Anexo A

Agentes ortogonales en el modelo de
Axelrod sin estructura de red

Es interesante hacer un analisis detallado del niimero de agentes ortogonales en el modelo
de Axelrod sin estructura de red. Por una parte, estos varian con el tiempo pero ademaés son
inferiores a 1 — n.lo, el nimero de agentes no-clones (a la cultura mayoritaria) en la situacién
final. Esto se debe a la posibilidad de formaciéon de pequenos grupos de agentes no ortogonales
entre ellos pero ortogonales a la cultura mayoritaria. Como ya comentamos en la seccién 1.2, en
la situacion inicial tenemos:
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Para verificar esta expresién, representamos en la figura A.1(b) el valor (ny.(t9))/N obtenido
como promedio de 50 simulaciones de nuestro modelo. Podemos ver que los resultados se ajustan
perfectamente a (1.5).

Demostremos a continuacién que nq¢(t) es no decreciente. Imaginemos un individuo i que
es ortogonal a todos los demds y por lo tanto pertenece al conjunto de los ngre. Esto quiere decir
que no comparte ningun feature con ningun otro agente o lo que es lo mismo, que todo todo
trazo que toman sus features es unico para ese feature dentro de nuestra poblacion:

op(i) £ op(j) Vi# i, f=0,. F 1

Por un lado, es imposible que este agente imite a ningin otro ya que su solapamiento es 0 con
cualquier vecino. Pero también es imposible que ningin agente pase a compartir un feature con
él, ya que todo cambio en nuestro modelo se hace por imitacién y nuestro agente i posee trazos
en sus features que son unicos en toda la sociedad. Por lo tanto, nuestro niimero n¢ no puede
disminuir.

Ademds, podemos verificar que es posible su aumento. Imaginemos que esta vez nuestro
individuo 4 es ortogonal a todos los demas salvo a otro individuo j, con el que tan solo comparte
el feature f de tal manera que 7 y j son los unicos en tener ese trazo en f:

op(i) =oy(j) # oy(k) Ve #i,j

Notese que esto no quiere decir que j sea ortogonal a todos los demaés agentes k. Imaginemos
por ejemplo que comparte otro feature h con uno de estos agentes, por lo que su solapamiento
con €l es diferente de 0 y acaba imitandolo tomando el valor o;(k) en su feature f, haciendo
que nuestro individuo i pase a ser el tinico en tomar el valor o (i) y volviéndose de esta manera
ortogonal a todos los demés.

De esta manera demostramos que n,4(t) es no decreciente, por lo que el nimero de agentes
no-clones N — n, en la situacién final (¢ = t;) cumplird la siguiente desigualdad:
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_ Melo > nort(tf) > nort(tO)
N~ N — N
Para verificar nuestro andlisis, representamos en la figura A.1(a) el nimero (1 — ngo/N) de

la situacién final (promediando en 50 simulaciones) para diferentes valores de @ y N, tomando

F = 5. Efectivamente, se comprueba que 1 — n,/N disminuye con N y aumenta con () ademas

de respetar el acotamiento de la ecuacién (A.2).
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(b) nore(to)/N y funciones tedricas nore (to, Q)/N = (1 — 1/Q)N*
para cada N.

Figura A.1: Dependencia de 1 — ngo/N y nori(to)/N con Q y N. Ambas gréficas corresponden a F' =5
y 50 realizaciones por punto. En (a), se observa la dependencia prevista: creciente en @ y decreciente en
N. En (b), los datos se ajustan perfectamente a las funciones tedricas.
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Anexo B

Tiempos de equilibrio en diferentes
redes. Modelo de Axelrod.

Es interesante comparar el nimero de iteraciones necesarias para alcanzar el equilibrio (tiem-
po de equilbrio) en las diferentes redes estudiadas para el modelo de Axelrod. Presentamos esta
comparativa para = 10, N = 900 y diversos valores de ) en la figura B.1, donde en general
podemos observar un tiempo de equilibrio mayor para un sistema sin estructura de red. Por
un lado, esto se explica por la posibilidad en una red cuadrada de alcanzar el equilibrio sin
tener que alcanzar un consenso general. Pero este efecto se ve contrarrestado por la lentitud de
transmision de informacion en este tipo de redes, lo que hace que los dos tiempos se acerquen en
las situaciones inmediatamente anteriores a la transicion de fase, cuando atn es posible alcanzar
una fase ordenada. En cambio, cuando los valores de ) son elevados, los tiempos de las dos
situaciones divergen pues en el caso de la red la “ordenacién” de nuestra poblacion se vuelve
imposible y la situacién final (desordenada) es facilmente alcanzable mientras que sin red no hay
cambio de fase. Ademds, para este caso el tiempo aumenta con ) debido a que mayor diversidad
inicial dificulta el consenso.
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Figura B.1: Comparativa de los tiempos de equilibrio necesarios (iteraciones), para los dos casos estu-
diados: todos con todos y red cuadrada plana. Se presenta la dependencia con @ para los valores fijos
F =10y N =900. Los resultados se obtuvieron promediando 50 simulaciones en el primer caso y 60 en
el segundo. Se observa en general un tiempo mayor en ausencia de red, acentudndose la diferencia para
valores altos de @, donde las simulaciones en red cuadrada alcanzan el equilibrio a gran velocidad.
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Anexo C

