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Resumen

Since the middle of the 20th century, the study of how neural networks functioned began. This re-
search process occurred at the same time as the computers were being developed, applying these neural
models for the first time on Turing’s type B machine. The first neural model to be created was the model
of Warren McCulloch and Walter Pitts in 1943. Thereafter, there were two types of approaches to neural
networks.

The first approach, which has increased the most over the years, is that of artificial intelligence. With
these models we try to see the learning evolution of the aritificial neural networks. This type of inte-
lligence resembles the human brain so it tries to have the characteristics of the human brain. The main
features are adaptive learning, self-organization, fault tolerance, real-time operation and easy insertion
into the technology.

The other approach is a more biological approach to brain functioning, in order to see how biolo-
gical systems work in humans. In addition, this study allows us to see what happens in the rest of the
species that inhabit the planet. This is because the same thing happens in all cells of all living beings,
there is a difference in the electrical potential. This difference in potential, as we will see throughout the
work, is due to the fact that neuronal processes have two states, that of rest and that of excitation.

The model we are going to study throughout the work is a reduction of the model proposed by
Hodgkin and Huxley. Specifically the Hindmarsh and Rose model. In this model the potential provided
by the cell membrane, the potential produced by sodium and potassium ions and a third potential pro-
duced by other ions will be considered.

In addition, this model of equation systems will be able to be reduced into two subsystems, a fast
and a slow subsystem. This type of system is known as a fast-slow system. The fast subsystem will
be composed of the first two equations, the equation provided by the cell membrane and the equation
provided by the sodium and potassium ions. The slow subsystem is composed of the equation given by
the other ions.

The model they proposed was 
ẋ = y−ax3 +bx2− z+ I
ẏ = c−dx2− y
ż = ε(s(x− x0)− z)

We will see what each constant brings us (a, b, I, c, d, x0, s, ε). We will focus primarily on the values
of a =−1, I = 4, c = 1, d = 5, s = 4, x0 =−1,6, ε = 0,01. We will do a study changing the values of b.
We will distinguish two cases, b = 2,52 y b = 2,7. This is because for these values we are going to find
ourselves facing two different types of bifurcations, the fold/homoclinic bifurcation and the fold/Hopf
bifurcation.

The ε that appears in the third equation, the slow equation, is going to be the driving force for a
simpler study of this system. This is going to be possible because we will have to makeε tends to zero
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so we conclude that the variable z should be a constant.

This reduction will result in a dimension two subsystem, which, as we have said before, we will
denote as a fast subsystem. The remaining information, that of the slow subsystem, will be obtained as
conclusions of what happens in the system composed of the membrane and the sodium and potassium
ions.

For this purpose, we will carry out an analytical study of the fast subsystem. In this analysis we
will calculate points of equilibrium and where the bifurcations of the two-dimensional system occur. As
analytically we will not be able to obtain many results due to the complexity of the system, we will carry
out a numerical study with which we will obtain the periodic orbits that we could not obtain analytically.

In addition to these results, we will also be able to begin to see how our overall system will behave.
We will be able to visualize where our supercritical Andronov-Hopf bifurcations and our homoclinical
bifurcation will occur.

Once these studies are completed, we will want these results obtained in the fast subsystem to be
maintained in the model. For this we will need two of three of Fenichel’s theorems. These theorems will
ensure that the results obtained in the fast subsystem are maintained in the three-dimensional system.

These theorems will tell us that there is going to be a manifold, for each point of equilibrium, in
which the fast subsystem and the global system are difeomorphic. As such a variety will exist, these
theorems will be local but the information provided is crucial.
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Capítulo 1

Introduccion

El cerebro humano está compuesto de 86× 109 de neuronas, las cuales están continuamente reci-
biendo y mandando impulsos eléctricos. Esta gran cantidad de neuronas teje una red con la que mandar
impulsos eléctricos al resto del cuerpo. Estos impulsos pueden ser medidos a través de ecuaciones dife-
renciales. El primer modelo que se construyó y estudió, con el fin de entender el funcionamiento de esta
red, fue el modelo Hodgkin-Huxley. Este modelo consiste en exponer la iniciación y la propagación
de los potenciales de acción de las neuronas. Además se describe la característica de las membranas
celulares, la bicapa lipídica, los canales de iones, los gradientes electroquímicos que controlan el flujo
y las bombas de iones.

Por otro lado, el modelo Hodgkin-Huxley y el resto de modelos neuronales sirven para hacer una
descripción determinista de las actividades oscilatorias como los "bursting" a dos escalas en los que el
modelo cae a un sistema dinámico con dos tiempos de escala, conocido como "slow-fast system". La
finalidad de este tipo de modelo es poder separar el sistema general en dos subsistemas más sencillos.
Esto soluciona gran parte de los problemas de hacer el estudio es la dimensión del modelo ya que al
tener un orden alto la posibilidad de encontrar algún resultado de interés disminuye. Con la reducción
además se pueden considerar algunas variables como constantes y al tener un subsistema de orden pe-
queño se va a poder aplicar ciertos teoremas que nos aporten resultados de interés.

En 1984 J. L. Hindmarsh y R. M. Rose construyeron un modelo donde se podía ver la evolución y
el dinamismo del sistema de ecuaciones diferenciales definido por los potenciales. Este modelo es una
simplificación del modelo que construyeron Hodgkin-Huxley.

Por un lado consideraron la ecuación de la potencialidad de la membrana celular, por otro conside-
raron el flujo de los iones de sodio y potasio, que contituyen la ecuación rápida, y la última ecuación que
tuvieron en cuenta fue el flujo de otros iones, correspondiendo a la ecuación lenta. El flujo de los iones
de sodio y potasio está regulado por la bomba de sodio-potasio. Como son los prinicipales iones que
cambian el potencial de la membrana son los que más movimiento tienen, así constituyen la ecuacion
rápida.

Cuando una neurona está en reposo estos iones se encuentran en desigualdad proporción donde el
sodio intenta que el potencial de la membrana sea positivo mientras que el potasio intenta que sea nega-
tivo, pero en este estado el potencial se decanta más con el potencial del sodio. Según la alteración de
la abertura de los canales de estos iones se forman las señales eléctricas.

El sistema de ecuaciones que consideraron fue el siguiente:
ẋ = y−ax3 +bx2− z+ I
ẏ = c−dx2− y
ż = ε(s(x− x0)− z)

(1.1)

1
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1.1. Conceptos previos

Para la comprensión completa del trabajo necesitamos una serie de conceptos, como el de bifurca-
ción u órbita periódica, ya que nos ayudarán a entender la evolución del sistema. Estos conceptos a nivel
local serán de gran importancia debido a la gran información que contienen y la sencillez de obtención.

Definición. Llamaremos puntos críticos del sistema diferencial ẋ a los puntos x0 tal que f (x0) = 0

Definición. Diremos que un punto crítico x = a de la ecuación ẋ = f (x) se llama atractor positivo si
existe Ωa ⊂ Rn entorno de a si para todo x0 ∈Ωa⇒ lı́m

n→∞
x(t) = a.

