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1. Introducciéon

Actualmente la Mecénica Cuantica (QM) y la Relatividad General (GR) son las bases de nuestras
teorias modernas. Sin embargo, muchos descubrimientos y experimentos recientes evidencian que
estos modelos no son suficientes para tener una completa comprensién de muchos fenémenos
observados. Ejemplo de ello son la masa no nula del neutrino, la existencia de materia y energia
oscura, 0, el caso que nos concierne, la explicacion a un hipotético cut-off en el espectro de
neutrinos césmicos de altas energias (figuras |1y .
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Figura 1: Espectros de neutrinos obtenidos Figura 2: Eventos de IceCube sobre espectros de

mediante métodos de Montecarlo para n =0 (rojo)
yn =2 (negro). Se han tenido en cuenta la
pérdida de energia mediante la creacion de pares
en el vacio y la expansion del universo (pero no se
ha tenido en cuenta el splitting). Se ha utilizado
una energia umbral E* de 10 PeV. [1|]

neutrinos obtenidos mediante métodos de
Montecarlo teniendo en cuenta la pérdida de
energia mediante la creacion de pares en el vacio y
la expansion del universo. Las curvas de izquierda
a derecha corresponden a espectros con una
energia umbral E* de 1, 2, 4, 10, 20 y 40 PeV. [2]

Este cut-off se propone para dar explicacién a la ausencia de neutrinos detectados por el experi-
mento IceCubeH por encima de 2 PeV. Neutrinos de energia superiores a este valor son esperables
tanto por la extrapolacién del espectro detectado para energias menores, como porque cerca de
los 6 PeV se da la resonancia de Glashow [3]. No obstante, no existe en la actualidad explicacién
convencional para este corte en el espectro de neutrinos detectados.

Esto nos lleva a buscar teorias de nueva fisica que modifiquen los modelos actuales. Sin embargo,
hemos de imponer que estas modificaciones solo sean relevantes a altas energias, para que no
entren en contradiccién con el marco actual. De esta forma, podemos esperar que dichos efectos
se manifiesten a escalas de energia del orden de la energia de Planck (Ep; = 1.2 - 101 GeV). Sin
embargo, estas escalas se encuentran todavia lejos de nuestro alcance, ya que las energias que se
exploran en la fisica de aceleradores estan muy por debajo de la energia de Planck (E ~ 10* GeV).
Y lo mismo ocurre con las observaciones astronémicas, ya que las mayores energias observadas
provienen rayos gamma césmicos (E ~ 102 GeV), de los neutrinos césmicos (E ~ 10° GeV), y
de los rayos de niicleos césmicos ultraenergéticos (E ~ 10! GeV).

Sin embargo, esto no significa que atin no se pueda obtener informacién experimental de una
teoria de nueva fisica. Existen muchas formas de acercarse a la nueva fisica, y una muy util es
proponer modelos cuyos efectos puedan ser observados de manera indirecta a energias menores
a la de Planck. Un ejemplo de ello es proponer la ruptura de alguna simetria fundamental,

Thttps://icecube.wisc.edu/



por ejemplo, la invariancia CPT [4]. Ya ha sido probado por O. W. Greenberg et al. [5] que la
violacion de la invariancia CPT implica la Violacién de la Invariancia Lorentz (LIV). Un cambio
en la Invariancia Lorentz afectard al comportamiento cineméatico de una particula. Este efecto

se vera amplificado si la particula se propaga durantes distancias cosmolégicas.

En este trabajo nos centraremos en los cambios producidos en la propagacién de los neutrinos.
Para ello consideramos que la LIV produce un cambio en la relacion de dispersién usual de las
particulas, proponiendo que no es una identidad perfecta, sino que hemos de afiadir un término

adicional de correccién que toma relevancia a altas energias:

Bopem?® 5 Bopomltaln (1.1)
pT=m pT=m"+an —o :

donde a,, es un coeficiente adimensional, p es el momento de la particula, A la escala de energias
donde se hacen patentes de forma directa los efectos de la nueva fisica (como se ha discutido
con anterioridad, se espera que A ~ Epj) y n es el orden de la correccién. En el caso de los
neutrinos, los efectos de la LIV sobre la relaciéon de dispersién implican, entre otros efectos, que
se hacen posibles algunas desintegraciones antes prohibidas, como son la Producciéon de Pares
en el Vacio (VPE) y el Neutrino Splitting (NSpl).

El VPE y NSpl podrian explicar la formacion del cut-off en el espectro. Para comprobar esta
afirmacién, F. W. Stecker et al. |1}, |2, 6] utilizaron la cinematica modificada dada por la ecuacién
1.1| para simular mediante métodos de Montecarlo un espectro de neutrinos altas energias. Los
resultados obtenidos fueron que se forma un corte en el flujo que se adapta a los resultados
experimentales con una eleccién adecuada de los parametros (E* ~ 10 PeV).

En este trabajo se intentara simular el mismo espectro de neutrinos, para reafirmar que el cambio
en la relacion de dispersién predice un corte en el espectro, pero en lugar de utilizar métodos
de Montecarlo utilizaremos un método analitico que nos permita, ademas, entender como las

desintegraciones antes prohibidas afectan al flujo, para provocar dicho corte.

Con anterioridad, L. E. Suelves [7] obtuvo, a partir de un desarrollo analitico, una relacién
diferencial entre la evolucién de la energia de un neutrino y la distancia de propagacién (con-
siderando pérdidas de energia debido a la expasién del universo y la VPE). En este trabajo se
repasara la obtencién de dicha relacion diferencial, y a partir de esta, se propondra una férmula
integral que predice el flujo detectado. Ademads se realizara una integracién numérica, utilizando
la férmula analitica que deduciremos, con el objetivo de obtener el espectro de flujo detectado.
Finalmente, compararemos los resultados obtenidos con las simulaciones de Montecarlo presen-
tadas por F. W. Stecker et al. en [1, 2, |6].



2. La coordenada redshift z

Supongamos que detectamos un flujo de particulas proveniente de una fuente emisora lejana. Si
deseamos saber la distancia recorrida por dichas particulas, puede parecer un dato inmediato
al conocer la distancia a la que se encuentra la fuente. No obstante, si tenemos en cuenta que
el universo estd en permanente expansion, la distancia recorrida por las particulas no sera ni la
distancia que existia entre fuente y detector en el momento de la emisién, ni la distancia que
existia entre los dos en el momento de la deteccién.

De esta forma, cuando hablamos de distancias lo suficientemente grandes como para que haya
que tener en cuenta los efectos de la expansién del universo, la nocién de distancia se distorsiona.
Por ello, los astrénomos usualmente dejan de utilizar unidades espaciales para medir cuan alejado

estd un objeto e introducen un nuevo concepto, el redshift z.

Para definir el redshift, debemos notar que, debido a la expansién espacial, la longitud de onda
de las particulas y de la radiaciéon electromagnética también se expande, y con ello disminuyen

su frecuencia y energia (figura [3)).

VAVA VAN S i N i i N

Figura 3: La expansion del universo provoca una expansion de la longitud de onda

En consecuencia, definimos el redshift como el cambio relativo (debido a la expansion del uni-
verso) entre la longitud de onda detectada (\g) respecto a la emitida (\.):

2t =——— = MN=A(1+2). (2.1)

Podemos utilizar esta coordenada para etiquetar las posiciones de cuerpos lejanos, ya que cuanto
mas alejado esté un cuerpo de nosotros, mas se expande el espacio que hay entre los dos y mayor
redshift tendra. De esta forma el redshift se convierte en una nueva forma de medir la lejania.

