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Prologo

Normalmente, el enfoque clasico a la hora de realizar un andlisis de las propiedades de los grupos
es principalmente algebraico. El objeto del presente trabajo consiste en realizar un andlisis geométrico
de estas estructuras matemadticas, asociando a cada grupo un grafo.

Asi, por un lado analizaremos la relacién entre los grupos y sus grafos de Cayley. Por otro lado,
dotaremos de estructura métrica a estos grafos, lo que finalmente nos permitird definir el concepto de

grupo hiperbdlico.

Finalmente, veremos como utilizando este punto de vista es posible resolver algunos problemas y
estudiar ciertas propiedades para los grupos hiperbdlicos.
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Summary

In this work we discuss the construction of hyperbolics groups.

Firstly, we introduce previous concepts such as the presentation of a group < S | R >, where S is a
set of letters that we call generators and R C F(S) is a set of relations with F(S) the free group over the
set S that we define as follows:

Definition. The free group F(S) is the group consisting of reduced words in S, with concatenation
followed possibly by reduction as group operation. Here reduced means that there is no subword of the
form ss~! or s s

We continue with the defition of Cayley graphs where we differentiate between the directed or
undirected version.

Definition. The directed Cayley graph Cay(G,S) of a group G with respect to a subset S is the graph
whose vertex are the elements of G and an edge from g to % if and only if &7 = gs for some s € S.

If the set S is simetric we can define the undirected Cayley graph identifying the edge from g to A
with the edge i to g.

In this Cayley graph we define a estructure of geodesic metric space which restricts to the word
metric for the elements of G. This metric measures the distance between two points g and £ as the sma-
llest number of letters that contains a word that represents g~ ' 4. The metric in the Cayley graph is the
extension of the word metric to the edges of the graph under the requirement that the group action has
to be an isometry (i.e a bijection that preserves distances).

This action is the extension of the action of the group on itself by left translation,

$:GxG—G
(8,h) — ¢(g,h) = gh

In the third chapter we introduce the notion of quasi isometry.

Definition. Let (X1,d;) y (X»,d>) be metric spaces and let f : X; — X> be a map from X; to X,. We
say that f is a (A, €)-quasi isometric embedding if there are constants A > 1 y € > 0 such that for any
X,y € X; we have:

7di(x,y) =€ <da(f(x), f(y) < Adi(x,y) + €

Also if there is C > 0 with the property that for any x, € X, exist x; € X; such that d>(f(x1),x2) < C
then f we say (A, €)-quasi isometry. In this case X; and X, are quasi isometric.

Using these type of maps we can relate two possible Cayley graphs of a group G associated to dif-
ferent generating families S; and S,. More precisely, we can prove that in that situation there is a quasi
isometry between Cay(G,S;) and Cay(G,S>).



VI Summary

The following result, Svarc-Milnor lemma, relates the geometry of a group with the geometry of the
metric spaces on which the group acts. This is the topological formulation.

Lemma 0.1. Let G be a group acting by isometries on a locally compact geodesic metric space (X,d).
Furthermore suppose that this action is proper and cocompact. Then G is finitely generated, and for all
x € X the map:

(G,ds) — (X, d)
g gx

is a quasi isometry.

Next, we consider Gromov hyperbolic spaces. Later on, we will consider groups acting nicely on
these spaces. To do that we need a series of definitions.

Definition. The geodesic metric space X is hyperbolic if there exists 6 > 0 so that for any geodesic
triangle [x,y] U [y,z] U [z,x] and any p € [x,y] there exists some g € [y,z] U [z,x] with d(p,q) < &

As examples of hyperbolic spaces we consider spaces of finite diameter, trees and the hyperbolic
plane.

One of main results of this chapter is the following:

Corollary 0.2. If the geodesic metric spaces X,Y are quasi isometric, then X is hyperbolic if and only
if Y is hyperbolic.

This allows us to define the hyperbolic groups as follows:

Definition. The finitely generated group G is hyperbolic if its Cayley graph respect to any finite sym-
metric generating family is hyperbolic.

And using the Svarc-Milnor Lemma we get:

Lemma 0.3. If one group G acts properly and cocompact on the hyperbolic metric space X, then G is
a hyperbolic group.

As first examples of hyperbolic groups we consider finite and free groups. Later, we consider the
family of triangle groups, which are groups given by the presentation:

G=<a,b,c | A=b=c*= (ab)" = (be)™ = (ac)l =1>

where n,m, [ are either positive integers or oo.

These groups can be interpreted as simmetry groups of certain tesselations by triangles of either the
Euclidean plane, the surface of the sphere or the hyperbolic plane. We show that in the hyperbolic case,

which corresponds to the case when

1 1 1
-+—+-<1
n m [

these groups are in fact hyperbolic. To do that we use the action of these groups on the Poincaré model
for the hyperbolic plane.

Finally, we talk about the word problem. Let < S | R > be a finite presentation of a group G. The
word problem is to decide whether given a word @ € FF(S) it represents the trivial element of G or not.
We prove:

Theorem 0.4. The word problem is solvable for hyperbolic groups.
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Capitulo 1

Conceptos Previos

A continuacién vamos a describir herramientas que nos seran utiles a medida que avancemos en la
descripcién del trabajo.

1.1. Grupos

Definiciéon. Un grupo G es un conjunto con una operacion binaria interna asociativa * , con elemento
neutro e inverso para cada elemento.
Un grupo G se dice abeliano (o conmutativo) si * es conmutativa: a «b = b*a para todo a,b € G.

Definiciéon. Un subgrupo H de un grupo G es un subconjunto H C G que es un grupo con la operacién
heredada de G y se denota H < G.

Definiciéon. Un subconjunto S de un grupo G es una familia generadora si no hay ningdn subgrupo
H < G que contenga a S. Esto es equivalente a que cada elemento del grupo se puede expresar como un
producto finito de elementos del subconjunto y sus inversos.

Definicion. Un subgrupo N de un grupo G se dice normal si g~'Ng = N para todo g € G y se denota
N < G. Asi, G/N tiene estructura de grupo cociente.

Definicion. Un homomorfismo entre dos grupos (G,.) y (H,.) es una aplicacién f : G — H tal que
f(ab) = f(a)f(b) paratodo a,b € G.

Definicion. Una accidn de un grupo (G,*) sobre un conjunto X es una aplicacion ¢ : G x X — X que
cumple:

1. Vx € X, ¢(e,x) = x donde e es el elemento neutro del grupo.

2. VxeX, g,h € G, Pgun(x) = ¢g 0 ¢p(x) donde:

g : X=X
x> 9(g,x)

Para simplificar la notacién la operacién del grupo se denota por yuxtaposicion, es decir g xh = gh.

1.1.1. Grupos libres

Veamos la construccion del grupo libre. Sea S un conjunto de simbolos S = {si,s2,...,,} ¥
S~ = {sl’l,sz’ t ...,5;'}. Llamaremos letras a los elementos de SUS™! y palabra a la yuxtaposicién de

letras. Denotaremos s7 = s;...5; y §; " = s[l ...s[l. Diremos que s; Ies el inverso de S;.
~—~—

n veces n veces
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Definicién. Una reduccion consiste en eliminar dos letras consecutivas de la forma ss™" o s 's.
Una palabra es reducida si no admite ninguna reduccion, es decir si no tiene dos letras consecutivas de

la forma ss— ' o s~ ls.

Ejemplo 1.1. Tomamos S={a,b,c}. Una palabra (no reducida) en S seria a’b’acc™'a"'c y a’b’c es

una palabra reducida.

Definicién. Llamamos grupo libre sobre S al conjunto de todas las palabras reducidas en SUS™! con
la operacién interna consistente en la concatenacién seguida posiblemente de una serie de reducciones
y cuya identidad es la palabra vacia, es decir, la palabra que no tiene ninguna letra. Lo denotaremos por
F(S).

