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Abstract

The properties of a nonlinear oscillator with an additional term kg/x
2, character-

izing the isotonic oscillator, are studied. The nonlinearity affects to both the kinetic
term and the potential and combines two nonlinearities associated to two parameters,
κ and kg, in such a way that for κ = 0 all the characteristics of of the standard isotonic
system are recovered. The first part is devoted to the classical system and the sec-
ond part to the quantum system. This is a problem of quantization of a system with
position-dependent mass of the form m(x) = 1/(1 − κx2), with a κ-dependent non-
polynomial rational potential and with an additional isotonic term. The Schrödinger
equation is exactly solved and the (κ, kg)-dependent wave functions and bound state
energies are explicitly obtained for both κ < 0 and κ > 0.
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1 Introduction

The following potential

VIsot(x) = V0(x) + Vg(x) = (
1

2
)ω2 x2 + (

1

2
)
kg
x2
, g > 0 , (1)

representing an harmonic oscillator with an additional term similar to a centripetal barrier, is
known as the isotonic oscillator (or singular harmonic oscillator). It is important because, although
nonlinear, is endowed with properties closely related with those of the harmonic oscillator [1]–[13].
At the classical level, the Euler-Lagrange equation, that is given by

ẍ+ ω2 x− kg
x3

= 0 , (2)

is a particular case of the Pinney-Ermakov equation [14]. It can be exactly solved and the solution
is given by

x =
1

ωA

√
(ω2A4 − kg) sin2(ωt+ φ) + kg .

showing explicitly the periodicity of the solutions. At the quantum level the Schrödinger equation,
that takes the form

− ~2

2m

d2Ψ

dx2
+

1

2

[
mω2 x2 +

kg
x2

]
Ψ = EΨ ,

can be reduced (introducing the appropriate changes) to a confluent hypergeometric function in
such a way that the energy eigenfunctions Ψn are characterized by energies

En =
(

(2n+ 1) +
1

2
+ g
)

(~ω) , n = 0, 1, 2, . . .

The following two points summarize the main characteristis of this system.

• At the classical level, the Lagrange equation is a nonlinear but exactly solvable equation
and the system is isochronous, that is, the period of the oscillations is independent of the
amplitude (or of the energy).

• At the quantum level, the system is exactly solvable and the energy spectrum is equidistant.
Nevertheless, the height ∆E = En+1 − En of the energy steps is twice that of the simple
harmonic oscillator. In fact, it seems as if the new additional term kg/x

2 causes the vanishing
of half of the levels of the original linear system.

In addition to these properties we can add that the two dimensional version of this oscillator, that
is known as the Smorodinsky-Winternitz system, is separable in two different systems of coordinates
and it is therefore superintegrable with quadratic constants of motion.

On the other hand Mathews and Lakshmanan studied in 1974 [15],[16], the differential equation

(1 + λx2) ẍ− (λx) ẋ2 + α2 x = 0 , λ > 0 , (3)

and they proved that the general solution is of the form

x = A sin(ω t+ φ) ,
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with the following additional restriction linking frequency and amplitude

ω2 =
α2

1 + λA2
.

The equation (3) is therefore an interesting example of a system with nonlinear oscillations with a
frequency (or period) showing amplitude dependence. It is a lagrangian equation with Lagrangian

L(x, vx;λ) =
1

2

( v2x
1 + λx2

)
− 1

2

( α2 x2

1 + λx2

)
As a quantum system, the Schrödinger equation involving the potential x2/(1 + λx2) has been
studied by different authors using different approaches [17]–[26]. In addition to the nonpolynomial
character of the potential this system is also interesting because it is a particular case of a system
with a position-dependent mass (see [27]–[46] and references therein). This poses an important
problem since some authors have proposed some different ways of carrying out the process of
quantization.

We have studied this quantum nonlinear system in [47]–[48] using as a method for quantization
the idea that the quantum Hamiltonian, and also other related operators, must be self-adjoint
but in a Hilbert space determined by a measure dµλ that depends on the parameter λ. Now, we
continue with the study of this particular nonlinear oscillator. We have just seen that the quantum
isotonic oscillator is exactly solvable; therefore it seems reasonable to study the quantum isotonic
version of this nonlinear system. The main objective of this article is the study of the quantum
nonlinear system but we have considered appropriate to first present the main characteristics of
the classical system.

