Descomposicion ''fast-slow"
en modelos matematicos neuronales.

macultad de Ciencias
Universidad Zaragoza

i2s  Universidad
181  Zaragoza

Ivan Araque Cristobal
Trabajo de fin de grado en Matematicas
Universidad de Zaragoza

Director del trabajo: Roberto Barrio
10 de julio de 2018






Resumen

Since the middle of the 20th century, the study of how neural networks functioned began. This re-
search process occurred at the same time as the computers were being developed, applying these neural
models for the first time on Turing’s type B machine. The first neural model to be created was the model
of Warren McCulloch and Walter Pitts in 1943. Thereafter, there were two types of approaches to neural
networks.

The first approach, which has increased the most over the years, is that of artificial intelligence. With
these models we try to see the learning evolution of the aritificial neural networks. This type of inte-
Illigence resembles the human brain so it tries to have the characteristics of the human brain. The main
features are adaptive learning, self-organization, fault tolerance, real-time operation and easy insertion
into the technology.

The other approach is a more biological approach to brain functioning, in order to see how biolo-
gical systems work in humans. In addition, this study allows us to see what happens in the rest of the
species that inhabit the planet. This is because the same thing happens in all cells of all living beings,
there is a difference in the electrical potential. This difference in potential, as we will see throughout the
work, is due to the fact that neuronal processes have two states, that of rest and that of excitation.

The model we are going to study throughout the work is a reduction of the model proposed by
Hodgkin and Huxley. Specifically the Hindmarsh and Rose model. In this model the potential provided
by the cell membrane, the potential produced by sodium and potassium ions and a third potential pro-
duced by other ions will be considered.

In addition, this model of equation systems will be able to be reduced into two subsystems, a fast
and a slow subsystem. This type of system is known as a fast-slow system. The fast subsystem will
be composed of the first two equations, the equation provided by the cell membrane and the equation
provided by the sodium and potassium ions. The slow subsystem is composed of the equation given by
the other ions.

The model they proposed was

¥=y—ax’ +bx* —z+1
y=c—dx*—y
z=¢(s(x—x0)—2)

We will see what each constant brings us (a, b, I, ¢, d, xg, s, €). We will focus primarily on the values
ofa=—-1,1=4,c=1,d=5,5s=4,x=—1,6, € =0,01. We will do a study changing the values of b.
We will distinguish two cases, b = 2,52y b = 2,7. This is because for these values we are going to find
ourselves facing two different types of bifurcations, the fold/homoclinic bifurcation and the fold/Hopf
bifurcation.

The € that appears in the third equation, the slow equation, is going to be the driving force for a
simpler study of this system. This is going to be possible because we will have to makee tends to zero
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IV Resumen

so we conclude that the variable z should be a constant.

This reduction will result in a dimension two subsystem, which, as we have said before, we will
denote as a fast subsystem. The remaining information, that of the slow subsystem, will be obtained as
conclusions of what happens in the system composed of the membrane and the sodium and potassium
ions.

For this purpose, we will carry out an analytical study of the fast subsystem. In this analysis we
will calculate points of equilibrium and where the bifurcations of the two-dimensional system occur. As
analytically we will not be able to obtain many results due to the complexity of the system, we will carry
out a numerical study with which we will obtain the periodic orbits that we could not obtain analytically.

In addition to these results, we will also be able to begin to see how our overall system will behave.
We will be able to visualize where our supercritical Andronov-Hopf bifurcations and our homoclinical
bifurcation will occur.

Once these studies are completed, we will want these results obtained in the fast subsystem to be
maintained in the model. For this we will need two of three of Fenichel’s theorems. These theorems will
ensure that the results obtained in the fast subsystem are maintained in the three-dimensional system.

