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En este trabajo utilizamos el formalismo geométrico de la mecanica cuédntica para estudiar la
controlabilidad de sistemas cldsico-cudnticos (hibridos). Estudiamos primero las condiciones
que aseguran la controlabilidad y mediante multiplicadores de Lagrange se determinan los
requisitos que el control 6ptimo debe cumplir para guiar al sistema a través de unos puntos
preestablecidos (hacemos un spline ctibico). Por tltimo, se aplica a un caso particular sencillo
para poner en evidencia las técnicas presentadas con resultados prometedores.

In this project, we use the geometrical formalism of quantum mechanics in order to study the contro-
llability of hybrid states (which are part classical part quantum). We first study the conditions which
guarantee controllability and by using Lagrange multipliers we find the requirements the optimal con-
trol must satisfy in order to guide the evolution of the system through some predetermined points (i.e., a
cubic spline). Afterwards, we will apply the theory to a hybrid toy model with promising results.


HTTP://WWW.UNIZAR.ES
https://ciencias.unizar.es/
http://fteorica.unizar.es/

II

Agradecimientos

Me gustaria agradecer principalmente a Jests Clemente, por la enorme cantidad de tiempo que
me ha dedicado y por mostrarse muy abierto a la conversacién, a José Carifiena por ayudar a
asentarme las bases de la geometria diferencial y a mi familia y amigos por apoyarme a nivel
personal.

También quiero agradecerle a Fernando Falo Forniés por ayudarme con el algoritmo para la
resoluciéon de la ecuacién diferencial del ejemplo numérico.



indice general

Resumen

Agradecimientos

1.

2.

Introduccién

Sistemas hibridos y ecuaciones de Ehrenfest

111

I1

2.1. Aproximacién de Born-Oppenheimer . . . .. ... ... ... . ... .......
2.2. Formalismode Ehrenfest . . . . . . . . . . . . . . . e
2.3. Geometrizacion del formalismo de Ehrenfest . . . . . . . . . ... ... .. ....

3. Controlabilidad y control é6ptimo
3.1. Controlabilidad . . ... ... ... ... ... . .
32. Control 6ptimo . . . . . . . . ..
4. Aplicacién a un ejemplo concreto
4.1. Ecuacionestedricas . . . . . . . . ... .. e
42. Controlabilidad . . . ... ... ... ... ...
43. Control 6ptimo . . . . . . . . .. e
44. Resolucidbn numérica . . . . .. .. ... .. L e
45. Resultados . . . .. ... .. e e
5. Conclusiones
Bibliografia
A. Varios aspectos matematicos
A.l. Geometrizacién del formalismo de Schrodinger . . . . . ... ... ... ...
A.2. Ecuaciéon de Hamilton-Jacobi . . . . . .. . . . .. .. ... . . ... .
A.3. Formalismo de Heisenberg y geometrizacién . . . .. .. .. ... ... .. ....
A.4. Caracterizacion delaesferadeBloch . . . .. ... ... ... ... ... ...
B. Cédigo Python para implementar el test de controlabilidad
C. Cédigo Python para hallar el control 6ptimo

10
10
12



Capitulo 1

Introduccion

El uso de la geometria diferencial en la mecénica clésica estd bien entendido y asentado des-
de mediados del siglo XX. Es lo que ha permitido generalizar las formulaciones Lagrangianas y
Hamiltonianas a variedades arbitrarias y en un lenguaje intrinseco, libre de coordenadas. Estos
aspectos se pueden estudiar en cualquier libro de texto tipico, como [1] o [2]. La aplicacién de
la geometria a sistemas cuanticos puros es mds reciente (de los afios setenta, por autores como
Kibble [3]), pero también bien establecida, traduciendo tanto el formalismo de Schrodinger co-
mo el de Heisenberg a este lenguaje. [4] Iremos introduciendo los conceptos necesarios de estos
formalismos a lo largo del trabajo conforme sean necesarios.

Aungque con la mecénica cudntica en principio se puede explicar la gran mayoria de siste-
mas en la naturaleza, su resolucién analitica exacta es s6lo posible en un muy reducido ntimero
de casos debido a la enorme complejidad del problema.! Para simplificar el problema, uno se
plantea identificar la parte esencial del sistema que es responsable del comportamiento cuanti-
co? y todo lo demds modelizarlo como un sistema cldsico que esté acoplado con la parte cudnti-
ca. Esto nos define y motiva el estudio de los sistemas hibridos. La formulacién de Ehrenfest [4]
es un posible modelo que nos recoge la evolucion temporal de estos sistemas y se presentara
en el Capitulo 2.

Como ejemplo mds paradigmatico, podemos considerar el caso de una molécula, en la cual
representamos los electrones de valencia como estados cudnticos y todos los demads y el nticleo
como particulas puntuales cldsicas. Este marco permite modelizar muchas situaciones experi-
mentalmente relevantes.

Por ejemplo, se conoce que la fotosintesis no puede ser descrita por mecanismos puramente
clasicos, sino que la mecénica cuantica desempefia algtn papel, particularmente para explicar
la alta eficiencia de la transferencia electrénica. [6, 7] No se entiende perfectamente el mecanis-
mo cudntico, pero el formalismo hibrido es un candidato natural para considerar un modelo
aproximado para una descripcion eficiente del comportamiento.

Otro ejemplo seria el estudio del control de reacciones quimicas. Podemos pensar en un
sistema molecular cuya evolucion sea controlable mediante pulsos laser y plantearnos cémo

!Hallar la evolucién exacta es muy complicado. Por ejemplo, el estado de 40 particulas de spin 1/2 requiere
almacenar 240 = 10'% nimeros y su evolucién temporal requiere la exponencial de una matriz de (10'2)? elementos
lo cual es muy costoso. La precisiéon del nivel fundamental de una molécula de agua con suficiente exactitud como
para hacer predicciones experimentales apenas se puede hacer con los supercomputadores actuales. [5]

2Lo que es “esencial” o no depende del problema considerado.
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deberia ser el laser incidente para que el sistema salte la barrera de potencial que limita la reac-
cién quimica. Este tltimo ejemplo nos introduce y motiva el control de sistemas hibridos.

La teorfa de control de sistemas estd bien entendida, tanto para el caso de sistemas clasicos
[8] como cudnticos puros, mixtos y en parte los abiertos [9, 10, 11, 12]. Sin embargo, actualmen-
te hay un hueco en la literatura sobre el control de sistemas hibridos. Dado que se entiende
bien tanto para el caso cldsico como cudntico, la extensién de los resultados de la literatura al
caso hibrido no se espera que presente grandes problemas.

El primer objetivo va a ser el estudio de cudndo un sistema hibrido es controlable en tér-
minos generales. El segundo objetivo serd hallar el control 6ptimo tal que el sistema pase
arbitrariamente cerca de unos puntos que nosotros podemos escoger optimizando la cantidad
de energia inyectada en el sistema. Estos temas se abarcan en el Capitulo 3.

Como resultados, no llegaremos a poder generalizar al caso hibrido de manera sistematica
y rigurosa los teoremas ya existentes, pero si que justificaremos por qué se espera que sean
ciertos en el limite hibrido. En el Capitulo 4 aplicaremos los resultados al caso sencillo de un
modelo de juguete e intentaremos hallar el control 6ptimo mediante técnicas de optimizacién.
Para los casos extremos (controlando solamente la parte cldsica o cudntica) los resultados son
prometedores, pero para el caso hibrido los resultados son todavia muy preliminares y se ne-
cesita mejorar el método de optimizacién. Comentarios sobre esto tltimo, las limitaciones de

estas técnicas y las conclusiones se recogen en el Capitulo 5.