Más adelante veremos cómo se clasifican los puntos críticos y la información que nos aportan a la
hora de ver y entender la evolución de los sistemas dinámicos. Van a resultar de gran importancia para
los estudios y conclusiones que haremos ya que a nivel local nos dan mucha información. Otro elemento
que nos aporta bastante información son las órbitas periódicas.

Definición. Sea x = φ(t) una solución de ẋ = f (x, t), diremos que φ(t) es una órbita periódica si exite
T > 0 ∈ R+ tal que φ(T + t) = φ(t) ∀t.

Definición. Un punto x0 ∈ Rn es un punto ω-límite de x ∈ Rn si existe una sucesión {ti} (ti→ ∞) tal
que φ(ti,x)→ x0.
Por otro lado un punto x0 ∈ Rn es un punto α-límite de x ∈ Rn si existe una sucesión {ti} (ti→−∞) tal
que φ(ti,x)→ x0.

Definición. Una órbita periódica Γ se denomina ciclo límite si es un conjunto α− limite o ω− limite
de algún punto x que no está en la órbita periódica.

A continuación definiremos el concepto de bifurcación con el que más trabajermos a lo largo del
trabajo. Esto es debido a que las bifurcaciones nos van a determinar la evolución del sistema, dándonos
diferentes comportamientos según el tipo de bifurcación que sea. Veamos qué es y que propiedades tiene
una bifurcación.

Definición. Una bifurcación en un sistema dinámico es un cambio cualitativo en su dinámica producido
por una variación de los parametros.

Veamos con un pequeño ejemplo como cambia un sistema según los valores del parámetro. Sea el
sistema diferencial {

ẋ = β + x2

ẏ =−y
(1.2)

Los puntos de equilibrio de este sistema son (±
√
−β ,0), luego según los valores del β tendremos

el siguiente comportamiento en nuestro sistema.

Figura 1.1: [13]
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Observamos que si β < 0 tendremos dos puntos sillas. Nos fijamos que estos dos puntos cuando cre-
ce β hasta β = 0 van "desapareciendo" hasta colisionar y convertirse en un solo punto. Como veremos
más adelante cuando β = 0 tendremos una bifurcación "saddle-node". A partir de dicho β los puntos
que obtendremos serán nodos estables.

Las bifurcaciones se pueden clasificar en locales y globales. Las bifurcaciones locales se pueden
analizar considerando el sistema linealizado a través de sus puntos de equilibrio, sus órbitas o sus con-
juntos invariantes. Como bifurcaciones más típicas a nivel local nos encontramos la bifurcación de tipo
Hopf, que tiene la parte real del valor propio de la matriz jacobiana del sistema igual a cero, y la bifur-
cacion de "saddle-node", cuando el valor absoluto del valor propio de la matriz jacobiana del sistema es
igual a uno.

Por otro lado las bifurcaciones globales ocurren cuando las órbitas periódicas chocan con los puntos
de equilibrio, lo que causa un cambio topológico en las trayectorias en el espacio de fase. Como ejem-
plos de estas bifurcaciones están la bifurcacion homoclínica, cuando el ciclo límite choca con un punto
silla, y la bifurcación heteroclínica, cuando el ciclo límite choca contra dos o mas puntos sillas.

La clasificación de estas bifurcaciones va a estar determinada en algunos casos según los valores
propios que obtengamos del sistema.

Proposición 1.1. En R2, sea δ = detA, τ = tr(A), x0 punto de equilibrio y sea el sistema diferencial
lineal ẋ = Ax (A ∈ R2x2). Entonces:

a) Si δ < 0⇒ x0 es una silla. Los puntos sillas son inestables.

b) Si δ > 0,τ2−4δ ≥ 0⇒ x0 es un nodo, el cual si τ < 0 será estable y si τ > 0 será inestable.

c) Si δ > 0,τ2−4δ < 0,τ 6= 0⇒ x0 es un foco, el cual si τ < 0 será estable y si τ > 0 será inestable.

d) Si δ > 0 y τ = 0⇒ x0 es un centro.

Definición. Si todos los valores propios de la matriz A ∈ Rn×n tienen parte real distinta de cero el flujo
que genera es hiperbólico, es decir, el punto de equilibrio será hiperbólico.
Si existe λi = ai + ibi con ai = 0⇒ el punto de equilibrio es no hiperbólico.

Figura 1.2: En esta gráfica tenemos las posibles clasificaciones. Nos centraremos en la bifurcacion
Andronov-Hopf y la bifurcación "saddle-node". [10]
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Como observamos en 1.2 tenemos una visualización clara de cómo serán nuestros puntos críticos
según el determinante y la traza en un sistema dos dimensional. Esto equivale a ver los valores propios
que obtendríamos en la matriz jacobiana y evaluándolo en el punto crítico. Esta serie de bifurcaciones
nos determinan la dinámica del sistema. A continuación veamos la clasificación en un modelo tres di-
mensional.

A medida que el determinante de la matriz jacobiana va cambiando su signo observamos que nos
encontramos frente a más tipo de puntos de equilibrio. Cuando el determinante en negativo sólo nos en-
contramos puntos silla, los cuales sabemos que son siempre puntos inestables. Cuando el determinante
es positivo tenemos focos y nodos. Estos vendrán determinados según los valores propios de la matriz
jacobiana que tengamos ya que dependerán si son imaginarios puros, en el caso de los focos, o si son
reales con el mismo signo, en el caso de los nodos. Una forma de ver la estabilidad de estos dependerá si
su traza es positiva (inestables) o negativa (estables), tal y como se muestra en la gráfica, pero veremos
a continuación que su estabilidad se puede ver a través del signo de los valores propios de la matriz
jacobiana.

Proposición 1.2. En Rn, sea el sistema diferencial lineal ẋ = Ax (A ∈ Rnxn). Sea la matriz jacobiana
del sistema diferencial cuyos valores propios son λ1, . . . ,λn. Entonces:

a) Si todos los valores propios son reales donde al menos uno es positivo y al menos uno es negativo
tenemos un punto silla. Un punto silla es siempre inestable.

b) Si todos los valores propios son reales y tienen el mismo signo tenemos un punto nodo. Será estable
si todos los valores propios son negativos y será inestable si todos los valores propios son positivos.

c) Si un valor propio es real y los otros dos son valores propios complejos con parte real del mismo
signo, tenemos un punto foco-nodo. Será estable si la parte real tiene signo negativo e inestable si
la parte real tiene signo positivo.

d) Si un valor propio es real, los otros dos son valores propios complejos con parte real del mismo
signo y el signo del valor propio real es distinto al signo de la parte real de los complejos, tenemos
un punto silla-foco. Por ser un punto con característica de silla será inestable.

e) Si tenemos un valor propio identicamente nulo tenemos un punto silla-nodo. Por ser un punto con
característica de silla será inestable.

Figura 1.3: En esta gráfica tenemos las posibles clasificaciones en el sistema 3 dimensional. [10]

En 1.3 vemos como se clasifican nuestros puntos según sus valores propios. Al ser de tres dimen-
siones tendremos la estabilidad entre un plano y la recta. Nos fijamos que en el plano tenemos la misma
clasificación que en el sistema dos dimensional y sólo difiere en el eje z que no smuestra la estabilidad.
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Al estar en una dimensión más tenemos nuevos puntos de equilibrio como el silla-foco y foco-nodo.

