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1. Introducción
Actualmente la Mecánica Cuántica (QM) y la Relatividad General (GR) son las bases de nuestras
teorías modernas. Sin embargo, muchos descubrimientos y experimentos recientes evidencian que
estos modelos no son suficientes para tener una completa comprensión de muchos fenómenos
observados. Ejemplo de ello son la masa no nula del neutrino, la existencia de materia y energía
oscura, o, el caso que nos concierne, la explicación a un hipotético cut-off en el espectro de
neutrinos cósmicos de altas energías (figuras 1 y 2).

Figura 1: Espectros de neutrinos obtenidos
mediante métodos de Montecarlo para n = 0 (rojo)

y n = 2 (negro). Se han tenido en cuenta la
pérdida de energía mediante la creación de pares
en el vacío y la expansión del universo (pero no se
ha tenido en cuenta el splitting). Se ha utilizado

una energía umbral E∗ de 10 PeV. [1]

Figura 2: Eventos de IceCube sobre espectros de
neutrinos obtenidos mediante métodos de

Montecarlo teniendo en cuenta la pérdida de
energía mediante la creación de pares en el vacio y
la expansión del universo. Las curvas de izquierda

a derecha corresponden a espectros con una
energía umbral E∗ de 1, 2, 4, 10, 20 y 40 PeV. [2]

Este cut-off se propone para dar explicación a la ausencia de neutrinos detectados por el experi-
mento IceCube1 por encima de 2 PeV. Neutrinos de energía superiores a este valor son esperables
tanto por la extrapolación del espectro detectado para energías menores, como porque cerca de
los 6 PeV se da la resonancia de Glashow [3]. No obstante, no existe en la actualidad explicación
convencional para este corte en el espectro de neutrinos detectados.

Esto nos lleva a buscar teorías de nueva física que modifiquen los modelos actuales. Sin embargo,
hemos de imponer que estas modificaciones sólo sean relevantes a altas energías, para que no
entren en contradicción con el marco actual. De esta forma, podemos esperar que dichos efectos
se manifiesten a escalas de energía del orden de la energía de Planck (EPl = 1.2 · 1019 GeV). Sin
embargo, estas escalas se encuentran todavía lejos de nuestro alcance, ya que las energías que se
exploran en la física de aceleradores están muy por debajo de la energía de Planck (E ∼ 104 GeV).
Y lo mismo ocurre con las observaciones astronómicas, ya que las mayores energías observadas
provienen rayos gamma cósmicos (E ∼ 103 GeV), de los neutrinos cósmicos (E ∼ 106 GeV), y
de los rayos de núcleos cósmicos ultraenergéticos (E ∼ 1011 GeV).

Sin embargo, esto no significa que aún no se pueda obtener información experimental de una
teoría de nueva física. Existen muchas formas de acercarse a la nueva física, y una muy útil es
proponer modelos cuyos efectos puedan ser observados de manera indirecta a energías menores
a la de Planck. Un ejemplo de ello es proponer la ruptura de alguna simetría fundamental,

1https://icecube.wisc.edu/
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por ejemplo, la invariancia CPT [4]. Ya ha sido probado por O. W. Greenberg et al. [5] que la
violación de la invariancia CPT implica la Violación de la Invariancia Lorentz (LIV). Un cambio
en la Invariancia Lorentz afectará al comportamiento cinemático de una partícula. Este efecto
se verá amplificado si la partícula se propaga durantes distancias cosmológicas.

En este trabajo nos centraremos en los cambios producidos en la propagación de los neutrinos.
Para ello consideramos que la LIV produce un cambio en la relación de dispersión usual de las
partículas, proponiendo que no es una identidad perfecta, sino que hemos de añadir un término
adicional de corrección que toma relevancia a altas energías:

E2 − p2 = m2 → E2 − p2 = m2 + an
p2+n

Λn , (1.1)

donde an es un coeficiente adimensional, p es el momento de la partícula, Λ la escala de energías
donde se hacen patentes de forma directa los efectos de la nueva física (como se ha discutido
con anterioridad, se espera que Λ ∼ EPl) y n es el orden de la corrección. En el caso de los
neutrinos, los efectos de la LIV sobre la relación de dispersión implican, entre otros efectos, que
se hacen posibles algunas desintegraciones antes prohibidas, como son la Producción de Pares
en el Vacío (VPE) y el Neutrino Splitting (NSpl).

El VPE y NSpl podrían explicar la formación del cut-off en el espectro. Para comprobar esta
afirmación, F. W. Stecker et al. [1, 2, 6] utilizaron la cinemática modificada dada por la ecuación
1.1 para simular mediante métodos de Montecarlo un espectro de neutrinos altas energías. Los
resultados obtenidos fueron que se forma un corte en el flujo que se adapta a los resultados
experimentales con una elección adecuada de los parámetros (E∗ ∼ 10 PeV).

En este trabajo se intentará simular el mismo espectro de neutrinos, para reafirmar que el cambio
en la relación de dispersión predice un corte en el espectro, pero en lugar de utilizar métodos
de Montecarlo utilizaremos un método analítico que nos permita, además, entender como las
desintegraciones antes prohibidas afectan al flujo, para provocar dicho corte.

Con anterioridad, L. E. Suelves [7] obtuvo, a partir de un desarrollo analítico, una relación
diferencial entre la evolución de la energía de un neutrino y la distancia de propagación (con-
siderando pérdidas de energía debido a la expasión del universo y la VPE). En este trabajo se
repasará la obtención de dicha relación diferencial, y a partir de esta, se propondrá una fórmula
integral que predice el flujo detectado. Además se realizará una integración numérica, utilizando
la fórmula analítica que deduciremos, con el objetivo de obtener el espectro de flujo detectado.
Finalmente, compararemos los resultados obtenidos con las simulaciones de Montecarlo presen-
tadas por F. W. Stecker et al. en [1, 2, 6].
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2. La coordenada redshift z

Supongamos que detectamos un flujo de partículas proveniente de una fuente emisora lejana. Si
deseamos saber la distancia recorrida por dichas partículas, puede parecer un dato inmediato
al conocer la distancia a la que se encuentra la fuente. No obstante, si tenemos en cuenta que
el universo está en permanente expansión, la distancia recorrida por las partículas no será ni la
distancia que existía entre fuente y detector en el momento de la emisión, ni la distancia que
existía entre los dos en el momento de la detección.

De esta forma, cuando hablamos de distancias lo suficientemente grandes como para que haya
que tener en cuenta los efectos de la expansión del universo, la noción de distancia se distorsiona.
Por ello, los astrónomos usualmente dejan de utilizar unidades espaciales para medir cuán alejado
está un objeto e introducen un nuevo concepto, el redshift z.

Para definir el redshift, debemos notar que, debido a la expansión espacial, la longitud de onda
de las partículas y de la radiación electromagnética también se expande, y con ello disminuyen
su frecuencia y energía (figura 3).

Figura 3: La expansión del universo provoca una expansión de la longitud de onda

En consecuencia, definimos el redshift como el cambio relativo (debido a la expansión del uni-
verso) entre la longitud de onda detectada (λd) respecto a la emitida (λe):

z(t) ≡ λd(t)− λe
λe

→ λd = λe (1 + z) . (2.1)

Podemos utilizar esta coordenada para etiquetar las posiciones de cuerpos lejanos, ya que cuanto
más alejado esté un cuerpo de nosotros, más se expande el espacio que hay entre los dos y mayor
redshift tendrá. De esta forma el redshift se convierte en una nueva forma de medir la lejanía.