The plan of the article is as follows: Sec. 2 is devoted to study of the nonlinear oscillator with
an Isotonic term kg/x

2 from the view point of a classical dynamical system (this section is related
with some questions studied in [49]–[50]) and then in Sec. 3 we study first the quantization of the
system (this problem is related with the quantization studied in [47] and [48]) and then we consider
the Schrödinger equation. It is proven that this system is Schrödinger solvable and then the wave
functions Ψn and the energies En of the bound states are explicitly obtained. Finally in Sec. 4 we
make some final comments.

2 Nonlinear oscillator with an Isotonic term

2.1 Isotonic Harmonic Oscillator

Let us now consider the following κ-dependent Lagrangian

L(x, vx;κ, kg) =
1

2

( v2x
1− κx2

)
− Vκ,g(x) , Vκ,g(x) =

1

2

( α2 x2

1− κx2
)

+
1

2

kg
x2
, kg > 0 , (4)

that corresponds to the nonlinear oscillator of Mathews and Lakshmanan with an additional term
of the form kg/x

2. The parameter κ can take both positive and negative values; nevertheless as
for κ > 0, the Lagrangian (and the associated dynamics) will have a singularity at 1 − κx2 = 0,
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we restrict the study of the dynamics to the interior of the interval x2 < 1/|κ| that is the region in
which kinetic term is positive definite. Figure I and II show the form of the potential Vκ,g(x) for
several values of κ (κ > 0 in Figure I and κ < 0 in Figure II).

The Euler-Lagrange equation is

d2x

dt2
+

κx

1− κx2
(dx
dt

)2
+

α2x

1− κx2
− kg

(1− κx2

x3

)
= 0 , (5)

in such a way that for κ→ 0 we recover the Pinney equation (2).

This equation combines two nonlinearities associated to the two parameters, kg and κ. It looks
certainly difficult to be solved but, nevertheless, the general solution can be obtained by assuming
for the function x(t) certain particular expressions depending of some undetermined coefficients.

2.2 Positive κ > 0 case

If κ > 0 then all the solutions are periodic solutions.

Let us suppose, as an ansatz, that the general solution of the equation κ > 0 is quite similar to
the solution of the κ = 0 equation, that is,

x =
( 1

ωA

)√
(ω2A4 − kg) sin2(ωt+ φ) + kg , (6)

then the equation (5) leads to the following algebraic equation

κω2A4 + (α2 − ω2 − kgκ2)A2 + kgκ = 0 .

Therefore the function (6) is in fact a solution of (5) but where ω, that determines the angular
frequency of the motion, is (κ, kg)-related with the coefficient α of the potential (which represents
the frequency of the (κ = 0, kg = 0) harmonic oscillator) by

ω2 =
α2

(1− κA2)
+
kgκ

A2
.

The solution (6) oscillates between x− =
√
kg/(wA) and x+ = A.

The energy is given by

E =
1

2
α2
( A2

1− κA2

)
+

1

2

kg
A2

.

so that
ω2 = α2 + 2κE .

Note that the coefficient (1 − κA2) is positive even for κ > 0 since in that case the amplitude A
must satisfy A2 < 1/κ. Notice also that when kg → 0 these expressions reduce to

x = A sin(ωt+ φ) , α2 = (1− κA2)ω2 , E = (
1

2
)α2

( A2

1− κA2

)
,

which are just the relations obtained in [15], [49].

We summarize: the solution x(t) of the dynamics depends of the three coefficients A, φ and
ω; two coefficients, A and φ, remain arbitrary but ω becomes a (κ, kg)-dependent function of the
amplitude A. In this case, as the parameter κ is positive κ > 0, we have ω > α.
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2.3 Negative κ < 0 case

If κ < 0 then there are two possible behaviours : bounded motions (for energies lower than a certain
value Eb) and unbounded motions (energies greater than that value).

2.3.1 Bounded κ < 0 motions

If κ < 0 then the system also admits periodic solutions of the form

x =
( 1

ωA

)√
(ω2A4 − kg) sin2(ωt+ φ) + kg , (7)

but now ω, α, and the energy E are related by

ω2 = α2 − 2|κ|E

so the energy E must satisfy the inequality

E < Eb with Eb =
α2

2|κ|
.

Thus the allowed values of E are bounded by Eb with the value of ω decreasing when the energy
E approaches to this upper value.

We can summarize these nonlinear periodic oscillations as follows.

(a) If the parameter κ is negative κ < 0, then ω < α.