A lo largo del trabajo nos econtraremos frente a dos tipos de bifurcaciones, la Andronov-Hopf y la
"saddle-node". Veamos cómo se caracterizan estas bifurcaciones.

Definición. La bifurcación Andronov-Hopf es generada cuando el punto de equilibrio cambia su es-
tabilidad a través de un par de valores propios puramente imaginarios. Dicha bifurcación puede ser
supercrítica o subcrítica, obteniendo un ciclo límite estable o inestable respectivamente.

A continuación vamos a definir dos teoremas para ver el comportamiento en el caso dos dimensional
y en el caso n dimensional. Antes de comenzar necesitamos definir un criterio analítico con el que vamos
a definir el primer coeficiente de Lyapunov que necesitaremos para la clasificación de la bifurcación
Andronov-Hopf.

Proposición 1.3. En R2, cualquier sistema con una bifurcación de tipo Hopf puede transformarse de
la siguiente forma a través de un cambio de variables.

{
ẋ =−ωy+ f (x,y)
ẏ = ωx+g(x,y)

donde f y g contienen sólo términos no lineares de orden superior que desaparecen en el origen. Se
puede decidir si la bifurcación es subcrítica o supercrítica calculando el signo de la siguiente expresión,
conocida como el primer coeficiente de Lyapunov.

l1 =
1
16

( fxxx + fxyy +gxxy +gyyy +
1
ω
[ fxy( fxx + fyy)−gxy(gxx +gyy)− fxxgxx + fyygyy])

donde los elementos denotan las derivadas parciales evaluadas en (0,0). El criterio es que si l1 < 0 la
bifurcación es supercrítica mientras que si l1 > 0 la bifurcación es subcrítica.

Teorema 1.4. Sea el sistema {
ẋ1 = f1(x1,x2;α)
ẋ2 = f2(x1,x2;α)

tal que la parte real del valor propio de su matriz jacobiana evaluada en el punto de equilibrio sea
distinto de cero y el primer coeficiente de Lyapunov sea distinto de cero, entonces este sistema es
localmente equivalente topológicamente, cerca del equilibrio, a la forma normal

{
ẏ1 = βy1− y2 +σy1(y2

1 + y2
2)

ẏ2 = y1 +βy2 +σy2(y2
1 + y2

2)
(1.3)

donde y = (y1,y2)
T ∈R2, β ∈R, y σ = sign(l1(0)) =±1. Entonces si sigma =−1 estamos frente a una

bifurcación Andronov-Hopf supercrítica mientras que si sigma = 1 estamos frente a una bifurcación
Andronov-Hopf subcrítica.
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Figura 1.4: Gráficas representando los tipos de bifurcación de tipo Hopf. [14]

Estas gráficas corresponden a la evolución del sistema 1.3 según el parámetro β y el valor del co-
eficiente de Lyapunov, que en este caso cambia de signo dependiendo del valor de σ . En la primera
gráfica aparece la bifurcación Hopf supercrítica. Esto es debido a que el valor que se ha tomado de σ

es σ =−1. De esta forma, el sistema tiene un equilibrio en el origen que es asitóticamente estable para
β ≤ 0 e inestable para β > 0. Además el único, y estable, ciclo límite existe para β > 0. Por otro lado, en
la segunda gráfica aparece la bifurcación Hopf subcrítica. Se debe a que el valor de σ es σ = 1. De esta
forma, el sistema tiene un equilibrio en el origen que es asitóticamente estable para β < 0 e inestable
para β ≥ 0 mientras que el unico e inestable ciclo límite existe para β < 0.

Hasta ahora hemos visto las condiciones que se tienen que dar para obtener una bifurcación de tipo
Hopf en un sistema dos dimensional, pero generalmente trabajaremos con sistemas de dimensión mayor
que dos, luego necesitaremos un teorema que nos garantice la existencia de esta bifurcación. Veamos
qué ocurre en el caso n > 2.

Teorema 1.5. En el caso n-dimensional, la matriz jacobiana en el punto de equilibrio A0 = A(0) tiene
una pareja simple de valores propios imaginarios puros λ1,2 =±ω0, con ω0 > 0, s valores propios con
Reλ j < 0 y u valores propios con Reλ j > 0 tal que s+u+2 = n. Además hay una familia de dimension
2 de variedades invariantes W c

α cerca del origen. El sistema n dimensional restringido a W c
α tiene la

forma normal descrita en el anterior teorema.

Además bajo las condiciones de no degeneración, la parte real del valor propio de su matriz jaco-
biana evaluada en el punto de equilibrio sea distinto de cero y el primer coeficiente de Lyapunov l1 sea
distinto de cero, el sistema n dimensional es topologicamente equivalente, cerca del origen, a la forma
normal 

ẏ1 = βy1− y2 +σy1(y2
1 + y2

2)
ẏ2 = y1 +βy2 +σy2(y2

1 + y2
2)

ẏs =−ys

ẏu = yu

donde y = (y1,y2)
T ∈ R2, ys ∈ Rns , yu ∈ Rnu .
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Figura 1.5: Gráficas representando cómo se forma la bifurcación de tipo Hopf. [14]

Este caso corresponde al sistema
ẏ1 = βy1− y2 +σy1(y2

1 + y2
2)

ẏ2 = y1 +βy2 +σy2(y2
1 + y2

2)
ẏs =−y3

Tenemos un valor propio que es λ =−1 que corresponde al eje z y al ser negativo será estable. En
el plano observamos que tenemos la misma dinámica que en el caso del sistema de dimensión 2.

Cuando hemos empezado a hablar de las bifurcaciones hemos puesto un pequeño ejemplo en el que
se veía como evolucionaba el sistema a medida que cambiaba el β . En ese caso nos encontrábamos ante
una bifurcación "saddle-node".

Definición. Una bifurcación "saddle-node" es una colisión y desaparición de dos equilibrios. Esto ocu-
rre cuando el equilibrio crítico tiene un valor propio real que es cero.

Como en el caso de la bifurcación Andronov-Hopf vamos a definir sus propiedades en los sistemas,
primero uno-dimensional, y luego lo generalizaremos al sistema n dimensional.

Teorema 1.6. Sea el sistema ẋ = f (x,α), x ∈ R. Sean las condiciones de no degeneración α(0) =
1
2 , fx(0,0) 6= 0 y fα(0,0) 6= 0. Entonces el sistema es localmente equivalente topológicamente cerca del
origen de la forma

ẏ = β +σy2

donde y ∈ R,β ∈ R y σ = signα(0) = ±1. Los dos equilibrios del sistema son y1,2 = ±
√
−σβ si

σβ < 0, y = 0 si β = 0 y no tendrá equilibrios si σβ > 0.