Para hallar la relación matemática entre la variable espacial y el redshift, hallaremos en primer
lugar la relación entre éste (z) y la coordenada temporal (t). Para ello, partimos de la métrica
usualmente usada para describir formalmente la expansión del universo, la métrica de Friedman-
Lemaître-Robertson-Walker (FLRW):

ds2 = −dt2 + a(t)2
[

dr2

1− κr2 + r2dΩ
]
, (2.2)

donde r es la distancia comóvil y a(t) el factor de escala del universo. Podemos entender la
distancia comóvil como la distancia medida en unas coordenadas que se adaptan a la expansión
del universo, de forma que las distancias medidas en estas coordenadas no varían con el tiempo.
Un ejemplo de este tipo de coordenadas, en una superficie esférica, son la latitud y longitud.
Si variamos el radio de la esfera, las distancias medidas sobre dicha superficie cambiarán, sin
embargo, cada punto sigue conservando su misma latitud y longitud.
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Figura 4: Aunque cambie la distancia medida sobre la superficie entre el pto. origen y el
pto. P , la distancia entre ellos medida en las coordenadas comóviles sigue siendo la misma

Por otra parte, podemos entender el factor de escala como la relación entre las distancias físicas
(que varían con el tiempo: R(t)) y las distancias comóviles (constantes: r):

R(t) = a(t) · r . (2.3)

El factor de escala es un parámetro que nos proporciona información de cómo se expande el
universo, por lo que está íntimamente relacionado con el redshift. Podemos obtener uno del otro
mediante la siguiente relación:

1 + z(t) = a0
a(t) → a(t) = a0

1 + z(t) , (2.4)

donde el subíndice cero significa el valor medido hoy (a0 = a(t)|hoy). Continuaremos utilizando
esta notación para otras magnitudes de ahora en adelante. Si diferenciamos la anterior relación
respecto al tiempo se obtiene:

d

dt
[a(t)] = d

dt

[
a0

1 + z(t)

]
→ ȧ(t) = − a0

(1 + z)2
dz

dt

→ ȧ(t) dt = − a(t)
1 + z

dz → ȧ(t)
a(t) dt = − dz

1 + z(t) ,
(2.5)

donde el cociente ȧ(t)/a(t) es el valor del parámetro de Hubble H(t). Sustituyendo dicha defi-
nición en la ecuación anterior:

H(t) = ȧ(t)
a(t) → dt = − dz

H(t)(1 + z) . (2.6)

Ahora, para continuar necesitamos hallar la expresión de H(t) en función del redshift z. Para
ello podemos partir de la ecuación de Friedmann:

(
ȧ(t)
a(t)

)2
= 8πG

3 ρ+ Λv
3 −

κ

a2(t) , (2.7)

donde G es la constante de gravitación universal, ρ la densidad de energía del universo (que
separaremos en densidad de masa ρm y densidad de radiación ρr), Λv la constante de energía del

4



vacío, y κ la curvatura del universo. Si definimos H(t)|hoy ≡ H0, podemos sacar factor común
dicho valor en el miembro izquierdo de la igualdad y sustituir la expresión de a(t) (fórmula 2.4).
De esta forma obtenemos:

H2(t) = H2
0

[8πG
3H2

0
ρm + 8πG

3H2
0
ρr + Λv

3H2
0
− κ

a2
0H

2
0

(1 + z)2
]
. (2.8)

La densidad de materia depende del volumen que esta ocupa (que a su vez depende de la
distancia física R(t) al cubo); por lo tanto, su dependencia con el tiempo variará según:

ρm ∝
1
V
∝ 1
R3(t) ∝

1
a3(t) . (2.9)

La densidad de radiación depende del volumen de la misma forma, pero a su vez también su
energía se ve modificada debido a la expansión de su longitud de onda:

ρr ∝
E

V
∝ 1/λ(t)

R3(t) ∝
1/a(t)
a3(t) . (2.10)

Recordando que a(t) ∝ (1+z)−1 (fórmula 2.4), podemos expresar la evolución de las densidades
en función del redshift:

ρm = ρm0 (1 + z)3 , ρr = ρr0 (1 + z)4 , (2.11)

donde recordemos que el subíndice cero indica el valor hoy en día. De esta forma, podemos
utilizar las notaciones usuales de cosmología y definir:

Ωm ≡
8πG
3H2

0
ρm0 Ωr ≡

8πG
3H2

0
ρrad0 ΩΛ ≡

Λv
3H2

0
Ωκ ≡

−κ
a2

0H
2
0
, (2.12)

que son las fracciones de densidad de materia, radiación, energía oscura y curvatura, respecti-
vamente, respecto a la densidad crítica del universo (ρcr = 3H2

0/(8πG)). En función de dichas
constantes, la expresión de H(z) (fórmula 2.8) toma la forma:

H2(z) = H2
0

[
Ωm (1 + z)3 + Ωr (1 + z)4 + ΩΛ + Ωκ (1 + z)2

]
. (2.13)

Consultando los valores de dichas constantes en la referencia [8], podemos hacernos una idea de
la relevancia de cada término, con intenciones de simplificar la expresión:

ΩΛ ∼ 0.692± 0.012 Ωm ∼ 0.308± 0.012
Ωκ ∼ 0.005± 0.017 Ωr ∼ 5.38 · 10−5 ± 0.0015 .

(2.14)

De esta manera, las contribuciones de la curvatura y de la radiación son mucho menor que las
de energía oscura y materia (Ωκ,Ωr � ΩΛ,Ωm). Sin embargo, aunque la contribución de la
radiación es la más pequeña, es la que mayor dependencia tiene con el redshift (∼ z4).

A pesar de ello, los valores de z para los que el término de radiación se hace comparable con el
término de energía oscura, el cuál es el término mayor en la expresión de H(z) (fórmula 2.13),
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son del orden de z ∼ 9.7. Nosotros trabajaremos con valores de redshift dentro del intervalo
z ∈ [0.5, 2.0] (rango de valores utilizados por F. W. Stecker et al. en [2], [1], [6]). De esta
forma, para el rango de redshift en estudio, podemos despreciar las contribuciones de radiación
y curvatura en la expresión 2.13, obteniendo:

H(z) ≈ H0

√
Ωm (1 + z)3 + ΩΛ . (2.15)

Finalmente, sustituimos la expresión de H(z) hallada en la relación diferencial 2.6 que relacio-
naba dt y dz:

dt = − dz

H(z) (1 + z) = − dz

H0 (1 + z)
√

Ωm (1 + z)3 + ΩΛ
. (2.16)

Con esto ya tenemos la relación buscada entre la coordenada temporal y el redshift. Ahora, para
obtener la relación diferencial entre la coordenada espacial comóvil r y el redshift z, volvemos a
partir de la métrica FLRW (fórmula 2.2). Aplicándola a partículas que viajan a la velocidad de
la luz sabemos que ds = 0. En el caso caso de los neutrinos tendremos un caso similar:

ds2 ≈ 0 ≈ −dt2 + a(t)2
[

dr2

1− κr2 + r2dΩ
]
. (2.17)

Escogiendo de forma apropiada las coordenadas podemos conseguir que dΩ = 0, es decir, que
la partícula viaje radialmente desde la fuente hasta el detector. Además, podemos tomar la
curvatura como nula (κ ∼ 0). Con estas simplificaciones conseguimos la siguiente relación:

0 = −dt2 + a(t)2dr2 → dr = − dt

a(t) = − dt

a0/(1 + z) . (2.18)

Sustituyendo la relación hallada entre dt y dz (fórmula 2.16), obtenemos la relación diferencial
buscada entre dr y dz:

dr = − dt

a0/(1 + z) = 1
a0/(1 + z)

dz

H(z) (1 + z) = dz

a0H(z) . (2.19)

En este caso, además, nos conviene además saber la expresión explícita entre una cierta distancia
expresada como redshift z y su correspondiente distancia comóvil r(z), por lo que integramos la
relación diferencial:

r(z) = 1
a0

∫ z

0

dz

H(z) . (2.20)

Definimos por comodidad (para su futura resolución computacional) la función k(z):

k(z) =
∫ z

0

dz

H(z) → r(z) = k(z)
a0

. (2.21)
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3. Flujo de neutrinos
En este apartado deduciremos la expresión analítica que ha de tener el flujo de neutrinos de-
tectados, en función de la energía detectada. Para ello, establecemos que las fuentes de nuestro
interés serán aquellas que se encuentran entre z1 = 0.5 y z2 = 2.0.