Para hallar la relacién matematica entre la variable espacial y el redshift, hallaremos en primer
lugar la relacién entre éste (z) y la coordenada temporal (t). Para ello, partimos de la métrica
usualmente usada para describir formalmente la expansiéon del universo, la métrica de Friedman-

Lemaitre-Robertson-Walker (FLRW):

2

d
ds? = —dt® + a(t)? [T

ot erQ] : (2.2)

donde r es la distancia comévil y a(t) el factor de escala del universo. Podemos entender la
distancia comévil como la distancia medida en unas coordenadas que se adaptan a la expansién
del universo, de forma que las distancias medidas en estas coordenadas no varian con el tiempo.
Un ejemplo de este tipo de coordenadas, en una superficie esférica, son la latitud y longitud.
Si variamos el radio de la esfera, las distancias medidas sobre dicha superficie cambiaran, sin
embargo, cada punto sigue conservando su misma latitud y longitud.



Figura 4: Aunque cambie la distancia medida sobre la superficie entre el pto. origen y el
pto. P, la distancia entre ellos medida en las coordenadas comdviles sigue siendo la misma

Por otra parte, podemos entender el factor de escala como la relacién entre las distancias fisicas
(que varfan con el tiempo: R(t)) y las distancias coméviles (constantes: r):

R(t) =a(t)-r. (2.3)

El factor de escala es un parametro que nos proporciona informacién de cémo se expande el
universo, por lo que esta intimamente relacionado con el redshift. Podemos obtener uno del otro

mediante la siguiente relacién:

ao

1+z2(t)=— — a(t):m,

a(t)

donde el subindice cero significa el valor medido hoy (ap = a(t)|hey). Continuaremos utilizando

(2.4)

esta notacién para otras magnitudes de ahora en adelante. Si diferenciamos la anterior relaciéon

respecto al tiempo se obtiene:

d d a ) a dz
a W= [1 ¥ 2@] - Al =- § +Oz)2 dt 25)
~ at)dt=— ffldz . 28 dt = —1+dz(t) :

donde el cociente a(t)/a(t) es el valor del parametro de Hubble H(¢). Sustituyendo dicha defi-

nicién en la ecuacién anterior:

H(t):zgg 5 dt:—H(t)Elfm. (2.6)

Ahora, para continuar necesitamos hallar la expresion de H(t) en funcién del redshift z. Para

ello podemos partir de la ecuacién de Friedmann:

a(t)

donde G es la constante de gravitacion universal, p la densidad de energia del universo (que

G e (27)

(a(t)>2 - 87;G j; a;Et) !

separaremos en densidad de masa p,, y densidad de radiacion p, ), A, la constante de energia del



vacio, y x la curvatura del universo. Si definimos H (t)|noy = Ho, podemos sacar factor comin
dicho valor en el miembro izquierdo de la igualdad y sustituir la expresién de a(t) (férmula [2.4)).
De esta forma obtenemos:

8rG 81 A,

K
sHZ"™ T 3E2” T 3HE T 23

H*(t) = H (1+2)?] . (2.8)
La densidad de materia depende del volumen que esta ocupa (que a su vez depende de la
distancia fisica R(t) al cubo); por lo tanto, su dependencia con el tiempo variard segin:

1 1 1
me(VOCRT(t)OCaT(t)' (2.9)

La densidad de radiaciéon depende del volumen de la misma forma, pero a su vez también su
energia se ve modificada debido a la expansién de su longitud de onda:

E _1/A®) _ 1/a(t)
S TR0

(2.10)

Recordando que a(t) o« (1+2)~! (férmula , podemos expresar la evolucién de las densidades

en funcién del redshift:

Pm = PmO (1 + Z)S ) Pr = Pro (1 + Z)4 ) (2‘11)

donde recordemos que el subindice cero indica el valor hoy en dia. De esta forma, podemos
utilizar las notaciones usuales de cosmologia y definir:

O :87TG O :87TG O, = A, —K
m = 3H§pm0 r = 3ngrad0 A= 3Hg (I(Q)Hg ’

(2.12)

que son las fracciones de densidad de materia, radiacién, energia oscura y curvatura, respecti-
vamente, respecto a la densidad critica del universo (pe, = 3H3/(87G)). En funcién de dichas
constantes, la expresion de H(z) (férmula [2.8]) toma la forma:

H2(2) = H3 |Qn (14 2)° + Qp (14 2)" + Qp + Qe (14 2)%] (2.13)

Consultando los valores de dichas constantes en la referencia [8], podemos hacernos una idea de

la relevancia de cada término, con intenciones de simplificar la expresion:

Qp ~0.692 £ 0.012 Qm ~ 0.308 £0.012

A (2.14)
Q. ~ 0.005£0.017 Q, ~538-107° +0.0015 .

De esta manera, las contribuciones de la curvatura y de la radiacién son mucho menor que las
de energia oscura y materia (2,2, < Qa,,). Sin embargo, aunque la contribucién de la
radiacién es la mas pequeiia, es la que mayor dependencia tiene con el redshift (~ z%).

A pesar de ello, los valores de z para los que el término de radiacién se hace comparable con el
término de energfa oscura, el cudl es el término mayor en la expresiéon de H(z) (férmula [2.13)),



son del orden de z ~ 9.7. Nosotros trabajaremos con valores de redshift dentro del intervalo
z € [0.5,2.0] (rango de valores utilizados por F. W. Stecker et al. en [2], |1], [6]). De esta
forma, para el rango de redshift en estudio, podemos despreciar las contribuciones de radiacién

y curvatura en la expresion [2.13] obteniendo:

H(z) & Hoy/Qm (1+2)° + Q4 . (2.15)

Finalmente, sustituimos la expresion de H(z) hallada en la relacién diferencial que relacio-
naba dt y dz:

dz dz
dt:_H(z)(1+z) :_HO (14 2) Vo (T + 23 +Qp (2.16)

Con esto ya tenemos la relacién buscada entre la coordenada temporal y el redshift. Ahora, para
obtener la relacién diferencial entre la coordenada espacial comévil r y el redshift z, volvemos a
partir de la métrica FLRW (f6rmula . Aplicdndola a particulas que viajan a la velocidad de
la luz sabemos que ds = 0. En el caso caso de los neutrinos tendremos un caso similar:

dr?

1 — kr?

ds? ~ 0 ~ —dt* + a(t)* [ + TQdQ] : (2.17)
Escogiendo de forma apropiada las coordenadas podemos conseguir que df) = 0, es decir, que
la particula viaje radialmente desde la fuente hasta el detector. Ademads, podemos tomar la

curvatura como nula (k ~ 0). Con estas simplificaciones conseguimos la siguiente relacién:

dt dt
0= —dt? £)2dr? dr = — = ) 2.18
+ a(t)“dr — r o) a0/ +72) ( )

Sustituyendo la relacién hallada entre dt y dz (férmula [2.16)), obtenemos la relacién diferencial
buscada entre dr y dz:

dt 1 dz dz
o= 112w/t )BT @) (2.19)

En este caso, ademas, nos conviene ademas saber la expresion explicita entre una cierta distancia
expresada como redshift z y su correspondiente distancia comévil r(z), por lo que integramos la

relacion diferencial:

1 [ dz
r(z) = — . 2.20
O- [ 55 (220)
Definimos por comodidad (para su futura resolucién computacional) la funcién k(z):
z dz k(z)
k(z) = — — ()= —=. 2.21
o= 45 () =22 (2.21)




3. Flujo de neutrinos

En este apartado deduciremos la expresion analitica que ha de tener el flujo de neutrinos de-
tectados, en funcién de la energia detectada. Para ello, establecemos que las fuentes de nuestro

interés seran aquellas que se encuentran entre z; = 0.5 y 2o = 2.0.