These theorems will tell us that there is going to be a manifold, for each point of equilibrium, in
which the fast subsystem and the global system are difeomorphic. As such a variety will exist, these
theorems will be local but the information provided is crucial.
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Capitulo 1

Introduccion

El cerebro humano estd compuesto de 86 x 10° de neuronas, las cuales estdn continuamente reci-
biendo y mandando impulsos eléctricos. Esta gran cantidad de neuronas teje una red con la que mandar
impulsos eléctricos al resto del cuerpo. Estos impulsos pueden ser medidos a través de ecuaciones dife-
renciales. El primer modelo que se construyd y estudid, con el fin de entender el funcionamiento de esta
red, fue el modelo Hodgkin-Huxley. Este modelo consiste en exponer la iniciacién y la propagacién
de los potenciales de accién de las neuronas. Ademds se describe la caracteristica de las membranas
celulares, la bicapa lipidica, los canales de iones, los gradientes electroquimicos que controlan el flujo
y las bombas de iones.

Por otro lado, el modelo Hodgkin-Huxley y el resto de modelos neuronales sirven para hacer una
descripcién determinista de las actividades oscilatorias como los "bursting” a dos escalas en los que el
modelo cae a un sistema dindmico con dos tiempos de escala, conocido como "slow-fast system". La
finalidad de este tipo de modelo es poder separar el sistema general en dos subsistemas mas sencillos.
Esto soluciona gran parte de los problemas de hacer el estudio es la dimensiéon del modelo ya que al
tener un orden alto la posibilidad de encontrar algin resultado de interés disminuye. Con la reduccién
ademads se pueden considerar algunas variables como constantes y al tener un subsistema de orden pe-
queio se va a poder aplicar ciertos teoremas que nos aporten resultados de interés.

En 1984 J. L. Hindmarsh y R. M. Rose construyeron un modelo donde se podia ver la evolucién y
el dinamismo del sistema de ecuaciones diferenciales definido por los potenciales. Este modelo es una
simplificacién del modelo que construyeron Hodgkin-Huxley.

Por un lado consideraron la ecuacién de la potencialidad de la membrana celular, por otro conside-
raron el flujo de los iones de sodio y potasio, que contituyen la ecuacion rapida, y la dltima ecuaciéon que
tuvieron en cuenta fue el flujo de otros iones, correspondiendo a la ecuacion lenta. El flujo de los iones
de sodio y potasio estd regulado por la bomba de sodio-potasio. Como son los prinicipales iones que
cambian el potencial de la membrana son los que mds movimiento tienen, asi constituyen la ecuacion
rapida.

Cuando una neurona estd en reposo estos iones se encuentran en desigualdad proporcién donde el
sodio intenta que el potencial de la membrana sea positivo mientras que el potasio intenta que sea nega-
tivo, pero en este estado el potencial se decanta mas con el potencial del sodio. Segtn la alteracién de
la abertura de los canales de estos iones se forman las sefiales eléctricas.

El sistema de ecuaciones que consideraron fue el siguiente:

k=y—ax’+bx*—z+1
y=c—dx’—y (1.1)
z=¢€(s(x—x0)—2)



2 Capitulo 1. Introduccion

1.1. Conceptos previos

Para la comprension completa del trabajo necesitamos una serie de conceptos, como el de bifurca-
cidén u 6rbita periddica, ya que nos ayudarédn a entender la evolucién del sistema. Estos conceptos a nivel
local serdn de gran importancia debido a la gran informacién que contienen y la sencillez de obtencion.

Definicién. Llamaremos puntos criticos del sistema diferencial X a los puntos x tal que f(xg) =0

Definicién. Diremos que un punto critico x = a de la ecuacién x = f(x) se llama atractor positivo si
existe Q, C R" entorno de a si para todo xy € Q, = lim x(¢) = a.
n—oo

Mas adelante veremos cémo se clasifican los puntos criticos y la informacién que nos aportan a la
hora de ver y entender la evolucién de los sistemas dindmicos. Van a resultar de gran importancia para
los estudios y conclusiones que haremos ya que a nivel local nos dan mucha informacién. Otro elemento
que nos aporta bastante informacion son las érbitas periddicas.