Figura 5: Corteza esférica de grosor dz con origen en el detector

Situemos el origen de coordenadas en nuestros detectores (punto d azul de la figura 5). Supon-
gamos que, para cierta distribución de fuentes, es conocido el número diferencial de ellas entre
una corteza de radio z y una de radio z+ dz: llamémoslo dNf (z). Si supieramos además cuál es
el flujo de neutrinos detectado de energía Ed para una fuente situada a una distancia z: llamé-
moslo φEd

(z), podríamos expresar el flujo de neutrinos de cierta energía detectada, proveniente
de fuentes entre z1 y z2, de la siguiente manera:

δΦ(Ed) =
∫ z2

z1
φEd

(z) · dNf (z) . (3.1)

Podemos entender δΦ(Ed) como el flujo de neutrinos detectado con energía Ed, tal que el flujo
total detectado sea una integral a todas las energías detectadas:

ΦTotal =
∫
δΦ(Ed) dEd . (3.2)

Sin embargo, el flujo de nuestro interés es el espectro dado por la fórmula 3.1, por lo que a
continuación analizaremos la expresión los términos del integrando.

3.1. Distribución de fuentes
En este subapartado queremos relacionar el número diferencial de fuentes dNf (z) que hay en
entre una corteza de radio z y una de radio z + dz, con una cierta distribución de fuentes
unidimensional. Para ello, sólo debemos notar que:

dNf (z) = dNf

dz
(z) · dz , (3.3)

donde dNf/dz es la distribución de fuentes unidimensional. Esta función se puede tomar en
coincidencia con la distribución de la tasa de formación estelar (figura 6).

7



Figura 6: Distribución de la tasa de formación estelar en función de z

Dicha distribución es la utilizada en los artículos [2], [1] y [6]. Tras extraerla de [2], para poder
utilizarla, hemos realizado un ajuste en el intervalo de interés z ∈ [0.5, 2.0], con el objetivo de
sustituir dNf/dz por la función resultante de dicho ajuste (función f(z) representada en rojo
en la figura 6). Según el ajuste, el comportamiento de esta función es de carácter exponencial y
viene dado por:

f(z) = eaz
2+bz+c , con


a ≈ −0.873
b ≈ 2.854
c ≈ 12.697

. (3.4)

De esta manera, obtenemos que el número diferencial de fuentes en una corteza esférica de grosor
dz situada a una distancia z se puede expresar en función de la densidad lineal de fuentes f(z)
de la siguiente forma:

dNf (z) = f(z) dz . (3.5)

3.2. Flujo de una fuente
En este subapartado vamos a examinar la expresión del flujo detectado producido por una fuente
situada a una distancia z. Para ello, esta vez nos conviene situar nuestro origen de coordenadas
en la fuente (punto rojo s en la figura 7).

Figura 7: El detector se encuentra, en el momento de la detección (hoy), a una distancia
R = a0r de la fuente (origen de coordenadas)
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Ahora, consideremos que los neutrinos emitidos han recorrido una trayectoria tal que la distancia
física entre emisor y detector en el momento de la detección es R(t)|hoy = a0r. Entonces los
neutrinos emitidos en un cierto diferencial de tiempo dte se habrán repartido en una superficie
esférica de área 4πa2

0r
2. De esta forma, el flujo de neutrinos detectados (número de neutrinos

para cada energía de detección, por unidad de espacio y tiempo) será:

φEd(z) = dne(Ee) ·
1

4πa2
0r

2 ·
1
dtd

, (3.6)

donde dne(Ee) es el número diferencial de neutrinos de energía Ee emitidos en un tiempo dte.
Nótese que el tiempo que se tardaron en emitir dichos neutrinos (dte) no coincide con el tiempo
que se ha tardado en detectarlos (dtd), sino que entre ambos existe la relación:

dtd = (1 + z)dte (3.7)

El problema ahora es que no tenemos la dependencia explícita del flujo de una fuente en función
de z, sino que tenemos la dependencia implícita dentro de r = r(z). No obstante, en el apartado
2 hemos hallado ya esta relación (fórmula 2.21). De esta forma, sustituyendo la expresión de
r(z) de la fórmula 2.21 en la ecuación del flujo 3.6 obtenemos:

φEd
(z) = dne(Ee)

dtd

1
4πa2

0

a2
0

k2(z) = 1
4π ·

dne(Ee)
dtd

1
k2(z) . (3.8)

Para simplificar la fórmula, podemos relacionar alguna de las magnitudes que se incluyen en
ella con modelos conocidos. Por ejemplo, podemos definir para una fuente su luminosidad de
neutrinos de energía Ee como δL(Ee). Supongamos que la fuente emite un número dne(Ee) de
neutrinos de energía Ee en un tiempo dte. Estos valores definen luminosidad de la fuente según:

δL(Ee) = dne(Ee)
dte

. (3.9)

Como esta luminosidad solo tiene en cuenta los neutrinos de cierta energía Ee, la luminosidad
total de la fuente se hallaría a partir de esta según:

LTotal =
∫
δL(Ee) dEe . (3.10)

Para lograr sustituir la luminosidad en la fórmula del flujo (3.8), debemos lograr que aparezca
el tiempo de emisión. De esta forma, utilizando la relación 3.7 que nos relaciona los tiempos de
emisión y detección, obtenemos que el flujo se puede expresar como:

φEd
(z) = 1

4π
dne(Ee)
dte

1
(1 + z)

1
k2(z) → φEd

(z) = 1
4π

δL(Ee)
k2(z)(1 + z) . (3.11)

Una vez identificada la luminosidad, la podemos modelizar al igual que en las referencias [2], [1]
y [6], con una función proporcional a una ley de potencias:

δL(Ee) = E2
0/E

2
e , (3.12)
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donde E2
0 es la constante de proporcionalidad, que será irrelevante al ser un factor multiplicativo

que desaparecerá en el proceso de normalización de los resultados.

3.3. Flujo de una distribución de fuentes
En vista de los resultados anteriores, ya estamos en condiciones de volver a la fórmula del flujo
de una distribución de fuentes (fórmula 3.1) y sustituir las expresiones obtenidas:

δΦ(Ed) =
∫ z2

z1
φEd

(z) · f(z) · dz → δΦ(Ed) = 1
4π

∫ z2

z1

δL(Ee) f(z)
k2(z)(1 + z)dz . (3.13)

Como se puede apreciar, el flujo para cada energía detectada Ed es una integral a la luminosidad
de todas las fuentes, correspondiente a una energía Ee que es distinta según el redshift z al que
se encuentra cada fuente. Por tanto, necesitamos conocer la forma explícita de la función que
nos permite hallar la energía de emisión Ee en función de la energía detectada Ed y el redshift de
la fuente ze. Para ello, en el siguiente apartado analizaremos como es la evolución de la energía
de un neutrino a través de su trayectoria.
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4. Efectos sobre la energía de un neutrino
En este capítulo analizaremos como relacionar la energía detectada de un neutrino con su energía
de emisión. Para ello analizaremos como varía su energía a lo largo de su recorrido.