Figura 1.6: [13]

Este gráfico nos recuerda al gráfico 1.1 que explicamos como ejemplo de bifurcación. De hecho,
escribimos el sistema de dimensión dos y ahora hemos hecho lo mismo con el sistema de dimension
uno.
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Teorema 1.7. Sea un sistema n dimensional con n ≥ 2, la matriz jacobiana en el punto de equilibrio
A0 en la bifurcación "saddle-node" tiene un valor propio simple λ1 = 0, s valores propios con Reλ j <
0 y u valores propios con Reλ j > 0 tal que s+ u+ 1 = n. Entonces existe una variedad invariante
uno-dimensional W c

α cerca del origen. El sistema n-dimensional restringido a W c
α es uno-dimensional,

luego es como en el teorema anterior. Además, bajo las condiciones de no degeneración definidas en el
teorema anterior, el sistema n-dimensional es localmente equivalente topológicamente cerca del origen
a la forma normal 

ẏ1 = βy1− y2 +σy1(y2
1 + y2

2)
ẏ2 = y1 +βy2 +σy2(y2

1 + y2
2)

ẏs =−ys

ẏu = yu

(1.4)

donde y = (y1,y2)
T ∈ R2, ys ∈ Rns , yu ∈ Rnu .

Una vez realizado este estudio de las bifurcaciones locales, veamos cómo se comportan las bifurca-
ciones globales. Antes de eso tenemos que definir previamente los conceptos de órbita homoclínica y
heteroclínica.

Definición. Sean x0,x1 dos equilibrios de un sistema. Diremos que una órbita φt es una órbita hetero-
clínica si φt → x0, t→−∞ y φt → x1, t→ ∞.
Si x0 = x1 diremos que es una órbita homoclínica.

Figura 1.7: En esta gráfica tenemos una órbita homoclínica a la izquierda y una órbita heteroclínica a la
derecha. [15]

La gráfica correspondiente a la órbita homoclínica se corresponde con un punto silla-foco. Como
bien hemos definido previamente la órbita tiene origen en x0 y a medida que va creciendo el tiempo
hacia infinito la variedad se va alejando del punto de equilibrio. Esta variedad se ve atraida por la parte
estable hasta converger al punto de equilibrio.

Por otro lado en la gráfica correspondiente a la órbita heteroclínica tenemos un x1 correspondiente
a un punto silla y un x2 que corresponde con un silla foco. La órbita heteroclínica parte del punto silla a
través de su variedad inestable y enlaza con la variedad estable del punto silla-foco.

Definición. Una bifurcación homoclínica ocurre cuando una órbita periódica colisiona con un punto
silla.

1.2. Dinámica de tipo bursting

En esta sección veremos el dinamismo de los modelos neuronales. Nos encontraremos frente a las
dos fases, la de reposo y la de activación, en las que las neuronas se puede encontrar. Además haremos
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un estudio en el que veremos cómo se cruza de una fase a otra. La fase inicial ocurre después de una
bifurcación en el punto de equilibrio y el "bursting" finaliza con una bifurcación del ciclo límite.

Definición. El "bursting" es un estado dinámico en el que una neurona dispara repetidamente ráfagas
de picos. Cada una de estas ráfagas va seguida de un período de inactividad antes de que ocurra la
siguiente.

Figura 1.8: En esta gráfica observamos la evolución respecto al tiempo del modelo neuronal. Tenemos
una fase de reposo (quiescent period) y otra de activación (active phase). [13]

En esta gráfica observamos un proceso neuronal con varios "bursting", en concreto uno cuádruple
porque tiene cuatro picos en cada fase activa. Además estos "bursting" muestran una serie de repe-
ticiones que son adecuados para realizar estudios en la generación de patrones. Las corriente iónicas
rápidas, recordar que son las del sodio y potasio, son las encargadas de este proceso. De la fase de repo-
so se encargan las corrientes más lentas de las cuales se encargan los otro iónes que corresponden con
la ecuación lenta.

Figura 1.9: En esta gráfica tenemos los posibles tipos de "bursting" según las bifurcaciones de equili-
brios y de ciclos limites. [13]

En 1.9 tenemos una clasificación de qué tenemos según cómo sea la bifurcación inicial y la bi-
furcación final. Como veremos más adelante, trabajaremos con los casos en los que tendremos una
bifurcación inicial de tipo "saddle-node" (conocida también como "fold") y una bifurcación final tipo
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supercritical Andronov-Hopf o bien una la bifurcación final de tipo homoclínica, por lo que nos centra-
remos en los "bursting" fold/Hopf o fold/homoclínica.

Las bifurcaciones en el punto de equilibrio ocurren en la fase de reposo, donde como la solución es
un punto de equilibrio. Por otro lado el final de la fase activa corresponde cuando las órbitas periódicas
o bien alcanzan la bifurcación de tipo Hopf, produciendo así el "bursting" fold/Hopf, o bien cuando las
órbitas periódicas colisionan contra los puntos silla, produciendo así una bifurcación de tipo homoclí-
nica proporcionándonos un "bursting" fold/homoclínico.

A continuación mostraremos gráficamente ambos "bursting". Visualizar el dinamismo nos ayudará
a comprender con más facilidad el movimiento de flujo entre las fases de reposo y las fases activas y
cómo se producen las bifurcaciones de tipo Andonov-Hopf y la bifurcación de tipo homoclínica.

Figura 1.10: "Bursting" fold/Hopf. [7]

Esta gráfica corresponde a la dinámica de "bursting" de tipo fold/Hopf. Destacamos que el subsis-
tema lento se mueve a través de la fase de reposo mientras que el subsistema rápido se mueve a través
de la fase activa, donde se producen los picos. Se observa claramente cómo se produce el cambio entre
fases. De la fase de reposo a la fase activa se llega mediante una bifurcación de tipo fold mientras que
de la fase activa a la de reposo mediante una bifurcación supercrítica Andronov-Hopf. Como hemos
definido previamente, la bifurcación de tipo Hopf se produce cuando los puntos de equilibrio cambian
su estabilidad a través de un par de valores propios imaginarios puros. Veremos más adelante que los
puntos de equilibrio previos a la bifurcación serán focos inestables y a partir de esta bifurcación nos
encontraremos puntos silla.

Otro estado importante es el "bursting" de tipo fold/homoclinico, también conocida como "square-
wave bursting". Cuando estamos en la fase de reposo, el subsistema rápido sufre una bifurcación de tipo
fold dando comienzo a la fase activa produciendo los picos. Al final de la fase activa, en el subsistema
rápido se produce una bifurcación homoclínica producida del cambio entre fases, de la activa a la fase
de reposo.
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Figura 1.11: "Bursting" fold/homoclínico. [7]

En este diagrama tenemos las fases activas y de reposo cuando tenemos un "bursting" fold/homoclínico.
Como hemos explicado previamente, el subsistema lento se mueve en la fase de reposo, mientras que el
subsistema rápido en la fase activa que es donde se producen los picos. Cabe destacar como se produce
el transcurso del subsistema lento al subsistema rápido a través de la bifurcación de tipo fold. Al finali-
zar la fase activa, se produce la bifurcación homoclínica. Además, observamos que se produce cuando
la órbita homoclínica colisiona con un punto de equilibrio, que en concreto es un punto silla. Así es el
transcurso de una fase a otra y así se concluye con el periodo entre "bursting".