Figura 5: Corteza esférica de grosor dz con origen en el detector

Situemos el origen de coordenadas en nuestros detectores (punto d azul de la figura . Supon-
gamos que, para cierta distribucién de fuentes, es conocido el niimero diferencial de ellas entre
una corteza de radio z y una de radio z + dz: llamémoslo dNy(z). Si supieramos ademés cudl es

el flujo de neutrinos detectado de energia F,; para una fuente situada a una distancia z: llamé-
moslo ¢, (2), podriamos expresar el flujo de neutrinos de cierta energia detectada, proveniente

de fuentes entre z1 y zo, de la siguiente maneras:

22

58(Ea) = [ 0m,(2) - ANy(2) (3.1)
z1

Podemos entender §®(E;) como el flujo de neutrinos detectado con energia Fy, tal que el flujo

total detectado sea una integral a todas las energias detectadas:

Brogal = / 5B(Ey) dE, . (3.2)
Sin embargo, el flujo de nuestro interés es el espectro dado por la féormula por lo que a

continuacién analizaremos la expresion los términos del integrando.

3.1. Distribucién de fuentes
En este subapartado queremos relacionar el nimero diferencial de fuentes dNy(z) que hay en
entre una corteza de radio z y una de radio z + dz, con una cierta distribuciéon de fuentes

unidimensional. Para ello, s6lo debemos notar que:

dNyf(z) = %(z) -dz (3.3)

donde dNy/dz es la distribucién de fuentes unidimensional. Esta funcién se puede tomar en

coincidencia con la distribucién de la tasa de formacién estelar (figura @



Distribucion de fuentes
3.5e+06 —

: 577 =73 Datos
3e+06 — ;; - — Ajuste

2.5e+06

2e+06

T —
J
X

1.5e+06

Numero de fuentes

1]
+

e+06

e,
J

pp b b bvvca b baa g
T —
J
-~
)

%

1

b9
>
5e+05 rre

1

L e 555 e e e e
] 1 2 3 4 5 6 7
Redshift z

Figura 6: Distribucion de la tasa de formacion estelar en funcién de z

Dicha distribucién es la utilizada en los articulos , y @] Tras extraerla de [2], para poder
utilizarla, hemos realizado un ajuste en el intervalo de interés z € [0.5,2.0], con el objetivo de
sustituir dNy/dz por la funcién resultante de dicho ajuste (funcién f(z) representada en rojo
en la figura @ Segun el ajuste, el comportamiento de esta funcién es de caracter exponencial y

viene dado por:

ar —0.873
flz) = 02 thzte , con b~ 2854 . (3.4)
cx~ 12.697

De esta manera, obtenemos que el nimero diferencial de fuentes en una corteza esférica de grosor
dz situada a una distancia z se puede expresar en funcién de la densidad lineal de fuentes f(z)

de la siguiente forma:

dN¢(z) = f(2) dz . (3.5)

3.2. Flujo de una fuente

En este subapartado vamos a examinar la expresién del flujo detectado producido por una fuente
situada a una distancia z. Para ello, esta vez nos conviene situar nuestro origen de coordenadas

en la fuente (punto rojo s en la ﬁgura@.

Figura 7: El detector se encuentra, en el momento de la deteccion (hoy), a una distancia
R = aor de la fuente (origen de coordenadas)



Ahora, consideremos que los neutrinos emitidos han recorrido una trayectoria tal que la distancia
fisica entre emisor y detector en el momento de la deteccién es R(t)|noy = aor. Entonces los
neutrinos emitidos en un cierto diferencial de tiempo dt. se habrian repartido en una superficie
esférica de 4rea 4mar?. De esta forma, el flujo de neutrinos detectados (ntimero de neutrinos

para cada energia de deteccién, por unidad de espacio y tiempo) sera:

1 1

= e Ee T 9 o T, .
opalz) = dne(Ee) - s - o (36)

donde dn.(FE.) es el nimero diferencial de neutrinos de energia E,. emitidos en un tiempo dt..
Nétese que el tiempo que se tardaron en emitir dichos neutrinos (dt.) no coincide con el tiempo

que se ha tardado en detectarlos (dtg), sino que entre ambos existe la relacion:

dty = (1+ 2)dt, (3.7)

El problema ahora es que no tenemos la dependencia explicita del flujo de una fuente en funcién
de z, sino que tenemos la dependencia implicita dentro de r = r(z). No obstante, en el apartado
hemos hallado ya esta relacién (férmula . De esta forma, sustituyendo la expresién de
r(2) de la férmula en la ecuacién del flujo obtenemos:

_dne(E.) 1 af 1 dne(E.) 1

Pra(2) = dty Ara2k2(z)  4m dty K (z)

(3.8)

Para simplificar la férmula, podemos relacionar alguna de las magnitudes que se incluyen en
ella con modelos conocidos. Por ejemplo, podemos definir para una fuente su luminosidad de
neutrinos de energia E, como dL(FE.). Supongamos que la fuente emite un nimero dn.(E.) de

neutrinos de energia F. en un tiempo dt.. Estos valores definen luminosidad de la fuente segtn:

SL(E,) = d”;i?) . (3.9)

Como esta luminosidad solo tiene en cuenta los neutrinos de cierta energia FE., la luminosidad

total de la fuente se hallaria a partir de esta segin:

Lttt = / SL(E,) dE. . (3.10)

Para lograr sustituir la luminosidad en la férmula del flujo (3.8]), debemos lograr que aparezca
el tiempo de emisién. De esta forma, utilizando la relacion [3.7 que nos relaciona los tiempos de

emision y deteccién, obtenemos que el flujo se puede expresar como:

_1dne(E.) 1 1 1 G§L(E.)
T dt. U+ k() ¢Ed(’z)_ﬂk2(z)<1+z)‘

Py (2) (3.11)

Una vez identificada la luminosidad, la podemos modelizar al igual que en las referencias [2], [1]

y [6], con una funcién proporcional a una ley de potencias:

SL(E.) = E3/E?, (3.12)




donde E? es la constante de proporcionalidad, que ser irrelevante al ser un factor multiplicativo

que desaparecera en el proceso de normalizacién de los resultados.

3.3. Flujo de una distribuciéon de fuentes

En vista de los resultados anteriores, ya estamos en condiciones de volver a la formula del flujo
de una distribucién de fuentes (férmula (3.1)) y sustituir las expresiones obtenidas:

22 1 [* 6L(E,) f(z

5D(Ey) = / 6p.(2)- () dz = oe(B) = [ ]{Mdz . (3.13)
Como se puede apreciar, el flujo para cada energia detectada Ey es una integral a la luminosidad
de todas las fuentes, correspondiente a una energia E. que es distinta segin el redshift z al que
se encuentra cada fuente. Por tanto, necesitamos conocer la forma explicita de la funcién que
nos permite hallar la energia de emision F, en funcién de la energia detectada Eg y el redshift de
la fuente z.. Para ello, en el siguiente apartado analizaremos como es la evolucién de la energia
de un neutrino a través de su trayectoria.
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4. Efectos sobre la energia de un neutrino

En este capitulo analizaremos como relacionar la energia detectada de un neutrino con su energia

de emisién. Para ello analizaremos como varia su energia a lo largo de su recorrido.