Durante el trayecto, el neutrino se verá afectado en todo momento por la expansión del universo.
Como se ha explicado con anterioridad, esto provocará una una disminución de su energía. Pero
además, si tiene suficiente energía durante el trayecto, podrá verse afectado por desintegraciones
antes prohibidas que ahora se pueden producir gracias a la LIV. Estas son la producción de
pares en el vacío (VPE) y el neutrino splitting (NSpl). En este trabajo tendremos en cuenta el
efecto de la VPE, pero no el del NSpl (eso queda pendiente como un posible fututo trabajo).

4.1. Efectos de la expansión del universo
La pérdida de energía debido a la expansión del universo es directamente deducible de las
expresiones ya utilizadas en el apartado 2, ya que, de la definición de redshift (fórmula 2.1),
obtenemos que:

λd = λe (1 + z) → νd = νe
(1 + z) . (4.1)

Aplicando que la energía detectada depende de la frecuencia según Ed = hνd, y que ocurre lo
mismo con la energía emitida, Ee = hνe, la evolución de la energía con el redshift será:

hνd = hνe
(1 + z) → Ed = Ee

(1 + z) . (4.2)

Despejando la energía emitida (que para cada valor de z es la energía en ese punto de la tra-
yectoria) podemos obtener una relación diferencial de la evolución de la energía debida a la
expansión del universo:

E = Ed(1 + z) → dE = Ed · dz = E

(1 + z) · dz → dE

E
= 1

(1 + z) dz . (4.3)

4.2. Efectos de la creación de pares
El proceso de creación de pares electrón-positrón supone una desintegración del tipo:

νe → νe + e− + e+ . (4.4)

Este proceso puede ser mediado a través de una corriente neutra Z0 (figura 8) o mediante una
corriente cargada W+ (figura 9). Sin embargo, mientras que el proceso de creaciación de pares
mediado por W+ sólo puede ocurrir para los neutrinos electrónicos, el proceso mediado por Z0

puede ocurrir para cualquier tipo de sabor. Como los neutrinos detectados habrán viajado sufi-
ciente distancia para que las oscilaciones de neutrinos permitan que se igualen las probabilidades
de tener cada uno de los tres sabores, el proceso mediado por la corriente cargada W+ sólo será
relevante 1/6 de las veces. Por ello consideraremos que el proceso relevante es el mediado por la
corriente neutra Z0.
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Figura 8: Creación de pares mediante Z0 Figura 9: Creación de pares mediante W +

Ambos procesos sólo son posibles para neutrinos con energía mayor a cierta energía umbral E∗.
Este valor viene definido por la nueva física, es decir, depende de los parámetros de la correción
en la ecuación de dispersión 1.1 debido a la LIV. La forma explicita ha sido deducida por L. E.
Suelves en la referencia [7]:

E∗ =
(
4m2

eΛn
)1/(2+n)

, (4.5)

donde n es el orden de la corrección y Λ la escala de energía. El proceso de desintegración
relevante (el mediado por la corriente neutra) ya ha sido caracterizado por J. M. Carmona et
al. en la referencia [9], donde se obtiene que su anchura de desintegración es:

Γ = G2
F p

5

192π3

[
(1− 2s2

W )2 + (2sW )2
]( p

Λ

)3n
ξn , (4.6)

donde GF es la constante de acoplamiento de Fermi (propia de las desintegraciones débiles),
sW ≡ sin(θW ) el seno del ángulo de Weinberg (que proviene de la definición del bosón Z0 como
combinación de los bosones B0 y W 0 en la teoría electrodébil), ξn es un número de orden 1 que
proviene del elemento de matriz de la interacción, y, como se ha dicho antes, n y Λ proceden de
la modificación en la ecuación de dispersión debido a la LIV (fórmula 1.1).

En la misma referencia, a partir de la anchura de desintegración, se halla la variación del momento
lineal con el tiempo:

dp

dt
= G2

F p
6

192π3

[
(1− 2s2

W )2 + (2sW )2
]( p

Λ

)3n
ξ′n , (4.7)

donde ξ′ corresponde a una nueva constante del mismo orden que ξ, cuya expresión en función
de n se da en [9]. Para aligerar la notación se define αn como:

αn = G2
F ξ
′
n

192π3Λ3n

[
(1− 2s2

W )2 + (2sW )2
]
. (4.8)

Con esta notación, a partir de la ecuación de la variación del momento (4.7), podemos obtener
directamente la variación de la energía con el tiempo teniendo en cuenta que mν ≈ 0:

dE

dt
= −αnE6+3n . (4.9)
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Finalmente, para expresar esta evolución en función del redshift utilizamos la expresión obtenida
en el apartado 2 que relaciona relaciona dt y dz (fórmula 2.16).

dt = − dz

H(t)(1 + z) → dE

E
= αnE

5+3n

H(z)(1 + z) dz . (4.10)

4.3. Efectos durante la trayectoria
Ahora que tenemos el efecto individual de las dos contribuciones, queremos combinarlas para
conocer el efecto conjunto. Sin embargo, como hemos nombrado anteriormente, el efecto de
la creación de pares sólo es aplicable mientras los neutrinos tengan una energía superior a la
umbral. Por lo que, en el caso más general, tendremos un neutrino que en la primera parte de su
trayectoria se verá afectado por ambos efectos, y el resto del trayecto, tras alcanzar la energía
umbral, se verá afectado únicamente por la expansión del universo.

Para analizar esta cinemática, consideremos el escenario de la figura 10. En él, un neutrino se
emite con una energía inicial Ei desde una distancia zi. Este realiza un recorrido, durante el cual
va perdiendo energía mediante los dos procesos antes nombrados, hasta que, en cierto punto zk,
su energía alcanza el valor Ek. A partir de allí, desde zk hasta zf no habrá VPE, y sólo se verá
afectado por la expansión del universo.

Figura 10: La primera parte del trayecto va desde zi (que normalmente será la zi = ze de
emisión), hasta zk (momento en el que se dejan de producir pares). El segundo tramo va

desde zk hasta zf (que normalmente será zf = 0, correspondiente a la detección)

Dependiendo del valor de zk, podemos encontranos en casos donde el primer tramo sea todo el
trayecto (zk = zf , y por lo tanto se den ambos procesos de pérdida durante toda la trayectoria),
casos donde el segundo tramo sea todo el trayecto (zk = zi, y por lo tanto sólo haya que tener
en cuenta la expansión del universo) o casos intermedios donde se den ambos tramos de la
trayectoria (zk ∈ [zi, zf ]). No obstante, discuteremos estos casos en el subapartado siguiente a
la hora de calcular el flujo. En este subapartado resolveremos el caso general.

Intentemos relacionar la energía del neutrino al iniciar cada tramo, con la energía que tendrá
al finalizarlo. Esto es sencillo en el último tramo del trayecto, ya que la cinemática viene dada
únicamente por la contribución de la expansión:

dE

E
= dz

(1 + z)︸ ︷︷ ︸
Expansión

, (4.11)

por lo que para relacionar la energía entre el punto inicial y final de dicho tramo, sólo debemos
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integrar esta relación diferencial entre sus extremos:

∫ Ek

Ef

dE

E
=
∫ zk

zf

dz

(1 + z) → Ek = (1 + zk)Ef . (4.12)

Ahora toca resolver el primer tramo de la trayectoria. En ese tramo, la cinemática vendrá dada
por la contribución de ambos efectos:

dE

E
= dz

(1 + z)︸ ︷︷ ︸
Expansión

+ αnE
5+3n dz

H(z)(1 + z)︸ ︷︷ ︸
VPE

. (4.13)

Para resolverla, debemos integrar entre el extremo inicial zi y el extremo final zk de este tramo
de la trayectoria. Sin embargo, esto no es sencillo de realizar con la ecuación expresada de
esta forma, así que realizaremos una serie de cambios de variable para simplificar la expresión.
Comenzamos con definir Ẽ ≡ E/(1 + z):

E = Ẽ(1 + z) → dE = dẼ (1 + z) + Ẽ dz . (4.14)

Teniendo en cuenta esta definición y sustituyendo:

dẼ (1 + z) + Ẽ dz

Ẽ(1 + z)
= dz

(1 + z) + αnẼ
5+3n(1 + z)5+3n dz

H(z)(1 + z)

→ dẼ

Ẽ
= αnẼ

5+3n(1 + z)4+3n dz

H(z) .