Definicién. Sea x = ¢ (¢) una solucién de x = f(x,t), diremos que ¢(¢) es una 6rbita periddica si exite
T>0€eR" tal que ¢(T +1) = ¢(¢) Vr.

Definicién. Un punto xo € R” es un punto @-limite de x € R” si existe una sucesién {t;} (t; — oo) tal
que ¢(ti7x) — X0.
Por otro lado un punto xy € R” es un punto a-limite de x € R” si existe una sucesion {z;} (t; — —oo) tal
que ¢ (t;,x) — xo.

Definicion. Una orbita periddica I" se denomina ciclo limite si es un conjunto o — limite o ® — limite
de algtin punto X que no estd en la 6rbita periddica.

A continuacién definiremos el concepto de bifurcacién con el que més trabajermos a lo largo del
trabajo. Esto es debido a que las bifurcaciones nos van a determinar la evolucién del sistema, ddndonos
diferentes comportamientos segin el tipo de bifurcacién que sea. Veamos qué es y que propiedades tiene
una bifurcacién.

Definicion. Una bifurcacion en un sistema dindmico es un cambio cualitativo en su dindmica producido
por una variacion de los parametros.

Veamos con un pequefio ejemplo como cambia un sistema segtin los valores del pardmetro. Sea el
sistema diferencial

i=B+x
1.2
{y':—y (-2

Los puntos de equilibrio de este sistema son (£+/—f3,0), luego segtin los valores del  tendremos
el siguiente comportamiento en nuestro sistema.

B<0 f=0 B0

Figura 1.1: [13]
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Observamos que si B < 0 tendremos dos puntos sillas. Nos fijamos que estos dos puntos cuando cre-
ce 3 hasta B = 0 van "desapareciendo” hasta colisionar y convertirse en un solo punto. Como veremos
mds adelante cuando 8 = 0 tendremos una bifurcacién "saddle-node". A partir de dicho 8 los puntos
que obtendremos serdn nodos estables.

Las bifurcaciones se pueden clasificar en locales y globales. Las bifurcaciones locales se pueden
analizar considerando el sistema linealizado a través de sus puntos de equilibrio, sus 6rbitas o sus con-
juntos invariantes. Como bifurcaciones mas tipicas a nivel local nos encontramos la bifurcacién de tipo
Hopf, que tiene la parte real del valor propio de la matriz jacobiana del sistema igual a cero, y la bifur-
cacion de "saddle-node", cuando el valor absoluto del valor propio de la matriz jacobiana del sistema es
igual a uno.

Por otro lado las bifurcaciones globales ocurren cuando las 6rbitas periédicas chocan con los puntos
de equilibrio, lo que causa un cambio topoldgico en las trayectorias en el espacio de fase. Como ejem-
plos de estas bifurcaciones estdn la bifurcacion homoclinica, cuando el ciclo limite choca con un punto
silla, y la bifurcacion heteroclinica, cuando el ciclo limite choca contra dos o mas puntos sillas.

La clasificacion de estas bifurcaciones va a estar determinada en algunos casos segin los valores
propios que obtengamos del sistema.

Proposicién 1.1. En R?, sea § = detA, T = tr(A), xo punto de equilibrio y sea el sistema diferencial
lineal x = Ax (A € Ryy2). Entonces:

a) Si 6 <0 = xg es una silla. Los puntos sillas son inestables.

b) Si & >0,72—48 > 0= xy es un nodo, el cual si T < 0 serd estable v si T > 0 serd inestable.

c) Si&>0,72—48 < 0,7 # 0= xq es un foco, el cual si T < 0 serd estable y si T > 0 serd inestable.
d) Si 6 >0y 1=0= x es un centro.

Definicion. Si todos los valores propios de la matriz A € R"*" tienen parte real distinta de cero el flujo
que genera es hiperbdlico, es decir, el punto de equilibrio serd hiperbdlico.
Si existe A; = a; +ib; con a; = 0 = ¢l punto de equilibrio es no hiperbdlico.

