 2uξi

Tu (29)
ξ̄ = 2u0ξi × u − ξ̄iu

Tu + 2uuTξ̄i (30)

then Ξ =
(
ξT, ξ̄

T)T
becomes

ξ =

 xδ
yδ
−ζ

 , ξ̄ = εZs

 −y
x
0

 (31)

with δ = 2r2Z4
Rel − 2zχZ2

Rel − 3ρ2Z2
Rel + ρ2 ,

ε =
(
−r2 + z2

)
Z2

Rel + 2χz + ρ2 and

ζ = 2r2zZ4
Rel − 2χ

(
−r2Z2

Rel + ρ2
)
− zρ2

(
1 + Z2

Rel

)
where χ =

√
Z2

Relγ.
Notice that Ξ is the back projected ray expressed in the ref-

erence of the sphere O. It is transformed to camera reference C
through the transformation Ξc = GcsΞ with

Gcs =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −Zs 0 1 0 0
Zs 0 0 0 1 0
0 0 0 0 0 1


such that (32)

Ξc = (x, y,−ζ,−yZs (δ + ε) , xZs (δ + ε) , 0)T (33)

defining the parameters of the model presented in Section 3
cot φ =

−ζ
δ

and Zr = Zs
δ+ε
δ

.

5.3. Line images in Spherical Mirror Systems

Following (8) the side operator between a line L =
(
lT, l̄T

)T

and the projection ray Ξ represented in the sphere reference O
defines the line image equation as

εZs (l2x − l1y) + δ
(
l̄1x + l̄2y

)
− l̄3ζ = 0 . (34)

This expression can be developed using the distance Zs in the
description of the line such that l̃ = Zsl. Then we can obtain a
quartic curve which is rewritten as

L̂TNX̂ = 0 (35)

where
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L̂ =



l̃21
l̃1 l̃2
l̃1 l̄1
l̃1 l̄2
l̃1 l̄3
l̃22

l̃2 l̄1
l̃2 l̄2
l̃2 l̄3
l̄21

l̄1 l̄2
l̄1 l̄3
l̄22

l̄2 l̄3
l̄23



, X̂ =



x4

x3y
x3z
x2y2

x2yz
x2 z2

x y3

x y2z
xyz2

xz3

y4

y3z
y2z2

yz3

z4


are the lifted coordinates of of the line L and the image point
x and N (ZRel) is a 15 × 15 matrix only depending on ZRel. The
matrix N (see (B.1)) and the 15 coefficients of the quadric qs =

NTL̂ are detailed in Appendix B.
Notice that this equation does not depend on Zs (only on the

relative measure ZRel) because we are representing the lifted co-
ordinates L̂ in the sphere reference O and because we have em-
bedded Zs in l̃. We can also represent this equation in the ref-
erence of the camera by using the transformation H (Zs) (see
(B.2)) depending on Zs such that L̂ = HL̂C and L̂T

CHTNX̂ = 0.

5.3.1. Parametric Description
The parametric description of the line-image can be obtained

composing the lifted image vector X̂ with the polar representa-
tion x = r cos θ, y = r sin θ and z = 1. When θ is known the
result is a polynomial which can be solved for r with the form

4∑
i=0

piri = 0 , (36)

where the coefficients pi = f (qs, θ) are defined as

p4 = q1 cos4 θ + q11 sin4 θ + q4 cos2 θ sin2 θ + ... (37)
... + q2 cos3 θ sin θ + q7 cos θ sin3 θ

p3 = q3 cos3 θ + q12 sin3 θ + q5 cos2 θ sin θ + q8 cos θ sin2 θ (38)
p2 = q6 cos2 θ + q13 sin2 θ + q9 cos θ sin θ (39)

p1 = q10 cos θ + q14 sin θ (40)
p0 = q15 . (41)

Four different solutions are obtained but only one of them
corresponds to the sought parametric line-image. Points corre-
sponding to the right solution must also satisfy equation (35)
(see Fig. 9).

6. Algebraic and metric distances

When evaluating if a point belongs to a line-image for fitting
the curve is necessary a function measuring the distance from a
point to the line-image. The quality of the extracted line-image
depends on this distance. In this Section, we present a qual-
itative comparison among distances and we propose different

Fig. 9. Representation of the line-image quartic (35) using the parametric
description of Section 5.3.1. The whole collection of points satisfies equa-
tion (35) but only the points with physical meaning (in continuous blue)
satisfy equation (34).

approaches for tackling this problem. Having the line-image
equation (9) a measure of distance is the algebraic distance

dalg (x, L) = |Zr

(
l2

x
z
− l1

y
z

)
+

(
l̄1

x
z

+ l̄2
y
z

)
+ l̄3

r
z

cot φ| (42)

which is measured in pixels when the Plücker coordinates of
the line L are normalized with ‖l̄‖ = 1.

The second distance considered is the Euclidean metric dis-
tance in E3 which is the minimum Euclidean distance between
two 3D lines (the 3D line and the projecting ray generated from
an image point). The Euclidean metric distance is defined as in
Pottmann and Wallner (2001)

dE

(
Li,L j

)
=
|liT l̄ j + l j

T l̄i|
‖li × l j‖

(43)

which is defined in 3D space units (meters).
The equidistant region defined by distances dalg and dE is not

homogeneous on the image plane (See Figure 11), particularly
in the case of conical catadioptric camera.