(b) If the parameter κ is positive κ > 0, then ω > α.

2.3.2 Unbounded motions

If we the parameter κ is negative and the energy is greater than Eb, that is κ < 0 and Eb < E,
then the solution of the dynamics is given by

x =
( 1

ΩA

)√
(Ω2A4 + kg) sinh2(Ωt+ φ) + kg , (8)

with the additional constraint

κΩ2A4 + (α2 + Ω2 − kgκ2)A2 − kgκ = 0 .

Solving this equation we obtain the following expresion for Ω (hyperbolic frequency) as a function
of α

Ω2 =
α2

|κ|A2 − 1
− kg|κ|

A2
.

The energy, that now we denote by Eh, is given by

Eh =
1

2
α2
( A2

|κ|A2 − 1

)
− 1

2

kg
A2

.
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Using the expressions of Ω2 and Eh we arrive to

Ω2 = 2|κ|Eh − α2

and, since Ω2 > 0, we conclude that

Eh >
α2

2|κ|
.

Notice also that when kg → 0 these expressions reduce to

x = A sinh(Ωt+ φ) , α2 = (|κ|A2 − 1) Ω2 , E =
1

2
α2
( A2

|κ|A2 − 1

)
,

and coincide with the values obtained for the κ-case in [49].

2.3.3 Border unbounded motions

The Lagrange equation (5) also admits the following algebraic function

x =
√
A t2 +B t+ C , (9)

with A and C taken the following values

A =
kgκ

2 − α2

κ
, C = − (B2 + 4kg)κ

4(α2 − kgκ2)
, (κ < 0) ,

as solution. This very particular solution represents the border between the trigonometric (periodic)
solutions and the hyperbolic (unbounded) solutions (they play a rather similar role to the parabolic
trajectories in the Kepler problem). The associated energy is just E = Eb as was to be expected.

3 Quantum nonlinear oscillator with an Isotonic term

3.1 Quantization

The momentum px is given by px = vx/(1− κx2) so that the (κ, g)-dependent Hamiltonian of the
system is

H(x, px;κ, g) =
1

2m

(
1− κx2

)
p2x +

1

2
mα2

( x2

1− κx2
)

+
1

2

kg
x2
. (10)

It is clear that it is a PDM system, that is a sytem with a position dependent mass [27]–[46].
The important point is that if the mass m becomes a spatial function, m = m(x), then the
quantum version of the mass no longer commutes with the momentum. Therefore, different forms
of presenting the kinetic term T in the Hamiltonian H, as for example

T =
1

4

[ 1

m(x)
p2 + p2

1

m(x)

]
, T =

1

2

[
p

1

m(x)
p
]
, T =

1

2

[ 1√
m(x)

p2
1√
m(x)

]
,

6



are equivalent at the classical level but they lead to different and nonequivalent Schrödinger equa-
tions.

In this case the construction of the appropriate quantum Hamiltonian rests on the idea that,
because of the x-dependence of the kinetic term, the Hilbert space of the quantum system must
be, not the standard space L2(IR, dx), but the space L2

κ(dµκ) where dµκ denotes the following
κ-dependent measure

dµκ =
dx√

1− κx2

and the particular form of the Hilbert space L2
κ(dµκ) depends on κ as follows

(a) Negative κ < 0 case. The space L2
κ(dµκ) can be identified with L2(IR+, dµκ), IR+ = [0,∞).

(b) Positive κ > 0 case. The space L2
κ(dµκ) can be identified with L2

0(Iκ, dµκ) where Iκ denotes
the interval [0, bκ], bκ = 1/

√
κ, and the subscript means that the functions must vanish at

the endpoints.

The quantum Hamiltonian Ĥ(κ) must be self-adjoint in the space L2
κ(dµκ). Now, we note that

the Hamiltonian can be rewritten as

H(κ) = (
1

2m
)P 2

x +
1

2
mα2

( x2

1− κx2
)

+
1

2

kg
x2
, Px =

√
1− κx2 px .

Thus, for obtaining the expression of the operator Ĥ(κ) we first consider the operator P̂x(κ),
representing the quantum version of of the Noether momentum Px(κ).

Proposition 1 The operator P̂x

P̂x = − i ~
√

1− κx2 d/dx ,

is self-adjoint in the space L2
κ(dµκ).