Sobre la metodologia, la mayor parte del trabajo ha sido dedicado a la lectura de articulos
cientificos y consulta de diversos libros sobre estos temas. Esto ha constituido mds de la mitad
del tiempo invertido. Otro porcentaje significante fue dedicado a la programacion para la im-
plementacion del sistema ejemplo y la realizacion de diversos calculos simbdlicos.

En los apéndices encontramos un pequefio diccionario de términos matematicos que no se
han explicado en texto principal (Apéndice A) y los c6digos en Python desarollados a lo largo
del trabajo (Apéndices B y C).



Capitulo 2

Sistemas hibridos y ecuaciones de
Ehrenfest

Antes de poder hablar de controlabilidad y control 6ptimo, debemos definir bien qué es un
sistema hibrido. Para los detalles matematicos se ha consultado principalmente [13, Cap. 5].

El caso mds paradigmatico y el que nos va a preocupar es el de sistemas moleculares. Por di-
chos sistemas vamos a entender un conjunto de N, nticleos y N, electrones. Conocemos formal-
mente la interaccién electromagnética entre estas particulas y podemos escribir el hamiltoniano
cuantico como

N,
w1
H({r}, {R}) =) — IV +Z V;%Jr
=
T T,
N,
I Z]ZK
+ @.1)
];<|RI_RK| Z|r]—1‘1<! lekzllRf—rkl
Vin Vee Ven

donde Ry, 1; son las posiciones del nticleo | y electrén j, M; la masa del ntcleo (en unidades
de masa atémica, teniendo el electrén masa unidad), y Z; es la carga del niicleo. Como se ha
comentado en la introduccién, la resolucién explicita de un sistema cuantico completo no se
puede hallar salvo para casos sencillos, luego necesitamos realizar aproximaciones.

2.1. Aproximaciéon de Born-Oppenheimer

La aproximaciéon mds usual es la de Born-Oppenheimer, que se basa en observar que los
nucleos son mucho més pesados que los electrones y por lo tanto la escala de tiempos de su
dindmica es mucho més larga. Al ser més larga, podemos suponer que los nicleos estan fijos
y calcular los estados propios de los electrones dada una configuracion nuclear.! Escribamos la
funcién de ondas total ¥ factorizada como

¥(r,R) = ¢(r, R)x(R)

'Profundizacién. El teorema adiabitico de la mecénica cuantica nos dice que si en un instante tenemos un Hamil-
toniano H(t) con un espectro discreto y partimos con un sistema en un autoestado |A(t = 0)) de H, entonces si
H(t) cambia “infinitamente despacio” (tipica aproximacién cuasiestdtica fisica) podemos asegurar que el sistema
seguird la evolucion del autoestado, |A(f)).
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donde r = (r,12,...,1n,) y R = (Ry, Ry, ..., Ry,) para aligerar la notacién siendo ., x las
funciones de onda electrénicas y nucleares. Se impone que sean autoestados de las partes eléc-
tronicas y nucleares del hamiltoniano, como se define a continuacién

He e(r, R) = €(R)¢e(r, R) [Hn +e(R)] x(R) = E x(R)

donde He = Te + Vee + Ven v Hi = Ty + V. Siimponemos que esto sea cierto para el estado
total ¥ = ¢(r, R)x(R)

HY = e(R)¥ (Hn+e(R)Y =EY¥

estamos realizando la aproximacién de Born-Oppenheimer.”

La desventaja de este método estd en no considerar estados cudnticos arbitrarios. Si desea-
mos tener un sistema realmente cuantico teniendo en cuenta la evolucién temporal (para prede-
cir transiciones electrénicas, por ejemplo), debemos modificar ligeramente el método de apro-
ximacion.

2.2. Formalismo de Ehrenfest

La idea fundamental en lo que sigue, que nos llevaréd al modelo de Ehrenfest, es esencial-
mente la misma, desacoplar la parte nuclear y electrénica de la forma

Y (r, R, 1) ~ e(r, )x (R, ) exp (i /O t E(t/)dt’) (2.2)

donde E es el promedio de toda la parte que depende de los electrones del hamiltoniano,
E=(Y|Te+ Vee + Veu|¥).

El factor exponencial extra es un ansatz, una suposicion sobre la forma de la funcién que nos
permite llegar a la solucién de una manera eficiente. Ver [15, Cap. 2] para una demostraciéon
rigurosa que no se basa en esta idea, pero es mucho mads larga.’

Notemos que al separar las variables en producto tensorial para la parte espacial, estamos
perdiendo toda posibilidad de entrelazamiento entre la parte nuclear y electrénica (ademds de
manera permanente porque la evolucién seguird manteniendo la factorizacién). La justificacion
de la factorizacién reside en las escalas del problema: la extensién espacial de los orbitales
electrénicos es muchisimo mds grande que el tamafio del ntcleo, luego en comparacién dichos
nucleos se pueden aproximar a una delta de Dirac, o una gaussiana con varianza controlada

2Mas precisamente, en el desarollo de la expresion se refiere a suponer que los términos — (72 /2M)2V g pV g x
y —(n*/ 2M)V%y x son nulos o despreciables frente a todos los demds, que es necesario para que se cumpla la
condicioén. [14]

3;Coémo podria alguien llegar a la idea de incluirlo? Una manera es la siguiente: tipicamente en ejemplos in-
troductorios de mecénica cudntica, en al resolucién de la ecuacion de Schrodinger independiente del tiempo los
estados propios del hamiltoniano son de la forma ¥, = l[)n(r)eiE”t (i = 1), donde E; es la energia definida del
estado. Para estados arbitrarios, podemos considerar un factor de este tipo con la energia promedio tanto temporal

como espacialmente, es decir, exp{i[( fot E(#"dt")/( fot at’ )]t} siendo E(#) el valor esperado del hamiltoniano, (H,).
Este factor es justo el factor que hemos afiadido.
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por €(t) (ésta es una manera de llegar a modelos semiclasicos). Se puede ver [16, Sec. IV] que
la factorizacién de las partes espaciales tiene un error controlado:

¥ = o (r,Hx(R 1) + O (%)

siendo L una escala tipica del &tomo (tamafio de los orbitales, por ejemplo). Por lo tanto, cuanto
mas se aproxima a una delta la funcién de ondas nuclear, mejor aproxima al sistema la factori-
zacion.

Por otro lado, se tiene que la masa nuclear es muchisimo mayor que la electrénica teniendo
1/M < 1 (se toma la masa electrénica como unitaria). Esto implica [16, Sec. IV] que podemos
realizar la aproximacién semiclasica

X(R,t) = A(R, )R 1 0 (@) (2.3)

donde M es la escala de masas de los nicleos y A(R,t) y S(R,t) son funciones reales.* Esta
aproximacion es razonable, porque x(R, ) es un niimero complejo y esta aproximacion consis-
te representarlo en notacién polar. Esta es la aproximacioén de onda corta o WKB.