Besides, both distances (dalg and dE) tend to give higher re-
ward to lines closer to the origin, conditioning the robust ex-
traction process. For understanding this effect, in Figure 12 we
show the projection of the same horizontal line (conical cata-
dioptric system) but having a different depth. If we set a thresh-
old using a given distance we define a 3D voting region on the
space (in red in Figure 12). Consider now that we are trying
to robustly fit a line located 1 meter far from our system. If
one of the random line hypothesis is very close to the system
the region defined by the threshold is so big that any point of
any projection is going to vote this hypothesis despite it is not
modelling the original 3D line. Another way of posing that is
realizing that when using a threshold with a spatial based dis-
tance (like dalg or dE) we define a voting space composed by a
set of cylinders which are going to saturate the 3D voting space
in a region close to the system, such that any 3D line located in
the close region is going to be compatible with the original set
of points.

To avoid these effects we propose using the Euclidean dis-
tance E2 from point to line-image on the image plane which is
the Euclidean distance between a given point x = (x, y, z)T and
the closest point of the line-image xc = (xc, yc)T (see Fig. 10)
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Fig. 10. Euclidean distance from point x to line-image L.

de (x, L) = de (x, xc) =

√( x
z
− xc

)2
+

(y
z
− yc)

)2
. (44)

Let x̃ = (x̃, ỹ)T ∈ R2 be a point of the image plane. Com-
puting the point of the line-image xc which is closer to the
given point x (see Fig. 10), is equivalent to minimizing the dis-
tance function fd (x̃) = de (x, x̃) subject to the constraint g (x̃) =

(x̃, ỹ, 1) = 0 where g is any representation of the line-image
equation (e.g. (9)). Since arg min

x
de (x, L) = arg min

x
d2

e (x, L)

the problem is stated as

de (x, L) = de (x, xc) such that xc = arg min
x̃

f 2
d (x̃)

subject to g (x̃) = 0 . (45)

The method of Lagrange multipliers justifies that this state-
ment is equivalent to find the critical points of the Lagrangian
function

L (x̃, λ) = f 2
d (x̃) + λg (x̃) , (46)

which are estimated by solving ∇x̃,ỹ,λL (x̃, ỹ, λ) = 0. Eliminat-
ing the Lagrange parameter λ we finally obtain the equation
system

g (x̃) = 0 , h (x̃) =

(
x̃ −

x
z

)
∂g
∂ỹ
−

(
ỹ −

y
z

)
∂g
∂x̃

= 0, (47)

in such a way that point x̃ is on the line-image and satisfies
that the perpendicular line passing by this point must intersect
x. In next sections we solve (47) for the two selected cases
of conical and spherical catadioptric systems finding analytical
solutions which are roots of a polynomial. This is possible be-
cause in these cases the line-image equation g can be written as
a polynomial, but in general the solution has to be solved using
iterative methods minimizing (47).

6.1. Euclidean distance de in conical catadioptric systems
The Euclidean distance de (x, L) between the image point x

and the line-image L is obtained estimating the closest point of
the line-image xc. The point x̃ ∈ E2 of the Euclidean plane is
the closest point of the line-image xc when satisfying g (x̃) = 0
and h (x̃) = 0. Particularizing equation (47) to conical cata-
dioptric systems we can reach a solution based on the roots of a
single polynomial equation. Since the degree of the polynomial
is greater than four the solution can not be considered a closed-
form, however the estimation of the roots of a polynomial is
computationally fast and robust.

Conical mirror

(a) (b) (c)
Spherical mirror

(d) (e) (f)

Fig. 11. Comparison of the different metrics presented to decide if a point
lies on a line-image. The thin lines are the actual line-images. The coloured
region around the lines denotes the points of the region which have a dis-
tance minor than a threshold. Example for conical and spherical catadiop-
tric system: (a,d) Algebraic distance dalg, (b,e) Euclidean distance between
lines dE , (c,f) Euclidean distance from point to line-image de.

1 m

(a) (b) (c)
0.1 m

(d) (e) (f)

Fig. 12. Region defined by a fixed threshold when using distances dAlg, dE
and de in conical catadioptric images. Horizontal line. The size of the
regions defined by dAlg, and dE are strongly dependent on the depth of the
line.
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First we expand the compact line-image description (16) to
get a polynomial equation for g (x̃) = 0. In this case it yields
the quartic

g = r̃2 (ω6 + ω1 x̃ + ω2ỹ)2 −
(
ω4 x̃ + ω5ỹ + ω3r̃2

)2
= 0 (48)

where r̃2 = x̃2 + ỹ2. The resulting polynomial equation h (x̃) = 0
obtained from this expression is the quartic

(
x̃3, x̃2ỹ, x̃2, x̃ỹ2, x̃ỹ, x̃, ỹ3, ỹ2, ỹ

)
W

(
x̃ − x

z
ỹ − y

z

)
= 0 (49)

where

W =



ω1ω2 2ω2
3 − 2ω2

1
ω2

1 + ω2
2 − 2ω2

3 −3ω1ω2
ω2ω6 − ω3ω5 3ω3ω4 − 3ω1ω6

3ω1ω2 −ω2
1 − ω

2
2 + 2ω2

3
2ω1ω6 − 2ω3ω4 2ω3ω5 − 2ω2ω6
−ω4ω5 ω2

4 − ω
2
6

2ω2
2 − 2ω2

3 −ω1ω2
3ω2ω6 − 3ω3ω5 ω3ω4 − ω1ω6

ω2
6 − ω

2
5 ω4ω5


(50)

Computing the resultant between both equations from vari-
able ỹ we obtain a single polynomial equation depending on x̃
with degree 12.

(
x̃12, x̃11, x̃10, x̃9, x̃8, x̃7, x̃6, x̃5, x̃4, x̃3, x̃2, x̃, 1

)
Ωx̂ = 0 (51)

where Ω (ω) ∈ R13x15 (see Appendix C) and x̂ ∈ R15 such that

x̂ = (x4, x3y, x3z, x2y2, x2yz, x2z2, ...

xy3, xy2z, xyz2, xz3, y4, y3z, y2z2, yz3, z4)T

For a given point on the normalized plane x = (x, y, z)T , solv-
ing (51) results in 12 solutions for x̃. The correct solution can be
found by checking g and h for each solution. From the remain-
ing results we choose the one with minimal distance. Notice
that Ω only has to be computed for each line-image ω whereas
(51) is solved for each point.