1.3. Modelo matemático de Hindmarsh-Rose

Si recordamos el modelo propuesto por Hindmarsh-Rose, consistía en tres ecuaciones diferenciales
dónde cada una medía el potencial en las diferentes partes de la neurona. Una ecuación medía el poten-
cial de membrana y otra el potencial de los iones de sodio y potasio, formando así el subsistema rápido.
La tercera ecuación correspondía al potencial producido por otros iones, que formaban el subsistema
lento. El sistema propuesto por Hindmarsh-Rose fue


ẋ = y−ax3 +bx2− z+ I
ẏ = c−dx2− y
ż = ε(s(x− x0)− z)

(1.5)

Los valores de control que se usan más usualmente en este modelo de Hindmarsh-Rose son a =
1,c = 1,d = 5,s = 4 y x0 = −1,6 En la gráfica que mostramos a continuación observamos como se
comporta el sistema en función de I y b.
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Figura 1.12: En esta imagen vemos como cambia el sistema en función de I y de b.[3]

La imagen 1.12 es una simulación de cómo se comporta el sistema en función de los diferentes pa-
rámetros. Fijando I trazamos una horizontal y seleccionamos diferentes valores para b en función de los
cambios que podamos observar en el modelo. Por un lado tenemos una serie de picos donde tendremos
un " chaotic bursting", perteneciente a la "square wave bursting", o zona de la bifurcación homoclínica,
y por otro, un "quiescence", que corresponde a la zona de reposo.

También tenemos un parámetro ε de control para el adelanto y la demora de la activacion de la
corriente slow del modelo neuronal. El valor de este parámetro será pequeño, generalmente ε = 0,01.
Este parámetro me genera un sistema "fast-slow"(rápido-lento). Este tipo de sistema está explicado en
el próximo capítulo.

A continuación vamos a considerar los dos parámetros que más influyen en el sistema "fast-slow"
que propusieron Hindmarsh y Rose. Estos parámetros serán los que más caractericen el subsistema rá-
pido ya que nos darán diferentes bifurcaciones con lo que el sistema evolucionará de forma diferente.
Algunos de estos parámetros hemos visto cómo cambian en 1.12.

Para el estudio que realizaremos más adelante cogeremos siempre I = 4 y cambiaremos los pará-
metros de b los cuales serán b = 2,52 y b = 2,7. Cogemos estos debido a que como se observa en el
gráfico 1.12 observamos un cambio en nuestro modelo, con el cual tendremos o bien un "bursting" de
tipo fold/Hopf o bien un "bursting" de tipo fold/homoclínico respectivamente.

Veamos a continuación cómo se comportan las soluciones del sistema con estos valores de las va-
riables. Primero veamos cómo queda el sistema.


ẋ = y− x3 +bx2− z+4
ẏ = 1−5x2− y
ż = ε(4(x+1,6)− z)

(1.6)

Como bien hemos dicho al principio del capítulo, las dos primeras ecuaciones corresponden al sub-
sistema rápido, correspondiente a las ecuaciones de la membrana celular y de los iones sodio/potasio,
mientras que la tercera ecuación corresponde al subsistema lento, que corresponde con otros iones que
intervienen en el proceso.

A continuación mostramos cómo son las soluciones del sistema según los valores del parámetro b.
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Figura 1.13: Grafico correspondiente a b = 2,52.

Figura 1.14: Grafico correspondiente a b = 2,57.

Aunque lo vayamos a ver más adelante, como bien hemos estudiado previamente nos encontramos
frente a los casos de los "bursting" de tipo fold/Hopf y "bursting" de tipo fold/homoclínico. La fase
activa en el caso de el "bursting" de tipo fold/Hopf tiene muchos más picos que enel "bursting" de tipo
fold/homoclínico. Además, aunque ahora no estén representados, veremos cómo en el caso b = 2,7 la
órbita homoclínica choca contra un punto silla produciendo la bifurcación homoclínica y pasando del
subsistema rápido al subsistema lento, o dicho de otra forma, de la fase activa a la fase de reposo.

Por otro lado, en el caso b = 2,7 nos encontramos frente ael "bursting" de tipo fold/Hopf. En este
caso veremos como los focos cambian a puntos sillas. En este proceso, los valores propios de la ma-
triz jacobiana de estos focos se convertirán en imaginarios puros produciendo así una bifurcación de
Andronov-Hopf supercrítica.

Se percibe que la fase activa en el caso del "bursting" de tipo fold/Hopf es más duradera que en el
caso del "bursting" de tipo fold/homoclínico. Esto es debido a que en este caso la órbita periódica no
llega a colisionar con ningún punto silla, cosa que provocaría el "bursting" de tipo fold/homoclínico. Al
no llegar a colisionar, como veremos más adelante, la solución llega hasta la bifurcación del subsistema
rápido que es de tipo Hopf.

En cambio, la fase de reposo es más duradera en el caso del "bursting" de tipo fold/homoclínico. Al
colisionar la órbita periódica hace que el subsistema rápido finalice antes de lo debido. El subsistema
lento en cambio, debido a este fenómeno, tiene una duración más larga ya que el tiempo necesario hasta
alcanzar la bifurcación de tipo fold será mayor.





Capítulo 2

Modelo 2D

En este capitulo estudiaremos la reducción del modelo de Hindmarsh y Rose y consideraremos el
subsistema rápido. Esta reducción se produce cuando el ε tiende a 0. Cuando esto ocurre, la tercera
ecuación que corresponde a la ecuación lenta nos queda ż = 0. Así z = constante.

En el momento de que esto ocurra nos vamos a encontrar frente al subsistema rápido, en el cual
haremos un análisis, tanto analítico como numérico, con el que podremos obtener ciertas propiedades y
obtener las bifurcaciones con las que la fase rápida concluirá dejando paso a la fase de reposo.

Esta reducción se hace para poder hacer un estudio más sencillo del sistema ya que como veremos
en el siguiente capítulo, gracias a los teoremas de Fenichel, podremos extrapolar las soluciones obteni-
das en este sistema al sistema tres dimensional.

El tipo de sistema "fast-slow" está definido por dos subsistemas, uno rápido, el que estudiaremos
en este capítulo, y otro lento. Estos subsistemas están determinados por un ε . Si hacemos tender este ε

a cero esto nos da como resultado el susbsistema rápido. Este tipo de sistema se puede definir como{
ẋ = f (x,y)
ẏ = εg(x,y)

Aunque también lo podemos reformular considerando δ =
1
ε

obteniendo

{
δ ẋ = f (x,y)
ẏ = g(x,y)

Como hemos dicho previamente, que el valor de ε , o δ según en el caso que estemos, sea muy
pequeño nos va a determinar los dos subsistemas, el rápido y el lento. En el primer sistema "fast-slow"
que hemos escrito, el que usaremos de ahora en adelante, si hacemos tender ε a cero nos encontraremos
frente al sistema {

ẋ = f (x,y)
ẏ = 0

De esta forma tendremos que la variable y será una constante y nos quedará el subsistema rápido
ẋ = f (x,y). Gracias a esto podemos hacer un estudio del sistema a través de dos sistemas mucho más
sencillos en los que extraer propiedades tendrá un menos coste computacional. Además, los "bursting"
se producen en la fase de activación, es decir, en el subsistema rápido, luego su identificación resultará
más manejable.