Lal

c (real positive eigenvalues) —
*+*. = .j unstable node - Ab =0
eigenvalues o
21
g unstable focus
E (complex eigenvalues, °
@ . Positive real part)
S~ ¥ E .
0 Andronov-Hopf bifurcation A
s
— T .g .
saddle = +
(real eigenvalues, different signs) % * stable focus
o (complex eigenvalues, -
+_|+ B negative real part)
L~
2
3 stable node
@ (real negative eigenvalues)

Figura 1.2: En esta grafica tenemos las posibles clasificaciones. Nos centraremos en la bifurcacion
Andronov-Hopf y la bifurcacién "saddle-node". [10]
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Como observamos en 1.2 tenemos una visualizacion clara de cémo serdn nuestros puntos criticos
segin el determinante y la traza en un sistema dos dimensional. Esto equivale a ver los valores propios
que obtendriamos en la matriz jacobiana y evaludndolo en el punto critico. Esta serie de bifurcaciones
nos determinan la dindmica del sistema. A continuacién veamos la clasificacion en un modelo tres di-
mensional.

A medida que el determinante de la matriz jacobiana va cambiando su signo observamos que nos
encontramos frente a més tipo de puntos de equilibrio. Cuando el determinante en negativo s6lo nos en-
contramos puntos silla, los cuales sabemos que son siempre puntos inestables. Cuando el determinante
es positivo tenemos focos y nodos. Estos vendrdn determinados segin los valores propios de la matriz
jacobiana que tengamos ya que dependeran si son imaginarios puros, en el caso de los focos, o si son
reales con el mismo signo, en el caso de los nodos. Una forma de ver la estabilidad de estos depender4 si
su traza es positiva (inestables) o negativa (estables), tal y como se muestra en la grafica, pero veremos
a continuacién que su estabilidad se puede ver a través del signo de los valores propios de la matriz
jacobiana.

Proposicion 1.2. En R", sea el sistema diferencial lineal x = Ax (A € R,x,). Sea la matriz jacobiana
del sistema diferencial cuyos valores propios son Ay, ..., A,. Entonces:

a) Si todos los valores propios son reales donde al menos uno es positivo y al menos uno es negativo
tenemos un punto silla. Un punto silla es siempre inestable.

b) Si todos los valores propios son reales y tienen el mismo signo tenemos un punto nodo. Serd estable
si todos los valores propios son negativos y serd inestable si todos los valores propios son positivos.

c¢) Si un valor propio es real y los otros dos son valores propios complejos con parte real del mismo
signo, tenemos un punto foco-nodo. Serd estable si la parte real tiene signo negativo e inestable si
la parte real tiene signo positivo.

d) Si un valor propio es real, los otros dos son valores propios complejos con parte real del mismo
signo y el signo del valor propio real es distinto al signo de la parte real de los complejos, tenemos
un punto silla-foco. Por ser un punto con caracteristica de silla serd inestable.

e) Si tenemos un valor propio identicamente nulo tenemos un punto silla-nodo. Por ser un punto con
caracteristica de silla serd inestable.

stable node e stable focus-node unstable focus-node

gl ’!i
saddle saddle
saddle-focus saddle-focus

Figura 1.3: En esta gréfica tenemos las posibles clasificaciones en el sistema 3 dimensional. [10]

En 1.3 vemos como se clasifican nuestros puntos segtin sus valores propios. Al ser de tres dimen-
siones tendremos la estabilidad entre un plano y la recta. Nos fijamos que en el plano tenemos la misma
clasificacion que en el sistema dos dimensional y s6lo difiere en el eje z que no smuestra la estabilidad.
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Al estar en una dimensién mds tenemos nuevos puntos de equilibrio como el silla-foco y foco-nodo.