In Fig. 11 we show the different regions defined by the three
distances given a threshold. Fig. 11 (a,d) corresponds to the
regions for the algebraic distance dalg, observing that there exist
variations in the thickness of the region when the projection is
close to the center of the image. The region defined by the 3D
Euclidean distance between line and rays dE (see Fig. 11 (b,e))
variates its thickness depending on the distance of the point of
the 3D line. Finally, the Euclidean distance on the image de

defines a region with an homogeneous thickness (see Figure 11
(c,f)).

6.2. Euclidean distance de in spherical catadioptric systems

We have shown that the point x̃ ∈ E2 of the Euclidean plane
is the closest point of the line-image xc when satisfying the
systems of equations (47). In particular, when considering a

spherical catadioptric system, the function g (x̃) is defined by
the polynomial representation of the line-image (35)

g (x̃) = L̂TNX̂ (x̃) = 0 . (52)

The constraint h (x̃) enforces the parallelism between the gra-
dient of the line-image and the line passing through the closest
point of the line-image and the given point. Substituing the gra-
dients of expression (35) in (47) we obtain

h (x̃) = L̂TNJX̂ = 0 (53)

where J is a matrix depending on x (see (B.3)).
Both expressions g (x̃) = 0 and h (x̃) = 0 constitute a polyno-

mial system of equations of degree four. Considering z̃ = 1 and
the operator

tri (v) =


0 0 0 0 v1
0 0 0 v2 v3
0 0 v4 v5 v6
0 v7 v8 v9 v10

v11 v12 v13 v14 v15


these equations can be rewritten on terms of a bi-quartic expres-
sion.

g = x̃T
Qtri

(
L̂TN

)
ỹQ = 0 (54)

h = x̃T
Qtri

(
L̂TNJ

)
ỹQ = 0 (55)

where x̃Q =
(
x̃4, x̃3, x̃2, x̃, 1

)T
and ỹQ =

(
ỹ4, ỹ3, ỹ2, ỹ, 1

)T
.

One of the two variables of the systems of equations can be
eliminated computing the resultant between them. For this, we
compute the Sylvester matrix S respect to ỹ obtaining a 8×8
matrix. The determinant of this matrix is the resultant, that is a
polynomial equation such that

|S | = 0⇔ g = 0 and h = 0. (56)

To reduce the difficulty of computing this determinant we
exploit the property of determinants

|S | =

∣∣∣∣∣∣ S A S B

S C S D

∣∣∣∣∣∣ = |S A|
∣∣∣S D − S CS −1

A S B

∣∣∣ .
where S A = S 1..4,1..4, S B = S 1..4,5..8, S C = S 5..8,1..4 and S D =

S 5..8,5..8. Since |S A| , 0 the degree of the resultant decreases,
obtaining the determinant of a 4×4 matrix

|S L| =
∣∣∣S D − S CS −1

A S B

∣∣∣ =

∣∣∣∣∣∣∣
8∑

k=1

3∑
m=1

S̄km x̃k−1xm

∣∣∣∣∣∣∣ = 0 (57)

with xm = {x1 = x, x2 = y, x3 = z} and S̄km ∈ R4×4 such that

S̄km =


s̄11km s̄12km s̄13km s̄14km

s̄21km s̄22km s̄23km s̄24km

s̄31km s̄32km s̄33km s̄34km

s̄41km s̄42km s̄43km s̄44km

 (58)
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(a) (b) (c)

Fig. 13. Different proposals for computing a measure of baseline of a set of rays based on the distances between rays. Consider a point x located dA from
a point A and a distance db from a point B. Top: Contour lines of the measure. Bottom: Section of the field of measures along the straight line passing
through A and B.(a) Mean of the distances: In this case any point located in the red straight line passing through A and B is going to have the same mean
value. However points located close to A or B are bad conditioned because one of the two distances is low. (b) Sum of inverse of the distances: In this case
the measure increases rapidly when one of the distances is close to zero. (c) Inverse of the sum of inverse of distances: The maximum of this measure is
located in the point equidistant to both reference points A and B.

where s̄i jkm = f
(
L̂,N, J

)
(see Appendix D for more details).

When expanding this determinant we obtain a polynomial of
degree 16 in x̃

|S L| =

16∑
n=0

cn x̃n = 0 , (59)

where cn = f
(
s̄i jkm, x

)
(see Appendix D for more details).

The roots of this polynomial are the solutions of x̃ for the
equation system. Using (54) we obtain 4 solutions of ỹ for each
of the 16 solutions obtained for x̃. Each pair x̃i = (x̃i, ỹi)T corre-
sponds to a candidate to be the closer point from the line-image
to the original point x. The correct solutions must hold (54)
and (34). From the remaining solutions we choose the one with
minimal Euclidean distance de.

7. Robust line extraction in non-central systems

In this Section, we present a method for line-image extraction
in non-central systems. Line extraction in non-central systems
is an unsolved challenging task due to the difficulties of map-
ping the 3D of the line on a 2D space, the sensitivity to noise in
fitting, and the elevate number of degrees of freedom involved.
Up to our knowledge, this is the first work addressing this prob-
lem.