Durante el trayecto, el neutrino se vera afectado en todo momento por la expansién del universo.
Como se ha explicado con anterioridad, esto provocard una una disminucién de su energia. Pero
ademas, si tiene suficiente energia durante el trayecto, podra verse afectado por desintegraciones
antes prohibidas que ahora se pueden producir gracias a la LIV. Estas son la producciéon de
pares en el vacio (VPE) y el neutrino splitting (NSpl). En este trabajo tendremos en cuenta el
efecto de la VPE, pero no el del NSpl (eso queda pendiente como un posible fututo trabajo).

4.1. Efectos de la expansiéon del universo

La pérdida de energia debido a la expansion del universo es directamente deducible de las
expresiones ya utilizadas en el apartado [2 ya que, de la definicién de redshift (férmula [2.1)),
obtenemos que:

Ve

(1+2)°

Ad = e (1 + Z) — Yg= (4.1)

Aplicando que la energia detectada depende de la frecuencia segin E; = hyg, y que ocurre lo

mismo con la energia emitida, F. = hre, la evoluciéon de la energia con el redshift sera:

hvg = — Eg= . (4.2)

Despejando la energia emitida (que para cada valor de z es la energia en ese punto de la tra-
yectoria) podemos obtener una relacién diferencial de la evolucién de la energia debida a la

expansion del universo:

E dE 1
(1+2) E (142

E:Ed(1+z) — dE=FE;-dz=

4.2. Efectos de la creacion de pares

El proceso de creaciéon de pares electron-positrén supone una desintegracién del tipo:

Ve = Ve+e +et. (4.4)

Este proceso puede ser mediado a través de una corriente neutra Zy (figura [8)) o mediante una
corriente cargada W (figura @ Sin embargo, mientras que el proceso de creaciacién de pares
mediado por W7 sélo puede ocurrir para los neutrinos electrénicos, el proceso mediado por Z
puede ocurrir para cualquier tipo de sabor. Como los neutrinos detectados habran viajado sufi-
ciente distancia para que las oscilaciones de neutrinos permitan que se igualen las probabilidades
de tener cada uno de los tres sabores, el proceso mediado por la corriente cargada W sélo serd
relevante 1/6 de las veces. Por ello consideraremos que el proceso relevante es el mediado por la
corriente neutra 7.
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Figura 8: Creacidn de pares mediante Z° Figura 9: Creacién de pares mediante W

Ambos procesos s6lo son posibles para neutrinos con energia mayor a cierta energia umbral E*.
Este valor viene definido por la nueva fisica, es decir, depende de los pardmetros de la correcién
en la ecuacién de dispersion [I.1] debido a la LIV. La forma explicita ha sido deducida por L. E.
Suelves en la referencia [7]:

Ef = (4m§A")1/ e (4.5)

donde n es el orden de la correccién y A la escala de energia. El proceso de desintegracién
relevante (el mediado por la corriente neutra) ya ha sido caracterizado por J. M. Carmona et
al. en la referencia |9, donde se obtiene que su anchura de desintegracion es:

_ Gir
19273

(- 253) + (25w)?] (i)gnfn : (4.6)

donde G es la constante de acoplamiento de Fermi (propia de las desintegraciones débiles),
sw = sin(fy) el seno del 4ngulo de Weinberg (que proviene de la definicién del bosén Z° como
combinacién de los bosones B® y W en la teorfa electrodébil), &, es un ntimero de orden 1 que
proviene del elemento de matriz de la interaccién, y, como se ha dicho antes, n y A proceden de
la modificacién en la ecuacién de dispersién debido a la LIV (férmula .

En la misma referencia, a partir de la anchura de desintegracién, se halla la variaciéon del momento

lineal con el tiempo:

dp  GEp°

dt 19273

(1 - 2532 + (25w)?] (i)g’"& ’ (4.7)

donde ¢ corresponde a una nueva constante del mismo orden que &, cuya expresién en funcién
de n se da en [9]. Para aligerar la notacién se define «,, como:

GES

~ 19273A3n {(1 — 2siy)" + (QSW)Q} ' (48)

Qp

Con esta notacién, a partir de la ecuaciéon de la variacién del momento (4.7)), podemos obtener

directamente la variacién de la energia con el tiempo teniendo en cuenta que m, = 0:

dE
L, (49)
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Finalmente, para expresar esta evolucién en funcion del redshift utilizamos la expresién obtenida
en el apartado |2 que relaciona relaciona dt y dz (férmula [2.16)).

dz dFE ay, Fo3n
dt = ————— —_— = dz. 4.10
HO)(l+z  E Hxl+t)" (4.10)

4.3. Efectos durante la trayectoria

Ahora que tenemos el efecto individual de las dos contribuciones, queremos combinarlas para
conocer el efecto conjunto. Sin embargo, como hemos nombrado anteriormente, el efecto de
la creacion de pares solo es aplicable mientras los neutrinos tengan una energia superior a la
umbral. Por lo que, en el caso mas general, tendremos un neutrino que en la primera parte de su
trayectoria se vera afectado por ambos efectos, y el resto del trayecto, tras alcanzar la energia

umbral, se vera afectado tinicamente por la expansion del universo.

Para analizar esta cinemdtica, consideremos el escenario de la figura [I0] En él, un neutrino se
emite con una energia inicial F; desde una distancia z;. Este realiza un recorrido, durante el cual
va perdiendo energia mediante los dos procesos antes nombrados, hasta que, en cierto punto zg,
su energia alcanza el valor Ej. A partir de alli, desde z; hasta z;y no habrd VPE, y sélo se verd
afectado por la expansién del universo.

Primer tramo Segundo tramo
del trayecto del trayecto
P
Z; Zy

Zy

Figura 10: La primera parte del trayecto va desde z; (que normalmente serd la z; = z. de
emision), hasta zi (momento en el que se dejan de producir pares). El sequndo tramo va
desde zi, hasta zy (que normalmente serd zy = 0, correspondiente a la deteccion)

Dependiendo del valor de zj, podemos encontranos en casos donde el primer tramo sea todo el
trayecto (zx = zf, y por lo tanto se den ambos procesos de pérdida durante toda la trayectoria),
casos donde el segundo tramo sea todo el trayecto (zx = z;, y por lo tanto sélo haya que tener
en cuenta la expansion del universo) o casos intermedios donde se den ambos tramos de la
trayectoria (z; € [z, 2z¢]). No obstante, discuteremos estos casos en el subapartado siguiente a

la hora de calcular el flujo. En este subapartado resolveremos el caso general.