A lo largo del trabajo nos econtraremos frente a dos tipos de bifurcaciones, la Andronov-Hopf y la
"saddle-node". Veamos como se caracterizan estas bifurcaciones.

Definicion. La bifurcacion Andronov-Hopf es generada cuando el punto de equilibrio cambia su es-
tabilidad a través de un par de valores propios puramente imaginarios. Dicha bifurcaciéon puede ser
supercritica o subcritica, obteniendo un ciclo limite estable o inestable respectivamente.

A continuacién vamos a definir dos teoremas para ver el comportamiento en el caso dos dimensional
y en el caso n dimensional. Antes de comenzar necesitamos definir un criterio analitico con el que vamos
a definir el primer coeficiente de Lyapunov que necesitaremos para la clasificacién de la bifurcacién
Andronov-Hopf.

Proposicién 1.3. En R?, cualquier sistema con una bifurcacion de tipo Hopf puede transformarse de
la siguiente forma a través de un cambio de variables.

{ X =—0y+ f(x,y)
y=0x+g(x,y)

donde f 'y g contienen soélo términos no lineares de orden superior que desaparecen en el origen. Se
puede decidir si la bifurcacion es subcritica o supercritica calculando el signo de la siguiente expresion,
conocida como el primer coeficiente de Lyapunov.

1 1
I = R(fxxx + fxyy + &y + &y + 5 [fxy(fxx +fyy) - gxy(gxx + gyy) — frox&xx +fyygyy]>

donde los elementos denotan las derivadas parciales evaluadas en (0,0). El criterio es que sily <0 la
bifurcacion es supercritica mientras que si l; > 0 la bifurcacion es subcritica.

Teorema 1.4. Sea el sistema

{ X1 = fi(x1,x0;0)

X2 = fo(x1,x;0)

tal que la parte real del valor propio de su matriz jacobiana evaluada en el punto de equilibrio sea
distinto de cero y el primer coeficiente de Lyapunov sea distinto de cero, entonces este sistema es
localmente equivalente topologicamente, cerca del equilibrio, a la forma normal

¥i = By1 —y2+oyi1(vF +3)
. 172 (1.3)
Y2 =y1+By2+ 0oy2(y7 +3)

donde y = (y1,y,)T € R%, B €R, y 6 =sign(l1(0)) = 1. Entonces si sigma = —1 estamos frente a una
bifurcacion Andronov-Hopf supercritica mientras que si sigma = 1 estamos frente a una bifurcacion
Andronov-Hopf subcritica.
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Figura 1.4: Gréficas representando los tipos de bifurcacién de tipo Hopf. [14]

Estas graficas corresponden a la evolucidn del sistema 1.3 segtin el pardmetro f3 y el valor del co-
eficiente de Lyapunov, que en este caso cambia de signo dependiendo del valor de o. En la primera
gréfica aparece la bifurcacion Hopf supercritica. Esto es debido a que el valor que se ha tomado de ¢
es 0 = —1. De esta forma, el sistema tiene un equilibrio en el origen que es asitéticamente estable para
B <0 e inestable para 3 > 0. Ademds el tnico, y estable, ciclo limite existe para 8 > 0. Por otro lado, en
la segunda grafica aparece la bifurcacién Hopf subcritica. Se debe a que el valor de o es 0 = 1. De esta
forma, el sistema tiene un equilibrio en el origen que es asitticamente estable para f < 0 e inestable
para B > 0 mientras que el unico e inestable ciclo limite existe para § < 0.

Hasta ahora hemos visto las condiciones que se tienen que dar para obtener una bifurcacién de tipo
Hopf en un sistema dos dimensional, pero generalmente trabajaremos con sistemas de dimensién mayor
que dos, luego necesitaremos un teorema que nos garantice la existencia de esta bifurcacién. Veamos
qué ocurre en el caso n > 2.