Otra forma alternativa, es definir el grupo libre sobre S como el conjunto de clases de equivalencia
en el conjunto de palabras en SU S ~! respecto a la relacién de equivalencia generada por:

/

w=0w << © esunasreduccién de ® o al contrario

1.1.2. Presentaciones de grupos

Vamos a ver que una presentacion es una forma de definir el grupo mediante dos conjuntos. Para
ello relacionamos cualquier grupo con un grupo libre.

Tomamos un grupo G y una familia generadora S. Cada elemento se puede expresar como producto
de elementos de S, aunque no necesariamente de modo tnico. Por tanto existe un homomorfismo supra-
yectivo ¢ : F(S) — G, luego por el primer teorema de isomorfia de grupos tenemos que G = F(S)/N
donde N es el nicleo de ¢. Como resultado, todo grupo G se puede poner como el cociente de un grupo
libre por un subgrupo normal.

Definicién. Sea R una coleccién de palabras de F(S) tales que N(R) es el menor subgrupo normal que
contiene a R. Entonces < S | R > es una presentacion del grupo F(S)/N(R).

Diremos que G es un grupo finitamente presentado si existe S = {sy,...,s, } conjunto generador de G y
R =ry,...,r, un conjunto de relaciones entre los elementos de S tales que G = < S | R >. Si § es finito,
el grupo se dice finitamente generado.

Ejemplos.

l. <y|_>=<y] >=7

2. <a,b | a* b* ab = ba® > Es una presentacién del grupo diédrico Dy que es el grupo de los
movimientos del plano que fijan un cuadrado donde a es un giro y b es una simetria.

3. Denotaremos al grupo libre generado por n elementos por F,=< aj, ..., ay| >,

En las relaciones en las que un elemento de la igualdad es el neutro del grupo se suele omitir.



Capitulo 2

Grafos de Cayley

El objetivo de este capitulo es asociar a un grupo G y una familia generadora S un grafo de Cayley,
al que dotaremos de una estructura de espacio métrico. Esto nos permitird obtener informacién acerca
de las propiedades de dicho grupo.

2.1. Definicion y ejemplos

Definiciéon. Un grafo es un conjunto de puntos a los cuales llamamos vértices y copias del segmento
[0,1] conectando pares de estos vértices que se llaman aristas. Consideraremos que los interiores de
estas aristas son disjuntos, es decir no se cortan unas con otras.

El grafo se dice dirigido si las aristas tienen una orientacion.

Definicion. El grafo de Cayley dirigido, Cay(G,S) de G respecto de un subconjunto S es el grafo cuyos
vértices son los elementos de G y cuyas aristas son los pares ordenados (g, /) talesque 3s €S h=gs
(es decir g~ 'h € §) y la orientacion de la arista (g, ) de g a h.

Si el conjunto S es simétrico, es decir, sit € S = ¢t~ € S, entonces también se puede definir el grafo de
Cayley no dirigido en el que se identifican las aristas (g, gs) y (h,hs~') con h = gs en G y no se considera
la orientacion. Si no especificamos nada se entenderd que S es simétrico y Cay(G, S) no dirigido.

Mas adelante definiremos una métrica en este grafo de manera que la longitud de las aristas sea 1.

El grafo depende del conjunto S. Tomaremos como subconjunto S una familia generadora de G, lo
que hace al grafo conexo y si el neutro no estd en S no tendremos lazos en el grafo. Ademads, aunque
el grafo sea dirigido, identificaremos las aristas de la forma (g, gs) y (h,hs~") cuando & = gs y tanto s
como s~ ! estén en S.

Sea G=(Z,+) tomamos S; = {1} (conjunto generador) o S,={+1} (conjunto generador y simétrico)
para construir el grafo de Cayley.

Cay(Z,{1}) (Dirigido)

Cay(Z,{+£1}) (No dirigido)

— o — 00— — 00— 00—

A continuacién veamos algunos ejemplos y construcciones de grafos de Cayley de algunos grupos.

3



4 Capitulo 2. Grafos de Cayley

Ejemplo 2.1. Cay(Z,,{£1}) (No dirigido)

Nos referimos a Z, como el grupo aditivo de los enteros médulo n. Su grafo serd un poligono de
n lados, identificando cada vértice con un elemento de Z,. Como tenemos S = {£1} cada elemento i
estard enlazado solo con otros 2.
Veamos como quedaria un ejemplo mds concreto, n=6.

Figura 2.1: Cay(Ze,{£1})

Ejemplo 2.2. Cay(Z?,{(0,£1),(%£1,0)}) (No dirigido)

El conjunto Z? = {(m,n)|m,n € Z} tiene estructura de grupo aditivo. Podemos observar que el grafo
de Cayley es una cuadricula infinita de R?

Figura 2.2: Cay(Z?,{(0,£1),(£1,0)})

Ejemplo 2.3. Cay(S3,{(1 2),(1 2 3)})(Dirigido)

Sea S3 el grupo simétrico de grado 3, es decir el grupo formado por las permutaciones de 3 elemen-
tos. Utilizaremos la notacion por ciclos para denotar sus elementos. Todos los elementos del simétrico
de orden 3 son S3 = {id, (1 2),(1 3),(2 3),(1 2 3),(1 3 2)}. Veamos algunos productos entre ellos
que nos son Utiles para la construccién del grafo:

(12)(123)=(13)
(23)(123)=(12)
Si realizamos todos los posibles productos nos quedaré el siguiente grafo:

id (132)
123

23)
(12) (13)

Figura 2.3: Cay(S3,{(1 2),(1 2 3)})
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Ejemplo 2.4. Cay(S3,{(1 2),(2 3),(1 3)}) (No dirigido)

En este caso tenemos el mismo grupo que en el ejemplo anterior, sin embargo hemos escogido otro
conjunto de generadores y el grafo obtenido es diferente.

id (12)
(13) (123)

(132) (23)

Figura 2.4: Cay(S3,{(1 2),(2 3),(1 3)})

Ejemplo 2.5. Cay(D4,{a,b}) (Dirigido)

Tomamos la siguiente representacién del diédrico Dy=< a,b |a*,b?,ab = ba®> y mediante sus rela-
ciones operamos entre los elementos del grupo los cuales son Dy = {id ,a,az,a3,b,ab,a2b,a3b}.

ab = ba® a*b = ba?

b a’b =ba

Figura 2.5: Cay(D4,{a,b})

Ejemplo 2.6. Cay(F,,{a™!,b*'})(No dirigido)

Tomamos el grupo libre con dos generadores y fijamos la identidad como el nodo central del grafo.
Este nodo estar enlazado S = {a*!,b*!} con sus cuatro elementos, los cuales serdn nodos del grafo.
Haciendo esto en cada uno de los nodos resultantes obtenemos:

T

S

ST 1
+$ {_ﬁ

RN

T

Figura 2.6: Cay(F,, {a*!,b*'})
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2.2. Meétrica de los grafos

Una vez definido el grafo de Cayley vamos a definir una nocién de distancia para dotarlo de estruc-
tura de espacio métrico.

Definicién. Llamamos espacio métrico al par (X,d) donde X es un conjunto y d es una aplicacién
d : X x X — R llamada distancia o métrica que satisface:

» d(x,y) >0paratodox,y€e X yd(x,y) =0<x=y
» d(x,y) =d(y,x) paratodo x,y € X
» d(x,y) <d(x,z) +d(z,y) para todo x,y,z € X

Definicién. Sea (X,d) un espacio métrico. Una isometria es una aplicacién biyectiva ¢ : X — X que
conserva las distancias, es decir, tal que:

d(x,y) = d(¢(x),¢(y))

para cualesquiera x,y € X

Podemos asignar a cada arista e del grafo un nimero positivo /(e) al cual llamamos longitud. Me-
diante esta asignacién podemos definir una pseudo-métrica de la siguiente manera:

Fijamos para cada arista e un homeomorfismo ¢, : ¢ — [0,1] y definimos una funcién auxiliar
p(x,y) =1(e)|de(x) — P (y)| six,y € ey p(x,y) = oo si ocurre lo contrario.