Intentemos relacionar la energia del neutrino al iniciar cada tramo, con la energia que tendra
al finalizarlo. Esto es sencillo en el dltimo tramo del trayecto, ya que la cinematica viene dada

Unicamente por la contribucién de la expansion:

dE dz
—_— = — 4.11
E (1+2)° (411)
———
Expansién

por lo que para relacionar la energia entre el punto inicial y final de dicho tramo, sélo debemos
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integrar esta relacién diferencial entre sus extremos:

E z
vdb /k = B—(+=)E. (4.12)

g B ), 0+2)

Ahora toca resolver el primer tramo de la trayectoria. En ese tramo, la cinemética vendra dada
por la contribucién de ambos efectos:

dE dz anEST3" dz
— = + . (4.13)
E (1+2) H(z)(1+ =)

S——— —

Expansién VPE

Para resolverla, debemos integrar entre el extremo inicial z; y el extremo final z; de este tramo
de la trayectoria. Sin embargo, esto no es sencillo de realizar con la ecuacién expresada de
esta forma, asi que realizaremos una serie de cambios de variable para simplificar la expresion.
Comenzamos con definir E = E/(1 + 2):

E=E(1+42) — dE=dE(1+2)+Edz. (4.14)

Teniendo en cuenta esta definicién y sustituyendo:

dE (14 2) + E dz dz Qn ESH30(1 4 2)5H3n

E(l+ 2) (1+2) H(z)(1+ =)
@ - anES-‘r?m(l 4 Z)4+3n dz
E H(z) '

(4.15)

Recordando la expresién de H(z) (férmula [2.15) y definiendo t = (1 + 2)3, con dt = 3(1 + 2)%dz:

dE a, 752/3+n

e dt .
E6+3n  3Hy /Ot Qa

Ahora ya podemos integrar para este tramo de la trayectoria, es decir, desde z;, donde la energia

(4.16)

es F;, hasta 2, donde la energia es Ey:

/Ei dE tioa, t2/3+n

E, FE6+3n tr SHo QU t 4+ Qp

1(E‘“(5+3n) - E-(5+3n)> _ o, /(1-1-31-)3 t2/3+"
(5+3n) k 3Hy ),

_>
(4.17)

L
142;)3 \/th + QA

(2

donde la ultima integral se puede resolver numéricamente, asi que le asignaremos un valor

J(zi, z,) que resolveremos en el capitulo

(1+Zi)3 t2/3+n

e z/ T 418
(2, 21) toas LT (4.18)
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De esta forma, despejando la energia del neutrino al finalizar el primer tramo, en funcién de la

energia cuando lo inicio:

1 =~ —(5+3n) ~—(5+3n)) oy,
— ) —E; = i 2k) - 4.1
s (B @ S ) (4.19)
___1
- Ei=(1+2%) (Evk(ﬂgn) - (5+ 3n)3a?n<](2?i, Zk)) o (4.20)
0

Finalmente, para unir las dos partes del trayecto, recordemos la expresién de Ej en funcién de
Ey obtenida para la segunda parte del trayecto (féormula [4.5)). De esta forma:

Ek - (1—|—Zk)Ef o

Ep=(+a)Br = Ek:(l—i—zk)_ (1+ z)

(4.21)

Por lo que, con ello, ya tenemos la relacién completa entre la energia al comenzar todo trayecto
(E;) y al final de toda la trayectoria (Ey):

N
Ei=(1+ Zi)<E‘<5+3"> (54 3n)a”J(zi,zk)) e (4.22)
f 3H,

4.4. Expresion del flujo detectado

Ahora que conocemos la evoluciéon de la energia de un neutrino desde su emision hasta su
deteccion, vamos a combinar esta informacioén con la del capitulo [3] para establecer las ecuaciones
que rigen el flujo de neutrinos detectados en funcién de su energia. Una primera diferenciacién

que podemos hacer es separar el espectro en una parte con Eg > E* y otra con Eg < E*:

1) Caso con E; > E*

En este caso, como los neutrinos son detectados con una energia mayor a la umbral, se deduce
que han tenido suficiente energia como para verse afectado por los efectos de produccion
de pares y expansion del universo durante toda la trayectoria. De esta forma, para estos
neutrinos no existe el segundo tramo del trayecto, ya que son detectados antes de terminar

el primero (por lo que 2z, = zy = 0).

De esta forma, la ecuacion que gobierna su cinemética durante toda la trayectoria es la
que debe ser integrada para el tramo de validez, que en este caso es desde la emisién (situado
en z; = ze, donde la energia E; = E,) hasta la deteccién (con z;, = zy = 0, donde la energia
es B, = Ey = Eg). Particularizando el resultado (que es la solucién de , obtenemos

que la relacion entre la energia de emisién y deteccion es:

___1
Eo=(1+2) (Ed (5+30) _ (5 4 3n) 3O‘H" T (ze, 0)> e (4.23)
0

Para simplificar la notacién, vamos a definir esta relacién entre energia emitida y detectada

como una funcién que denominaremos F5(ze, Ed):

R
Fo(ze, Ed) = (1 + 2.) <Ed_ (5+3m) _ (5 4 3p) 3O‘H” J(ze,0)> e (4.24)
0
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2)

de forma que para Eg > E*, la energia emitida en funcién de la detectada es E.(z., Eq) =

Fy(z., Ed). Por tanto, para este rango de Ey podemos expresar el flujo como:

f(z2)

Wdz . (4.25)

1 [*
502 (Fa) = - / L(Fy(z, Ed))
T 21
Sin embargo, hemos de realizar algunas correcciones a esta férmula, ya que la ecuacién
pone un limite a las fuentes que pueden contribuir a el flujo. Consideremos la ecuacién
aplicada a una fuente situada a una distancia z., tal que sea necesario que emita con una

energia infinita (E, — o0) para que sus neutrinos puedan llegar a nosotros con energia Fy:

1 1 Qn
(5 + 377,) E;H—Sn = 3H, J(Zc, 0) > 2y = Zc<Ed7 O) . (4.26)

La resolucién de esta ecuacién define el valor de redshift critico z,,. Segin su definicién,
aquellas fuentes con un valor de z mayor a z,, deberian emitir con una energia mayor a
infinito para poder ser detectadas con energia E,;. O dicho de otra forma, estas fuentes
no emiten con suficiente energia como para contribuir al flujo de neutrinos detectados con
energfa E,. De esta manera, hemos de modificar el limite superior de la integral [£:25] el cuél
dejard de ser z9 si el valor de z., = z.(E4,0) es mas restricitivo (es decir, menor):

1 min[ze,22] f(Z)
50(Eq) = o / 1 SL(Py(ze ) 135 13 (4.27)
Ahora, al haber introducido como limite superior de la integral un valor que depende de la
energia detectada, debemos imponer que si z., es menor que z; no hay fuentes que contribu-
yan al flujo y por lo tanto debe ser cero (ya que no consideramos fuentes por debajo de z1).
Para imponer esta condicion debemos modificar también el limite inferior de integraciéon de
forma que, cuando se de el caso, los limites de la integral tengan el mismo valor y la integral

sea idénticamente nula:

1 min[zc ,22] f(Z)

Caso con E; < E*

En este caso, los neutrinos llegan al detector con una energia menor a la umbral, es decir,
cuando son detectados ya no producen pares. Sin embargo, esto puede deberse tanto por-
que han alcanzado la energia umbral en algiin punto de la trayectoria, como porque nunca
tuvieron suficiente energia para empezar la produccion de pares.

Para distinguir que neutrinos se encuentran en un caso u otro, utilizamos el redshift umbral
z*. Esta es la distancia a la que un neutrino ha tenido que alcanzar la energia E*, para
poder ser detectado con una energia F;. De esta manera, el valor z* dependeré del valor de
la energia detectada: z* = 2*(Ey).