Assuming the system is calibrated, four points of the line-
image are needed to define a line-image and its corresponding

3D line. When using a robust approach like RANSAC the num-
ber of iterations is considerably greater than in the central case
because the number of DOFs increases from 2 to 4. To handle
this problem we can check the candidates for minimal subsets
before computing the minimal model like in PROSAC (Chum
and Matas (2005)) and USAC (Raguram et al. (2013)). That
allows to reduce the number of hypotheses being computed and
evaluated. In particular, we remove collections of four sam-
ples having low effective baseline. The baseline of a set of four
points is estimated using our proposal for measuring the effec-
tive baseline presented in the following Section. To evaluate if
an image point belongs to a particular line-image hypothesis we
use the Euclidean distance de presented in Section 6.

7.1. A feature for measuring effective baseline in a set of rays

To compute a 3D line from a set of rays (see Section 3.2) the
rays must not be coplanar. Consider for example a set of four
rays intersecting a line, two of them being projections in a cam-
era and the other two projections in other camera of a stereo
pair. If we get a ray from a camera and a ray from the other
camera they are skew and there exist a distance between them
related with the baseline of the stereo system. The accuracy
of the line reconstruction is strongly related with this distance.
Similarly, when having a non-central system, the accuracy of
the reconstruction of a 3D line from a single projection strongly
depends on the distances between the defining rays which de-
pend on the geometry and the size of the imaging system. In
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this section we propose a feature measuring the quality of a set
of rays for reconstructing a 3D line. Establishing a similarity
with the stereo pair we call this measure effective baseline.

The proposed feature is based on the 3D Euclidean distances
among the defining rays dEi j (43). Consider the combination
of distances among a set of defining rays; a simple feature is
just the mean among all these distances. However, the mean
distance is not a good choice. For example we can have a high
mean distance due to a sole distant ray but if the other rays are
coplanar the configuration is degenerated.

To measure the effective baseline of a set of n rays our pro-
posal is the function zbs depending on the Euclidean distances
dE

(
Ξi,Ξ j

)
among the defining rays

zbs =
n!

2 (n − 2)!

n−1∑
i=1

n∑
j=i+1

1

dE

(
Ξi,Ξ j

) 
−1

(60)

which takes into account the balance among the distances. This
function increases when the distances between rays increase but
also assures that not any individual distance dE

(
Ξi,Ξ j

)
turns to

zero. The feature is normalized with the number of combina-
tions n!

2(n−2)! in order to have a scaled measure.
To illustrate our reasoning let us first consider a simple case

(see Fig 13). Let us consider two points A and B in R2 and
we want to evaluate a third point x using the distances from
this third point to the other two (dA and dB). The higher the
distances the better the result, but we need to penalize small
individual distances.

If we use the mean of the distances we have infinite cases and
some of these cases with values of dA or dB close to zero (see
Fig 13 (a)) which are degenerated cases. However, inspired by
electrical potentials, we could use the sum of the inverse of the
distance defining a potential surface which is the minimum at
the equidistant point (see Fig 13 (b)) which is the best condi-
tioned case. However, this measure tends to infinity when one
of the distances is zero, hence considering the inverse of this
(see Fig 13 (c)) we have a feature which is maximum when the
distances are balanced.

7.2. Extraction algorithm

The proposed extraction procedure is the following. First, the
image is preprocessed using a Rolling Guidance Filter (Zhang
et al. (2014)) to reduce textured patterns but conserving the
edges. Then, the edges of the image are detected using Canny
detector and stored in connected components. Each of these
connected components can contain one or more line-images.
A particular line-image can also be distributed along different
connected components. We have considered two different ro-
bust strategies for solving the multi-fitting process required to
extract line-images from the edges.

Greedy PROSAC approach. In this approach we check the can-
didates for minimal subsets using the effective-baseline mea-
sure. From the subsets that achieve this previous test we com-
pute the line-image models. Then, all the points of the con-
nected component are tested using the corresponding metric
distance. In robust approaches like RANSAC it is assumed that

the input of the algorithm is a collection of points fitting a single
model. The points not supporting the model are discriminated
as outliers. When having more than one model or line-image,
the greedy approach considers a cascade application of the ro-
bust estimation. The model best supporting the collection of
points is extracted. For the other models there are two options:
First repeating the complete extraction on the remaining points
until reaching some stop criterion. Second, removing the inlier
points from the original votes matrix of the first extraction and
use these corrected votes for selecting new lines. Second way
is faster because hypothesises and distances are computed only
once.

Greedy approach selecting a subset of well conditioned points.
In this approach we compute a subset of well conditioned points
from each connected component. The subset of points is big
enough to homogeneously cover the whole connected compo-
nent and it is computed using the effective baseline measure
to assure that there exist enough baseline among any collec-
tion of four points from this subset. Hypotheses are generated
from this subset of points and then tested using the metric dis-
tance. The distance can be computed from each hypothesis
to the whole collection of points of the connected component
or from the subset of points only. In this case, the supporting
points are computed only on the best voted solution. Another
option is testing the hypothesis with points of the whole im-
age. The greedy cascade approach is used for the multi-fitting
process using any of the previously presented methods.

8. Experimental evaluation

In this section, we present the experimental evaluation of the
proposal. First, we show simulations to study the behaviour of
the proposed method. Then we present selected examples of
line-extraction in synthetic and real images. Experiments with
synthetic images allow testing the complete algorithm knowing
the ground truth and with absence of calibration errors. The
extraction method is also tested in images taken with real cata-
dioptric systems. Finally we present several examples of cal-
ibration estimation in conical catadioptric systems using real
images.