Asi definimos la distancia:

d(x,y)= _ inf Y p(xi,xit1)

X=X0y - Xn =Y

siendo {x;} una cadena de x a y; es decir un conjunto ordenado de puntos xo, ..., x, del grafo con
X=Xy Y=Xn.

Lema 2.1. En la definicién anterior el infimo se puede calcular considerando solamente aquellas ca-
denas x = xqy,X1,...,xX, =y para las que los puntos xi,...,x,—1 son vértices del grafo.

Demostracion. Supongamos que Y {p (x;,xi+1)|x; 6 x;4+1 no es vértice } es finita. Entonces si x; no es
vértice tanto p(x;,x;+1) como p(x;_1,x;) son finitos de manera que x;_; y x;41 estdn contenidos en la
misma arista que x; si i # 0,n.

Eliminando estos x; intermedios que no son vértices no aumentamos el valor de la suma por la
desigualdad triangular p (x;—1,x;+1) < p(xi—1,%) + p(xi,xi+1) y de esta forma encontramos una nueva
cadena en las condiciones del enunciado de forma que la suma de los valores de p entre los puntos
consecutivos es menor o igual que la de la cadena inicial. O

La tdnica razén por la que la distancia podria no estar bien definida es que a priori el infimo po-
dria ser cero. Pero esto es imposible para x # y siempre que haya limite inferior en la longitud de las
aristas. Luego hemos definido una métrica sobre el conjunto de puntos que forman el grafo y por tanto
Cay(G,S) es un espacio métrico.
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2.2.1. Meétrica de la palabra

Una vez hemos definido la métrica en los grafos de Cayley si hacemos una restriccién a los puntos de
G, es decir a los vértices de nuestro grafo, la métrica resultante es la llamada métrica de la palabra. Esta
métrica mide la longitud més corta posible de un camino entre dos elementos de G en el grafo de Cayley.

Explicitamente, dado un elemento g € G definimos ||g||s como el menor nimero de letras de S que
puede contener una palabra que represente a g, es decir ||g||s = min{n| Is1,....,5, €S g=151"...-Sn}.
De esta forma, dados g,4 € G definimos la distancia de g a & como:

ds(g,h) = ||g 'h||s = min{n|3s1,...,s, €S g 'h=1s1-...-5,}

Observamos que la métrica cambia si cambiamos la familia generadora.

Ejemplo. Tomamos Z?y S = {(0,£1),(=£1,0)}. Calculemos la distancia entre g=(0,0) y h=(2,1). Para
ello, calculamos algunas palabras que representan a g~ ' A.

Una palabra que lo representa es (0, —1)+(1,0)+(1,0)+(1,0)+(0,1) +(0,1) 4 (—1,0) cuya lon-
gitud es 7, sin embargo tanto (1,0) + (1,0)+ (0,1) como (0,1) + (1,0) 4 (1,0) también lo representan
y tienen longitud 3. Por definicién ds(g,h) = ||g~'hls = 3.

Como observamos en este ejemplo un elemento puede estar representado por varias palabras de
distinta longitud. Ademds, no hay unicidad en la palabra que tiene el menor nimero de letras.

2,1)
(0,0) o—o—I ° °
° ° . ° °

Por simplicidad denotaremos d(g,h) y ||g~'h||, es decir, omitiremos el subindice si el conjunto §
tomado para definir la métrica estd claro.

Teorema 2.2. La métrica de la palabra es una métrica

Demostracion. Veamos como dados dos puntos g,h € G, la aplicacién d : G x G — R tal que
d(g,h) = ||g"'h|| es una métrica.

» d(g,h) > 0 paratodo g,h € G puesto que hemos definido la distancia como el menor nimero de
letras que contiene una palabra que representa g~ ' h

» d(g,h) =0< g=hparatodo g,h € G.
d(g,h) =0« ||g7'h|| = 0 < g~ 'h viene representado por la palabra vacia <> g = h

» d(g,h) =d(h,g) para todo g,h € G. Supongamos que d(g,h) = n, entonces existen sy, ...,5, € S
tales que g~ 'h =5 -...-s,. Portanto (g'h) "' =h~lg=(s;-...-s,) "' =s,!-...-s; . Esta palabra
es reducida ya que s; - ... -5, lo es, pero ademds podemos asegurar que (s; -...-s,) ' tiene longitud
minima porque si no fuese asi, al hacer el inverso encontrarfamos una palabra con longitud menor
lo que contradeciria que d(g,h) = n.

» d(g,h) <d(g,l)+d(l,h) se cumple ya que

llg~'hll = [lg="11~"hl| = |lg~"'7]| + [~ k|| para todo g, .l € G
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2.3. Espacios métricos geodésicos

Fijamos un espacio métrico X. Un camino a en X es una aplicacién continua o : [0,1] — X. La
longitud de un camino & viene dada por:

l(a) = sup Y d(a(t),a(tisn))

0=1<...<t,=1

Definicién. Un camino es una geodésica si l(a) = d(o(0), a(1)). Un espacio métrico X es un espacio
geodésico si todo par de puntos en X estdn conectados por una geodésica no necesariamente tnica.
Dados puntos x e y en un espacio geodésico X, [x,y| denotard un camino geodésico entre x e y.

Teorema 2.3. Un grafo de Cayley es un espacio métrico geodésico.

Demostracion. Dados dos puntos g, & pertenecientes a G, es facil ver que estdn conectados por una geo-
désica que viene dada por una palabra que representa a g~ '/ y que tiene menor longitud posible. Otro
caso facil es cuando tenemos dos puntos en la misma arista.

Vamos a considerar dos puntos x,y € Cay(G,S). Por el lema 2.1 sabemos que en la definicién de
distancia basta considerar las cadenas {x;} tales que x; € G para i # 0,n, donde xy = x y x, = y. Con
esto la distancia entre ambos puntos la podemos poner de la siguiente manera:

d(x,y) = inf{d(x,g)+d(g,h)+d(h,y)ld(x,g) < 1,d(h,y) <1cong,h € G}

El infimo en realidad es un minimo porque como mucho hay dos g’s y dos h’s que satisfacen
lo anterior y se alcanzard con la concatenacién de las geodésicas de x a g, de gahydehay
(d(x,y) = d(x,8) +d(g,h) +d(h,y)) O

2.4. Accion de un grupo G sobre los grafos de Cayley

Sea G un grupo y S una familia generadora simétrica que consideramos fija. Supongamos que G
actda sobre si mismo con la multiplicacién a izquierda, es decir:

$:GxG—G
(8,h) — ¢(g,h) = gh

Dado g € G, consideramos la aplicacion ¢, tal que:

0,:G—G
h— ¢(g,h)

y calculamos para hy,hy € G:

d(Pg(h1), 9¢(h2)) = d(ghi,gh2) = ||(gh1) " ghal| = |hy g~ ghal| = ||y "ol = d(h1, h2)

Como vemos @, es una isometria y por tanto G actiia por isometrias en si mismo. Nos gustaria
extender dicha accidn a través de las aristas para que actde por isometrias en todo el grafo de Cayley
respecto a una familia S.

Sean g,h1,hy € G, si existe una arista que une /; y h; hay una arista que une gh; con ghy. Esto es
debido a que si existe una arista que une 4; con %, entonces hl’lhz € S luego h]’1 g 'ghy € Sy por tanto
(gh1)~'ghy € S. De esto se deduce que existe una arista que une ghy con gh;.