Efecto de las condiciones iniciales en
el modelo Axelrod 7 — g

Dada la relacién directa entre el estado final y las condiciones iniciales, nos proponemos es-
tudiar posibles modificaciones en el establecimiento de éstas 1ltimas y su efecto en los resultados
obtenidos.

Creamos una situacién inicial aleatoria y dejamos evolucionar nuestro sistema mediante
interacciones pairwise registrando cualquier cambio en la identidad y en la fuerza del grupo.
Cuando se ha alcanzado una identidad suficientemente fuerte (h(g) > hpin) empezamos nuestra
dindmica cultural de grupo (interacciones i — g) hasta alcanzar el equilibrio. Presentamos los
resultados para N = 1000, F = 10, Q = 5y hpin = 0,5 en la figura C.1, donde observamos la
evolucién de h(g) en el tiempo.

Podemos constatar las siguientes diferencias respecto a los resultados obtenidos en la figura
2.2:

La fuerza sigue una tendencia al alza en todo momento pero presenta numerosos picos
de bajada durante las interacciones pairwise, hasta que se vuelve no decreciente en las
interaccioens ¢ — g.

El tiempo de equilibrio es mucho mayor en este caso (3,5 - 10° frente a 1,1 - 10°) dado el
tiempo tan grande que necesita un grupo con interacciones pairwise para alcanzar una
identidad fuerte.

Se producen numerosos cambios en la identidad del grupo durante el primer periodo, por
lo que la identidad final no estd totalmente determinada por la situacién inicial sino que es
totalmente arbitraria. Aun asi, las situaciones son equivalentes, dadas que las condiciones
iniciales aleatorias en el ejemplo anterior (figura 2.2) nos dan una identidad igualmente
aleatoria, aunque ésta sea luego invariante.

La fraccién de agentes ortogonales a la identidad p disminuye muy fuertemente (en el caso
de la figura C.1 se anula) consiguiendo una identidad final con fuerza 1 (maxima). Esto se
debe al elevado tiempo dedicado a las interacciones pairwise, que permite la homogeniza-
cion de la poblacién: Dado que el nimero de iteraciones durante esta primera parte es del
orden de 10°, esto corresponde a 100 intentos por agente y feature. Esto permite que en
general cualquier individuo no-ortogonal a todos los demés (N — ngyy segin la definicién
del capitulo 1) acabe imitando alguno de los features mayoritarios, que acabardn siendo
los de la identidad, limitando asi nuestra fraccién p(g) a un nimero cercano a ny¢ /N que
para los valores de N, F'y Q elegidos tiene valor esperado 0.
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Figura C.1: Evolucién de la fuerza h(g) para una simulacién de Monte Carlo en un grupo, con iteraciones
pairwise hasta alcanzar h(g) = hyin = 0,5 e iteraciones i — g a continuacién, hasta alcanzar el equilibrio.
Se realizo la simulacién a partir de una situaciéon inicial aleatoria con N = 1000, FF = 10y Q = 5. Se
alcanzé hpin con 3,4 - 10% iteraciones (punto en el que se observa el cambio brusco) y se calcularon 0
agentes ortogonales en la situacién final, que cuadra con el valor final alcanzado: 1 — p(g) = 1.
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Anexo D

Trayectorias posibles en Axelrod
1 — g para dos grupos

Como describiamos en la secciéon 3.2, existen cuatro posibles estados asintoticos para el
modelo de Axelrod i—g en el caso de dos grupos (numerados del 0 al 3 en este orden): ortogonales,
idénticos, diferentes y fluctuantes.

Nos preguntamos ahora qué condiciones iniciales son las que permiten alcanzar cada uno de
estos estados. Nos centramos en un analisis de la meso-escala, es decir en la relacion entre las
identidades de los dos grupos.

* El estado 0 puede ser alcanzado desde dos grupos inicialmente ortogonales o inicialmente
diferentes. La situacién inicial de dos grupos idénticos no permite la existencia de crisis
(se reduce al caso estudiado en el capitulo 2) por lo que no puede llevar al estado final 0.