8.1. Validation of the proposals using simulated projections

For validating the proposals we have performed intensive
simulations of line projections where the ground truth is known
and randomly generated, the noise and calibration error are con-
trolled and it is possible to obtain results with stochastic mean-
ing. The general set-up of the simulation is the following: We
consider random segments of 10 m length passing through a
cube 4 meters wide around the visual system. For each seg-
ment, points are projected on the image using the forward pro-
jection model. The size of all the simulated systems is similar
to avoid the bias in effective baseline. The conical mirror has an
angle τ = 45 deg and the distance from the perspective camera
to the mirror is Zm = 1 m. The spherical mirror has a radius of
Rs = 1 m and the distance from the perspective camera to the
center of the sphere is Zs = 2 m (the distance to the mirror plus
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Fig. 14. Precision and recall when discriminating between two line-images.

the radius). The size of the perspective camera used in both
systems is 4096×4096 pixel with a focal distance of 2560 pix
and neither radial nor tangential distortion.

8.1.1. Robustness evaluation of line-image extraction
In this section, we evaluate the robustness of the extraction

process. This is performed by discriminating between two dif-
ferent line-images. 64 pairs of random segments with the previ-
ous set-up are projected. Points supporting the first line-image
are considered inliers and points supporting the other are con-
sidered spurious. We extract the line-image variating the num-
ber of attempts k in the RANSAC scheme taking as reference
the theoretical value k =

log (1−P)
log (1−ηp) where p is the number of

elements defining the minimal set, P the probability that at
least in one random subset p all selected points are inliers and
η =

number o f inliers
total number o f points .

In Fig. 14 we show the results of precision and recall depend-
ing on the number of attempts k in robust extraction, where

precision =
true positives

true positives + f alse positives

and
recall =

true positives
true positives + f alse negatives

.

In line-extraction high precision is needed because a single false
positive can distort the fitting. To evaluate the quality of the ex-
traction we propose using the metric distance from point to line-
image. In particular, we measure the median of the distances
from the fitted line-image to the ground truth points projected
from the original line.

8.1.2. Accuracy of 3D line from single view
In this section, we present an evaluation of the 3D accuracy

of the extracted lines from a single projection. We show the ob-

tained accuracy when using the classical linear fitting approach
(Teller and Hohmeyer (1999)) and the refined accuracy using
the Euclidean proposed distance presented in Section 6 as resid-
ual. We also compare, in terms of 3D line accuracy, the conical
catadioptric system and the spherical catadioptric system. With
the described set-up 300 line segments are projected on the im-
age. Then, we add Gaussian noise to points forming the line-
images with standard deviation σ from 0 to 1 pixel. Finally, the
lines are fitted using all the projected points (100 points).

In boxplot of Fig. 15 (a-b) we present the estimated accuracy
showing the distribution of two errors:

• The direction error between the estimated 3D line and the
ground truth computed as
εφ = arccos

(
lTlGT

)
.

• The depth error between the estimated 3D line and the
ground truth computed as εd =

∣∣∣‖l̄‖ − ‖l̄GT ‖
∣∣∣.

In general, we can consider that the conical catadioptric sys-
tem responds better than the spherical one, in terms of accuracy
in direction and distance estimation despite they have similar
sizes. Our intuition for this behaviour is that the round surface
of the spherical mirror provokes a softer transition in the rays
definition of the projection surfaces that at the end provokes a
lower distance between rays. Consider the case of depth estima-
tion (Figure 14 (b) when using a spherical catadioptric systems;
we notice that, with image errors greater than σ > 1 pixels, it is
not possible to properly perform a 3D reconstruction and we ob-
serve a saturation in the distance error εd. We interpret that with
high noise the ambiguity of the curve has increased enough to
obscure the depth information. With respect to the accuracy of
the estimations obtained with the optimization using the de dis-
tance, we can observe in general an increase of accuracy with
respect to the linear estimation. However in most cases, this
improvement is not enough to overcome the ambiguity resulted
by the noise effect. An exception of that is the case of direction
estimation in conical catadioptric systems where the accuracy
is considerably improved even when having σ > 2 pixels.

To evaluate the accuracy of the fitting in terms of the line-
image fitting we also present the error in the coefficients defin-
ing the quartic curve of the line-image. Since the coefficients
of the polynomial are arranged in a 15 dimensional homoge-
neous vector q ∈ R15 (see qc for the conical case and qs for the
spherical case in Appendix B) we have defined the following
error εq = arccos

(
1

‖q‖‖qGT ‖
qTqGT

)
which represents the angular

deviation of the R15 normalized vector (see Fig. 15 (c)).
Finally, we have also evaluated what is the behaviour of a

line-image when introducing a Gaussian noise in the polyno-
mial coefficients. In Figure 17 we can see the representation of
25 different randomized variations of the normalized vector q
containing the coefficients of the polynomial which describes
a given line-image. We have considered errors with a standard
deviation of σ = 0.01, 0.001, 0.001.

8.1.3. Evaluation of effective baseline in line fitting
In this section we evaluate the relation between effective

baseline (60) and the accuracy in line fitting. The calibration
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(a)

(b)

(c)

Fig. 15. Comparison of accuracy of linear fitting and optimization fitting for conical and spherical catadioptric systems. (a) Direction error in degrees εφ.
(b) Distance error in meters εd . (c) Coefficients errors in degrees εq. A stands for linear fitting in conical catadioptric systems; B stands for optimized fitting
in conical catadioptric systems; C stands for linear fitting in spherical catadioptric systems and D for optimized fitting in spherical catadioptric systems.
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Fig. 16. Evaluation of line fitting accuracy with respect to the effective baseline between the 4-set points lying on the line-image.
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Conical Mirror

σ = 0.0001 σ = 0.001 σ = 0.001
Spherical Mirror

σ = 0.0001 σ = 0.001 σ = 0.001

Fig. 17. Variations in parametric representation of line-images when con-
sidering Gaussian noise in the polynomial coefficients.

set-up is a conical catadioptric mirror with τ = 65 degs and
Zm = 1m and a spherical mirror with RS = 1 m and Zs = 2 m.
From a set of 1000 random segments, we define 1000 combi-
nations of 4 points lying on each line-image. Notice that each
combination of 4 points has an associated effective baseline.
In Fig. 16 we show the accuracy of line fitting with respect
the effective baseline of the given set of four points. For that
we have quantized the effective baseline of all the sets of four
points and computed the error in line fitting. The vertical axis
corresponds to the median of the error (direction error for (a,b)
and distance error for (c,d)) and the horizontal axis to the corre-
sponding effective baseline. We can observe how the error de-
creases with a bigger effective baseline in different cases with
different amounts of Gaussian noise.