Para los puntos x de la arista entre /; y hy, definimos ¢, (x) como el Gnico punto entre gh; y gh, que
satisface d(gh1, ¢,(x)) = d(hy,x). De esta manera,
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¢, : Cay(G,S) — Cay(G,S)
X — Pg(x)
es una isometria de Cay(G,S) y podemos definir:

¢ : G x Cay(G,S) — Cay(G,S)
(g,X) — ¢g(x)

que es efectivamente una accién de G en Cay(G,S). Para verlo vamos a considerar primero el caso en
el que los puntos implicados sean vértices, es decir, elementos de G.

l. ¢§.(h)=eh=nh
2. ¢, (¢82 (h)) = g, (g2h) = g1g2h = q)glgz(h)

Sea ahora x un punto del grafo de Cayley situado en alguna arista, supogamos que los vértices de la
arista sean hy y hy:

1. ¢.(x) = x ya que por definicién ¢, (x) estd en la arista entre eh; = h; y h, y el tnico elemento de
esta arista que cumple la condicién de la definicién es el mismo x.

2. ¢g (¢gz (x)) = g, (x) ya que:
0q,4,(x) es el punto en la arista gig2h1 y g182h2 con d(hi,x) = d(g182h1,Pg, e, (%))

., (x) es el punto en la arista entre g>h; y g2ho con d(hy,x) = d(g2hi, g, (x)). Aplicamos a este
punto ¢, luego ¢, (¢, (x)) es el punto en la arista g1g2h1 y g182h2 cond (hy,x) = d(g182h1, Pg, (Pg, (X))

Por tanto tenemos dos puntos en la arista entre g g>h1 y g182/h> con:
d(gnghh(Pglgz(x)) = d(hlax) = d(gnghla(Pgl (‘sz(x)) = ‘Pglgz(x) = (Pgl (‘sz (x))

Una propiedad de la accién que hemos definido es que es propia.

Definicion. Una accién de un grupo G en un espacio métrico X es propia si para todo x € X existe una
bola Uy C X de forma que hay solo un niimero finito de elementos de G que llevan x a U,, es decir el
cardinal del conjunto {g € G|xg C U,} es finito para todo x € X.

Podemos comprobar que nuestro caso la accion es propia ya que basta tomar bolas de radio menor
que uno.
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Capitulo 2. Grafos de Cayley



Capitulo 3

Cuasi isometrias

En el capitulo anterior hemos asociado a un grupo G y a una familia generadora finita S una métrica
dg con la que podemos dotar al grafo Cay(G,S) de una estructura de espacio métrico geodésico. Tanto
la métrica dg como el grafo Cay(G,S) dependen de la familia generadora S. Las cuasi isometrias nos
permitirdn relacionar estos objetos distintos.

Definicion. Sean (X;,d;)y (X3,d>) dos espacios métricos. Se dice que una funcién (no necesariamente
continua) f : X; — X, es una (A, €)-cuasi isometria encajada si existen constantes A > 1y € > 0 tales
que para todo x,y € X; se cumple:

7di(x,y) =€ <da(f(x), f(y) < Adi(x,y) + €

Ademds si existe C > 0 con la propiedad de que para todo x; € X existe x; € X tal que da(f(x1),x2) < C
entonces f se dice (A, €)-cuasi isometria y X; se dice cuasi isométrico a X5.

Podemos modificar la primera desigualdad de la definicién de una cuasi isometria encajada ob-
teniendo d;(x,y) < Ada(f(x),f(y)) + A€, esta desigualdad nos serd util mds adelante. Ademds cabe
destacar que los pardmetros toman un rol secundario, lo importante es la existencia de estos para poder
obtener propiedades de las cuasi isometrias.

Una funcién es (K,0)-cuasi isometria encajada si es bi-Lipstchitz.
Definiciéon. Una funcion f : X; — X» es bi-Lipstchitz si existe un K > 1 tal que:

%dl (X,y) < dQ(f(x)af(y)) < Kd, (X,y) conux,y € X

Las cuasi isometrias no mantienen las distancias entre los dos espacios métricos sin embargo la dis-
tancia de las imdgenes queda acotada por un valor que depende de la distancia entre los puntos.

Definicion. Sea f: X; — X, una aplicacion entre espacios métricos. Diremos que g : X, —> X es una
cuasi inversa de f si existe D de modo que para cada x; € X; se cumple d;((go f)(x1),x1) < D'y del
mismo modo para cada x, € X tenemos da((f og)(x2),x2) < D.

Veamos algunas propiedades de las cuasi isometrias encajadas y cuasi isometrias.

Proposicion 3.1. La composicion de cuasi isometrias encajadas (cuasi isometrias) es una cuasi isome-
tria encajada (cuasi isometria).

Demostracion. Sea f: X — Y una (As, €r)-cuasi isometria y g : ¥ — Z una (A4, &)-cuasi isometria
encajada. Para cada x,y € X tenemos:

dx(go f(x),g0 () = dx(g(f(x)),8(f () < Aedy (f(x), f(¥)) + & < AgAsdx (x,y) + AgEf + &

11
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dx (8(F(2)). 8(F0))) > -y (F(x), F(3)) — & > 1 (L (x.y) — &) — & > - dx(x,y) — (hey +80)
Por tanto como vemos la composicion es una (A,Ar, A,€7 + €,)-cuasi isometria encajada.

Veamos ahora el caso en el que tanto f como g son cuasi isometrias. Queremos ver que existe una
constante C tal que para todo z € Z encontramos un x € X tal que d(go f(x),z) < C. Por hipétesis existen
x e Xtalque d(f(x),y) <Cryye Ytal qued(g(y),z) < Cy de modo que:

d(g(f(x)),z) <d(g(f)(x),8(y)) +d(g():2) < Aed(f(x),y) + &+ Co < ACr+ &+ C

Por tanto la composicion es también una cuasi isometria.
O

Proposicion 3.2. Sea f una cuasi isometria encajada. Entonces f es una cuasi isometria < tiene cuasi
inversa. Ademds la cuasi inversa es una cuasi isometria.

Demostracion. =) Supongamos que f : X — Y es cuasi isometria, es decir existe una constante C de
manera que para todo y € Y existe x € X tal que dy(f(x),y) <C.

Para cada y € Y elegimos un x € X que cumpla que dy(f(x),y) < C (basta tomar x en la preimagen
de la bola con centro en y y radio C) y definimos g(y) := x

Por otra parte:

dx(8(f(x)),x) < Apdy(f(8(f(x))), f(x)) +Arer < AsC+ Ases

Luego g es una cuasi inversa. Veamos que ademds g es cuasi isometria. Sabemos que existe una
constante D tal que dy(y;, fog(y;)) < D parai = 1,2 porque g es cuasi inversa de f. Entonces:

dx(8(31),8(v2)) < Ardy(f(g(31)), f(g(y2))) + Arer < Afldy(fog(y1):y1) +dy(y1,y2)+
+dy(y2, fog(n2))| + Arer < Ap[2D+dy(y1,y2)] + Arep < Ady(y1,y2) + As[2D + €]

Dados yi,y, € Y tales que g(y1) = x1 y g(y2) = x2 tenemos dy(f(x1),y1) < Cy dy(f(x2),y2) <C,
por tanto:
dy(y1,y2) <dy(y1, f(x1)) +dy(f(x1), f(x2)) +dy(f(x2),y2) < 2C+ Asdx(x1,x2) + &5

20
Donde obtenemos que /%fdy(yl,yz) — ;fgf <dy(g(y1),8(y2))-

Asi que g es cuasi isometria.