(4.15)

Recordando la expresión de H(z) (fórmula 2.15) y definiendo t ≡ (1 + z)3, con dt = 3(1 + z)2dz:

dẼ

Ẽ6+3n
= αn

3H0

t2/3+n
√

Ωm t+ ΩΛ
dt . (4.16)

Ahora ya podemos integrar para este tramo de la trayectoria, es decir, desde zi, donde la energía
es Ei, hasta zk, donde la energía es Ek:

∫ Ẽi

Ẽk

dẼ

Ẽ6+3n
=
∫ ti

tk

αn
3H0

t2/3+n
√

Ωm t+ ΩΛ
dt →

1
(5 + 3n)

(
Ẽk
−(5+3n)

− Ẽ−(5+3n)
i

)
= αn

3H0

∫ (1+zi)3

(1+zk)3

t2/3+n
√

Ωm t+ ΩΛ
dt ,

(4.17)

donde la última integral se puede resolver numéricamente, así que le asignaremos un valor
J(zi, zk) que resolveremos en el capítulo 5:

J(zi, zk) ≡
∫ (1+zi)3

(1+zk)3

t2/3+n
√

Ωm t+ ΩΛ
dt . (4.18)
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De esta forma, despejando la energía del neutrino al finalizar el primer tramo, en función de la
energía cuando lo inició:

1
(5 + 3n)

(
Ẽk
−(5+3n)

− Ẽ−(5+3n)
i

)
= αn

3H0
J(zi, zk) . (4.19)

→ Ei = (1 + zi)
(
Ẽk
−(5+3n)

− (5 + 3n) αn3H0
J(zi, zk)

)− 1
(5+3n)

. (4.20)

Finalmente, para unir las dos partes del trayecto, recordemos la expresión de Ek en función de
Ef obtenida para la segunda parte del trayecto (fórmula 4.5). De esta forma:

Ek = (1 + zk)Ef → Ẽk = Ek
(1 + zk)

= (1 + zk)Ef
(1 + zk)

= Ef . (4.21)

Por lo que, con ello, ya tenemos la relación completa entre la energía al comenzar todo trayecto
(Ei) y al final de toda la trayectoria (Ef ):

Ei = (1 + zi)
(
E
−(5+3n)
f − (5 + 3n) αn3H0

J(zi, zk)
)− 1

(5+3n)
. (4.22)

4.4. Expresión del flujo detectado
Ahora que conocemos la evolución de la energía de un neutrino desde su emisión hasta su
detección, vamos a combinar esta información con la del capítulo 3 para establecer las ecuaciones
que rigen el flujo de neutrinos detectados en función de su energía. Una primera diferenciación
que podemos hacer es separar el espectro en una parte con Ed > E∗ y otra con Ed < E∗:

1) Caso con Ed > E∗

En este caso, como los neutrinos son detectados con una energía mayor a la umbral, se deduce
que han tenido suficiente energía como para verse afectado por los efectos de producción
de pares y expansión del universo durante toda la trayectoria. De esta forma, para estos
neutrinos no existe el segundo tramo del trayecto, ya que son detectados antes de terminar
el primero (por lo que zk = zf = 0).

De esta forma, la ecuación que gobierna su cinemática durante toda la trayectoria es la 4.13,
que debe ser integrada para el tramo de validez, que en este caso es desde la emisión (situado
en zi = ze, donde la energía Ei = Ee) hasta la detección (con zk = zf = 0, donde la energía
es Ek = Ef = Ed). Particularizando el resultado 4.22 (que es la solución de 4.13), obtenemos
que la relación entre la energía de emisión y detección es:

Ee = (1 + ze)
(
E
−(5+3n)
d − (5 + 3n) αn3H0

J(ze, 0)
)− 1

(5+3n)
. (4.23)

Para simplificar la notación, vamos a definir esta relación entre energía emitida y detectada
como una función que denominaremos F2(ze, Ed):

F2(ze, Ed) ≡ (1 + ze)
(
E
−(5+3n)
d − (5 + 3n) αn3H0

J(ze, 0)
)− 1

(5+3n)
, (4.24)
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de forma que para Ed > E∗, la energía emitida en función de la detectada es Ee(ze, Ed) =
F2(ze, Ed). Por tanto, para este rango de Ed podemos expresar el flujo como:

δΦ2(Ed) = 1
4π

∫ z2

z1
L(F2(ze, Ed)) f(z)

k2(z)(1 + z)dz . (4.25)

Sin embargo, hemos de realizar algunas correcciones a esta fórmula, ya que la ecuación 4.19
pone un límite a las fuentes que pueden contribuir a el flujo. Consideremos la ecuación 4.19
aplicada a una fuente situada a una distancia zc, tal que sea necesario que emita con una
energía infinita (Ee →∞) para que sus neutrinos puedan llegar a nosotros con energía Ed:

1
(5 + 3n)

1
E5+3n
d

= αn
3H0

J(zc, 0) → zc0 ≡ zc(Ed, 0) . (4.26)

La resolución de esta ecuación define el valor de redshift crítico zc0 . Según su definición,
aquellas fuentes con un valor de z mayor a zc0 deberían emitir con una energía mayor a
infinito para poder ser detectadas con energía Ed. O dicho de otra forma, estas fuentes
no emiten con suficiente energía como para contribuir al flujo de neutrinos detectados con
energía Ed. De esta manera, hemos de modificar el límite superior de la integral 4.25, el cuál
dejará de ser z2 si el valor de zc0 ≡ zc(Ed, 0) es más restricitivo (es decir, menor):

δΦ(Ed) = 1
4π

∫ mı́n[zc0 ,z2]

z1
δL(F2(ze, Ed)) f(z)

k2(z)(1 + z) dz . (4.27)

Ahora, al haber introducido como límite superior de la integral un valor que depende de la
energía detectada, debemos imponer que si zc0 es menor que z1 no hay fuentes que contribu-
yan al flujo y por lo tanto debe ser cero (ya que no consideramos fuentes por debajo de z1).
Para imponer esta condición debemos modificar también el límite inferior de integración de
forma que, cuando se de el caso, los límites de la integral tengan el mismo valor y la integral
sea idénticamente nula:

δΦ2(Ed) = 1
4π

∫ mı́n[zc0 ,z2]

mı́n[zc0 ,z1]
δL(F2(ze, Ed)) f(z)

k2(z)(1 + z) dz . (4.28)

2) Caso con Ed < E∗

En este caso, los neutrinos llegan al detector con una energía menor a la umbral, es decir,
cuando son detectados ya no producen pares. Sin embargo, esto puede deberse tanto por-
que han alcanzado la energía umbral en algún punto de la trayectoria, como porque nunca
tuvieron suficiente energía para empezar la producción de pares.

Para distinguir que neutrinos se encuentran en un caso u otro, utilizamos el redshift umbral
z∗. Esta es la distancia a la que un neutrino ha tenido que alcanzar la energía E∗, para
poder ser detectado con una energía Ed. De esta manera, el valor z∗ dependerá del valor de
la energía detectada: z∗ ≡ z∗(Ed).