8.1.4. Evaluation of the Euclidean distance de definition
In this section, we present a comparison in terms of compu-

tational time between (A) the estimation of the Euclidean dis-
tance by obtaining the roots of the proposed polynomial (Sec-
tions 6.1 and 6.2 ) and (B) the constrained general formulation
(45) as in Perdigoto and Araujo (2016). We have focused on the
spherical case comparing our approach with the initial solution
and the constraints proposed in Perdigoto and Araujo (2016).
In the Perdigoto’s approach the initialization is obtained as fol-
lows:

• First, the intersection of the line passing through the Origin
and the quartic is computed. Notice that this polynomial
solution is the same as in presented in Section 5.3.1 for the
parametric representation just by computing the angle θ of
the given point.

• Then, this initial solution is used in a constrained optimiza-
tion which corresponds with equation (45) directly. We
have implemented it using the fmincon function in Mat-
lab.

• As in our proposal, once we have estimated the closed
point to the curve we compute the L2 norm to it.

Desktop computer Laptop
Polynomial General Polynomial General

np med. std med. std med. std med. std

100 0.52 0.01 7.82 1.52 1.11 0.03 13.38 0.03
250 0.50 0.01 7.92 0.94 1.06 0.03 13.49 0.03
500 0.49 0.01 7.91 0.83 1.04 0.03 13.47 0.03
750 0.49 0.01 7.90 0.83 1.04 0.03 13.51 0.03
1000 0.48 0.01 7.89 0.77 1.04 0.03 13.53 0.03

Table 2. Time invested (milliseconds) in computing the distance of a point
to a quartic.

For evaluation the comparison we have generated a set of
randomized points along the image and we have computed the
Euclidean distance de from each point to the projection of the
previous simulations 300 randomized lines. In Table 2 we can
see the median and the standard deviation of the computational
time per point using both approaches. For measuring the scal-
ability of both approaches we present results from np = 100 to
1000 points. The experiment has been run in a desktop com-
puter (Intel Core-i7 6700 3.4 Ghz) and in a Laptop computer
(Intel Core i7-2630M 2.00 Ghz). We can see how, in terms
of computational time the polynomial approach is considerably
more efficient (ten times).

8.2. Line-image extraction

In this section, we present the experiments for evaluating the
complete extraction algorithm in synthetic and real images.

8.2.1. Synthetic images
Synthetic images have been generated using the raytracing

software Pov-Ray 2 modelling the mirrors as geometric forms
with perfect reflection. The scenario is a modification of a pub-
licly available synthetic scenario 3. The original office has been
modified to look like a corridor. The synthetic images have
a size of 1024×1024 pixels. The conical mirror has a radius
Rmax = 30 mm and height hmax = 21.01 mm, i.e. of τ = 55 deg.
The distance from the mirror to the camera is Zm = 1 m. The
spherical mirror has a radius of Rs = 1.25 m and the distance
between the center of the sphere and the camera is Zs = 2m. In
Fig. 18 we show some examples of extracted lines from syn-
thetic catadioptric images. The extracted line-images are shown
in green and the supporting points in red.

8.2.2. Real Images
The real images have been acquired using two catadiop-

tric systems composed by a conventional camera (uEye UI-
148xSE-C) and two mirrors, one conic and other spherical. The
conventional camera has a size of 1280×1024 pixels and has
been independently calibrated using a standard method. Pa-
rameters taken into account are focal distance, principal point,
skew and radial distortion. The conical mirror has an aperture
angle of τ = 55 deg and the system has been manually fixed to

2http://www.povray.org
3http://hof.povray.org/office-13.html The Office - Jaime Vives Piqueres,

2004
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(a) (b)
Conical Catadioptric System

(c) (d)
Spherical Catadioptric System

Fig. 18. Line-extraction examples from synthetic images. A selection of line-images correctly extracted are shown. The extracted line-images are shown in
green and the supporting points in red. (a-b) Conical catadioptric system. (c-d) Spherical catadioptric system.

Fig. 19. Line-extraction examples from real images with conical catadioptric system. A selection of line-images correctly extracted are shown. The extracted
line-images are shown in green and the supporting points in red.



17

Fig. 20. Line-extraction examples from real images with spherical catadioptric system. A selection of line-images correctly extracted are shown. The
extracted line-images are shown in green and the supporting points in red.

assure the alignment between the camera and the mirror with
symmetry of revolution. The spherical mirror has a radius of
Rs = 0.37 m. Since a spherical catadioptric system is always
axial we do not need to enforce the alignment between camera
and mirror but we need to calibrate the rotation of the camera
with respect to the axis of revolution. The calibration of the
system parameters ZRel and the rotation matrix is estimated by
minimizing the forward projection error of a chess pattern of
known dimensions.

In Fig. 19 and Fig. 20 we show some examples of the line-
image extraction for different real non-central catadioptric im-
ages. The extracted line-images are shown in green and the sup-
porting points in red. Just to illustrate the 3D performance of
these extractions we show a planarity measure of lines defining
planar structures. We have manually chosen the extracted lines
defining the table in Fig. 20 top-right. We compute the mean
plane defined by these lines. The mean angular deviation of the
direction of lines with respect this plane is 3.08 deg (mean of
absolute value of error) and standard deviation 2.72 deg. In the
case of segments defining the open ceiling in the outdoor scene
(Fig. 20 bottom-left) the effective baseline is lower because of
the higher distance of lines, obtaining worse results (14.5 deg
in mean with standard deviation of 21.96 deg).