<) Supongamos que g es la cuasi inversa de f, entonces existe una constante D de forma que para
todoy €Y dy(fog(y),y) <D. Queremos probar que Vy € ¥ 3x € X tal que dy(f(x),y) < C. Por tanto
basta tomar x = g(y) yC=D O

Corolario 3.3. Ser cuasi isométricos es una relacion de equivalencia entre espacios métricos.
Demostracion. Es reflexiva, simétrica por la proposicion 3.2 y transitiva por la proposicion 3.1 O

Z y 27 con la distancia usual no son espacios isométricos ya que en Z hay puntos a distancia 1
mientras que en 27 la minima distancia entre dos puntos diferentes es 2. Sin embargo estos espacios
métricos son cuasi isométricos. Es claro que la inclusién i : 2Z — Z es una cuasi isometria encajada,
pero podemos definir ademas la aplicacién:
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7 — 27,
PN n sin €27
n+1si ne2Z

que también es cuasi isometria y es cuasi inversa de i.

3.1. Relacion entre los grafos de Cayley y las cuasi isometrias

Vamos a relacionar los distintos grafos de Cayley de un grupo que provienen de tomar distintas
familias generadoras finitas mediante las cuasi isometrias.
Proposicion 3.4. Sea G un grupo y S1,S» dos familias generadoras simétricas finitas de G. Entonces
hay una cuasi isometria entre Cay(G,S;) y Cay(G,S»).
Demostracion. Consideramos una composicion:

Cay(G,$)) -5 (G,ds,) L (G, ds,) = Cay(G, S,)

Primero demostramos que (G,ds, ) LN Cay(G,Sy) es una cuasi isometria encajada para k = 1,2. Si
tomamos un elemento x perteneciente al espacio métrico (G,ds,) y le aplicamos la inclusion ird a un
vértice de G. Recordamos que si restringimos la métrica del grafo de Cayley a los vértices tenemos la
métrica de la palabra, es decir ds,, de modo que para estos puntos la distancia serd la misma al aplicarle

la inclusién por tanto podemos tomar A = 1 para que se cumplan las desigualdades de la definicién de
cuasi isometria encajada.

Por otro lado, dado un y € Cay(G, Sy) existe un x € G tal que ds, (y, f(x)) < 1, esto es debido a la
forma en la que hemos hemos definido la métrica en el grafo de Cayley cuyas aristas tienen longitud 1.
Por tanto la inclusion es una cuasi isometria.

Como la inclusién es una cuasi isometria, por la propiedad 3.2 tiene una cuasi inversa

Cay(G,Six) — (G,ds,) y esta ademas es cuasi isometria. Tomamos Y como esta cuasi inversa para

k=1.

Por la proposicién 3.1 tendremos una cuasi isometria entre los grafos de Cayley si la aplicacion
id: (G,ds,) — (G,ds,) lo es.

Para ello vamos a tomar A = max{||xz||s,, [|x1]|s,] x1 € S1 x2 € S2} y e =0.

Supongamos que ds, (g,h) = m entonces podemos escribir g~ ' =5 - ... s, con s; €81, yasuvez
podemos escribir los elementos s; como elementos de S5:

St Sm= (St e St ) (52,1 oo S2.05) o (S 1+ oe SmM,,)
con M; <Ay s;; € S>. Entonces:
ds,(g.h) = || (g~ "'h)lls, < mA = Ads, (g,h)
Con un argumento similar obtenemos ds, (g,h) < Ads,(g,h) y entonces se cumple:

%dsl (g7h) < dSz(gah) < Ads] (gvh)
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Por tanto la identidad es una cuasi isometria encajada.

Ademds si tomamos la aplicacién id' : (G,ds,) — (G,ds,) se cumple ds, (id oid'(x2),x2) =
= d52 (Xz,Xz) = ( para todo x; € (G,d52) y dgl (id’ o id(xl),xl) = dS| (x1 ,xl) =0 para todo x; € (G,dsl )
y por la proposicién 3.2 id : (G,ds,) — (G, ds,) es una cuasi isometria. O

La condicién de que las familias generadoras S1 y > sean finitas es necesaria para que la aplicacion
id : (G,ds,) — (G,ds,) se pueda extender a una isometria entre los grafos de Cayley. Para verlo vamos
aconsiderar Z con S} =Zy S, = {1}. En el primer caso, la familia generadora no es finita y observamos
que (Z,dy) tiene didmetro finito, todos los elementos estdn a distancia 1 de los demds, al contrario que
(Z,dy1) que tiene didmetro infinito. Por lo tanto no podremos encontrar constantes que nos cumplan
las desigualdades de la definicion.

3.2. Lema de Svarc-Milnor

Este lema, también llamado Lema fundamental de la teoria geométrica de grupos une la geometria
de los grupos con la geometria de espacios métricos. Veremos dos enunciados diferentes del mismo
lema, la primera en términos de cuasi isometrias.

Definicién. Sea (X,d) un espacio métrico y ¢,b € R-¢. Llamamos (c,b)-cuasi geodésica en X a una
(¢,b)-cuasi isometria encajada y: I — X donde I = [t,#'] C R es un intervalo cerrado. Diremos que
¥(t) es el extremo inicial y y(¢’) es el extremo final.

Ademés diremos que X es espacio (c,b)-cuasi geodésico si para todo x,x” € X existe una (c,b)-cuasi
geodésica con el punto inicial en x y punto final en x’.

Notemos que un espacio geodésico es un espacio cuasi geodésico (en particular (1,0)-cuasi geodé-
sica ) pero el reciproco no siempre es cierto.

Observamos que la imagen de una geodésica por una cuasi isometria no es necesariamente una geo-
désica. Sin embargo es facil comprobar que es una cuasi geodésica aplicando la proposicion 3.1.

Definicién. Definimos didmetro de un conjunto U C X como:
diam U= sup, ., d(x,y)
y ponemos para ¢ > 0
No(U)={xeX|FyeUd(x,y) <a}

Lema 3.5. Sea G un grupo que actiia por isometrias sobre un espacio métrico (X,d). Supongamos que
hay dos constantes c,b € R~ tales que X es (c¢,b)-cuasi geodésico y que existe un conjunto U C X con
las siguientes propiedades:

i Eldidmetro de U es finito.

it Las G-traslaciones de U cubren todo X, es decir

U gU =X
geG

iii El conjunto S :={g € G| gU'NU’ # 0} es finito, donde

U' = Ny (U)
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Entonces:
1. El grupo es generado por S; en particular G es finitamente generado.

2. Para todo x € X, la aplicacion:

(G,ds) — (X, d)
g gx

es una cuasi isometria (respecto la métrica de las palabras ds en G)

Demostracion. Veamos que S genera G. Para ello tomamos g € G y veamos si estd en el subgrupo ge-
nerado por S.

Sea x € U. Como X es un espacio (c,b)-geodésico hay una (c,b)-cuasi geodésica y: [0,L] — X
que empieza en x y termina en gx.

L
Podemos tomar una particién del intervalo [0, L], tomando n = chj para j € {0,...,n} definimos:
t=J¢
asi 9 =0, t, = L'y denotamos x; = ¥(t;) para j € {0,...,n}.

De esta manera tenemos:

xo = Y(to) =x y  x=7YL)=gn~

Como las traslaciones de U cubren todo X, hay elementos del grupo g; tales que x; € g;U. En particular
podemos tomar go =ey g, = g.