Para poder obtener una expresion que nos relacione dichos valores, analicemos el recorrido
del neutrino tras alcanzar la energia umbral. En dicho caso, la tnica contribucién a tener en

cuenta es la expansion del universo, por lo que se comporta como en el iltimo tramo de la
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trayectoria del ejemplo general (gobernada por la ecuacién 4.11)). De esta forma, particula-
rizando el resultado (que es la solucién de 4.11)) con Ey, = E* y Ef = Eg:

E*
B = (4B — 2*(Eg)= (E _ 1) . (4.29)
d
A partir de esta relacién, podemos notar que, para una energia detectada determinada, como
el valor de E* es fijo (ya que queda determinado por los pardmetros de la nueva fisica, segiin
la ecuacion [4.5)), el valor de z* es el mismo para todos los neutrinos detectados con la misma
energia Fj.

Esto nos permite, conociendo la energia detectada, preguntarnos para cada valor de z, con
qué energia se han tenido que emitir dichos neutrinos para que nos lleguen con energia F;. De
esta forma, a una distancia z*, los neutrinos han debido de emitirse justamente con energia
E*, por lo que ninguna fuente que se encuentre por debajo tendrd energia suficiente para
iniciar la produccién de pares (ya que habran de emitir con E, < E*).

Esto nos permite distinguir por un lado los neutrinos provenientes de fuentes con z, > z*
(que seran capaces de producir pares, durante un tramo de su trayectoria), y por otro lado los
que provienen de fuentes con z, < z* (que no se emiten con energia suficiente para producir

pares, y por lo tanto sélo se veran afectados por la expansién).

En el caso de los neutrinos con z, < z*, al ser emitidos con una energia inferior a la umbral,
toda su cinemadtica estd gobernada por la férmula [£.11] es decir, el segundo tramo supone
la totalidad de su trayectoria. De esta manera, su solucién sera el resultado (que es la
solucion de , particularizado al caso zp = z. y zy = 0O:

Ee=(1+2)Eq;. (4.30)

Por analogia con el caso anterior, definimos esta relacién mediante una funcién F(ze, Eq):

Fi(2e, Eq) = (1+ 2)Ey . (4.31)

Asi, los neutrinos emitidos por fuentes con z, < z* se habran emitido con una energia dada
por E¢(ze, Eq) = Fi(ze, Eq). Ahora vamos a analizar el segundo tipo de neutrinos, que son
aquellos que provienen de fuentes con una z, > z*. Estas fuentes emiten con una energia
mayor a la umbral, por lo que los neutrinos emitidos se veran afectados tanto por la VPE
como por la expansién, por lo menos durante un tramo de su trayectoria.

El primer tramo comenzard en el momento de la emisién, z; = 2., y acabard cuando los
neutrinos alcancen la energia umbral, z; = z*. Tras esto, lo neutrinos comenzaran el segundo

tramo desde z; = z* hasta que se da la deteccién en zy = 0.

Este es el caso intermedio que hemos resuelto en el subapartado anterior (caso con zj €
(21, 2£]), s6lo que en este caso 2, = 2*(Eq). De esta forma, particularizando el resultado
para una energfa inicial E; = F, (en 2z; = z.) y una energia final Ey = Ey:

N
E. = (1+2) <Ed‘(5+3") —(5+ 3@%,](26, z*)> e (4.32)
0
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Por analogia con los casos anteriores, definimos esta relacién como una funcién F3(ze, Ey):

1
(07% “(5+3n)

Fy(ze, Eg) = (14 2.) (E;<5+3"> ~ (54 3m) 5 T e z*)) . (4.33)

De esta forma, los neutrinos provenientes de fuentes con z > z* se habran emitido con una
energia dada por Fe(ze, Ey) = F3(ze, Eq). En vista de estos resultados, ya podemos expresar
la férmula correspondiente al flujo de neutrinos detectados para esta parte del espectro, con
la particularidad de que debemos separar la integral entre aquellas fuentes con z < z* (cuyos
neutrinos cumplen la relacion dada por Eg(ze, Eq) = Fi(ze, Eq)) y aquellas con z > z* (cuyos
neutrinos se rigen por la relacién Eg(ze, Eq) = F3(ze, Eq)). De esta forma:

f(2)
k2 (2)(1 + 2)

f(2)

1 (7
5O(E,) = - / RZGICR0) P+

1 z2
dz 4 — / SL(Fy(2e, Ea)) dz . (4.34)
dm J,.
Sin embargo, al igual que caso anterior, la férmula define un redshift critico que limita
la cantidad de fuentes capaces de producir flujo. Particularizando la expresion para este

caso, la formula que define el redshift critico z. es:

1 1 a, ) *
(5 + 3n) E3+3n = 3H, J(ze,2)  —  ze=z(Eg,2") . (4.35)

Pero si recordamos la definicion del redshift umbral (férmula, vemos que z* = z*(Ey) y
por lo tanto la tnica dependecia de z. es con la energia detectada: z.(E;). Cambiaremos de
este modo el limite superior de la segunda integral (que es donde se tiene en cuenta el efecto
de la la VPE), de forma que el flujo tomara la siguiente forma:

5O (E,) = i / 5L(F1(ze,Ed))]€2(;;Ef)+z)dz (4.36)
1 min(z.(Eq4),22) f(Z)
477/ SL(Ps(ze ) sy (-

Ahora, al poner unos limites de integraciéon que dependen del valor de F,;, debemos imponer
nuevamente que si el limite superior de la integral es menor que el limite inferior, la integral
debe arrojar un flujo nulo. Para ello hemos de modificar los limites a:

son(E) = = [ SR ) g T e
4 min[z*,21] ’ k2(z)(1 + Z) 4.7
1 /méx[min[zc(Ed),zg},zl] 6L(F ( . )) f(Z) ; ( . )
-— Ze, T2/ o AR
4m min[max|zx,21],22] ’ I k‘2(2’)(1 + Z)

En principio, con el flujo definido por las ecuaciones .37y [£.28] ya deberfamos estar preparados
para calcular computacionalmente valores numéricos. En el capitulo siguiente mostramos la

realizacién de la simulacién y en el ultimo apartado discutiremos los resultados.
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5. Integracién numérica y resultados

En este apartado nos disponemos a disenar un programa, con el software Wolfram Mathematica,
para resolver numéricamente los valores del flujo de neutrinos detectados. A continuacién expli-

caremos el proceso realizado y expondremos de forma visual los resultados.

En primer lugar, debemos dar valores numéricos a las constantes que aparecen de forma recu-
rrente en las ecuaciones. Estos se han obtenido en su mayoria consultando la referencia .

z1 = 0.5; (¥Cota inferior de fuentes*)

z2 = 2.0; (*Cota superior de fuentes*)

n = 2.0; (xOrden de la correcidnx)

m =5+ 3n; (*Util para ahorrar notacién¥)

Mp = 1.220910 * 10" (13); (¥PeV*) (¥Masa de Planckx)
Aa = 0.008; (*Adimensional#*) (*A = Aa x Mp*) (*Escalax)

me = 0.510998928 * 10" (—9); (*PeV*) (*Masa del electrénk)
Eu = ((4*me”2xMp"n)"(1/(2 +n))) * Aa”(n/(2 + n)); (*PeV*) (¥*Energia umbralx)

GF = 1.1663787 % 10"7; (¥PeV~2%) (*Constante de Fermix)