8.3. Estimation of geometry of the conical mirror

In this section, we show some examples of fitting using five
points manually selected and we present quantitative results in
the estimation of the mirror geometry from lines in real images.
Five points from conical catadioptric images (in red) are se-
lected manually to compute the line-image ω, which is painted
on the image using the parametric description (22). From each

(a) (b)

Fig. 21. Influence of points selection. (a) Good fitting (b) Bad fitting. We
can see the high influence of detected points in line extraction.

line-image ω we extract the Plücker coordinates of the line and
the aperture angle of the mirror τ. As explained in Section 4.3,
the distance to the mirror Zm is coupled with the Plücker coor-
dinates. Therefore, the metric in recovered 3D lines is scaled to
this distance.

In Figure 21 we show the high influence of error and point
selection. Depending on the selected points the line-image fits
or not the projected points of the line. Despite both line-images
are fitting the defining points and the rest of the projected point
of the segment, the error in the estimation of the 4 DOFs com-
plicates the correct extraction of the line. In Figure 22 we
show some examples of line projections correctly fitted in dif-
ferent images and the obtained value for τ in each one. We
can see how this value is close to the ground truth which is
τre f = 55 deg. Finally, in Figure 23 we show more examples of
incorrect fittings, due to the sensitivity of line projection and the
large number of degrees of freedom of the curve in non-central
systems.
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(a) (b) (c) (d)

Fig. 22. Examples of correct fitting. (a) τ = 55.0 deg. (b) τ = 55.5 deg. (c) τ = 56.1 deg. (d) τ = 54.9 deg.

(a) (b) (c) (d)

Fig. 23. Examples of incorrect fitting. (a) τ = 50.9 deg. (b) τ = 51.1 deg. (c) τ = 49.7 deg. (d) τ = 48.4 deg.

9. Conclusions

In this paper, we have analyzed the geometry of line projec-
tions in non-central catadioptric systems focusing on conical
and spherical catadioptric cameras. In both cases line-images
are quartic polynomials, although in the conical case it can be
simplified to a compact description of 6 homogeneous param-
eters. The underlying structure of line-images has been used
for designing a line-image extraction method and to obtain the
geometry of the mirror in the case of the conical catadioptric
camera. In non-central cameras, it is possible to recover the
complete geometry of the original projected line from a single
projection. In this context, our proposal has promising appli-
cations in robotics (e.g., robot pose estimation and SLAM) and
scene modeling (e.g., 3D reconstruction). Next step in line-
image extraction is including energy based approaches to im-
prove the labelling of supporting points by discrete optimiza-
tion (Isack and Boykov (2012)). However, from the results it
follows that despite the line-image extraction can be correctly
achieved, the lack of effective baseline of non-central catadiop-
tric systems encourage to investigate new types of non-central
cameras allowing accurate 3D reconstructions from single pro-
jections. Another feasible approach is exploiting the redun-
dancy along a sequence of images for improving the 3D recon-
struction accuracy. As future work we also consider studying
the uncertainty propagation of features in order to integrate the
extraction scheme in SLAM algorithm.
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Fig. A.24. Section of a quadric. In red a 3D line intersecting the quadric.
In Blue, the tangent planes U± and the polar plane U0.

Appendix A. Intersection of a line with a Quadric

To compute the intersection of a line with a quadric we can
follow analogous reasoning to the used in the intersection of a
line with a conic on the image (Barreto (2003)).

Consider a central camera located in point X0 and a point
in a projection plane X1 the Plücker matrix for the line L is
computed byL = X0X1

T−X1X0
T. This Plücker matrixL has 6

different components corresponding to the Plücker coordinates
of the ray L =

(
l, l̄

)T
.

L =

 − [
l̄
]
×
−l

lT 0

 (A.1)

The points of the projecting ray can be expressed in terms of
two points of the line with a parameter λ.

X (λ) = X1 + λX0 (A.2)

Consider also the quadric defined by the homogeneous ma-
trix Q ∈ R4 ×R4,Q = QT (Hartley and Zisserman (2000)) such
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that the points lying on the quadric satisfy the homogeneous
equation XTQX = 0. The plane U0 = QX0 is the plane polar
to the quadric Q respect to the pole X0 which is a plane inter-
secting the quadric such that any tangent plane to the quadric
passing through a point of this intersection contains the pole
X0. Finally, consider the point Xu which is the intersection be-
tween the line with the polar plane U0 (see Fig. A.24). It is
called the conjugate point of X0 and it can be computed as

Xu = LU0 = LQX0 (A.3)

Then we can express the line in terms of X0 and Xu.

X (λ) = Xu + λX0 (A.4)

The ray intersects the quadric in two points X+ and X−.
These are two different real points if the ray intersects the
quadric, one double point if the ray is tangent to the quadric
and two complex points if not (complex in terms of complex
numbers). Consider the polar plane U of a generic point X (λ)
of the line

U = QX (λ) = QXu + λQX0 (A.5)

If the point X (λ) is in the quadric its corresponding polar
plane U is tangent to the quadric and passing through the pole.
Imposing the point X (λ) lying on plane U we can solve the
intersection.

XTU = Xu
TQXu + λ

(
Xu

TQX0 + X0
TQXu

)
+ λ2X0

TQX0 = 0
(A.6)

Since X0 and Xu are conjugate points Xu
TQX0 = 0 and

X0
TQXu = 0 and the last equation remains

XTU = Xu
TQXu + λ2X0

TQX0 = 0 (A.7)

From these we obtain the parameter λ and the corresponding
expressions of the intersections and of the polar planes in these
points (which are tangent to the quadric).

