Resumen: The higher-order superintegrability of the Tremblay-Turbiner-Winternitz system (related to the harmonic oscillator) is studied on the two-dimensional spherical and hiperbolic spaces, S¿2 (¿ > 0), and H¿2 (¿ < 0). The curvature ¿ is considered as a parameter and all the results are formulated in explicit dependence of ¿. The idea is that the additional constant of motion can be factorized as the product of powers of two particular rather simple complex functions (here denoted by Mr and Nf). This technique leads to a proof of the superintegrability of the Tremblay-Turbiner-Winternitz system on S¿2 (¿ > 0) and H¿2 (¿ < 0), and to the explicit expression of the constants of motion. Idioma: Inglés DOI: 10.1088/1751-8113/47/16/165203 Año: 2014 Publicado en: Journal of Physics A-Mathematical and Theoretical 47, 16 (2014), 165203 (9pp) ISSN: 1751-8113 Factor impacto JCR: 1.583 (2014) Categ. JCR: PHYSICS, MULTIDISCIPLINARY rank: 31 / 78 = 0.397 (2014) - Q2 - T2 Categ. JCR: PHYSICS, MATHEMATICAL rank: 16 / 54 = 0.296 (2014) - Q2 - T1 Financiación: info:eu-repo/grantAgreement/ES/DGA/E24-1 Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2012-33575 Tipo y forma: Artículo (PostPrint)