Para poder obtener una expresión que nos relacione dichos valores, analicemos el recorrido
del neutrino tras alcanzar la energía umbral. En dicho caso, la única contribución a tener en
cuenta es la expansión del universo, por lo que se comporta como en el último tramo de la
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trayectoria del ejemplo general (gobernada por la ecuación 4.11). De esta forma, particula-
rizando el resultado 4.12 (que es la solución de 4.11) con Ek = E∗ y Ef = Ed:

E∗ = (1 + z∗)Ed → z∗(Ed) =
(
E∗

Ed
− 1

)
. (4.29)

A partir de esta relación, podemos notar que, para una energía detectada determinada, como
el valor de E∗ es fijo (ya que queda determinado por los parámetros de la nueva física, según
la ecuación 4.5), el valor de z∗ es el mismo para todos los neutrinos detectados con la misma
energía Ed.

Esto nos permite, conociendo la energía detectada, preguntarnos para cada valor de z, con
qué energía se han tenido que emitir dichos neutrinos para que nos lleguen con energía Ed. De
esta forma, a una distancia z∗, los neutrinos han debido de emitirse justamente con energía
E∗, por lo que ninguna fuente que se encuentre por debajo tendrá energía suficiente para
iniciar la producción de pares (ya que habrán de emitir con Ee < E∗).

Esto nos permite distinguir por un lado los neutrinos provenientes de fuentes con ze > z∗

(que serán capaces de producir pares, durante un tramo de su trayectoria), y por otro lado los
que provienen de fuentes con ze < z∗ (que no se emiten con energía suficiente para producir
pares, y por lo tanto sólo se verán afectados por la expansión).

En el caso de los neutrinos con ze < z∗, al ser emitidos con una energía inferior a la umbral,
toda su cinemática está gobernada por la fórmula 4.11, es decir, el segundo tramo supone
la totalidad de su trayectoria. De esta manera, su solución será el resultado 4.12 (que es la
solución de 4.11), particularizado al caso zk = ze y zf = 0:

Ee = (1 + ze)Ed . (4.30)

Por analogía con el caso anterior, definimos esta relación mediante una función F1(ze, Ed):

F1(ze, Ed) = (1 + ze)Ed . (4.31)

Así, los neutrinos emitidos por fuentes con ze < z∗ se habrán emitido con una energía dada
por Ee(ze, Ed) = F1(ze, Ed). Ahora vamos a analizar el segundo tipo de neutrinos, que son
aquellos que provienen de fuentes con una ze > z∗. Estas fuentes emiten con una energía
mayor a la umbral, por lo que los neutrinos emitidos se verán afectados tanto por la VPE
como por la expansión, por lo menos durante un tramo de su trayectoria.

El primer tramo comenzará en el momento de la emisión, zi = ze, y acabará cuando los
neutrinos alcancen la energía umbral, zk = z∗. Tras esto, lo neutrinos comenzarán el segundo
tramo desde zk = z∗ hasta que se da la detección en zf = 0.

Este es el caso intermedio que hemos resuelto en el subapartado anterior (caso con zk ∈
[zi, zf ]), sólo que en este caso zk = z∗(Ed). De esta forma, particularizando el resultado 4.22
para una energía inicial Ei = Ee (en zi = ze) y una energía final Ef = Ed:

Ee = (1 + ze)
(
E
−(5+3n)
d − (5 + 3n) αn3H0

J(ze, z∗)
)− 1

(5+3n)
. (4.32)
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Por analogía con los casos anteriores, definimos esta relación como una función F3(ze, Ed):

F3(ze, Ed) = (1 + ze)
(
E
−(5+3n)
d − (5 + 3n) αn3H0

J(ze, z∗)
)− 1

(5+3n)
. (4.33)

De esta forma, los neutrinos provenientes de fuentes con z > z∗ se habrán emitido con una
energía dada por Ee(ze, Ed) = F3(ze, Ed). En vista de estos resultados, ya podemos expresar
la fórmula correspondiente al flujo de neutrinos detectados para esta parte del espectro, con
la particularidad de que debemos separar la integral entre aquellas fuentes con z < z∗ (cuyos
neutrinos cumplen la relación dada por Ed(ze, Ed) = F1(ze, Ed)) y aquellas con z > z∗ (cuyos
neutrinos se rigen por la relación Ed(ze, Ed) = F3(ze, Ed)). De esta forma:

δΦ(Ed) = 1
4π

∫ z∗

z1

δL(F1(ze, Ed)) f(z)
k2(z)(1 + z)dz + 1

4π

∫ z2

z∗

δL(F3(ze, Ed)) f(z)
k2(z)(1 + z)dz . (4.34)

Sin embargo, al igual que caso anterior, la fórmula 4.19 define un redshift crítico que limita
la cantidad de fuentes capaces de producir flujo. Particularizando la expresión 4.19 para este
caso, la fórmula que define el redshift crítico zc es:

1
(5 + 3n)

1
E5+3n
d

= αn
3H0

J(zc, z∗) → zc ≡ zc(Ed, z∗) . (4.35)

Pero si recordamos la definición del redshift umbral (fórmula 4.29), vemos que z∗ ≡ z∗(Ed) y
por lo tanto la única dependecia de zc es con la energía detectada: zc(Ed). Cambiaremos de
este modo el límite superior de la segunda integral (que es donde se tiene en cuenta el efecto
de la la VPE), de forma que el flujo tomará la siguiente forma:

δΦ(Ed) = 1
4π

∫ z∗

z1
δL(F1(ze, Ed))

f(z)
k2(z)(1 + z)dz + (4.36)

1
4π

∫ mı́n[zc(Ed),z2]

z∗
δL(F3(ze, Ed))

f(z)
k2(z)(1 + z)dz .

Ahora, al poner unos límites de integración que dependen del valor de Ed, debemos imponer
nuevamente que si el límite superior de la integral es menor que el límite inferior, la integral
debe arrojar un flujo nulo. Para ello hemos de modificar los límites a:

δΦ1(Ed) = 1
4π

∫ mı́n[z∗,z2]

mı́n[z∗,z1]
δL(F1(ze, Ed))

f(z)
k2(z)(1 + z)dz +

1
4π

∫ máx[mı́n[zc(Ed),z2],z1]

mı́n[máx[z∗,z1],z2]
δL(F3(ze, Ed))

f(z)
k2(z)(1 + z)dz .

(4.37)

En principio, con el flujo definido por las ecuaciones 4.37 y 4.28 ya deberíamos estar preparados
para calcular computacionalmente valores numéricos. En el capítulo siguiente mostramos la
realización de la simulación y en el último apartado discutiremos los resultados.
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5. Integración numérica y resultados
En este apartado nos disponemos a diseñar un programa, con el software Wolfram Mathematica,
para resolver numéricamente los valores del flujo de neutrinos detectados. A continuación expli-
caremos el proceso realizado y expondremos de forma visual los resultados.

En primer lugar, debemos dar valores numéricos a las constantes que aparecen de forma recu-
rrente en las ecuaciones. Estos se han obtenido en su mayoría consultando la referencia [8].

z1 = 0.5; (*Cota inferior de fuentes*)
z2 = 2.0; (*Cota superior de fuentes*)

n = 2.0; (*Orden de la correción*)
m = 5 + 3n; (*Útil para ahorrar notación*)

Mp = 1.220910 ∗ 10∧(13); (*PeV*)(*Masa de Planck*)
Λa = 0.008; (*Adimensional*)(*Λ = Λa ∗ Mp*)(*Escala*)

me = 0.510998928 ∗ 10∧(−9); (*PeV*)(*Masa del electrón*)
Eu = ((4 ∗ me∧2 ∗ Mp∧n)∧(1/(2 + n))) ∗ Λa∧(n/(2 + n)); (*PeV*)(*Energía umbral*)

GF = 1.1663787 ∗ 10∧7; (*PeV−2*)(*Constante de Fermi*)
ξn = (13/10)− (12(2n+ 15))/((n+ 3)(n+ 4)(n+ 5)(n+ 6))+
(12(4n+ 3))/((2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6))− (2(5n+ 4))
/((3n+ 4)(3n+ 5)(3n+ 6)) + (10)/(3(3n+ 7)(3n+ 8)); (*Constante ξ′n*)
sw = 0.2223; (*Adimensional*)(*Seno del ángulo de Weinberg*)

αn = (GF∧2 ∗ ξn ∗ ((1− 2 ∗ sw∧2)∧2 + (2 ∗ sw∧2)∧2)/(192 ∗ Pi∧3)) ∗ (Λa ∗ Mp)∧(−3n);
(*Constante de creación de pares*)

αn3H0 = αn/(3 ∗ H0); (*Útil para ahorrar notación*)

Como se puede apreciar en el bloque anterior, además de dar valores a las constantes, hemos
debido escoger valores numéricos para algunos parámetros de la simulación. Dos parámetros
importantes que definen la nueva física son la escala Λ y el orden de corrección n. Estos a su
vez determinarán el valor de la energía umbral E∗ según la fórmula 4.5.