Considerando la ecuaciéon de Schrodinger del sistema,

zg_'}—[‘{f h=1 H=Te+ Ty ~+ Vee + Ve + Vi

se puede llegar, sustituyendo la expresion (2.2) en la ecuacion, al siguiente par de ecuaciones
para la parte electrénica y nuclear

N,

ia‘/’ea(:'t) _ _% ;Vflﬁe(r,t) + </ X(R,8)PV(r,R) dR> Pe(r, 1) 24)
N)l

Z.a)c(alj,t) _ Z ZT/IJVZ x(R 1) + (/ Yr(r,t)He(r, R) (7, t) dr) X(R, 1) (2.5)

donde V(7,R) = Vee+ Ve + Vun y He = Te + V. Obsérvese que estas ecuaciones estan aco-
pladas, y la parte electrénica se ve influenciada por la parte nuclear y viceversa. Afiadimos
también la aproximacién debida a la masa grande de los ntcleos, la Ec. (2.3). Insertdndola en
la ecuacion diferencial de x, llegamos a

NTI

0
a—AZ (R,t) + Z —]v] [A*(R,t)V)S(R,1)] =0

;’tsm zfvz (/we%wedr>( f=0

potencial

cinético

4Tenemos que A(R,t) nos da informacién sobre la posicién mientras que, adelantdndonos al texto principal,
S(R, t) nos da informacién sobre el momento y denota la accién clésica.
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Reconocemos la primera ecuacién como una ecuacién de continuidad para la densidad de pro-
babilidad de la posicién del ntcleo.” Nos dice que si el ntcleo estd localizado en un cierto
tiempo, lo seguira estando posteriormente.

La segunda ecuacién se reconoce como la ecuacién de Hamilton-Jacobi de mecénica clésica,
que nos permite sacar unas ecuaciéones de Hamilton. Los momentos lineales clasicos son P; =
V;S(R,t), siendo S(R,t) la accién. Para reconocer mas facilmente la ecuacién de Hamilton-
Jacobi, puede resultar instructivo tomar el camino opuesto y partir de la mecénica clasica y
llegar a ella (ver la seccién A.2 de los apéndices).

Entonces, se tiene una evolucion clédsica para los ntcleos y se mantiene la cudntica para los

electrones, llegando al modelo de Ehrenfest:

Proposicién 1. Dados las posiciones y momentos de los niicleos (Rq, Py, ..., RN,, PN,) € RONx,
un estado cudntico 1, del espacio de Hilbert y el hamiltoniano definido previamente ‘H.,, la evolucion
temporal de un sistema hibdrido puede verse modelizada por las ecuaciones de Ehrenfest

drR; 1

= M]P] (2.6)

dP

dit] =-Vy (/ e He(r, R) e d”) 2.7)
ialp‘}g:’t) = He(r,R)¢e(r,t) h=1 (2.8)

Se puede probar [16] que en los limites 1/ +; — 0, ¢ — 0 la diferencia entre la evolucién asocia-
da a las ecuaciones de Ehrenfest y la debida a la ecuacién exacta tiende a cero.

Recapitulando, la aproximacién de Born-Oppenheimer clasica se limita a dar los autoesta-
dos. Para ir méas alld y considerar una evolucién temporal hay distintos caminos. El escogido
por nosotros ha consistido en usar la alta localizacion de los nticleos para aproximar a la funcion
de ondas total como un producto tensorial, se ha sustituido en la ecuacién de Schrodinger y se
ha llegado a un sistema acoplado de ecuaciones para la parte electrénica y nuclear. Cogiendo el
limite clasico, se identifica la ecuacién nuclear como una ecuacién de Hamilton-Jacobi que nos
lleva a una dindmica clédsica para la parte nuclear en un potencial efectivo promedio electrénico.

Aunque la parte nuclear se parece al formalismo Hamiltoniano, el sistema en su conjunto
no podemos decir que forme un sistema Hamiltoniano, que conlleva la conservacién de un
volumen en el espacio de fases y la existencia de un corchete de Poisson. A luz del control de
sistemas del siguiente capitulo, necesitaremos poder describir la evolucién cuantica como el
flujo de un campo vectorial definido sobre una variedad. Por lo tanto, procedemos a geometri-
zar el formalismo de Ehrenfest.

5Se recuerda de mecanica cuantica que si p = |x|> y x = Ae', entonces su corriente de probabilidad es j =
oV S/m (esencialmente el gradiente de la fase).
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2.3. Geometrizacion del formalismo de Ehrenfest

¢En qué consiste exactamente la “geometrizacién”? Brevemente intentaremos explicar los
aspectos fundamentales de la mecdnica clésica, el formalismo geométrico y sus ventajas. Des-
pués, resumiremos la geometrizacién de la parte nuclear y resultados de la literatura [13] sobre
la geometrizacién de la parte electrénica.

En geometria diferencial fundamentalmente se trabaja con variedades diferenciables.® Algo
de fundamental importancia relacionado con una variedad M es la existencia del plano tangen-
te T,M en un punto p € M que tiene estructura de espacio vectorial (sus elementos se llaman
vectores’) y el cotangente T, M, que es su dual (sus elementos se llaman covectores). Un campo
tensorial asigna a cada punto de la variedad un tensor®. Para geometrizar el formalismo de
Ehrenfest, necesitamos describirlo en términos de variedades y campos tensoriales.

Si ademds queremos que la dindmica sea un sistema hamiltoniano, necesitamos un corchete
de Poisson. Lo mas usual es definir una forma simpléctica w. La forma w acttia sobre un par
de campos vectoriales X,Y dando una funcién w(X,Y); es lineal y antisimétrica y ademads es
cerrada, dw = 0.

Dada una funcién f, la forma nos permite definir un campo hamiltoniano X; que cumple
df () = w(Xy,-) y se puede interpretar como un campo tangente a las superfices de nivel de
f, siendo d la diferencial exterior. Este campo tangente, si f es el hamiltoniano, nos da la evolu-
ciéon temporal del sistema. Dados dos campos hamiltonianos, podemos definir un corchete de
Poisson sobre el espacio de las funciones como sigue {f, g} = w(Xy, X;), que nos describe la
derivada de g sobre las curvas de nivel de f y se traduce a campos vectoriales como corchete
de Lie, [X r Xg] = —X(fg) (resultado estdndar de geometria diferencial, [13, Cap. 1]).

Una de las ventajas de este formalismo y la que més nos interesa a nosotros a luz del control
de sistemas, es permitirnos hablar de dlgebras de Lie de campos vectoriales. tangente.

En lo que concierne a la parte cldsica, esta ya estd geometrizada porque al derivar las ecua-
ciones del ntcleo llegamos a una ecuacién de Hamilton, y decir que sea vélida conlleva aceptar
la maquinaria de la mecénica cldsica que lleva detrés. La variedad es My = (R?®)?MN y tene-
mos para funciones f, g : Mnuc — R definido el corchete de Poisson clésico

N3 9f 9g  of g
{f/83nue = ; k;l ORjx 0P 0P IR

6Sin entrar en definiciones rigurosas, son conjuntos que se pueden describir como “localmente planos” o eucli-
deos. Se pueden conceptualizar como generalizaciones de superficies suaves.

7Es importante remarcar que los vectores X acttian sobre funciones f dando su derivada df (+y(t))/dt sobre una
curvay : M > t — R que se puede describir como “tangente” al vector X.

80bjeto que coge un cierto ntimero de vectores del campo tangente y un cierto nimero de covectores del co-
tangente y les asigna un ntimero en un punto de la variedad. Los campos vectoriales son un ejemplo de campos
tensoriales de tipo (1,0).

9Gracias a esta forma antisimétrica podemos definir el teorema de Liouville que viene a decir que el volumen del
espacio de fases se conserva, equivalente al determinismo cldsico. También nos permite dar medidas a conjuntos, se
puede definir rigurosamente la integracién y distribuciones de probabilidad para calculos de mecanica estadistica.
[17,18]
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Para el caso f = (M) = [ i H.(r, R){. dr, tenemos la evolucion temporal de g, {(H.), g} =
dg/dt. También se tiene una forma simpléctica y corchetes de Lie.