Teorema 1.5. En el caso n-dimensional, la matriz jacobiana en el punto de equilibrio Ao = A(0) tiene
una pareja simple de valores propios imaginarios puros A » = £ay, con @y > 0, s valores propios con
ReA; < 0y uvalores propios con ReAj > 0 tal que s+ u+2 = n. Ademds hay una familia de dimension
2 de variedades invariantes Wy, cerca del origen. El sistema n dimensional restringido a Wy, tiene la
forma normal descrita en el anterior teorema.

Ademds bajo las condiciones de no degeneracion, la parte real del valor propio de su matriz jaco-
biana evaluada en el punto de equilibrio sea distinto de cero y el primer coeficiente de Lyapunov l| sea
distinto de cero, el sistema n dimensional es topologicamente equivalente, cerca del origen, a la forma
normal

y1 =By —y2+oyi(yF +y3)
Y2 =y1+By2+0y2(yi +33)
y=-=y

Y=y

donde y = (y1,y2)T € R?, y* € R™, y* € R,
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p<0 p=0 f>0
Figura 1.5: Gréficas representando como se forma la bifurcacion de tipo Hopf. [14]

Este caso corresponde al sistema

Y1 =By —y2+oy1(yF +3)
Y2 =1+ By2+ 0632007 +3)
")

y =-¥3

Tenemos un valor propio que es A = —1 que corresponde al eje z y al ser negativo serd estable. En
el plano observamos que tenemos la misma dindmica que en el caso del sistema de dimensién 2.

Cuando hemos empezado a hablar de las bifurcaciones hemos puesto un pequeifio ejemplo en el que
se veia como evolucionaba el sistema a medida que cambiaba el 3. En ese caso nos encontrdbamos ante
una bifurcacion "saddle-node".

Definicion. Una bifurcacion "saddle-node" es una colision y desaparicion de dos equilibrios. Esto ocu-
rre cuando el equilibrio critico tiene un valor propio real que es cero.

Como en el caso de la bifurcacién Andronov-Hopf vamos a definir sus propiedades en los sistemas,
primero uno-dimensional, y luego lo generalizaremos al sistema n dimensional.

Teorema 1.6. Sea el sistema % = f(x,a), x € R. Sean las condiciones de no degeneracion a.(0) =
%, £+(0,0) # 0y fu(0,0) # 0. Entonces el sistema es localmente equivalente topolégicamente cerca del
origen de la forma

y=B+oy
donde y € R,B € Ry 0 = signa(0) = £1. Los dos equilibrios del sistema son y\, = £/ —0f si
6B <0,y=0si B =0y no tendrd equilibrios si o3 > 0.

Figura 1.6: [13]

Este gréfico nos recuerda al grafico 1.1 que explicamos como ejemplo de bifurcacién. De hecho,
escribimos el sistema de dimensién dos y ahora hemos hecho lo mismo con el sistema de dimension
uno.
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Teorema 1.7. Sea un sistema n dimensional con n > 2, la matriz jacobiana en el punto de equilibrio
Ay en la bifurcacion "saddle-node" tiene un valor propio simple A1 = 0, s valores propios con Relj <
0 y u valores propios con ReA; > 0 tal que s+u+ 1 = n. Entonces existe una variedad invariante
uno-dimensional Wy, cerca del origen. El sistema n-dimensional restringido a W, es uno-dimensional,
luego es como en el teorema anterior. Ademds, bajo las condiciones de no degeneracion definidas en el
teorema anterior, el sistema n-dimensional es localmente equivalente topologicamente cerca del origen
a la forma normal
y1=By1—=y2+ 0y (37 +3)
Y2 =y1+By2+ 0y (¥} +3)
)-)s — _ys
)')M — yu
donde y = (y1,y2)T € R?, y* € R, y* € R,

(1.4)

Una vez realizado este estudio de las bifurcaciones locales, veamos cémo se comportan las bifurca-
ciones globales. Antes de eso tenemos que definir previamente los conceptos de érbita homoclinica y
heteroclinica.