én = (13/10) — (12(2n 4+ 15))/((n + 3)(n +4)(n +5)(n + 6))+
(12(4n+3))/((2n+3)(2n +4)(2n + 5)(2n + 6)) — (2(5n + 4))
/((Bn+4)(3n+5)(3n 4 6)) + (10)/(3(3n + 7)(3n + 8)); (xConstante &'n*)
sw = 0.2223; (xAdimensional*) (*Seno del angulo de Weinbergx)

on = (GF 2 x &nx ((1 — 2% sw"2)"2 + (2 x sw"2)"2) /(192 % Pi”3)) * (Aa x Mp)"(—3n);

(*Constante de creacidn de paresx)

an3HO = an/(3 * HO); (*Util para ahorrar notacién¥)

Como se puede apreciar en el bloque anterior, ademés de dar valores a las constantes, hemos
debido escoger valores numéricos para algunos parametros de la simulacién. Dos parametros
importantes que definen la nueva fisica son la escala A y el orden de correccién n. Estos a su
vez determinaran el valor de la energia umbral E* segiin la formula

En la referencias , y Eﬂ, Stecker et al. utilizan, por motivos empiricos, una energia umbral
E* = 10PeV (porque las observaciones hechas por IceCube muestran una caida en el espectro de
neutrinos a ese orden). Para poder comparar nuestros resultados con estos datos, se intentaran
escoger valores n y A de tal forma que la energia umbral sea de ese orden, teniendo en cuenta
también que la escala A se espera de un orden cercano a la masa de Planck.

Para el caso n = 1, proponiendo una escala A ~ M, obtenemos E* ~ 107°PeV. En vista de
los resultados de IceCube, esta energia umbral es demasiado pequefia para estar acorde con los

resultados experimentales. Por ello el caso n = 1 queda descartado.

En el caso n = 2, suponiendo A ~ Mp; se obtiene E* ~ 100PeV. Como el orden de esta
energia no dista demasiado del PeV, podemos intentar cambiar un poco la escala para conseguir
E* ~ 10PeV. De esta forma, el valor escogido es A = 0.008 Mp;.
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Definidos los valores de las constantes y pardmetros, podemos pasar a definir las distintas fun-
ciones que iran dentro de la integral de flujo. Estas son las funciones H(z) (férmula [2.15)), k(z)
(férmula [2.21)), la distribucién f(z2) (férmula[3.4), y la luminosidad L(E,) (férmula [3.12)):

Om = 0.308; (*Adimensional*)
QA = 0.692; (*Adimensional*)
HO = 1.382262857 * 10" (—48); (xPeV*)

Hlz_]:=HO % Sqrt[Qm * (1 + 2)"3 + QA]J;

k[zm_?NumericQ]:=(1/HO) * NIntegrate[l/Sqrt[Qm x (1 + z)"3 + QA], {z, 0, zm}];

a = —0.872659348799341; (xAdimensionalx)
b = 2.85385016357682; (*Adimensional*)
c = 12.6972427290702; (*Adimensionalx)

flz_]:=E"(a*2"2+b* z + ¢);

L[Ee_]:=1/Ee"2;

Conocidas las funciones del integrando, antes de examinar la relacién entre la energia emitida
y detectada, debemos definir la funcién J(z;, zx) (férmula , donde recordemos que z; y 2x
corresponden a las posiciones donde comienza y termina la produccién de pares, respectivamente:

PrimJ[t_] = Integrate[(t"(2/3 4+ n))/(Sqrt[Qm*t + QA]), ];

J[zi_,zk_]:=PrimJ[(1 + zi)"3] — PrimJ[(1 + zk)"3];

Hecho esto, ya podemos definir las funciones F(ze, Eq) , Fo(ze, Eq) v F3(ze, Eq), dadas por las
formulas [£.31], [£.24] y [.33], respectivamente. Recordemos que estas funciones nos dicen la energia

de emisién que debe tener una fuente localizada a un redshift z. para que sus neutrinos nos

lleguen con energia Ej:

Fl[ze_,Ed_|:=(1 + ze) x Ed;
F2[ze_,Ed_|:=(1 + ze) * (Ed"(—m) — m x an3HO * J|ze, z0])(—1/m);
F3[ze_,Ed_|:=(1 + ze) % (Ed"(—m) — m * an3HO * J|ze, (Eu/Ed) — 1)) (—1/m);

Definidas las funciones F}(ze, Eq) , Fo(ze, Eq) y F3(ze, Eq), €l siguiente paso es escribir la expre-
sion del flujo. Pero para ello necesitamos definir los limites de integraciéon. Recordemos que uno
de ellos podia ser el redshift critico z.; de esta forma, hemos de plantear cémo hallar su valor.

Sabemos que su definicién surge de las igualdades y en cada caso; sin embargo, no es
una expresion de la que sea posible despejar la variable, asi que la resolucién se llevara a cabo
mediante un ajuste que busque el valor adecuado para que se dé la igualdad. Aclarado esto,

escribimos los dos casos por separado, z., = zc(Fq,0) v zc(Eq, 2*):

20



zcO[Ed_]:=z/.FindRoot[(m % an3HO * Ed"m)"(—1) — J[x,z0] == 0, {z, 10"4}];
zc[Ed_|:=z/.FindRoot[(m * an3HO * Ed"m)"(—1) — J[z, (Eu/Ed) — 1] == 0, {z, 10"4}];

Conviene representar los valores de este redshift critico para ambos casos, ya que el orden de
magnitud respecto al rango de z escogido (z € [0.5,2.0]) serd muy relevante en el resultado final.

Esto es asi, ya que recordemos que z. limita la cantidad de fuentes que pueden producir flujo:

)

Funcién z.(E;) [Adim.]

0 5 10 15 20

Energia E; [PeV]

Figura 11: Redshift critico z.(Eq,0) (naranja) y z.(Eq, z*) (azul)

Como se puede apreciar en la grafica, ambas funciones decrecen rapidamente con la energia a
valores mucho menores que z; = 0.5y zo = 2.0. Esto implica que, incluso desde energias inferiores
al umbral, el nimero de fuentes capaces de producir flujo decrece drasticamente, prediciendo una
caida en el nimero de neutrinos. Para comprobar esta afirmacion, escribiremos a continuacién
el cédigo correspondiente a las expresiones del flujo:

s Caso By < BE*

En este caso usamos la primera definicién de flujo:

P1[Ed_]:=

NIntegrate|

(L[F1[z,Ed]] * f[2] xEQ)/(F1[z,Ed] * (k[2])"2 * (1 + 2)),
{z,Min[z1, (Eu/Ed) — 1], Min[(Eu/Ed) — 1, 2z2]}]+
NIntegrate|

(L[F3[z,Ed]] * f[z] xEd)/(F3[z,Ed] * (k[2])"2 * (1 + 2)),
{z,Min[Max[(Eu/Ed) — 1, z1], z2], Max[Min[z2, zc[Ed]], z1] };

s Caso E; > E*

En este caso usamos la segunda definicién de flujo:

$2[Ed_]:=NIntegrate|
(L[F2[z,Ed]] = f[z] *x EQ)/(F2[z, Ed] * k[z] * k[2] * (1 + 2)),
{z,Min[z1, zcO[Ed]]|,Min[z2, zcO[Ed]]|}];

Con todo ello, ya tenemos todos los ingredientes para iniciar la simulacién. Simulamos un flujo

detectado entre una energia minima F;, = 0.1PeV y una energia méxima FE.x = 100PeV.
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La primera definicién de flujo serd valida hasta la energia umbral E* = 10 PeV (figura , y la
segunda serd la que valga para energias mayores (figura :
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Figura 12: Flujo detectado para Eq < E* Figura 13: Flujo detectado para Eq > E