En la referencias [2], [1] y [6], Stecker et al. utilizan, por motivos empíricos, una energía umbral
E∗ = 10 PeV (porque las observaciones hechas por IceCube muestran una caída en el espectro de
neutrinos a ese orden). Para poder comparar nuestros resultados con estos datos, se intentarán
escoger valores n y Λ de tal forma que la energía umbral sea de ese orden, teniendo en cuenta
también que la escala Λ se espera de un orden cercano a la masa de Planck.

Para el caso n = 1, proponiendo una escala Λ ∼ Mp obtenemos E∗ ∼ 10−5 PeV. En vista de
los resultados de IceCube, esta energía umbral es demasiado pequeña para estar acorde con los
resultados experimentales. Por ello el caso n = 1 queda descartado.

En el caso n = 2, suponiendo Λ ∼ MPl se obtiene E∗ ∼ 100 PeV. Como el orden de esta
energía no dista demasiado del PeV, podemos intentar cambiar un poco la escala para conseguir
E∗ ∼ 10 PeV. De esta forma, el valor escogido es Λ = 0.008MPl.
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Definidos los valores de las constantes y parámetros, podemos pasar a definir las distintas fun-
ciones que irán dentro de la integral de flujo. Estas son las funciones H(z) (fórmula 2.15), k(z)
(fórmula 2.21), la distribución f(z) (fórmula 3.4), y la luminosidad L(Ee) (fórmula 3.12):

Ωm = 0.308; (*Adimensional*)
ΩΛ = 0.692; (*Adimensional*)
H0 = 1.382262857 ∗ 10∧(−48); (*PeV*)

H[z_]:=H0 ∗ Sqrt[Ωm ∗ (1 + z)∧3 + ΩΛ];

k[zm_?NumericQ]:=(1/H0) ∗ NIntegrate[1/Sqrt[Ωm ∗ (1 + x)∧3 + ΩΛ], {x, 0, zm}];

a = −0.872659348799341; (*Adimensional*)
b = 2.85385016357682; (*Adimensional*)
c = 12.6972427290702; (*Adimensional*)

f [z_]:=E∧(a ∗ z∧2 + b ∗ z + c);

L[Ee_]:=1/Ee∧2;

Conocidas las funciones del integrando, antes de examinar la relación entre la energía emitida
y detectada, debemos definir la función J(zi, zk) (fórmula 4.18), donde recordemos que zi y zk
corresponden a las posiciones donde comienza y termina la producción de pares, respectivamente:

PrimJ[t_] = Integrate[(t∧(2/3 + n))/(Sqrt[Ωm ∗ t+ ΩΛ]), t];

J [zi_, zk_]:=PrimJ[(1 + zi)∧3]− PrimJ[(1 + zk)∧3];

Hecho esto, ya podemos definir las funciones F1(ze, Ed) , F2(ze, Ed) y F3(ze, Ed), dadas por las
fórmulas 4.31, 4.24 y 4.33, respectivamente. Recordemos que estas funciones nos dicen la energía
de emisión que debe tener una fuente localizada a un redshift ze para que sus neutrinos nos
lleguen con energía Ed:

F1[ze_, Ed_]:=(1 + ze) ∗ Ed;
F2[ze_, Ed_]:=(1 + ze) ∗ (Ed∧(−m)−m ∗ αn3H0 ∗ J [ze, z0])∧(−1/m);
F3[ze_, Ed_]:=(1 + ze) ∗ (Ed∧(−m)−m ∗ αn3H0 ∗ J [ze, (Eu/Ed)− 1])∧(−1/m);

Definidas las funciones F1(ze, Ed) , F2(ze, Ed) y F3(ze, Ed), el siguiente paso es escribir la expre-
sión del flujo. Pero para ello necesitamos definir los límites de integración. Recordemos que uno
de ellos podía ser el redshift crítico zc; de esta forma, hemos de plantear cómo hallar su valor.

Sabemos que su definición surge de las igualdades 4.35 y 4.26 en cada caso; sin embargo, no es
una expresión de la que sea posible despejar la variable, así que la resolución se llevará a cabo
mediante un ajuste que busque el valor adecuado para que se dé la igualdad. Aclarado esto,
escribimos los dos casos por separado, zc0 = zc(Ed, 0) y zc(Ed, z∗):
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zc0[Ed_]:=x/.FindRoot[(m ∗ αn3H0 ∗ Ed∧m)∧(−1)− J [x, z0] == 0, {x, 10∧4}];
zc[Ed_]:=x/.FindRoot[(m ∗ αn3H0 ∗ Ed∧m)∧(−1)− J [x, (Eu/Ed)− 1] == 0, {x, 10∧4}];

Conviene representar los valores de este redshift crítico para ambos casos, ya que el orden de
magnitud respecto al rango de z escogido (z ∈ [0.5, 2.0]) será muy relevante en el resultado final.
Esto es así, ya que recordemos que zc limita la cantidad de fuentes que pueden producir flujo:
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Figura 11: Redshift crítico zc(Ed, 0) (naranja) y zc(Ed, z∗) (azul)

Como se puede apreciar en la gráfica, ambas funciones decrecen rápidamente con la energía a
valores mucho menores que z1 = 0.5 y z2 = 2.0. Esto implica que, incluso desde energías inferiores
al umbral, el número de fuentes capaces de producir flujo decrece drásticamente, prediciendo una
caída en el número de neutrinos. Para comprobar esta afirmación, escribiremos a continuación
el código correspondiente a las expresiones del flujo:

Caso Ed < E∗

En este caso usamos la primera definición de flujo:

Φ1[Ed_]:=
NIntegrate[
(L[F1[z, Ed]] ∗ f [z] ∗ Ed)/(F1[z, Ed] ∗ (k[z])∧2 ∗ (1 + z)),
{z, Min[z1, (Eu/Ed)− 1], Min[(Eu/Ed)− 1, z2]}]+
NIntegrate[
(L[F3[z, Ed]] ∗ f [z] ∗ Ed)/(F3[z, Ed] ∗ (k[z])∧2 ∗ (1 + z)),
{z, Min[Max[(Eu/Ed)− 1, z1], z2], Max[Min[z2, zc[Ed]], z1]}];

Caso Ed > E∗

En este caso usamos la segunda definición de flujo:

Φ2[Ed_]:=NIntegrate[
(L[F2[z, Ed]] ∗ f [z] ∗ Ed)/(F2[z, Ed] ∗ k[z] ∗ k[z] ∗ (1 + z)),
{z, Min[z1, zc0[Ed]], Min[z2, zc0[Ed]]}];

Con todo ello, ya tenemos todos los ingredientes para iniciar la simulación. Simulamos un flujo
detectado entre una energía mínima Emin = 0.1 PeV y una energía máxima Emax = 100 PeV.
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La primera definición de flujo será valida hasta la energía umbral E∗ = 10 PeV (figura 12), y la
segunda será la que valga para energías mayores (figura 13):
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Figura 12: Flujo detectado para Ed < E∗
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Figura 13: Flujo detectado para Ed > E∗