Definicion. Sean xg,x; dos equilibrios de un sistema. Diremos que una 6rbita ¢, es una 6rbita hetero-
clinica si ¢, — xg,t — —o0y ¢ —> X1, — oo,
Si xg = x; diremos que es una 6rbita homoclinica.

Figura 1.7: En esta grafica tenemos una 6rbita homoclinica a la izquierda y una 6rbita heteroclinica a la
derecha. [15]

La gréfica correspondiente a la 6rbita homoclinica se corresponde con un punto silla-foco. Como
bien hemos definido previamente la drbita tiene origen en xy y a medida que va creciendo el tiempo
hacia infinito la variedad se va alejando del punto de equilibrio. Esta variedad se ve atraida por la parte
estable hasta converger al punto de equilibrio.

Por otro lado en la gréfica correspondiente a la érbita heteroclinica tenemos un x; correspondiente
a un punto silla y un x, que corresponde con un silla foco. La érbita heteroclinica parte del punto silla a
través de su variedad inestable y enlaza con la variedad estable del punto silla-foco.

Definicion. Una bifurcacién homoclinica ocurre cuando una 6rbita periddica colisiona con un punto
silla.

1.2. Dinamica de tipo bursting

En esta seccién veremos el dinamismo de los modelos neuronales. Nos encontraremos frente a las
dos fases, la de reposo y la de activacién, en las que las neuronas se puede encontrar. Ademds haremos
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un estudio en el que veremos como se cruza de una fase a otra. La fase inicial ocurre después de una
bifurcacion en el punto de equilibrio y el "bursting" finaliza con una bifurcacién del ciclo limite.

Definicion. El "bursting" es un estado dinamico en el que una neurona dispara repetidamente rafagas
de picos. Cada una de estas rdfagas va seguida de un periodo de inactividad antes de que ocurra la
siguiente.

interburst period i.nleﬁipike

- active {|ntrabuE|stJ
guiescent : peno
‘ period |‘ phase |H|

active phase
interburst penod

duty cycle =

vith

Figura 1.8: En esta grafica observamos la evolucién respecto al tiempo del modelo neuronal. Tenemos
una fase de reposo (quiescent period) y otra de activacién (active phase). [13]

En esta grafica observamos un proceso neuronal con varios "bursting", en concreto uno cuddruple
porque tiene cuatro picos en cada fase activa. Ademads estos "bursting" muestran una serie de repe-
ticiones que son adecuados para realizar estudios en la generacion de patrones. Las corriente idnicas
répidas, recordar que son las del sodio y potasio, son las encargadas de este proceso. De la fase de repo-
so se encargan las corrientes mds lentas de las cuales se encargan los otro i6nes que corresponden con
la ecuacion lenta.

bifurcations of limit cycles

WUMM — | saddle-node saddle supercritical fold

] ' on invariant homoclinic Andronov- limit
‘l' - circle orbit Hopf cycle
saddle-node fold/ fold/ fold/ fold/
(fold) circle homoclinic Hopf fold eycle

g

S

5 saddle-node circle/ circle/ circle/ circle/

8 on invariant circle homoclinic Hopf fold cycle

- circle

(]

o

E supercritical

= Hopf/ Hopf/ Hopf/ Hopf/

T Andronov- . .

3] H circle homoclinic Hopf fold cycle

5 opf
:ﬁgf;ﬁlgj_l subHopt/ subHopt/ subHopf/ subHopt/
Hopf circle homoclinic Hopf fold cycle

Figura 1.9: En esta gréfica tenemos los posibles tipos de "bursting" segin las bifurcaciones de equili-
brios y de ciclos limites. [13]

En 1.9 tenemos una clasificacion de qué tenemos segin como sea la bifurcacién inicial y la bi-
furcacion final. Como veremos mds adelante, trabajaremos con los casos en los que tendremos una
bifurcacion inicial de tipo "saddle-node" (conocida también como "fold") y una bifurcacién final tipo
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supercritical Andronov-Hopf o bien una la bifurcacién final de tipo homoclinica, por lo que nos centra-
remos en los "bursting” fold/Hopf o fold/homoclinica.