Se puede apreciar en la figura 12| que el flujo detectado (en concordancia con el emitido) decrece
rapidamente con la energia segtin ® ~ E~2. De esta forma, para poder observar la existencia
de un corte, se ha multiplicando por Eg (de forma que obtengamos una constante para energias
inferiores a la caida) y hemos normalizado el resultado dividiendo para un flujo ®;(E4; = 1 PeV)
(que nos permite trabajar con valores numéricos del orden de la unidad). El resultado se muestra
en la figura Ademés, hemos representado dicho flujo en forma logaritmica (figura , para
poder comparar con las graficas de las simulaciones de Montecarlo realizadas por F. W. Stecker

et al. (figuras|l]y .
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Figura 14: Flujo completo en funcién de Eq Figura 15: Representacion logaritmica del flujo

Podemos apreciar cémo se reproduce claramente el cut-off esperado; no obstante, discutiremos
estas graficas y sus implicaciones en el siguiente apartado.
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6. Conclusiones y discusion

En este apartado trataremos de realizar un breve reflexién de los resultados obtenidos en el

apartado anterior. Para ello, recordemos el contexto y marco que rodean el trabajo.

Al principio de la memoria, en el apartado de introduccién, se mostraron las graficas [1] y
correspondientes a los articulos de las referencias [1] y [2] de F. W. Stecker et al.. En la gréfica[2]
se muestran los eventos detectados por el detector de neutrinos IceCube, donde se puede notar
cémo para valores de energia por encima de los 2 PeV no se tienen eventos detectados.

Este hecho choca con lo esperable para un espectro que se comporta segin ~ Ed_z. Pero ademés,
otra razén adicional para encontrar neutrinos en dicho tramo del espectro, es que para una ener-
gia del orden de 6.3 PeV ocurre la formacién resonante de un bosén W, denominada resonancia
de Glashow [3]. Esta resonancia aumenta la seccién eficaz de deteccién de neutrinos en torno
al pico. De esta forma, teniendo en cuenta el aumento en la seccién eficaz y que el espectro de
energias disminuye con la energia al cuadrado, se puede calcular que se deberian obtener cerca
de 3 eventos. Sin embargo, éstos no se observan.

Podemos encontrar una explicacién para esta ausencia de eventos si consideramos que existe
un corte en el flujo de neutrinos para dichas energias. De esta forma, asumiendo que no es un
efecto intrinseco del espectro de emisién, ha de existir algiun efecto externo que impide que nos
lleguen neutrinos de mas altas energias. La solucién que més acorde estd con los resultados
experimentales es considerar un escenario de LIV, donde se puede dar la produccién de pares en
el vacio en conjuncion con el efecto de la expansién del universo, de forma que provoquen una

disminucion drastica en el nimero de neutrinos para valores de energia cercanos al PeV.

F. W. Stecker et al. ha realizado simulaciones de Montercarlo para observar cémo seria el cut-off
provocado por la nueva fisica, con intenciones de comprobar si el corte obtenido podria explicar
la ausencia de neutrinos de més de 2 PeV. El resultado que obtuvo es que el espectro simulado
puede explicar la ausencia de eventos si el valor de la energia umbral estd entorno a 10 PeV. Sin
embargo, cabe destacar que el corte ocurre antes de llegar a esta energia.

De esta forma, las simulaciones de Montecarlo han logrado comprobar que los efectos de la LIV
pueden provocar un corte en el espectro, el cual se puede ajustar a los datos experimentales
para una eleccién adecuada de los pardmetros (E* ~ 10 PeV). Sin embargo, no nos proporciona
informacién sobre el funcionamiento del propio proceso. De ahi la potencia de la estrategia
utilizada en este trabajo para analizar el espectro del flujo detectado.

Como primera conclusién, podemos confirmar que considerando los efectos de LIV, la produccién
de pares en conjuncién con la expasiéon provocan analiticamente un cut-off en el espectro de
neutrinos, que puede explicar datos experimentales de IceCube. Pero ademas, gracias a la férmula
de integral de flujo, podemos saber que este corte se debe mayormente a la restricciéon dada por
el redshift critico z. en el nimero de fuentes que son capaces de aportar contribucién al flujo,
mas que por grandes variaciones en la relacion entre la energia emitida y detectada en los casos
con VPE (Fy(ze, Eq) v F3(ze, Eq)) respecto al caso trivial (F1(ze, Eq)).

Pero ademads, podemos argumentar una razoéon de por qué el cut-off del espectro se da a una
energia menor al umbral (siendo que esta es la energia que deberfa marcar la escala caracteristica

a la que se produce este efecto). Partamos de la ecuacién la cual representa de forma
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diferencial la variacion de la energia al tener en cuenta VPE y redshift. Reescribamosla de la

siguiente formas:

dE o, 23 dE ~ Ebt3n
E6+3n SHy /Qt + Qp E (@)

donde j(t) es el integrando de la funcién J(z;, z.), y absorbe toda la dependencia con el redshift

z (ya que t = (1+ 2)3). Si identificamos el término entre paréntesis con una energfa, obtenemos:

1 ~ ~ \ 5+3n
3Hy\ 5+3n dE E .
(52 - = <E> i) (6.2)

De esta forma, la energia FE, se convierte en una nueva escala caracteristca del sistema que
dicta cémo de rapido un neutrino pierde energia debido a la produccién de pares. Si la energia
E> E,, el cociente es mayor que uno y al estar elevado a un exponente positivo grande (para
n = 2, el exponente vale 11), hard que el neutrino pierda rdpidamente energia, hasta alcanzar
un valor donde E ~ E,. En ese momento, el cociente se acerca a uno, y la variacién de E se

ralentiza hasta ser despreciable. De esta forma, E| detectado ~ Bt

_ Ey

E‘detectado = 140 =Eq ~ E, 5 (6.3)
y hay una clara tendencia a apantallar todos aquellos neutrinos con energias mayores a FE,, de
forma que siempre nos llegan con energias del orden de F, o menores. Asi, uno puede darse
cuenta de cémo la escala de energias que dicta la posiciéon del cut-off es E,, y no E*. Para
nuestros datos, obtenemos que el valor de esta escala es E,, ~ 5PeV < E* lo cual estd en

acuerdo con el flujo simulado.

Por dltimo, nos gustaria destacar que, a pesar de que ambas escalas energéticas (E* y E,,) tienen
definiciones completamente diferentes, involucrando constantes de distinta naturaleza elevados
a exponentes diferentes, se conjuntan de tal forma que ambas predicen una escala de energia
caracteristica del orden del PeV, para el valor de A que hemos tomado (A = 0.008 Mp):

1 1
E* = (4mgA”) o (mzA") L PeV (6.4)
1 1
Ho\ 5537 HA3"\ 5+3n
E, = (30) RS ( 0 ) ~ PeV . (6.5)
ay, G%

De esta forma, notamos céomo el PeV es una escala de energias apropiada para estudiar este
fenémeno, que surge de forma natural de las ecuaciones, y justifica en gran medida los valores

de los parametros escogidos.

Como posible extensién del trabajo expuesto, cabria considerar la incorporacion del neutrino
splitting, asi como una distribucion de fuentes mas realista, sin los cortes artificiales que hemos
tomado en z; = 0.5 y 25 = 2.0. No obstante, es de esperar que el anadido de estas mejoras no
afecte de modo significativo a las conclusiones de este trabajo.
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