Therefore, the transition from the classical system to the quantum one is given by following
correspondence

Px 7→ P̂x = − i ~
√

1− κx2 d

dx
,

so that

(1− κx2) p2x 7→ − ~2
(√

1− κx2 d

dx

)(√
1− κx2 d

dx

)
,

in such a way that the quantum version of the Hamiltonian (10) becomes

Ĥ = − ~2

2m
(1− κx2) d2

dx2
+ (

~2

2m
)κx

d

dx
+ (

1

2
)α2

( x2

1− κx2
)

+
1

2

kg
x2
.
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3.2 Schrödinger equation

The Schrödinger equation, that is given by[
− ~2

2m
(1− κx2) d2

dx2
+ (

~2

2m
)κx

d

dx
+ (

1

2
)mα2

( x2

1− κx2
)

+
1

2

kg
x2

]
Ψ = EΨ ,

can be simplified by introducing adimensional variables

ρ2 = µ2 x2 , κ = µ2 κ′ , E = (~α) E , kg =
~2

m
g(g + 1) , µ2 =

mα

~
,

so that it becomes

(1− κ′ ρ2) d
2Ψ

dρ2
− κ′ ρ dΨ

dρ
− (1− κ′)

( ρ2

1− κ′ ρ2
)

Ψ− g(g + 1)

ρ2
+ (2 E) Ψ = 0 . (11)

Next we proceed in several steps.

• Step 1. We assume the following factorization for Ψ(ρ, κ′, g)

Ψ(ρ, κ′, g) = h(ρ, κ′, g) (1− κ′ ρ2) 1/(2κ′) ,

where the second factor is an algebraic function that satisfies the limit

lim κ′→0 (1− κ′ ρ2) 1/(2κ′) = e− (1/2) ρ2 .

Then the new function h must satisfy the differential equation

(1− κ′ ρ2)h′′ − (2 + κ′)ρ h′ − g(g + 1)

ρ2
h+ (2E − 1)h = 0 , h = h(ρ, κ′, g) .

If κ = 0 then we obtain

h′′ − 2ρh′ − g(g + 1)

ρ2
h+ (2E − 1)h = 0 , h = h(ρ, g)

• Step 2. Now we introduce a factorization for h(ρ, κ)

h = ρ(g+1)w(ρ)

Then the new function w(ρ, κ) must satisfy the differential

(1− κ′ ρ2)w′′ +
[
2
g + 1

ρ
− (2 + 3κ′ + 2g κ′) ρ

]
w′ +

[
2
(
E−(g +

3

2
)
)
− κ′ (1 + g)2

]
w = 0 .

• Step 3. A new change of variable
ρ → z = ρ2

leads to the following equation

z (1− κ′ z) d
2w

dz2
+
[
g +

3

2
− (1 + 2κ′ + g κ′) z

] dw
dz

+
[1

2

(
E − g − 3

2
)− κ′

4
(1 + g)2

]
w = 0 .
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• Step 4. Finally, introducing t defined as t = κ′ z, κ′ 6= 0, we obtain

t (1− t) d
2w

dt2
+
[
g +

3

2
− (

1

k′
+ 2 + g) t

] dw
dt

+
[ 1

2κ′

(
E − g − 3

2
)− 1

4
(1 + g)2

]
w = 0

that is a hipergeometric equation

t (1− t) d
2w

dt2
+
[
c− (1 + aκ + bκ) t

] dw
dt
− aκbκw = 0

with c = g + 3/2 and

aκ =
1

2

(
1 + g +

1 +
√

1− κ′ + 2κ′ E
κ′

)
, bκ =

1

2

(
1 + g +

1−
√

1− κ′ + 2κ′ E
κ′

)
.

As it is well known, if the coefficient aκ or bκ is a nonnegative integer, aκ = −n or bκ = −n, then
the hipergeometric series 2F1(aκ, bκ ; c ; t) has only a finite number of terms and in fat it becomes
a polynomial of degree n.

The polynomials solutions Pn(t) of the above equation are given by

Pn(t) = 2F1(−n, bκn ; g +
3

2
; t)

with bκn representing the value of bκ when aκ = −n

bκn = 2(n+ 1 + g + 1/κ′) .

Finally, we note that the last change (step 4) is necessary because of the presence of the parameter
κ. In the more simple κ = 0 case the Schrödinger equation leads to a confluent equation; the
presence of κ 6= 0 transforms the confluent equation into a more general hypergeometric equation.