15
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Por lo tanto, nuestro subsistema rápido de ecuaciones diferenciales será:{
ẋ = y− x3 +bx2− z+4
ẏ = 1−5x2− y

(2.1)

2.1. Estudio analítico

En esta sección aplicaremos diferentes técnicas para obtener resultados analíticos con los que poder
ver el comportamiento del sistema. Comenzaremos el estudio calculando los puntos críticos de este
nuevo sistema. Para obtenerlos tendremos que igualar a cero cada ecuación.

Proposición 2.1. Las soluciones del sistema 2.1 son: x1 =
1
9
(b−5)2

3√r + 1
3 b+ 3

√
r− 5

3

y1 = 1−5x2
1 x2 =

−(b−5)2(−i
√

3+1)
18 3√r − 1

2
3
√

r(i
√

3+1)+ 1
3 b− 5

3

y2 = 1−5x2
2 x3 =

−(b−5)2(i
√

3+1)
18 3√r − 1

2
3
√

r(−i
√

3+1)+ 1
3 b− 5

3

y3 = 1−5x2
3

donde r = 1
27(b−5)3− 1

2 z+
1
6

√
20
3 b3−100b2− 2

3(2b3−30b2 +150b−115)z+9z2 +500b− 1825
3 +

5
2

Veamos gráficamente como se distribuyen los puntos críticos del sistema (2.1).

Figura 2.1: Las imágenes corresponden a los puntos críticos de los parámetros b = 2,52 y b = 2,7
respectivamente.

Los puntos negros corresponden a los puntos de bifurcación de tipo Hopf que explicaremos más
adelante. Los puntos de equilibrio verdes corresponden a focos que son estables mientras los rojos es
que son focos inestables. Esta diferencia en la estabilidad del sistema van a colaborar a cómo se rige la
evolución del sistema. Los puntos críticos que aparecen después de la segunda bifurcación son puntos
sillas, que son puntos inestables aunque observamos que a medida que evoluciona el sistema estos pun-
tos vuelven a ser focos estables. Veremos más adelante que la aparición de estos puntos de equilibrio de
tipo silla van a determinar qué tipo de bifurcación global vamos a tener en el sistema.
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En ambas gráficas aunque puedan parecer que son similares, las bifurcaciones a nivel global no lo
son. En el primer caso tenemos dos bifurcaciones Andronov-Hopf, que demostraremos a lo largo del
capítulo, mientras que en el otro caso la primera bifurcación corresponde a una bifurcación de tipo Hopf
y la otra bifrucación es una bifurcación de tipo Hopf que no se va a alcanzar en el sistema general, ya
que aparecerá un "bursting" fold/homoclínico.

Veamos si este sistema tiene órbitas periódicas. Para ello usaremos el Criterio de Bendixson.

Teorema 2.2 (Criterio de Bendixson). Sea D⊂ R2 simplemente conexo y sea el sistema diferencial{
ẋ = f (x,y)
ẏ = g(x,y)

tal que f ,g ∈C1. Entonces el sistema diferencial solo puede tener orbitas periodicas en D si la diver-
gencia5( f ,g) cambia de signo en D o si5( f ,g) = 0.

Hagamos el estudio en nuestro problema

∂

∂x
(y− x3 +bx2− z+4)+

∂

∂y
(1−5x2− y) =−3x2 +2bx−1

Como cambia de signo puede tener órbitas periódicas. Analíticamente no las podemos obtener ya
que nuestro sistema no se puede resolver analíticamente al ser un sistema complejo. Por ello, el estudio
de órbitas periódicas lo dejaremos para más adelante cuando hagamos el estudio numérico y dibujemos
las soluciones obtenidas en este sistema.

Busquemos ahora los posibles puntos donde hay una bifurcación. Para la bifurcación Andronov-
Hopf buscaremos que los valores propios sean imaginarios puros y para la bifurcación "saddle-node"
tendremos un valor propio igual a cero y el resto imaginarios puros.

Proposición 2.3. El sistema 2.1 tiene dos bifurcaciones de tipo Hopf en los puntos

z1 =
180+2b3−30b2 +(−2b2 +30b−3)

√
b2−3

27
, z2 =

180+2b3−30b2 +(2b2−30b+3)
√

b2−3
27

Demostración. En primer lugar calculemos la matriz jacobiana y estudiemos la estabilidad de los puntos
de equilibrio.

Jac(x,y) =
(
−3x2 +2bx 1
−10x −1

)
(2.2)

Los valores propios son:

λ =
−3x2 +2bx−1±

√
9x4−12bx3 +(4b2−6)x2 +(4b−40)x+1

2
(2.3)

Para que sean imaginarios puros se tiene que cumplir

−3x2 +2bx−1 = 0⇒ x1 =
b−
√

b2−3
3

, x2 =
b+
√

b2−3
3

Por tanto

z1 =
180+2b3−30b2 +(−2b2 +30b−3)

√
b2−3

27
, z2 =

180+2b3−30b2 +(2b2−30b+3)
√

b2−3
27

Así sustituyendo por b = 2,52 y b = 2,7 obtenemos dónde vamos a tener las bifurcaciones. En el
caso b = 2,52 tenemos una bifurcación Hopf en z = −3,26466911496911 (El otro punto que nos sale
como bifurcación tiene que ser otra cosa como por ejemplo un fold) mientras que en el caso b = 2,7
tenemos dos bifurcaciones Hopf en z1 =−4,84042603162419 y en z2 = 4,88975936495752.
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Observamos que no tenemos en el sistema 2.1 dos bifurcaciones de tipo Hopf para cada valor del
parámetro b y no hay ninguna bifurcación de tipo "saddle-node".

2.2. Estudio numérico

En esta sección trataremos de mostrar numéricamente los resultados analíticos obtenidos en la sec-
ción anterior. Además obtendremos algunos resultados que no hemos podido demostrar u obtener de
forma analítica, como es el caso de las órbitas periódicas ya que nuestro sistema no tiene una solución
que podamos expresar mediante fórmulas. Con los datos obtenidos en esta sección interpretaremos co-
mo evoluciona el modelo neuronal.

En primer lugar, integramos el sistema en funcion de z, que será una constante a la que iremos dando
diferentes valores y obtenemos las siguientes soluciones

Figura 2.2: La primera imagen corresponde al parámetro de b = 2,52 mientras que la segunda cores-
ponde al de b = 2,7. Observamos que la solución inestable no aparece en las gráficas.