Para todo j € {0,...,n} el elemento del grupo s; = glﬂlgj estd en S porque si ¥ es una (c,b)-cuasi
geodésica se cumple que:

b
d(xj,l,xj) Scd(l‘j,hl‘,‘)—f-bgdt,;l—li|+b§67+b§2b
' ' ' c
. . b b
donde hemos aplicado que |tj_1 —tj| =|(j—1)— — j—|
c ‘¢

Asi que x; € Nop(gj—1U) = gj—1N2»(U) = gj—1U’ (Estas igualdades son correctas debido a la hipé-
tesis de que G actia por isometrias en X).
Por otra parte:
xjegiUu ngU/ = Xj Egj;lU/ﬂng/ <0

Y por definicién de S tenemos que g]_llgj S

En particular,

Sn Sn—1
1 1
8=81=8n-18,_180n = 8n—28p_28n—151 = ... = 80S1 "+ Sy =81 ... 5, €G

Vamos a probar ahora la segunda parte del enunciado, es decir que (G,ds) es cuasi isométrico a
(X,d). Sea x € X,veamos que la siguiente aplicacién es cuasi isometria:

¢:(G,ds) — (X,d)
g—>gx
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Sea x € U (estamos en la misma situacién que en la primera parte de la demostracién), ¢ es una
cuasi isometria porque:

1 1b(n—1 b b
A(9(e), 9(s) = d(x,g5) = d(1(0), (L) > L —p> LDy by by
b b
cfzds(&g)— Ci—b
Suponemos que ds(e,g) = n, luego existen s1,....,s, € S =S ' US tales que g = s7 - .... - 5,,. Utilizan-

do la desigualdad triangular, el hecho de que G actda por isometrias y que s;U'NU’ # 0 para todo
j=1{0,1,...,n} obtenemos:

d(p(e),0(g)) =d(x,gx) < d(x,51x) +d(51X,5152X) + . +d(S]*ee " Sp_1X, 81 oo - SpX) =
d(x,s1x) + (x,52%) + ... + d(x,5,x) < 2n(diam U + 2b)

Luego ¢ es una cuasi isometria encajada ya que podemos aplicar estas desigualdades para cualquier
pareja g, de elementos de G porque d(¢(g), @(h)) = d(¢(e), @(g~'h)) y ds(g,h) = ds(e,g'h).
Ademads si X' € X, hay un g € G tal que X' € gU. Como gx € gU tenemos:
d(x',9(8)) =d(X,gx) <diam gU = diam U

Luego ¢ es una cuasi isometria.
O

Definicion. Diremos que una accién es cocompacta si se cumplen las hipdtesis i y ii del lema de
Svarc-Milnor.

El lema de Svarc-Milnor se puede formular desde un punto de vista topolégico en el cual toman
mayor importancia las propiedades de la accién del grupo sobre el espacio métrico.

Lema 3.6. Sea G un grupo que actiia por isometrias en un espacio métrico geodésico localmente
compacto no vacio (X,d). Si la accion es propia 'y cocompacta entonces G es finitamente generado y
para todo x € X la aplicacion:

(G,ds) — (X,d)
g—>g-X

es cuasi isometria.



Capitulo 4

Espacios hiperbolicos de Gromov

La geometria hiperbdlica satisface cuatro de los cinco postulados de la geometria euclidiana. El
quinto postulado dice que “dada una recta r y un punto externo a ella P , hay una y solo una recta
que pasa por el punto y no interseca a la recta” es falso para la geometria hiperbdlica ya que hay al
menos dos rectas que pasan por P y no intersecan a r. En esta seccién vamos a hablar de espacios
métricos hiperbdlicos en el sentido de Gromov. Su definicién serd esencial para caracterizar los grupos
hiperbdlicos.

Definicion. Sea (X,d) un espacio métrico. Un tridngulo geodésico (de vértices x,y,z) es la unién de
geodésicas de la forma A(x,y,z) = [x,y] U [y,z] U [z,x], es decir la union de ¥; : [0,L;] — X tales que:

»(L2) =100)=x Ww(lL)=n0)=y n()=nr0) =z

Diremos, ademds que un tridngulo geodésico es -slim para & > 0 si cada lado estd contenido en un
o-entorno de los otros dos. Es decir:

[, Y] CNs([y,2]Ulz,x]) [,z C©Ns([x,y]U[z,x])  [z,x] C Ns([x,y]U[y,2])

Figura 4.1: Figura de un tridngulo geodésico con dos d-entornos

Definicion. Un espacio geodésico X es 0-hiperbdlico si todo tridngulo geodésico en el es d-slim. Asi
un espacio geodésico es hiperbdlico si es 8-hiperbdlico para algin 6 > 0.

Ejemplos:
1. Espacios geodésicos métricos de didmetro finito X con & = diam X

2. R es O—hiperbdlico ya que todo tridngulo es degenerado, es decir tiene sus vértices colineales o
coincidentes.

3. Por la misma razén que R cualquier arbol (es decir cualquier grafo conexo y sin ciclos) es
0—hiperbdlico.

17
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Sin embargo R? con la métrica usual no es hiperbélico. Sea § € Rx¢, tomamos el tridngulo geo-
désico con los vértices (0,0),(0,30),(35,0). Se puede comprobar que el punto medio (%, %) de la
geodésica [(0,38),(38,0)] no estd en el d-entorno de la unién de las otras dos geodésicas.

(0,38)

La definici6n de espacio -hiperbdlico viene dada en términos tridngulos geodésicos, pero recorde-
mos que la imagen por una cuasi isometria de una geodésica no es necesariamente una geodésica pero
si una cuasi geodésica. Para demostrar la invariancia de los espacios hiperbdlicos por cuasi isometrias
introducimos el concepto de distancia Hausdorff, la cual nos indica la distancia de dos compactos en un
espacio métrico como:

dHAys(A,B) = inf{R A C NR(B) B C NR(A)}

Vamos a enunciar sin demostracion una proposicién necesaria para la demostracion del teorema que
la sigue ya que la demostracion es algo tediosa y no muy interesante.

Proposicion 4.1. Sea X un espacio hiperbélico. Para todo c, b existe una constante D tal que para toda
pareja de c,b-cuasi geodésica p y geodésica y = [x,y| cuyos extremos coinciden, la distancia Hausdorff
entre ambas es a lo sumo D.

Teorema 4.2. Sea X,Y dos espacios métricos geodésicos. Si existe una cuasi isometria encajada
f:X — Y eY es hiperbolico, entonces X también lo es.

Demostracion. Sea 0 la constante para la cual ¥ es hiperbélico. Sea f: X — Y una (A, €)-cuasi iso-
metria y llamamos D a la constante de la proposicién anterior.

Consideramos el tridngulo geodésico [x,y] U [y,z] U [z,x] en X y tomamos un punto p € [x,y]. Apli-
cando f como Y es hiperbdlico existe un tridngulo geodésico d-slim de la forma:

A(f(x), f(), f(2) = [f (), SV IF (), ()] U[f (2), f (%))

La imagen resultante de la geodésica [x,y] por la cuasi isometria serd una cuasi geodésica. Aplican-
do la proposicion 4.1 a esta cuasi geodésica y a la geodésica [f(x), f(y)] obtenemos que para algin p;

en la geodésica [f(x), f(v)] se cumple d(f(p),p1) < D.

Como Y es hiperbdlico, existe algtin p, en una de las geodésicas [f(x), f(z)] o [f(y), f(z)] tal que pa-
ra p; se cumple d(p2, p1) < 8. Sin pérdida de generalidad podemos suponer que p; que estd [f(x), f(z)].