3.3 κ-dependent Sturm-Liouville problems and orthogonality

In what follows, and for easy of notation, we just write κ instead of κ′.

The κ-dependent differential equation for w

a0w
′′ + a1w

′ + a2w = 0 ,

a0 = 1− κ ρ2 , a1 = 2
g + 1

ρ
− (2 + 3κ′ + 2g κ) ρ , a2 =

(
E − g − 3

2

)
− κ (1 + g)2 ,

is not self-adjoint but it can be reduced to self-adjoint form by making use of the following factor

λ(ρ) = (
1

a0
) e

∫
(a1/a0) dρ = ρ2(g+1) (1− κ ρ2)1/κ−1/2 ,

so that the equation becomes

d

dx

[
p(ρ, κ)

dh

dρ

]
+ (2e− 1) r(ρ, κ)h = 0 ,

9



where the p = p(ρ, κ) and r = r(ρ, κ) are given by

p(ρ, κ) = ρ2(g+1)
√

1− κ ρ2 (1− κ ρ2)1/κ , r(ρ, κ) = a2 ρ
2(g+1) (1− κ ρ2)1/κ−1/2 .

This equation, together with appropriate conditions for the behaviour of the solutions at the end
points, constitute a Sturm-Liouville problem. As the boundary conditions are in fact different
according to the sign of the parameter κ we arrive to, no just one, but two different Sturm-Liouville
problems:

(a) Negative κ < 0 case

The variable ρ is defined in the half real line IR+ = [0,∞) and, therefore, the S-L problem is
singular. The solutions w(ρ, κ) must be well defined in all IR+ and the boundary conditions
prescribe that the behaviour of these functions when ρ→ ∞ must be such that their norms,
determined with respect to the weight function r(ρ), be finite.

The solutions of the problem are the κ-dependent polynomials Pm, m = 0, 1, 2, . . .

(b) Positive κ > 0 case

The range of the variable ρ is limited by the restriction ρ2 < 1/κ. and the problem is defined
in the bounded interval [0, bκ] with bκ = 1/

√
κ. It is singular because the function p(ρ, κ)

vanishes in the two end points ρ1 = 0 and ρ2 = bκ. In this case the solutions w(ρ, κ) of the
problem must be bounded functions at ρ1 = 0 and ρ2 = bκ (if w is bounded then the wave
function Ψ vanishes).

We obtain the above mentioned polynomial solutions.

Proposition 2 The eigenfunctions of the S-L problem (κ < 0 and κ > 0) are orthogonal with
respect to the function r = ρ2(g+1) (1− κ ρ2)1/κ−1/2.

Proof: This statement is just a consequence of the properties of the Sturm-Liouville problems.

Because of this the polynomial solutions Pm, m = 0, 1, 2, . . ., satisfy

(a)

∫ ∞
0

(
Pm(ρ, κ)Pn(ρ, κ)

)(1− κ ρ2)1/κ√
1− κ ρ2

ρ2(g+1) dρ = 0 , m 6= n , κ < 0 ,

and

(b)

∫ 1/
√
κ

0

(
Pm(ρ, κ)Pn(ρ, κ)

)(1− κ ρ2)1/κ√
1− κ ρ2

ρ2(g+1) dρ = 0 , m 6= n , κ > 0 .

If we define the functions Ψn by

Ψn(ρ, g) = Pn(ρ, g) ρ(g+1) (1− κx2)1/2κ , n = 0, 1, 2, . . .

then the above statement admits the following alternative form: The κ-dependent functions Ψn(ρ, g)
are orthogonal with respect to the weight function r̃ = 1/

√
1− κ ρ2. That is

(a)

∫ ∞
0

Ψm(ρ, κ) Ψn(ρ, κ) r̃(ρ, κ) dx =

∫ ∞
0

Ψm(ρ, κ) Ψn(ρ, κ) dµκ = 0 , m 6= n , κ < 0 ,

10



and

(b)

∫ 1/
√
κ

0
Ψm(ρ, κ) Ψn(ρ, κ) r̃(ρ, κ) dx =

∫ 1/
√
κ

0
Ψm(ρ, κ) Ψn(ρ, κ) dµκ = 0 , m 6= n , κ > 0 ,

where we recall that dµκ = r̃(ρ, κ) dx represents the κ-dependent mesure introduced in the quan-
tization of the momentum and the Hamiltonian.