Como observamos en estas dos imágenes tenemos que para el parámetro b = 2,52 tenemos dos bi-
furcaciones que como hemos demostrado en el apartado anterior, serán dos Hopf. Tambíen podemos
reparar en las dos bifurcaciones que hay con el parámetro b = 2,7 donde contemplamos que, aunque el
comienzo es similar, debido a la bifurcación de tipo Hopf que se encuentra en ambos subsistemas, el
final es bastante diferente ya que, entre otros motivos, tenemos bifurcaciones distintas, por un lado una
Hopf y por otro lado, como la órbita homoclínica colisiona contra el punto de equilibrio de tipo silla,
una bifurcación homoclínica.

En el caso b = 2,7 vemos que hay como otra solución. Esto es debido a que tenemos una bifurcación
de tipo Hopf que hace que las órbitas periódicas vayan creciendo a medida que va decreciendo z pero
veremos que rápidamente colisionan contra los puntos silla.

También observamos que los puntos críticos estables obtenidos en el estudio analítico y vistos en
2.1 son solución del sistema. Los puntos de equilibrio que son inestables no aparecen dibujados. Po-
demos visualizar que en el sistema general tendremos órbitas periódicas como bien se aprecian sus
proyecciones en el plano.
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Figura 2.3: Observamos como se ajusta la solución del sistema de ecuaciones y los puntos críticos. La
primera corresponde a b = 2,52 y la segunda a b = 2,7

Visualizamos en ambas gráficas como se ajustan los puntos críticos con las soluciones obtenidas nu-
mericamente. De hecho los puntos críticos estables son soluciones. Entre ambas bifurcaciones tenemos
unos focos inestables que van hasta las órbitas periódicas. A partir de la segunda bifurcación de Hopf
en ambas gráficas, tenemos puntos sillas que son inestables hasta que se transforman en focos estables.
En la primera gráfica tenemos que las órbitas periódicas se desarrollan hasta la segunda bifurcación. En
cambio en la segunda las órbitas periódicas rompen cuando tocan el punto silla. Esto es debido a la otra
bifurcación que tenemos que es de tipo homoclínica, explicada previamente.

Como estamos en el espacio dos dimensional el punto donde se produce la bifurcación saddle-node
no lo podemos obtener. Uno de los motivos por el cual no se puede obtener es que este sistema no se
puede linealizar entonces no lo podemos poner de la forma descrita en 1.4 y no podemos ver que ocurre
en el origen.





Capítulo 3

Extrapolación al modelo 3D

Hasta ahora hemos estado haciendo un estudio del subsistema rápido donde hemos podido visualizar
dónde ocurren las bifurcaciones de una forma sencilla y cómo evoluciona el sistema. Ahora queremos
que los resultados obtenidos en este subsistema se sigan garantizando en el modelo global, incluyendo
el subsistema lento. Para ello vamos a necesitar la ayuda de los teoremas de Fenichel que nos van a
asegurar que los resultados obtenidos en el subsistema rápido sigan siendo ciertos.

Estos teoremas van a ser de forma local para cada punto de equilibrio ya que nos van a decir que va
a existir una variedad en la que el subsistema rápido es difeomorfo al sistema 1.6, conservando así las
propiedades de este subsistema.

Concluiremos este capitulo con las ilustraciones superpuestas de las soluciones del subsistema rá-
pido con la solución del sistema general. Por lo tanto, tal y como veremos cada vez que tengamos un
sistema "fast-slow" lo podremos descomponer en los subsistemas rápidos y los subsistemas lentos, fa-
cilitando el estudio y reduciendo considerablemente el gasto computacional.

Además, tendremos una mejor visión y entendimiento de los resultados obtenidos en el subsistema
rápido, aunque perderemos alguna solución obtenida como es en el caso de b = 2,7 que las órbitas
periódicas que partían de la segunda bifurcación de ripo Hopf hacia la primera en el sistema general
desaparece.

3.1. Teoremas de Fenichel

Los siguientes teoremas ([4], [5]) nos van a garantizar que los resultados obtenidos en el subsis-
tema rápido, de forma local, van a estar presentes en el sistema general.Para ello en ambos teoremas
necesitaremos tener un epsilon lo suficientemente pequeño para poder obtener la propiedad que sean
difeomormos ambos sistemas.

En los teoremas de Fenichel la formulación del sistema "fast-slow" no es la que venimos usando
hasta ahora con el ε . La notación que usa es{

δ ẋ = f (x,y)
ẏ = g(x,y)

Recordar que δ =
1
ε

. Por motivos de notación vamos a llamar a este δ como ε .

Antes de nada, para la comprensión de estos teormas vamos a necesitar una serie de términos que
no hemos definido con anterioridad.

21
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Definición. Un conjunto V es un conjunto invariante de la ecuación ẏ = h(y) si y(t0) ∈ V para algún
t0 ∈ R implica que y(t) ∈V .

En definitiva lo que nos quiere decir esta definición es que un sistema es invariante si no está in-
fluenciado explicitamente por el tiempo.

Definición. Un conjunto abierto V es un conjunto localmente invariante respecto a un conjunto abierto
W bajo el sistema ẏ = h(y) si V es un subconjunto de W y si cualquier trayectoria que abandona V
abandona simultaneamente W .

Además necesitaremos un teorema que nos asegure que el flujo va a ser topologicamente conjugado
tras la linealización del sistema.

Teorema 3.1 (Hartman-Grobman). Sea x* un punto de equilibrio hiperbólico de un campo f ∈ C 1 con
flujo φt(x). Entonces hay un entorno N de x* tal que φ es topologicamente conjugado al flujo generado
por la linealización de f.

En los siguientes teoremas hablaremos de que existe una variedad donde el flujo es invariante. Así
que para la comprensión también necesitaremos la definición de variedad.

Definición. Sea un campo vectorial f que define un flujo φt , φt : N→Rn entonces dado un punto fijo x0
se define:

1) Variedad estable del punto fijo x0 generado por φt a W s ≡{x|φt(x)→ x0 cuando t→∞,φt(x)∈N, t ≥
x0}

2) Variedad inestable del punto fijo x0 generado por φt a W u ≡ {x|φt(x)→ x0 cuando t →−∞,φt(x) ∈
N, t ≤ x0}

Definición. Sea M una variedad compacta suave (o C ∞), f : M→M un difeomorfismo y D f : T M→
T M la diferencial de f . Una variedad f -invariante Λ de M se define como una variedad invariante
normalmente hiperbólica si la restricción de Λ al grupo tangente de M admite una particion en la suma
de tres subgrupos D f -invariantes, uno perteneciente al grupo tangente de Λ y los otros correspondientes
a los subespacios estables e inestables de A ∈ Rn matriz del sistema diferencial.

Es decir, lo que nos quiere decir esta definición es que una variedad es invariante normalmente
hiperbólica si se puede descomponer en el plano tangente, la variedad estable y la variedad inestable.

Teorema 3.2 (Existencia de la variedad central). Considerar la ecuación ẋ = Ax+ f (x) con x ∈ Rn y A
una matriz constante n×n, x = 0 un punto crítico aislado. La función f (x) es C k,k ≥ 2 en un entorno

de x = 0 y lı́m
‖x‖→0

‖ f (x) ‖
‖ x ‖

= 0. La variedad estable e inestable de la ecuación ẏ = Ay son Es y Eu, el

espacio de vectores propios correspondientes a los valores propios con parte real cero es Ec. Luego
existen unas variedades estables e inestables Ws y Wu que son tangentes a Es y Eu en x = 0 y son C k.
Existe una variedad C k−1 invariante Wc, la variedad central, que es tangente a Ec en x0.