Se puede apreciar en la figura 12 que el flujo detectado (en concordancia con el emitido) decrece
rápidamente con la energía según Φ ∼ E−2. De esta forma, para poder observar la existencia
de un corte, se ha multiplicando por E2

d (de forma que obtengamos una constante para energías
inferiores a la caída) y hemos normalizado el resultado dividiendo para un flujo Φ1(Ed = 1 PeV)
(que nos permite trabajar con valores numéricos del orden de la unidad). El resultado se muestra
en la figura 14. Además, hemos representado dicho flujo en forma logarítmica (figura 15), para
poder comparar con las gráficas de las simulaciones de Montecarlo realizadas por F. W. Stecker
et al. (figuras 1 y 2).
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Figura 14: Flujo completo en función de Ed
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Figura 15: Representación logarítmica del flujo

Podemos apreciar cómo se reproduce claramente el cut-off esperado; no obstante, discutiremos
estas gráficas y sus implicaciones en el siguiente apartado.
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6. Conclusiones y discusión
En este apartado trataremos de realizar un breve reflexión de los resultados obtenidos en el
apartado anterior. Para ello, recordemos el contexto y marco que rodean el trabajo.

Al principio de la memoria, en el apartado de introducción, se mostraron las gráficas 1 y 2,
correspondientes a los artículos de las referencias [1] y [2] de F. W. Stecker et al.. En la gráfica 2,
se muestran los eventos detectados por el detector de neutrinos IceCube, donde se puede notar
cómo para valores de energía por encima de los 2 PeV no se tienen eventos detectados.

Este hecho choca con lo esperable para un espectro que se comporta según ∼ E−2
d . Pero además,

otra razón adicional para encontrar neutrinos en dicho tramo del espectro, es que para una ener-
gía del orden de 6.3 PeV ocurre la formación resonante de un bosón W , denominada resonancia
de Glashow [3]. Esta resonancia aumenta la sección eficaz de detección de neutrinos en torno
al pico. De esta forma, teniendo en cuenta el aumento en la sección eficaz y que el espectro de
energías disminuye con la energía al cuadrado, se puede calcular que se deberían obtener cerca
de 3 eventos. Sin embargo, éstos no se observan.

Podemos encontrar una explicación para esta ausencia de eventos si consideramos que existe
un corte en el flujo de neutrinos para dichas energías. De esta forma, asumiendo que no es un
efecto intrínseco del espectro de emisión, ha de existir algún efecto externo que impide que nos
lleguen neutrinos de más altas energías. La solución que más acorde está con los resultados
experimentales es considerar un escenario de LIV, donde se puede dar la producción de pares en
el vacío en conjunción con el efecto de la expansión del universo, de forma que provoquen una
disminución drástica en el número de neutrinos para valores de energía cercanos al PeV.

F. W. Stecker et al. ha realizado simulaciones de Montercarlo para observar cómo sería el cut-off
provocado por la nueva física, con intenciones de comprobar si el corte obtenido podría explicar
la ausencia de neutrinos de más de 2 PeV. El resultado que obtuvo es que el espectro simulado
puede explicar la ausencia de eventos si el valor de la energía umbral está entorno a 10 PeV. Sin
embargo, cabe destacar que el corte ocurre antes de llegar a esta energía.

De esta forma, las simulaciones de Montecarlo han logrado comprobar que los efectos de la LIV
pueden provocar un corte en el espectro, el cual se puede ajustar a los datos experimentales
para una elección adecuada de los parámetros (E∗ ∼ 10 PeV). Sin embargo, no nos proporciona
información sobre el funcionamiento del propio proceso. De ahí la potencia de la estrategia
utilizada en este trabajo para analizar el espectro del flujo detectado.

Como primera conclusión, podemos confirmar que considerando los efectos de LIV, la producción
de pares en conjunción con la expasión provocan analíticamente un cut-off en el espectro de
neutrinos, que puede explicar datos experimentales de IceCube. Pero además, gracias a la fórmula
de integral de flujo, podemos saber que este corte se debe mayormente a la restricción dada por
el redshift crítico zc en el número de fuentes que son capaces de aportar contribución al flujo,
más que por grandes variaciones en la relación entre la energía emitida y detectada en los casos
con VPE (F2(ze, Ed) y F3(ze, Ed)) respecto al caso trivial (F1(ze, Ed)).

Pero además, podemos argumentar una razón de por qué el cut-off del espectro se da a una
energía menor al umbral (siendo que esta es la energía que debería marcar la escala característica
a la que se produce este efecto). Partamos de la ecuación 4.16, la cual representa de forma
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diferencial la variación de la energía al tener en cuenta VPE y redshift. Reescribámosla de la
siguiente forma:

dẼ

Ẽ6+3n
= αn

3H0

t2/3+n
√

Ωm t+ ΩΛ
dt → dẼ

Ẽ
= Ẽ5+3n(

3H0
αn

) j(t) dt , (6.1)

donde j(t) es el integrando de la función J(zi, zk), y absorbe toda la dependencia con el redshift
z (ya que t = (1 + z)3). Si identificamos el término entre paréntesis con una energía, obtenemos:

En =
(3H0
αn

) 1
5+3n

→ dẼ

Ẽ
=
(
Ẽ

En

)5+3n

j(t) dt . (6.2)

De esta forma, la energía En se convierte en una nueva escala característca del sistema que
dicta cómo de rápido un neutrino pierde energía debido a la producción de pares. Si la energía
Ẽ � En, el cociente es mayor que uno y al estar elevado a un exponente positivo grande (para
n = 2, el exponente vale 11), hará que el neutrino pierda rápidamente energía, hasta alcanzar
un valor donde Ẽ ∼ En. En ese momento, el cociente se acerca a uno, y la variación de Ẽ se
ralentiza hasta ser despreciable. De esta forma, Ẽ

∣∣
detectado ∼ En:

Ẽ
∣∣
detectado = Ed

1 + 0 = Ed ∼ En , (6.3)

y hay una clara tendencia a apantallar todos aquellos neutrinos con energías mayores a En, de
forma que siempre nos llegan con energías del orden de En o menores. Así, uno puede darse
cuenta de cómo la escala de energías que dicta la posición del cut-off es En y no E∗. Para
nuestros datos, obtenemos que el valor de esta escala es En ≈ 5 PeV < E∗, lo cual está en
acuerdo con el flujo simulado.

Por último, nos gustaría destacar que, a pesar de que ambas escalas energéticas (E∗ y En) tienen
definiciones completamente diferentes, involucrando constantes de distinta naturaleza elevados
a exponentes diferentes, se conjuntan de tal forma que ambas predicen una escala de energía
característica del orden del PeV, para el valor de Λ que hemos tomado (Λ = 0.008MPl):

E∗ =
(
4m2

eΛn
) 1

2+n ∝
(
m2
eΛn

) 1
2+n ∼ PeV (6.4)

En =
(3H0
αn

) 1
5+3n

∝
(
H0Λ3n

G2
F

) 1
5+3n

∼ PeV . (6.5)

De esta forma, notamos cómo el PeV es una escala de energías apropiada para estudiar este
fenómeno, que surge de forma natural de las ecuaciones, y justifica en gran medida los valores
de los parámetros escogidos.

Como posible extensión del trabajo expuesto, cabría considerar la incorporación del neutrino
splitting, así como una distribución de fuentes más realista, sin los cortes artificiales que hemos
tomado en z1 = 0.5 y z2 = 2.0. No obstante, es de esperar que el añadido de estas mejoras no
afecte de modo significativo a las conclusiones de este trabajo.
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