En lo que concierne a la parte cudntica, andlogamente debemos encontrar una variedad y
objetos tensoriales. La idea fundamental en la geometrizaciéon del formalismo de Schrodinger
es pasar de representar la funcién de ondas con ntimero complejos a usar las partes reales e
imaginarias de los mismos. Para tener el formalismo equivalente completo, debemos traducir
el espacio cudntico de estados, los observables y la dindmica. En el Apéndice A.1 se resume
brevemente a nivel conceptual como se llevan a cabo estas “traducciones” pero ver [4] para
una introduccién detallada.

Es muy importante remarcar que al coger el limite clasico para los ntcleos, hemos redu-
cido la dimensionalidad del sistema pasando de dimensién infinita a dimensién finita. Para
los electrones, vamos a considerar dimensién finita mds bien por dificultad matematica: tratar
rigurosamente de manera geométrica sistemas de dimensién infinita es muy complicado (pro-
blemas de definicién de dominios de tensores, etc.).

Resumiendo lo esencial del Apéndice A.1, el espacio de Hilbert de dimensién 7, al repre-
sentarse en funcién de la parte real e imaginaria pasa a ser una variedad Mg de dimensién
doble. El espacio de estados pasa a estar representado por esta variedad y los campos vecto-
riales definidos sobre ella. El producto interno de dos estados |v),|w) del espacio de Hilbert,
(v|w), viene a representarse mediante una funcién lineal simétrica g(X,Y), otra antisimétrica
w(X,Y) (X,Y son campos vectoriales definidos sobre M) mds una estructura J. Los operado-

res O se representan por sus valores esperados ep sobre |¢), definidos como ep = <lé]ﬁ/‘f§]> y

por tultimo la evoluciéon temporal viene descrita por el campo hamiltoniano asociado al valor
esperado del hamiltoniano #, X,,,. Para definir dichos campos hamiltonianos, se usa la forma
w(X,Y) mencionada en este parrafo, que también nos permite definir un corchete de Poisson
sobre funciones y un corchete de Lie sobre campos.

Por ultimo, se tiene que en el espacio de Hilbert los estados proporcionales entre si son
equivalentes. Si consideramos todos los que son equivalentes como “un punto”, nos estamos
quedando con el proyectivo. Geometrizando el proyectivo pasamos a un subconjunto P de Mg
y sobre éste se pueden transportar todas las estructuras que hemos definido en Mg (g, w, etc.).
Asi, se definen nuevos tensores gp, wp y Jp que permiten definir una estructura de Kéahler so-
bre el espacio proyectivo (ver [4]).

Lo esencial para este trabajo es el resultado: hemos pasado a poder describir el espacio
proyectivo asociado a un espacio de Hilbert como una variedad P sobre la cual tenemos unos
corchetes de Poisson

{f.8}p =wp(Xpys, Xpyg)

Ahora, muchas veces resulta mas conveniente trabajar con el formalismo de Heisenberg, como
por ejemplo en la resolucién del modelo del Capitulo 4. Asi, podremos usar la representacién
de los puntos del proyectivo como proyectores sobre subespacios de dimensién 1 del espacio
de Hilbert, como se detalla en el Apéndice A.3, donde vienen expuestos algunos detalles sobre
el formalismo de Heisenberg y su geometrizacion.
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Tenemos geometrizada tanto la parte nuclear como la parte nuclear como la parte electréni-
ca. ;Coémo se juntan las dos partes? El espacio de estados es sencillo, simplemente es el produc-
to cartesiando de las variedades

Mror = MNuc X P

Los corchetes de Poisson se puede ver [13, Cap. 5] que cumplen

{f/g}TOT = {frg}Nuc+ {f/g}Elect f/g : MTOT = MNuC XP—=R

para el espacio total. Si tenemos un campo vectorial Xny. para la parte nuclear y Xp para el
proyectivo, el total serd la suma directa de ambos

Xtor = XNuc @0+ 08 Xp

siendo 0 los campos nulos de cada espacio. Para la forma simpléctica, la elevacién al espacio
total es mas sutil. Podemos definir proyecciones desde Mror a los espacios producto como
sigue

TTNuc : MNue X P — Mnuc 7Tp * MNue X P — Mp

Si tenemos una proyeccién, usamos su pullback para subir al espacio total elementos del dual
(las 2-formas). Por lo tanto

WTOT = TNucWNuc T Tpwp
Destacando los resultados de esta seccion:
Proposicion 2. El formalismo de Ehrenfest de sistemas hibridos se puede geometrizar, teniendo

una variedad M. para las variables nucleares (R, P) € Mnuyc y una variedad P para los estados
cudnticos ([¢p] € P), reduciéndolos a dimensién finita. El espacio total es

Mror = MNue X P
y tenemos definidos un corchete de Poisson y una forma simpléctica para el sistema total

{f/g}TOT:{frg}Nuc+{f/g}Elect f/g:MTOT_>]R
WTOT = MNucWNue + Tpwp

Las ecuaciones de Ehrenfest se pueden obtener como el flujo de un campo hamiltoniano asociado a
la estructura de Poisson {-, - }tor introducida. Dicho campo hamiltoniano estd relacionado [18, 13]
con la funcion

e _Nn 1 5 (Y| He|p)
H(R,P,[tp])—EzM]PI+ (ylw)

que se construye del término cinético y potencial de las ecuaciones de Ehrenfest.
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Capitulo 3

Controlabilidad y control 6ptimo

Una vez definido el sistema hibrido, halladas las ecuaciones que rigen su dindmica y visto
que se pueden describir como un sistema hamiltoniano, ahora vamos a hablar sobre la nocién
de controlabilidad de sistemas. Para este capitulo se ha consultado principalmente [13, Cap. 4],

Nuestra motivacion detrds del estudio del control estd en poder dirigir la evolucién del
sistema como nosotros deseamos.! Como se ha comentado en la introduccién, el control de
sistemas estd bien entendido tanto para sistemas cldsicos [8] como cuanticos [9, 10, 11, 12]. Visto
que los sistemas hibridos se pueden describir en términos geométricos, se pueden extender los
resultados del control de sistemas clésicos a estos sistemas también, siendo su formulacién muy

similar.

3.1. Controlabilidad

Ahora procedemos a explicar como se plantea de manera matematica la nocién de control.
Dada una variedad M cuyos puntos representan los posibles estados del sistema, la evolucién
temporal de la trayectoria temporal del sistema x(t) sobre la variedad viene dada por un campo
vectorial X definido sobre M que representa la velocidad del sistema en el espacio de fases, es
decir? d

350 = Xy x(0) = x0

donde el subindice nos indica que Xy () es el campo hamiltoniano asociado a una funcién
hamiltoniana # en un punto x(t). Daremos por entendido que se evalaa en x(t), luego lo omi-

tiremos.

Este campo podemos pensar en modificarlo ligeramente. En el caso de una molécula (el que
nos motiva este estudio), podemos plantearnos incidir sobre ella con un laser. Los electrones
(de espin 1/2) estdan inmersos en un campo magnético, luego la perturbacion en energia es

fu(t) = (B(t) - §)

siendo B(t) el campo magnético y S el momento angular del espin. Notese que estamos co-
giendo el valor medio del operador B(t) - S para afiadirlo a la funcién hamiltoniana, luego ya

1 Aunque nosotros en este trabajo vamos continuamente detrés del objetivo de conseguir hacer el sistema pasar
por ciertos puntos, debe quedar claro que la teoria de control es un campo muy amplio y sus aplicaciones no se
limitan exclusivamente a las presentadas aqui.