El estado 1 puede ser alcanzado desde cualquier situacién inicial. Este se alcanza de manera
trivial si las identidades son iguales en la situacién inicial, o a través de diversas crisis
de identidad si son diferentes u ortogonales al inicio. Efectivamente, incluso dos grupos
ortogonales pueden interaccionar entre ellos dando lugar a una crisis de identidad que

termine con su ortogonalidad. Nétese que para dos grupos ortogonales p:;w = 0 pero
p;;t # 0, por lo que a;,, < 0y h(l) tiende a decrecer, pudiendo generar una crisis de
identidad.

El estado 2, tinicamente es alcanzable desde una situacién de grupos diferentes con los
agentes comunes ortogonales a ambos desde el inicio, de tal manera que ninguno de ellos
sufran una crisis. Efectivamente, para que exista una crisis al menos un agente comin debe
ser no-ortogonal a los dos grupos (para permitir la interaccién entre grupos). Ademads, este
agente se mantendra no-ortogonal a al menos uno de los dos grupos tras esta crisis (no
puede volverse ortogonal a ambos a la vez) de tal manera que el estado final 2 no se puede
alcanzar.

El estado 3, como el estado 0, puede ser alcanzado desde dos grupos inicialmente ortogona-
les o inicialmente diferentes. Normalmente, se produciran algunas crisis en los dos grupos
hasta que se alcance una situacién de pre-equilibrio en la que sean imposibles las crisis,
alcanzando asf el estado fluctuante.

1Para ilustrar la segunda opcién, menos intuitiva, imaginemos dos identidades que tan solo comparten el feature
f y que poseen fuerzas muy débiles de tal manera que el segundo valor mas alto del histograma f de I, H; ¢ q,
se encuentra muy cerca del valor méximo que corresponde a hy(l) y muy por encima del valor correspondiente a
la identidad de m, Hip6,0m)- Asi pues, si por efecto de la interaccién con m, hy(l) disminuye pero es Hip.600m)
quien pasa a ser el valor maximo, entonces los grupos [ y m se vuelven ortogonales. Es lo que se denomina “crisis
mutagénicas” en la seccién 3.3.
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Anexo E

Crisis llevadas a cabo hasta alcanzar
el equilibrio. Resultados.

Para ilustrar cudndo un sistema es capaz de alcanzar el equilibrio, calculamos el niimero me-
dio de features no comunes (Fy(t9)) que tienen dos grupos diferentes (excluidos los ortogonales)
en la situacién inicial. Calculamos ademés el nimero medio de crisis (C') que tienen lugar antes
de alcanzar una situacién asintética y comparamos los valores para todo el rango de (n.)/N y
dos valores de @ en la figura E.1 Podemos verificar que mientras (C) < (Fy(t9)) se da el estado
fluctuante (no hay el nimero suficiente de crisis) mientras que para (C) > (Fy(to)) la situacién
final mayoritaria pasa a ser la de grupos idénticos. El hecho de que para (n.)/N alto volvamos
a tener (C) < (Fy(to)) aunque sélo se observe el estado asintético 1, se debe a la aparicién de
las situaciones iniciales de grupos idénticos que bajan la media (C) Como hemos visto, estas
situaciones iniciales aparecen antes cuanto m&s pequeno es @, por lo que este efecto es mayor
en la grafica (a) que en la (b).
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Figura E.1: Comparacién del nimero medio de features no comunes en la situacién inicial (Fy,(tg)) y el
nimero medio de crisis (C'), en funcién de (n.)/N y para N = 100, F =5y @ = 5,100. Se realizaron
500 simulaciones por punto.

Por otro lado, la dependencia de (F,(tp)) con (n.) complementa la informacién sobre las
situaciones iniciales de la figura 3.9, anadiendo un nuevo argumento que justifica la transicion
de fase. Al aumentar (n.), (F,(to)) disminuye, por lo que se vuelve més facil que dos grupos se
imiten incluso antes del pre-equilibrio.
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Anexo F

Dependencia de la transicion de fase

con N

Tal y como hemos comentado en el apartado 3.5, la transicién de fase parece estrecharse
cuando aumentamos el valor de N. Esto podria explicarse por la disminuciéon del nimero de
agentes ortogonales y la disminucién de la variacién del histograma con cada cambio, aunque el
andlisis detallado es complejo como ya se ha comentado. Presentamos sin embargo tres gréaficas
de transicion de fase en la figura F.1 para un valor alto de @ (que facilitan la simulacién) que

parecen confirmar esta dependencia.
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Figura F.1: Dependencia con N de la transicién de fase en el modelo Axelrod i — g. Se presentan los
resultados para 500 simulaciones por punto tomando F =5 y Q = 200. Se tomé NiterMax = 108 que
nos arroja algunas situaciones de no-equilibrio en (b) y en (c).
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Anexo G

Cddigos utilizados

Todos los cédigos utilizados para las simulaciones computacionales pueden ser consultados
en el siguiente enlace:

https://drive.google.com/drive/folders/15wCWHPkKQifZAJTIOTE3z0aGTYxYImjo67usp=sharing

36