Finalmente por la proposicién 4.1 para p, existe algtn ¢ € [x, z] para el que se cumple que:

d(f(q),p2) <D

Como resultado de estas desigualdades obtenemos que:

d(f(p).f(q)) <d(f(p),p1) +d(p1,p2) +d(p2, f(q)) <2D+6
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Por tanto, como f es una (A, €)-cuasi isometria tenemos:
d(p,q) < Ad(f(p). f(q)) +Ae <A(2D + &) + Le

Como los razonamientos no dependen del punto tomado ni de la pareja de geodésicas, podemos
concluir con que el tridngulo geodésico [x,y] U [y,z] U [z,x] es (A(2D + §) 4+ A¢€)-slim, pero ademads
como el razonamiento vale para cualquier tridngulo geodésico en X hemos demostrado que X es un
espacio hiperbolico. O

Corolario 4.3. Sean X,Y dos espacios métricos geodésicos tales que son cuasi isométricos. X es hiper-
bélico siy solo si Y es hiperbdlico.

Demostracion. Es una consecuencia directa el teorema 4.2 ya que toda cuasi isometria tiene cuasi in-

versa.
U

4.1. Plano hiperbdlico

Uno de los principales ejemplos de espacio hiperbdlico es el plano hiperbélico H. Para representar
el plano hiperbélico vamos a utilizar el modelo del disco de Poincaré que se construye como sigue.
Consideramos el hiperboloide equildtero de dos hojas de ecuacién x*> +y?> —z2+1 =0 en R? y pro-
yectamos la hoja superior sobre el plano z = 0 respecto al punto P = (0,0, —1). Esta proyeccion hace
corresponder a cada punto Q del hiperboloide, el punto del plano z = 0 donde interseca la recta que pasa
por los puntos Py Q.

Asi obtenemos un disco de radio uno donde los puntos del hiperboloide corresponden a puntos del
interior del disco y cuya frontera representa los llamados puntos del infinito. Las rectas o geodésicas son
los arcos de circunferencia que intersecan ortogonalmente con la frontera del disco. Nos centraremos en
€l ya que nos sera de utilidad al definir los grupos triangulares mas adelante.

Una de las particularidades de este modelo es que es conforme, es decir los dngulos en la superficie
de la hipérbola coinciden con los dngulos euclideos. El dngulo entre dos geodésicas es el dngulo que
forman los circulos en el punto donde estos intersecan.

Definimos en el disco de Poincaré una métrica que nos dard una estructura de espacio métrico
hiperbdlico.

d HxH—R
AP||B
(A.B) — d(A,B) = In([3p159)

conA,Bc Hy Py Q los puntos de corte de la geodésica que pasa por A y B con la frontera del disco de
Poincaré.
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Se puede probar que con la distancia anterior el plano hiperbdlico H es hiperbdlico en el sentido
de Gromov. También que en el espacio hiperbdlico se cumplen los cuatro primeros postulados de la
geometria euclidea pero no el quinto, ya que dado un punto P y una recta r podemos trazar infinitas
rectas paralelas a r que pasan por P.

%

Para un estudio mds riguroso sobre el plano de Poincaré podemos consultar [0]



Capitulo 5

Grupos Hiperboalicos

Los diferentes grafos de Cayley que resultan al tomar distintas familias generadoras son cuasi iso-
métricos si las familias generadoras son finitas. La invariancia por cuasi isometrias de los espacios
hiperbdlicos nos permite definir los grupos hiperbdlicos de la siguiente manera:

Definicion. Un grupo G finitamente generado es hiperbdlico si para alguna familia generadora finita S
el grafo de Cayley Cay(G,S) es hiperbdlico.

Lema 5.1. Sea G un grupo que actiia de forma propia y cocompacta sobre un espacio métrico hiper-
bolico. Entonces G es un grupo hiperbdlico.

Demostracion. Es una consecuencia inmediata del lema de Svarc-Milnor. O]

Veamos algunos ejemplos:
Ejemplo 1. Todo grupo finito es hiperbdlico porque viene asociado a un espacio métrico con didmetro finito.
Ejemplo 2. También lo son los grupos libres porque sus grafos de Cayley son arboles.

Ejemplo 3. Los grupos triangulares también cumplen esta propiedad, como veremos mds en profundidad a
continuacion.

5.1. Grupos Triangulares
Durante esta seccién haremos referencia a n, m, [ como elementos pertenecientes al conjunto N U {eo}.

Definicion. Los grupos triangulares se puede definir mediante la presentacion:
G=<a,b,c | a*> = b*> = c* = (ab)" = (bc)" = (ac)' = 1>

Estos grupos se pueden interpretar como grupos de simetrias de teselaciones mediante tridngulos de
R? (plano euclideo), S? (superficie de una esfera) 6 H (plano hiperbélico). Nos centraremos en el caso
hiperbdlico.

Fijamos un tridngulo en H con lados segmentos geodésicos r,, rp, 7., de forma que los dngulos que

forman dichas rectas son 7, %, 7 como se muestra en la figura.

21
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Si tenemos un tridngulo en el plano Euclideo, la suma de sus dngulos es exactamente 7. Sin embargo
en el plano hiperbdlico los tridngulos son “delgados” lo que significa que la suma de sus angulos es
estrictamente menor que 7, es mds se tiene que:

T T T

Lema 5.2. Si % + % + % < 1 entonces existe un triangulo hiperbdlico de dngulos ., -, 7 y ademds se

puede teselar H mediante copias de dicho tridngulo.
Demostracion. Se puede ver, por ejemplo en, [9, §.7] O

Podemos representar los elementos a, b, c que generan un grupo triangular como el de arriba como
las reflexiones en H respecto a las geodésicas r,, 7, r.. El producto de dos reflexiones de lados adyacen-
tes es una rotacion cuyo dngulo es el doble del 4ngulo que forman estos dos lados; es decir, el producto
ca serd una rotacion de dngulo 27”

Asfi al aplicar los elementos de G al tridngulo inicial se obtiene la teselacion a la que nos hemos
referido antes.

Lema 5.3. Seann,m,l € N tales que % + % + % < 1. El grupo triangular G definido por estos pardmetros
es hiperbdlico.

Demostracion. Tomamos el tridngulo con pardmetros n,m, . Con copias del tridngulo podemos teselar
el plano hiperbdlico y su didmetro es finito, lo que implica que la accién de G sobre el plano hiperbdlico
es cocompacta. Como los pardmetros son finitos al aplicar los elementos de G al tridngulo obtenemos
ciclos por tanto podemos tomar para cada elemento del tridngulo un entorno suficientemente pequefio
para demostrar que la accién es propia. Bastaria tomar como entorno la bola con radio menor que el
diametro del tridngulo.

Aplicando el lema de Svarc-Milnor tenemos que G es un grupo hiperbélico por ser cuasi isométrico
a H.
O

Si algtin pardmetro es infinito, es decir si el tridngulo tiene algunos lados paralelos la accién de G en
el plano hiperbdlico no es cocompacta. Por este motivo no podemos aplicar el mismo razonamiento que
en el caso anterior. Sin embargo es posible probar que el grupo considerado es hiperbdlico mediante la
accion del mismo en un objeto mds pequefio al que llamaremos T.

m Sin=oco,m=1[<o
En este caso los lados del tridngulo r, y r. son paralelos. Consideramos T como la érbita bajo la
accion de G de rp, es decir el conjunto de las imdgenes por elementos de G de ry,.
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m Sin=m=oco, [ < oo,
El tridngulo tendrd ademads los lados r, y r, paralelos. En este caso tomaremos como T la 6rbita
bajo la accién de G del segmento perpendicular a r, que pasa por el vértice formado por los lados
ey Tp.

m Sin=m=1[=o0.
Todos los lados son paralelos. Para tomar T se considera el arbol de vértices los centros de los
tridngulos pero no entraremos en detalles.

En estos tres casos T es un arbol luego es hiperbdlico y G actia de forma propia y cocompacta en T.

5.2. El problema de la palabra

Sea G un grupo determinado por una presentacion finita < S | R >y F(S) el grupo libre en S. El pro-
blema de la palabra consiste en decidir si dos palabras @; y @, € F(S) representan el mismo elemento
de G. Equivalentemente, si una palabra dada @ € F(S) representa el elemento identidad del grupo G.