2 Aqui hemos simplificado la notacién. De una manera més rigurosa, deberiamos evaluar sobre alguna funcién
para poder derivar, df (x(t))/dt = Xy, (4 f pero esto solo carga mds la notacién y lo hemos decidido aligerar.
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estamos usando el formalismo geométrico. Se puede ver que el campo hamiltoniano de esta
perturbacién Xy, es de la forma Y, B;(t)X; (siendo X; otros campos vectoriales), luego la evolu-

cion del sistema es d

() = Xy, (x(0) + LB(OX: x(0) = xg

El campo magnético B es nuestro “control” porque es algo que en principio podemos modi-
ficar en el laboratorio. Podriamos preguntarnos por como deberia ser este campo magnético

para llevar al sistema a algtin punto que deseemos.’

Se ha utilizado este ejemplo del espin para motivar esta perturbacién afiadida a Xy, pero
también se puede considerar en términos generales, llamando u(t) = (uy, uy,...) a la perturba-
cion

X(u(t)) = X, + Y 4i(0X;
]
(Cuéndo podemos decir que existe un u(t) tal que x(0) = xo y x(ts) = x? La idea es intuitiva:
a cada punto de la variedad los campos X3, y {X;} nos dicen en qué direccién nos podemos
mover, luego si éstos nos cubren todas las posibles direcciones de movimiento que hay en un
punto, para todos los puntos de la variedad, entonces todos los puntos son accesibles desde
todos los demds en un tiempo finito y diremos que el sistema es controlable.

(Como podemos expresar esta idea matematicamente? Aqui hay una sutileza més, no es
cuestion de simplemente mirar la clausura® de Xy, y {X;} en un punto, sino en todos: debe-
mos considerar los campos vectoriales. A nivel global, tenemos la estructura de corchetes de
Lie que nos permite generar otros campos independientes de los de partida.

Por ejemplo, para el conjunto de campos { X, X», X3} podemos generar otros campos
Y1 =X, Xo] Y2 =[X1,X5] Y3=[Xp X;]

que pueden ser independientes entre si, Y; ¢ span(Xi, Xz, X3), luego nos representan grados
extra de movimiento.” A estos nuevos grados de libertad los podemos afiadir al conjunto
{X1,X2,X3,Y1,Y2, Y3} y volver a conmutar todos los elementos entre si, hasta ya no generar
mas campos independientes. De esta forma, hemos generado el dlgebra de Lie minimal que
contiene a { Xy, Xp, X3}. Al conjunto de campos independientes después de realizar esta accién
se denota como

Lie(X1,X2, Xg) = {X1,X2, X3, Yl, YQ, ey [Yl,X1], .. }

y si este conjunto tiene la misma dimensién que el espacio tangente T, M para todos los puntos
p € M, todos los puntos son accesibles desde todos los demaés y el sistema se define como con-
trolable.

3Por ejemplo, si se trata de un conjunto de varias moléculas, nos podria interesar facilitar una reaccién quimica,
como se ha comentado en la introduccion.

“Todos los puntos que se pueden poner como combinacién lineal de X, y {X;}-

SRecuérdese que localmente tenemos dimension finita, pero a nivel global de campos, podemos tener mas cam-
pos independientes que dimensién de la variedad porque un campo conlleva un vector en cada punto de la variedad.
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Reunimos todas estas observaciones como una proposicion:

Proposicion 3. Dado un sistema compuesto por una variedad M y un campo vectorial de la forma
X(u(t) = Xy, + L ui(DX;
J

denotando u;(t) el control, diremos que el sistema es controlable si el conjunto de vectores
Lie(X3,, {Xi})

genera el espacio tangente en cualquier punto de la variedad.

Para la controlabilidad, se ha implementado un cédigo en lenguaje simbdlico para compro-
bar si dados unos campos, Lie(Xj, ...) genera al espacio tangente. Ver el Apéndice B.

3.2. Control é6ptimo

Ahora, una vez tenemos un criterio para decidir si un sistema es controlable, podemos
plantearnos la cuestién de hallar un control u(t) que haga al sistema pasar por los puntos del
espacio de estados que nosotros deseamos. Este es un problema con un amplio conjunto de
posibles aplicaciones, en particular para el control de reacciones quimicas si pensamos en ese
tipo de sistemas hibridos.

Una manera de hallar u(t) es definiendo una funcién coste J(u(t)) que mide, dado un u(t),
lo proximos que estamos a la solucién deseada. La funcién u(t) buscada serd aquella que mini-
mice el coste J(u(t)). Para esta seccién se ha consultado principalmente [12, 8].

Sobre la forma de J(u(t)), hay muchas maneras de escogerla, segin lo que deseemos conse-
guir. Aqui, considerando nuestro objetivo, podemos exigir minimizar la distancia a los puntos
objetivo y ademds minimizar la energia requerida para la trayectoria (para no tener soluciones
poco realistas de implementar en un laboratorio).

¢Cudl es la evolucién del sistema? Esta viene dada por

Gt = 2 = Xy (u0) = fxw)  (0) = x;

Hemos introducido f(x, u) para simplificar la notacién. Entonces, si x(f) nos representa la evo-
lucién temporal, podemos escoger la siguiente funcién coste

t 1

J(u(t)) = /t L(x(t),u(t), t)dt+ WG(x(t]),Xf) x(0) = xo (3.1)
v 10

donde x¢ es el estado objetivo. La funcion G(x(t1, x¢) pesa lo cerca que esta el estado final del

estado objetivo y se le denomina coste terminal. El término £(x(t), u(t),t) se denomina el coste

de evolucién, que nos pesa la manera de llegar al punto final.® En nuestro caso, lo vamos a usar

6 Aunque usemos la palabra “coste”, si la magnitud es negativa entonces pasa a ser un “beneficio”.
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como un término energético aunque podria medir cualquier otra magnitud. El factor o nos
permite ajustar el peso relativo del coste terminal frente al de evolucién.”
También comentemos que estamos exigiendo al sistema pasar por un tnico punto, pero

también podriamos extender este coste a varios intervalos mediante un sumatorio

Z 1
) =3 [ EG0u(00 + 535G, )

donde [t;_1, ] denota los intervalos entre punto y punto exigiendo continuidad para las funcio-
nes.

Para hallar las condiciones que debe cumplir u(#) para ser el control 6ptimo, podemos usar
la técnica de los multiplicadores de Lagrange para hallar los puntos extremos de J(u(t)). Ana-
dimos los multiplicadores de Lagrange c, (que llamaremos coestados) que imponen la ligadura
de las ecuaciones de movimiento, X = f(x, u), resultando en

- h 1 )
J(u(t)) = /t L(x(t), ult) t) dt+ 575 G(x(t), xe) + ex(8) (= f(x )
0
Notemos que cy(-) es un elemento del dual al tangente, y actia devolviendo un escalar (o
funcién, si consideramos que depende del tiempo y del punto de la variedad).® Tenemos que
el 6] debe de ser invariante bajo variaciones de las variables x(t), cy(t), u(t) luego
9]
/ /
dex(t) + Ju(t) ou(t') (3.2)

i
acy ()

-_ 9] /

Entonces, s6lamente tenemos que calcular las derivadas correspondientes teniendo en cuenta

que % = d(t — t') y usando la regla de la cadena, af;ift(,t))) = aj;(xx((tg) ) g ;‘((tt,)) (andlogamente con

las demés variables).” También para el término, ftgl cx(t)(x) df usamos integracion por partes
para introducir x(t) y coger la derivada parcial respecto a él

[ e de = e () — [ el (x(e)

0

7Més comentarios generales: cuando el coste terminal es nulo, tenemos un problema de Lagrange (por su ana-
logia con la mecénica cldsica) y cuando el coste de evolucién es nulo, tenemos un “problema de Meyer”. El caso
general se llama “problema de Bolza”. [19, Cap 3.3.2]

8Normalmente, para sistemas de varias dimensiones en sistemas euclideos se usa el producto escalar para los
multiplicadores, pero en este contexto en general no lo tenemos, luego usamos el dual.