We close this section pointing out the importance of this result, the orthogonality relations
associated to the Sturm-Liouville problem are with respect the measure dµκ and therefore they
are consistent with the Hilbert space structure introduced for the quantization of the system as a
position dependent mass (PDM) system.

3.4 Wave functions and energy levels

We have arrived to the following situation

• Bound state wave functions

Ψn = Nn (µx) g+1 (1− κµ2x2) 1/(2κ) Pn(x) , Pn(x) = 2F1(−n, bκ ; g + 3/2 ; κµ2x2) .

• Bound state energy eigenvalues En

En =
(
m+

1

2
+ g
)

+
1

2
κ (m+ g)2 , m = 2n+ 1 .

Nevertheless the κ < 0 situation deserves be studied with more detail. We recall that the equation
(and the solutions) is defined on IR+ = [0,∞) and hence it is necessary to take into account the
problem of the convergence at the infinity. In fact, it is necessary that the following integral be
convergent ∫ ∞

0

(
Pn(ρ, κ)

)2 ρ2(g+1)

(1 + |κ| ρ2)1/|κ|
√

1 + |κ| ρ2
dρ <∞ , κ < 0 ,

and, as for large values of x the powers of the dominant terms in the numerator and the denominator
are 4n+2(g+1) (Pn has only even powers) and 1+2/|κ|, respectively, we arrive to a certain condition
to be satisfied by n. In fact, given a certain value of |κ|, then the admissible functions Pn are those
associated to integer values of n satisfying the condition

n < Nκ =
1

2|κ|

(
1− (g + 1)|κ|

)
.

Thus, when |κ| (with κ < 0) increases its value then the number of eigenstates decreases and for
great values of |κ| the system only admits the fundamental level as stationary solution.

An alternative approach is to consider En as a function of n. If κ > 0 then En is a strictly
increasing function but if κ < 0 then En is only increasing for small values of n, it has a maximun
at the point Nκ = (1/(2|κ|))(1− |κ|(1 + g)) and then it becomes decreasing. Only the values of n
placed in the incresing section of the curve determine normalizable wave functions.

Summarizing, we have the following situation.
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(a) Negative κ < 0 case. There is a finite number of bound states Ψn(x, g, κ), with n =
0, 1, 2, . . . , nκ (nκ denotes the greatest integer lower than Nκ ), and the spectrum is bounded,
not equidistant and with a gap between every two levels that decreases with n

E0 < E1 < E2 < . . . < Enκ , En+1 − En = 2
(

1− |κ| (2n+ 2 + g)
)

(~α) .

(b) Positive κ > 0 case. There is an infinite set of bound states Ψn(x, g, κ), with n = 0, 1, 2, . . .
and the spectrum is unbounded, not equidistant and with a gap between every two consecutive
levels that increases with n

E0 < E1 < E2 < . . . < En < En+1 < . . . En+1 − En = 2
(

1 + κ (2n+ 2 + g)
)

(~α) .

4 Final Comments

It is well known that the number of quantum Schrodinger solvable potentials is rather small mainly
because quantum exactly solvability is a very fragile property. In fact, in most of cases the addition
of a small perturbation to the potential (or the introduction of a small deformation in the Hamil-
tonian) breaks down the exact integrability. Thus, the exact solvability of the (κ, g)-dependent
Hamiltonian H(x, px;κ, g) must be considered in fact as a very interesting property.

We conclude with the following two comments: First, it was proved in [47], [48] that the original
κ-dependent nonlinear system (that is, the Hamiltonian (10) but without the isotonic term) can
be studied by making use of the Schrödinger factorization approach (ladder operators, intertwined
Hamiltonians and shape-invariance property), therefore it seems natural that this new more general
system (with kg 6= 0) can also be studied by this approach. Second, the nonlinear κ-dependet system
can considered as a model of the harmonic oscillator on spaces of constant curvature (the parameter
κ represents the curvature of the space) [51]-[52]. According to this interpretation the quantum
isotonic oscillator can be correctly defined on the spaces on S2

κ (κ > 0) and H2
κ (κ < 0). These two

points are two interesting open questions deserving to be studied.
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Figure 1: Plot of the potential Vκ,g(x) as a function of x (x > 0) for kg = 1 and κ = 0 (dash
line) and some positive values of κ.
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Figure 2: Plot of the potential Vκ,g(x) as a function of x (x > 0) for kg = 1 and κ = 0 (dash
line) and some negative values of κ.
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