Sea una presentacion finita < S | R > de un grupo G. El problema de la palabra es soluble para la
presentacién < S | R > si existe un algoritmo que para toda palabra @ € F(S) determina si ® es la
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identidad del grupo G o no.

Este problema algebraico clasico no siempre tiene solucién, sin embargo podemos ver que es reso-
luble para los grupos hiperbdlicos. Para demostrar esto necesitaremos un resultado que incluimos sin
demostracién puesto que su demostracion es técnica y no aporta informacidn relevante para la resolu-
cidén del problema de la palabra. Si se desea ver, se puede consultar [4, pdg. 168—169].

Proposicion 5.4. Sea G un grupo hiperbdlico y S una familia generadora de G. Suponemos que el grafo
de Cayley como espacio métrico es 8-hiperbdlico con 8 > 0. Si v : [0,n] — Cay(G,S) es un ciclo en
el grafo de Cayley con longitud n > 0 entonces existent,t’ € [0,n] enteros tales que:

longitud(7|;,) < 86
y ademds | [1,1"] 1O es geodésica.

Recordemos que asociado a una presentacion G=< S | R >, S simétrico, tenemos un homomorfismo
candnico

p:F(S)—G

En esta seccién vamos a comprar la longitud de palabras o elementos en IF(S) con la de los elementos
que representan en G. Para ello utilizaremos la siguiente notacién:

- Si @ es una palabra en S (no necesariamente reducida), definimos /(@)= longitud de ®, es decir,
el nimero de letras de w.

- Si () es un elemento de G, denotamos ||@(®)||s = menor ndmero de letras de una palabra que
representa a @(®).

Definicién. Una presentacion finita de un grupo G = < S | R > con S simétrico es una presentacion de
Dehn si existe un n € N— {0} y palabras uy, ..., u,v1,...,v, en S tales que:

1) R={upv' o uyvy '}
2.) Paratodo j € {1,...,n} I(vj) < (uj)

3.) Para todo @ € F(S) que representa la identidad en G existe un j € {1,...,n} tal que u; es subpa-
labra de ®; es decir la secuencia de letras de la palabra u; estd en la de .

Estas presentaciones tienen la siguiente particularidad.

Teorema 5.5. Si < S | R > es una presentacion de Dehn de un grupo G, el problema de la palabra tiene
solucion para G.

Demostracion. Para ello utilizamos el llamado algoritmo de Dehn.
Supongamos que < S | R > es una presentacién de Dehn con R = {ujv;!,...,u,v; '}.

Tomamos una palabra @ € F(S)
* Si w es la palabra vacia, entonces es la identidad.
* Sino:

- Sininguna u; con j € {l1,...,n} es subpalabra de ®, por la condicion 3.) de la definicién de
presentacién de Dehn, @ no representa a la identidad de G.
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- Sihayun j € {1,...,n} tal que u; es es subpalabra de @ podemos escribir @ = ®'u;®" para
ciertos @' y o” € F(S).
Como tenemos la relacién u jv;l € R, las palabras ® = 0'u;0" y o'v;0” representan el
mismo elemento en < S | R >. Luego por 2.), ® representa a la identidad en G si y solo si la
palabra més corta @'v;@” lo hace.

Repitiendo el proceso para @'v;®” sabremos eventualmente si el elemento @ representa o no la
identidad en G.

O]

Nota. Aunque tal y como hemos definido el grupo libre, sus elementos siempre son palabras reduci-
das, en esta demostracion para evitar complicar la notacion consideraremos palabras cualesquiera en el
alfabeto S como elementos de F(S).

Teorema 5.6. Sea G un grupo hiperbdlico y S una familia generadora simétrica y finita de G. Entonces
existe un R C F(S) tal que < S | R > es una presentacion de Dehny G = < S | R >.

Demostracion. Como G es hiperbdlico existe un § tal que el grafo de Cayley < S | R > es 8-hiperbdlico.
Definimos D = |86 | + 1 y denotamos por ¢ : F(S) — G al homomorfismo candnico.

Por la proposicion 5.4 podemos definir el conjunto finito:

R={uwu,v €F(S), o(u) = @(v), lo(u)lls =1(v) <1(u), ||ull <D}
U{ss~!s € S}

El homomorfismo candnico ¢ : F(S) — G es suprayectivo porque S es una familia generadora de G.

Por definicion, R C Ker¢ luego N(R) C Ker¢ ya que N(R) es el subgrupo normal de F(S) generado
por Ry ker ¢ es normal.

Reciprocamente, vamos a probar que para toda palabra @ € Ker se tiene que @ € N(R). Ademds
probaremos que < S | R > es presentacién de Dehn.

Procedemos por induccién sobre la longitud de . Si la longitud de w es cero, entonces ® = id.

Supongamos que la longitud de @ no es cero y que todas las palabras del Ker¢ con longitud menor
que la de @ estdn en N(R).

Si @ es no reducida, encontraremos una subpalabra en @ que estd en {ss~!|s € S}. Por tanto pode-
mos poner @ = ®'ss~'®”, con s € S. Entonces tenemos:
= a)’w”(a)”)‘lss‘la)”
y (") lss'o” € N(R). Ademis [(0'0") < [(®) y ©'®" € Kerg luego por induccién @’®” € N(R)
y @ € N(R).

Si es reducida, por la porposicién 5.4 podemos encontrar un ciclo y en el grafo de Cayley Cay(G,S)
con ¥(0) = y(n) = id tal que las imdgenes por ¥ de los valores 0, 1, ...,n del intervalo [0, n] sean vértices
del grafo de Cayley con n = [(®). Sean @' la subpalabra correspondiente a ¥([0,¢]), u la subpalabra
correspondiente a y([¢,#']) y ®” 1a subpalabra correspondiente a y([¢',n])

id =y(0) —» (1) —=> (") —> y(n) = id

Esto nos permite descomponer la palabra en @ = ®'u®” de manera que u no es geodésica y:
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l@(u)|ls <I(u) <D

Sea v € IF(S) un representante de ¢ (u) de longitud menor posible, es decir, (v) = @(u) , ||@(u)||s = (v)
y I(v) < I(u). Por la construccién de R tenemos:

id = ¢(0) = p(a")p(u)p(0") = p(a")p(v)p(0") = p(0va")
Ademaés:
o= 0'ue" =o0'w vo" = o'w (o) o'V
Claramente @'uv—' (@)~ € N(R) y @'vo" € Kerg. Como @'v@" tiene longitud menor que ,

por induccién @'ve” € N(R). Luego @ € N(R) por ser producto de elementos de N(R).Por el primer
teorema de isomorfia tenemos que:

F(S)/kere = F(S)/N(R) = G

Y por tanto < S | R > es una presentacion de G. Queremos ver ademds que es una presentacion de
Dehn. Por contruccién, R cumple los puntos 1.) y 2.) de la definicién. Ademads, como acabamos de ver,
si @ representa a la identidad de G entonces contiene una subpalabra en R de manera que se cumple
también el punto 3.). Por tanto < S | R > es una representacion de Dehn.

O
Una propiedad de los grupos que podemos demostrar por ser consecuencia de este teorema es:
Corolario 5.7. Los grupos hiperbolicos admiten una presentacion finita.

Demostracion. Todo grupo hiperbdlico admite una presentacién Dehn por el teorema 5.6 por tanto
admite una presentacion finita. O

Para terminar demostraremos el resultado principal de esta seccion.
Teorema 5.8. El problema de la palabra tiene solucion para los grupos hiperbdlicos.

Demostracion. Esta demostracion es una consecuencia del teorema 5.6 y del teorema 5.5. O
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