9Para el lector inquieto, si se pregunta sobre cémo podemos sumar 6x(t) y dcy(t) si viven en espacios distintos
(tangente y dual), se puede hacer de forma rigurosa cogiendo coordenadas para cy. Lo haremos asi para el ejemplo
de la siguiente seccién, pero aqui preferimos no cargar la notacién.
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Teniendo todo esto en cuenta, tenemos las siguientes derivadas

oI _ aE(x(t’),u(t’),t’) +ex(t1)8(t — ') — cx(t)d(to — ')+

ox(t) — ox
— () — Cx(t/>g£(x<t/)’u(t/)) + zlryzzz)(;(x(tl),xf)é(tl — )

g -
dee() () = f(x(¥),u(t))
a“a(]t/) - gﬁ(x(t)f”(t/)/f/) - Cx(t')g{:(X(t'),u(t/))

Si buscamos un extremo funcional de ], se debe cumplir que la variacién de | sea nula. En
el intervalo [to, t1] tenemos que considerar tres posibilidades: t' = o, tp < t' < 1y t' = H.
Teniendo en cuenta que 6x(fp) = 0 por imponer una condicién inicial x(ty) = xo, teniendo en
cuenta la continuidad de las expresiones, jugando con las deltas en las expresiones anteriores y
anulando todas las derivadas parciales llegamos a las siguientes ecuaciones, que presentamos

como resultado.

Proposicion 4. Dado un sistema cuya evolucién viene determinada por

X(u(t)) = Xny + Y uj(H)X;
j
con el fin de hallar el control 6ptimo se puede definir una funcién coste

) = [ L0, u(e), 1) dt 4 52 Glx(t2), )

to

Las condiciones que cumple el sistema para el coste optimo (si existe) usando la técnica de multipli-
cadores de Lagrange se puede ver que son

¥(t) = f(x,u) x(to) = %o 63)
)= 55 - (2) cx(t) = ~ 507 5 (x(1), 37 (34
oL of
Fie Cx <8u> (3.5)

donde todos los términos son los definidos en esta seccion.

Observemos que tenemos no s6lo una condicién inicial para los estados x(f), sino una condi-
cién final para los coestados cx(t).

Por ultimo, debemos comentar que tinicamente hemos impuesto la condicién de extremo,
pero las soluciones pueden corresponder a maximos, minimos o puntos silla. En este trabajo no
pasaremos a considerar variaciones de segundo orden, pero seria necesario para un tratamiento

a un nivel mas profundo.
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Capitulo 4

Aplicacion a un ejemplo concreto

En este capitulo veremos un ejemplo concreto de un sistema hibrido e intentaremos aplicar
las herramientas de control introducidas. La finalidad va ser pasar por ciertos puntos estados
objetivo.

4.1. Ecuaciones teodricas

El sistema en cuestion es un oscilador armoénico al que le acoplaremos un sistema cudntico
de dos niveles. En un primera aproximaciéon podemos pensar en este ejemplo como un dtomo
en una dimension (es facilmente generalizable a mds, pero computacionalmente mds complejo)
en un pozo armoénico de potencial con una nube electrénica que interacciona con el nticleo. Las
variables clasicas, q y p, serian los desplazamientos del equilibrio y el momento lineal, respec-
tivamente.

Para la parte cuantica, podemos modelizar el sistema con el siguiente hamiltoniano:
He(q,t) = f(q) Y Hi(t)oi = f(q)Hi(t)os 4.1)
1

donde desde aqui en adelante se suma sobre indices repetidos (notacién de Einstein). Supon-
dremos que la dependencia espacial y temporal del hamiltoniano se puede separar de esta
manera por sencillez. Al ser el momento magnético un sistema de dos niveles, podemos usar
la base {1, oy, oy, 0>} (formada por las matrices de Pauli junto con la identidad) para poder des-
componer el hamiltoniano en componentes, H, = f(q)(Hxox + Hyoy + H.0:).!

Aunque se le ha intentado dar una interpretacion fisica al modelo para ser razonable, se
debe tener en cuenta que no deja de ser un modelo de juguete con la tnica finalidad de poder
aplicar la teoria sobre él.

1;Por qué no tiene H, componente a lo largo de 1? El hamiltoniano es el generador del propagador, U = ¢~ et
que nos lleva de un estado inicial al final, [¢(t)) = U(t)|¢(0)). El propagador debe de ser unitario UTU = 1 para
que se conserve la norma, (¢(t)|p(t)) = (¢(0)|UTU|$(0)) = (¢(0)|¢(0)) lo cual implica que el determinante es un
ntimero complejo de norma | det U| = 1. Por simplicidad, se escoge det U = 1. Usando que dete”t = ¢4, llegamos
a que la traza de H, debe de ser nula. La traza de las matrices de Pauli es nula, pero la de la identidad no, luego
dicha componente debe anularse.
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Como recordatorio, las ecuaciones de Ehrenfest vistas en el Capitulo 2 para un sistema
hibrido, para el caso de un oscilador, son

dg ... . 1 dp, . .
a(ﬂ =4 = %P(t) a(ﬂ =p=—kq—Vy(He)p (4.2)

.d
la’#’e = Hewe h=1 (4'3)

Aqui comentamos que se ha intentado resolver este ejemplo mediante el formalismo de Schro-
dinger, pero al tener que trabajar sobre el proyectivo P este problema se volvia analiticamente
complicado. Es mucho més sencillo utilizar en este caso particular el formalismo de Heisenberg
de los operadores de densidad. Entonces sustituimos la ecuaciéon de Schrodinger por

iSL(t) = p = —i[He, p(t)] (4.4)

donde p es el operador matriz de densidad del sistema cudntico. Ver el Apéndice A.3 para lo
mas relevante del formalismo de Heisenberg y su geometrizacién y el Apéndice A.4 para més
algunos detalles sobre los operadores matriz de densidad. Lo importante para nosotros es el
hecho poder seguir aplicando resultados de control cldsico a pesar de usar este formalismo.

Lo esencial del apéndice es lo siguiente: escogida una base {1, 0y, oy, 0. } para el espacio de
Hilbert de dimensién dos y de los operadores de densidad, podemos pasar a usar coordenadas
reales (ox, 0y, 02) Y (Hx, Hy, H>) para describir estos objetos, porque p = %(]l +pi0)) yH =
f(q)#;(t)o;. También, se cumple

—i[H,p] = f(QeipHipjor ~ (He) = trpHe = f(9)0iH,

donde ¢;j es el simbolo de Levi-Civita. Se ha llegado a poder escribir las ecuaciones de Ehren-
fest en términos de variables reales

1 . Sof :
i= ) P=—ka—eitge pe= fla)eti;

haciendo mads sencilla la aplicacién de los teoremas. Se ha escogido para este problema un
acoplo f(q) = g por simplicidad.? Una linea de trabajo futura es el considerar acoplos méas
generales.

Por ultimo, debemos comentar que para estados puros, las coordenadas del estado cuédntico
de dos niveles estan contenidas sobre la superficie de una esfera que denominamos esfera de
Bloch. Ver el Apéndice A.4 para més detalles.