Con todos estos conceptos estamos preparados para poder entender y aplicar los teoremas de Feni-
chel. El primer teorema de Fenichel nos indicará que la variedad obtenida en el caso límite ε = 0 persiste
cuando tenemos un ε lo suficientemente pequeño. Esto nos garantizará que el sistema viene influencia
por el subsistema rápido y por las variedades obtenidas en el caso límite.

Teorema 3.3 (Primer teorema de Fenichel). Si ε > 0 suficiente pequeño, existe una variedad Mε (
la variedad central) que se encuentra dentro de O(ε) en la variedad M0 contenida en el conjunto
{ f (x,y,0)} y es difeomorfa para M0. Además es localmente invariante bajo el flujo de (2.1) y C r,
incluido en ε , para cualquier r < ∞.
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El segundo teorema de Fenichl nos garantizará la existencia de variedades estables e inestables de
las variedades límite, estableciendo así las trayectorias de entrada y de salida.

Teorema 3.4 (Segundo teorema de Fenichel). Suponer M0 ⊂ { f (u,v,0) = 0} es compacta, posible-
mente con frontera, y normalmente hiperbólica, y suponer f y g son homogéneas. Luego para ε > 0 y
sufientemente pequeño, exite una variedad W s(Mε) y W u(Mε) que son O(ε) cerradas y difeomórficas
a W s(M0) y W u(M0) respectivamente, y que son localmente invariante bajo el flujo del sistema (2.1).

Recapitulando, para las hipótesis de estos dos teoremas necesitamos tener un ε suficientemente
pequeño. Recordamos que nuestro ε es ε = 10−2 que aunque no es muy pequeño en nuestro caso nos
vale. Además nos dicen que va a existir una variedad en la que el flujo de nuestro subsistema rápido es
invariante. Estos dos teoremas nos permiten explicar el comportamiento de los sistemas "fast-slow".

3.2. Paso a 3D

Recordemos el sistema que teníamos


ẋ = y− x3 +bx2− z+4
ẏ = 1−5x2− y
ż = ε(4(x+1,6)− z)

El subsistema rápido tiene como solución un intervalo más amplio que el que muestran las gráficas
siguientes. Dicho subsistema tenía dos bifurcaciones tipo Hopf en ambas gráficas. La diferencia entre
los casos b = 2,52 y b = 2,7 radica en que la órbita periódica choque o no contra los puntos sillas que
hay después de la segunda bifurcación de tipo Hopf. Nos centraremos en la parte final, donde aparece la
segunda bifurcación en el subsistema rápido, ya que es donde se localiza la solución del sistema general
y obtendremos más conclusiones.

Si rememoramos el subsistema rápido, los puntos de equilibrio entre las bifurcaciones eran focos
inestables. A partir de dicha bifurcación también nos encontramos frente a puntos inestables, pero en
este caso son de tipo silla. A medida que el sistema va evolucionando con el tiempo estos puntos silla
se convierten nuevamente en focos, aunque esta vez serán estables.

Otro resultado de bastante relevancia obtenido en el estudio numérico son las órbitas periódicas.
Previamente hemos definido las dos bifurcaciones globales y qué condiciones se tenían que dar para
poder obtenerlas. El el subsistema rápido vimos como en uno de los dos casos estas órbitas chocaban
contra los puntos sillas y en el otro cómo llegaban hasta la segunda bifurcación de Hopf. Estos resulta-
dos, por los teoremas de Fenichel, se mantendrán en el sistema general.

Además en el subsistema rápido hemos obtenido algunas soluciones que no van a ser solución del
modelo. Esto va a ocurrir con b= 2,7 y va a ser causado debido al tipo de "bursting" en el que nos vamos
a encontrar, el "bursting" de tipo fold/homoclínico. Al estar dando la solución de un estado dinámico es
normal que una vez concluida la fase activa al colisionar la órbita periódica con el punto silla pasemos
a la fase de reposo. Ahí radica la explicación de por qué no vamos a visualizar esas órbitas periódicas
que surgen de la segunda bifurcación de tipo Hopf.
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Figura 3.1: Superposición del subsistema rápido con el sistema global. Corresponde a b = 2,52.

Observamos como en este caso la solucion del sistema 1.6 se superpone perfectamente a la solución
obtenida en el subsistema rápido (en amarillo). Destacamos que se observa perfectamente la bifurcacion
fold/Hopf. Esta bifurcación viene generada por la segunda bifurcación Hopf obtenida en el subsistema
rápido y la fold que se encuentra en el subsistema lento. También vemos que la solución obtenida es
muy similar a la gráfica 1.10.

La bifurcación de tipo fold se encuentra en el subsistema lento, que es donde se encuentra la fase de
reposo, y la que consigue el salto entre la fase de reposo y la fase activa. También podemos destacar que
la bifurcación de tipo Andronov-Hopf es supercrítica, produciéndose así el paso entre fases, de activa a
reposo.

Sabemos que la bifurcación de tipo Andronov-Hopf es supercrítica a través de su dinamismo, ya
que la complejidad del sistema hace inviable el cálculo del coeficiente de Lyapunov. Tener en cuenta
cómo las órbitas periódicas van reduciendo su radio hasta llegar al punto de equilibrio.

Figura 3.2: Superposición del subsistema rápido con el sistema global. Corresponde a b = 2,7.

En este caso tenemos una cosa parecida obtenida con el parámetro b = 2,52. La solución del siste-



Descomposición "fast-slow" en modelos matemáticos neuronales. - Iván Araque Cristóbal 25

ma 1.6 se encarama con bastante precisión a la solución obtenida en el subsistema rápido. Se observa
claramente cuando se produce la bifurcación homoclínica, la cual ocurre cuando la órbita periódica se
encuentra contra el punto silla.

Como en el caso de b = 2,52, en el subsistema lento se produce la bifurcación de tipo fold que
provoca el cambio de fase. Observamos que en este caso la solución que parte de la segunda bifurcación
de tipo Hopf (en este caso la que tenemos dibujada en la gráfica) no aparece. Esto es debido a que esa
solución corresponde al subsistema rápido pero no al subsistema general.

Tras un procedimiento de mallado y aplicando técnicas de continuidad obtenemos una gráfica en
cada caso donde se observa mejor ambos procesos.

Figura 3.3: "Bursting" de tipo fold/Hopf arriba y "bursting" de tipo fold/homoclínico abajo.[3]

En estas dos imágenes tenemos una mejor representación de lo que ocurre. Además gracias a la
recta dibujada ż = 0, es decir que z es constante, podemos visualizar el subsistema rápido y el lento,
es decir, la fase activa y la de reposo. También, gracias a las técnicas de continuidad, observamos en el
subsistema rápido el intervalo donde se mueven las órbitas periódicas, y cómo colisionan en el caso del
"bursting" de tipo fold/homoclínico.
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