λ2 = −
Xu

TQXu

X0
TQX0

= −
X0

TQLTQLQX0

X0
TQX0

(A.8)

X± = (LQ + λI) X0, U± = (QL + λI) QX0 (A.9)

Appendix B. Matrix and polynomial definitions

This appendix presents in Fig. B.25 the matrix expressions
which are referred to in Section 5. It also includes the coeffi-
cients defining the polynomial representation of the line-image
such that qc

TX̂ = 0 for the case of conical catadioptric system
and qc

TX̂ = 0 for the case of spherical catadioptric system. The
coefficients are,

qc =
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qs =
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

(B.4)

where

s1 = Zsl2 − l̄1ν (B.5)
s2 = Zsl1 + l̄2ν (B.6)

s2
3 = l̄23

(
ν2 − 1

)
(B.7)

s4 = l̄1 − Zsl2ν (B.8)
s5 = l̄2 + Zsl1ν (B.9)

s6 = l̄3 (B.10)
s7 = Zsl2 + l̄1 (B.11)
s8 = Zsl1 − l̄2 (B.12)

s2
9 = l̄21 + (2ν + 1)

(
l̄21 + l̄23

)
(B.13)

s2
10 = 2

(
Zsl2 l̄2 − Zsl1 l̄1 − Zsl1l2 − l̄1 l̄2 (2ν + 1)

)
(B.14)

s2
11 = l̄22 + (2ν + 1)

(
l̄22 + l̄23

)
(B.15)

with ν = 2Z2
Rel − 1.

Appendix C. Omega description

The expressions of the coefficients of matrix Ω are too big to
be presented in a written form. We include this definition as the
Matlab function getOmega.m in the supplementary material
4.

Appendix D. Spherical resultant computation

Consider the quartic coefficients based representation g =

qs = NTL̂ such that g = gTX̂ = 0 (see (52)). Also, consider the
quartic coefficients based representation h (x) =

[
hx,hy,hz

]
x =

JTNTL̂ with h,hx,hy,hz ∈ R15 such that h = hTX̂ = 0 (see
(53). The coefficients s̄i jkm = f

(
hx,hy,hz, g

)
of the matrix S̄

are defined in the Matlab function getSBar.m in supplemen-
tary material. The coefficients cn depending on s̄i jkm are defined
in the Matlab function getCoeffsForSolving4x4Det.m
in the supplementary material 4.

4http://webdiis.unizar.es/%7Ebermudez/
suppMaterialCVIU_17_288_v1.0.zip

http://webdiis.unizar.es/%7Ebermudez/suppMaterialCVIU_17_288_v1.0.zip
http://webdiis.unizar.es/%7Ebermudez/suppMaterialCVIU_17_288_v1.0.zip
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N (ν) =



0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
0 −2 0 0 0 0 −2 0 −2 0 0 0 0 0 0
0 2ν 0 0 0 0 2ν 0 −2 0 0 0 0 0 0
0 0 0 2ν 0 0 0 0 0 0 2ν 0 −2 0 0
0 0 0 0 2ν 0 0 0 0 0 0 2ν 0 −2 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
−2ν 0 0 −2ν 0 2 0 0 0 0 0 0 0 0 0

0 −2ν 0 0 0 0 −2ν 0 2 0 0 0 0 0 0
0 0 −2ν 0 0 0 0 −2ν 0 2 0 0 0 0 0
ν2 0 0 ν2 0 −2ν − 1 0 0 0 0 0 0 0 0 0
0 2ν2 0 0 0 0 2ν2 0 −4ν − 2 0 0 0 0 0 0
0 0 2 0 0 0 0 2 0 2 0 0 0 0 0
0 0 0 ν2 0 0 0 0 0 0 ν2 0 −2ν − 1 0 0
0 0 0 0 2 0 0 0 0 0 0 2 0 2 0

ν2 − 1 0 0 2ν2 − 2 0 −2ν − 1 0 0 0 0 ν2 − 1 0 −2ν − 1 0 1



(B.1)

with ν = 2Z2
Rel − 1.

H (Zs) =



Zs
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 Zs
2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 Zs
2 Zs 0 0 0 0 0 0 0 0 0 0 0 0

−Zs
2 0 0 Zs 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 Zs 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Zs

2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Zs

2 Zs 0 0 0 0 0 0 0 0
0 −Zs

2 0 0 0 0 0 Zs 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Zs 0 0 0 0 0 0
0 0 0 0 0 Zs

2 2 Zs 0 0 1 0 0 0 0 0
0 −Zs

2 −Zs 0 0 0 0 Zs 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 Zs 0 0 1 0 0 0

Zs
2 0 0 −2 Zs 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 −Zs 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(B.2)

J (x) =



0 −4z 4y 0 0 0 0 0 0 0 0 0 0 0 0
z 0 −x −3z 3y 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −3z 3y 0 0 0 0 0 0 0 0 0
0 2z 0 0 −2x 0 −2z 2y 0 0 0 0 0 0 0
0 0 z 0 0 −x 0 −2z 2y 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2z 2y 0 0 0 0 0
0 0 0 3z 0 0 0 −3x 0 0 −z y 0 0 0
0 0 0 0 2z 0 0 0 −2x 0 0 −z y 0 0
0 0 0 0 0 z 0 0 0 −x 0 0 −z y 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −z y
0 0 0 0 0 0 4z 0 0 0 0 −4x 0 0 0
0 0 0 0 0 0 0 3z 0 0 0 0 −3x 0 0
0 0 0 0 0 0 0 0 2z 0 0 0 0 −2x 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 −x
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(B.3)

Fig. B.25. Detail of matrices N (ZRel), H (Zs) and J (x).
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