4.2. Controlabilidad

Antes de proceder, debemos plantearnos la pregunta de si es controlable. Para serlo, el
algebra de Lie debe generar el espacio tangente en todos los puntos de la variedad, como se

2Se podria justificar interpretdndolo como una aproximacién lineal de f(g), obviando el término constante.
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ha visto en el Proposicién 3. Se ha usado el cédigo del Apéndice B para conmutar todos los
campos y ver si llegamos a tener suficientes campos independientes.
Se ha considerado como pardmetro de control el siguiente

que recoge la variacion temporal del hamiltoniano. Este factor nos da una idea de cuédnta ener-
gia se invierte en cambiar el hamiltoniano.

Para poder aplicar el control, debemos ampliar el espacio de estados del modelo de Ehren-
fest e incluir también los hamiltonianos como estados. Tendriamos pues

(q/ f?, px/ py/ pz/ ?:.Zx/ ﬁyz ﬂz) = XO + uxxl + quZ + MZX?)

siendo los campos (el propio programa los calcula para este ejemplo)

p/m 0 0 0
—kg — Hypx — Hypy — Hep- 0 0 0
Hyp: — Hzpy 0 0 0
Xo = ~Hapz o+ Haps X = |Y X = |Y X = | (4.5)
Hxpy — Hypx 0 0 0
0 1 0 0
0 0 1 0
i 0 ] _O_ _0_ _1_
en la base

990 9 0 & 2

ai — 7 ’ 7 ’ 7 ~ 7 ~ 7 ~
{ {aq dp” dps” dpy” 9p;” OH, OH, B’HZ}

Notese que al actuar con el campo vectorial sobre una funcién, la estamos derivando.

¢C6mo se ha calculado el conmutador? Dados dos campos X = }_ x;9;, Y = }_ 0 es directo
ver que se cumple

[X, Y] = Zz(xlazy] — yzélx])a]
i

pudiendo implementar esta formula en un lenguaje de programaciéon simbdlico (en nuestro
caso la librerfa SymPy [20] de Python). Como resultado:

Resultado 1. Se ha calculado Lie(Xo, X1, X2, X3) mediante el programa del Apéndice B y se ha visto
que su dimension coincide con la del espacio tangente, por lo tanto el sistema es controlable.

Ahora procedemos al problema de hallar el control 6ptimo.
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4.3. Control éptimo

Para la determinacion del control 6ptimo, podemos usar los resultados de la Seccién 3.2.
Para ello necesitamos definir £, f y G.

Para el coste de evolucién £ escogemos

L(x(t),u(t),t) = Z 5 5 Tk

1 (aﬁi(t) >2 1,
i
Como comentamos, la derivada temporal de ;(t) nos viene a dar una medida del coste ener-
gético asociado a cambiar al hamiltoniano, y va a ser nuestro parametro de control, u(f).

Para el coste terminal G, vamos a imponer que la parte clasica y cudntica ambas pasen por
ciertos puntos. Se debe comentar que existen muchas mas posibilidades para plantear proble-
mas similares, exigiendo el paso por puntos sélo cldsicos o sélo cuanticos. El vector (real) que
nos denota la configuracion es:

x = (p,49,0x 0y, 0z Hx, Hy, Hz) (4.6)

Vamos a considerar n puntos, luego dividimos el tiempo total en n intervalos, y a tiempo ¢;
queremos que pase el sistema por (p;, i, 0ix, Oiy, Piz) sin importarnos el valor del hamiltoniano
en dicho punto. Entonces si t; € t,t5,...,t,, tenemos

57O ) = 7 (a(k) =0 + () )+
+ 212 [(ox(ti) — pix)* + (oy (1) — piy)* + (p=(ti) — piz)?]  (4.7)
Q

denotando 7yc y g dos pesos distintos, uno para la parte clasica y el otro para la cuantica.

La ecuacién del movimiento se puede escribir como ¥ = f(x,u) y su forma explicita se
puede hallar juntando las ecuaciones del movimiento en 4.2 més la parte hamiltoniana, que
depende del pardmetro de control. Ya estamos listos en principio para usar los resultados de
la seccion anterior, porque tenemos L, f y G. Nos faltaria describir los coestados o “variables
momento” en funcién de coordenadas. Siendo elementos del dual, se pueden escribir como
cx = (cx)ief siendo e el dual a la base en la que esta escrito el estado x. Sencillamente, las
componentes de c, son los valores que toma sobre la base, (¢y); = cx(e;).

Aplicando las ecuaciones de la Proposicién (3.3) sacadas mediante multiplicadores de Lan-
grange, conseguimos el siguiente conjunto de ecuaciones para nuestro sistema para el intervalo
[ti—1,tj], donde por generalidad las aplicamos a un espacio de dimension N, (41, p1, - - -, 4N, PN),
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aunque posteriormente nos quedaremos en un tnica dimensién. Las ecuaciones para los coes-

tados son
(¢q)i = K(ep) + peFlaley ot (ep)ilty) = ——(i(ty) — 43 48)
9q,0q; 7E
Y
- (Cp)keimk’f'lipmaf%
1
(¢p)i = —(cq)i/m (cp)i(ty) = _?(pi(tj) — pji) (4.9)
C
of ~ _ 1
(¢o)i = (Cp)ka]c"?"li — f(q)ejuH(cp)k (cp)i(ty) = ——5 (pi(tj) — pji) (4.10)
dk i)
0
(en) = (eplegipi = Fla)esupy(ep) (i) =0 (@11)
oL of o
3, = (au> = (cy)i = u; (4.12)
y para los estados
4i = pi/m 7i(ti-1) = Giini (4.13)
-0
pi = —kqi — PjHja[J; pi(ti-1) = Pini (4.14)
p=—i[H,p] = px = f(q)einHip; Pi(tj-1) = Pini (4.15)
O, 3 3
5 = Ui Hi(ti—1) = Hijni (4.16)

Observemos que los estados tienen condiciones iniciales de contorno, mientras que los coes-
tados tienen condiciones finales. Es tipico en problemas de control (por ejemplo, ver [12, Sec.
3]) intentar eliminar los coestados c, de las ecuaciones del movimiento para reducir la dimen-
sién del problema. En este caso no se ha consegudio y hemos tenido que intentar resolver las
dieciséis ecuaciones en su totalidad.

4.4. Resolucién numérica

Para la resolucién numérica, se ha intentado hacer uso de software de libre acceso, en con-
creto librerias ptblicas de Python (principalmente SciPy [21] y SymPy [20]). Ver el Apéndice C
para el cédigo usado en esta seccion.

El problema de estas ecuaciones esté en las condiciones de contorno. Tenemos definida una
condicién sobre los puntos finales de los coestados, mientras que tenemos condiciones iniciales
para los estados. Se le agradece a Fernando Falo Forniés por darnos la idea de utilizar el plan-
teamiento que vamos a exponer a continuacion para la resolucion de la ecuacion diferencial.

El enfoque tomado es el siguiente, donde consideramos tinicamente un intervalo [0, T| para
presentar mds claramente las ideas. Partiendo en t = 0 de unos valores iniciales nulos para
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todos los cy y los iniciales conocidos para x, avanzamos temporalmente el sistema hasta t = T.
Entonces hallamos la distancia de x al estado objetivo xo: Ag = |x(T) — xp|. También hemos
avanzado los coestados, y comparamos su valor en T con el que deberia tener, Ap:

I(cx(0))) = lex(T) — Ao(cx(0))] = [ex(T) = (|x(T) — xo])|

Notese que naturalmente para cada ¢, (0) tendremos un punto final x(T) distinto y por lo tanto
Ao depende de ¢,(0). Cuando I(c%(0)) = 0, entonces sabemos que estamos en el caso Opti-
mo. Por lo tanto el problema se reduce a una optimizacién numérica de la funcién I(c,(0))
variando las condiciones iniciales de los coestados, c,(0). Este método es ineficiente debido a
ser necesario avanzar en el teimpo a todo el sistema por cada evaluacién de I(c,(0)).

Para generalizar este método a varios puntos con intervalos [to, tl], e, [tn_1, tn], hemos de-
cidido por simplicidad repetir el mismo procedimiento y hacer n optimizaciones, tomando
como valores iniciales de ¢, y x en cada intervalo los valores finales de la optimizacién anterior.
Lo tinico que conlleva hacerlo de esta manera es una falta de suavidad en los coestados, pero
al no tener éstos un carécter fisico no lo consideramos relevante.’

Para la evoluciéon temporal, se ha usado el integrador vode de SciPy incluido en la fun-
ciéon de integracion odeint, que usa métodos basados en BDF (backward differentiation formulas)
[22]. Para la optimizacién, se han probado distintos optimizadores, principalmente el algorit-
mo de Broyden-Fletcher-Goldfarb-Shanno (BFGS) [23] y el método Nelder-Mead [24]. BEGS
es esencialmente un método de Newton modificado y requiere la evaluacién de gradientes.
Aunque esto lo hace més atractivo, no se han conseguido resultados positivos (convergentes)
con este algoritmo y es muy sensible a cambios en los pardmetros del problema. El método de
Nelder-Mead no requiere la evaluaciéon de gradientes, consiste en evaluar la funcién tres veces
y movernos en la direccién mas pequefia de las tres. Para facilitar la convergencia, se han dado
pesos relativos 1/ 72 distintos a la parte cudntica y cldsica. Este tltimo método (Nelder-Mead)
ha resultado ser el més estable y es el que se ha utilizado para los resultados que presentaremos
a continuacion.

4.5. Resultados

Aunque provisionales, hemos conseguido buenos resultados en los dos casos limite en los
que tnicamente imponemos condiciones sobre los estados cuanticos o cldsicos. En la Ec. 4.7 que
define el coste terminal G, esto corresponde a coger el limite yc — oo (caso cudntico: no hay
condiciones terminales sobre la parte clasica, sino sobre la cuadntica) o yq — oo (caso cldsico: no
hay condiciones terminales sobre la parte cuantica).

Para el caso cudntico, como se puede ver en la Figura 4.1, hemos obtenido resultados simi-
lares a los de [12, 25]. Para el caso clasico, también hemos podido obtener buenos resultados,

3En el caso de funcionar bien este algoritmo y obtener soluciones razonables y robustas, nos planteamos cam-
biar el algoritmo y realizar una tnica optimizacién global haciendo que la funcién coste sea un sumatorio, pero
adelantando la Seccién 4.5, todavia no funciona de una manera satisfactoria y fiable.
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Trayectoria de p
Esfera de radio 1
Objetivo 0
Objetivo 1

Ve \ + Objetivo 2
) ;

Pto. trayectoria

|0)

FIGURA 4.1: Caso cudntico. Estamos observando la trayectoria del estado cudntico p sobre la esfera de
Bloch en el limite yc — oo (es decir, no hay coste terminal sobre la parte cldsica). Hemos fijado varios
puntos “objetivo” para la esfera y el programa nos ha hallado el contrél 6ptimo para pasar por los

puntos con un error de 107°. Los resultados son similares a [25, 12].

Trayectoria de p
Esfera de radio 1
Pto. trayectoria

Evolucién de un sistema hibrido controlado
2.00 -

— qyp
Objetivo 0
Objetivo 1
1.75 - —— Pto.dela trayectoria

=
N}
o

1.00 -

Momento (p)

o
N
a

0.25 -

0.00 - 1 1 1 1
1.4 1.6 1.8 2.0
|0) Posicién (q)

FIGURA 4.2: Caso cldsico. Se observan las trayectorias de la parte electrénica (izquierda, esfera de Bloch)
y nuclear (derecha, plano g-p) del sistema hibrido. No tenemos costes terminales sobre la esfera de

Bloch. Por lo tanto, se observa cémo manipulando la parte electrénica mediante el acoplo f(g), se puede
controlar la parte cldsica (figura de la derecha), con errores en la posicién en el espacio de fases de 1072.



Capitulo 4. Aplicacién a un ejemplo concreto 22

Trayectoria de p
Esfera de radio 1
|1) + Objetivo 0
Pto. trayectoria Evolucién de un sistema hibrido controlado

— qyp
Objetivo 0
0.50 - —g— Pto. de la trayectoria

\
Momento (p)

0.25 -

1.10 115 1.20 1.25 1.30 1.35 1.40 1.45 1.50
|0) Posicién (q)

FIGURA 4.3: Caso general. En este caso se ha impuesto un coste terminal sobre la parte electrénica
(izquierda) y nuclear (derecha) del sistema hibrido, con un resultado prometedor. Sin embargo, al afiadir
mads de un punto objetivo el optimizador se vuelve inestable y no pudimos encontrar la solucién 6ptima.

como se puede notar en la Figura 4.2. Comentemos que este tipo de problema de control se-
ria muy relevante para el control de reacciones quimicas, donde son las variables clasicas que
parametrizan los grados de libertad atémicos las que codifican el estado de la reaccion.

Por ultimo, se ha intentado imponer condiciones terminales en los dos grados de libertad
al mismo tiempo, pero el programa numérico ha resultado ser muy inestable al tratar més de
dos puntos. En la Figura 4.3 se puede ver el caso de un tinico punto objetivo para el sistema
hibrido total. No obstante, confiamos en encontrar nuevos algoritmos que mejoren el compor-
tamiento en el caso general y sea mds robusto en los casos limites (son sensibles a cambios en
los parametros).
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Conclusiones

Haciendo un muy breve repaso: hemos planteado el modelo de Ehrenfest para sistemas

hibridos y hemos visto como geometrizdndolo podemos llegar a tratar al mismo pie tanto al

sistema cldsico como cuédntico. Una vez hecho esto, hemos aplicado resultados de control cono-

cidos de mecanica clasica al sistema hibrido, aplicindose de manera directa al poder tratar el

sistema hibrido como un sistema hamiltoniano. Aparte de la controlabilidad, también hemos

conseguido las condiciones que el control 6ptimo debe cumplir y las hemos implementado

numéricamente.

En conclusién, los resultados expuestos en este trabajo muestran que es posible controlar

sistemas hibridos (en casos limite) aunque el método numérico todavia no sea muy estable

para el caso general. No obstante, confiamos en encontrar nuevos algoritmos que mejoren el

comportamiento en el caso general.

Como posibles lineas de investigacion futura planteamos los siguientes problemas

Considerar otros enfoques para eliminar los coestados c, de las ecuaciones diferenciales.

Implementar la optimizacién en un lenguaje mas rdpido como C para agilizar el progra-
ma, o usar lenguajes de pago como Mathematica que pueden incluir métodos para la
resolucién de ecuaciones diferenciales de este tipo.

Buscar otros métodos de optimizacién (optimizacion estocéstica, bayesiana, etc.) mds po-
pulares en &mbitos como Machine Learning o Inteligencia Artifical.

¢Coémo depende la controlabilidad en funcién del acoplo f(q)? En este trabajo usamos
un ejemplo sencillo donde se factoriza la parte clasica de la cuédntica, pero podriamos
considerar acoplos mas genéricos y analizar sus consecuencias.

Generalizar a dimensién infinita.
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