Las bifurcaciones en el punto de equilibrio ocurren en la fase de reposo, donde como la solucién es
un punto de equilibrio. Por otro lado el final de la fase activa corresponde cuando las 6rbitas periddicas
o bien alcanzan la bifurcacién de tipo Hopf, produciendo asi el "bursting" fold/Hopf, o bien cuando las
orbitas periddicas colisionan contra los puntos silla, produciendo asi una bifurcacién de tipo homocli-
nica proporciondndonos un "bursting" fold/homoclinico.

A continuacién mostraremos graficamente ambos "bursting”. Visualizar el dinamismo nos ayudara
a comprender con més facilidad el movimiento de flujo entre las fases de reposo y las fases activas y
c6mo se producen las bifurcaciones de tipo Andonov-Hopf y la bifurcacién de tipo homoclinica.

SUpErcnuca
A i s i . i
Andronov-Hop

Bifurcation

Fold

Bifurcation

|J-\..-
L

Bifurcation

Figura 1.10: "Bursting" fold/Hopf. [7]

Esta grafica corresponde a la dindmica de "bursting" de tipo fold/Hopf. Destacamos que el subsis-
tema lento se mueve a través de la fase de reposo mientras que el subsistema rdpido se mueve a través
de la fase activa, donde se producen los picos. Se observa claramente como se produce el cambio entre
fases. De la fase de reposo a la fase activa se llega mediante una bifurcacién de tipo fold mientras que
de la fase activa a la de reposo mediante una bifurcacién supercritica Andronov-Hopf. Como hemos
definido previamente, la bifurcacién de tipo Hopf se produce cuando los puntos de equilibrio cambian
su estabilidad a través de un par de valores propios imaginarios puros. Veremos mds adelante que los
puntos de equilibrio previos a la bifurcacion serdn focos inestables y a partir de esta bifurcacién nos
encontraremos puntos silla.

Otro estado importante es el "bursting" de tipo fold/homoclinico, también conocida como "square-
wave bursting". Cuando estamos en la fase de reposo, el subsistema rapido sufre una bifurcacién de tipo
fold dando comienzo a la fase activa produciendo los picos. Al final de la fase activa, en el subsistema
rapido se produce una bifurcaciéon homoclinica producida del cambio entre fases, de la activa a la fase
de reposo.
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Figura 1.11: "Bursting" fold/homoclinico. [7]

En este diagrama tenemos las fases activas y de reposo cuando tenemos un "bursting" fold/homoclinico.
Como hemos explicado previamente, el subsistema lento se mueve en la fase de reposo, mientras que el
subsistema répido en la fase activa que es donde se producen los picos. Cabe destacar como se produce
el transcurso del subsistema lento al subsistema rdpido a través de la bifurcacién de tipo fold. Al finali-
zar la fase activa, se produce la bifurcaciéon homoclinica. Ademds, observamos que se produce cuando
la 6rbita homoclinica colisiona con un punto de equilibrio, que en concreto es un punto silla. Asi es el
transcurso de una fase a otra y asf se concluye con el periodo entre "bursting".

1.3. Modelo matematico de Hindmarsh-Rose

Si recordamos el modelo propuesto por Hindmarsh-Rose, consistia en tres ecuaciones diferenciales
dénde cada una media el potencial en las diferentes partes de la neurona. Una ecuacién media el poten-
cial de membrana y otra el potencial de los iones de sodio y potasio, formando asi el subsistema rapido.
La tercera ecuacion correspondia al potencial producido por otros iones, que formaban el subsistema
lento. El sistema propuesto por Hindmarsh-Rose fue

i=y—ax® +bx*> —z+1
y=c—dx’—y (1.5)
z=¢(s(x—x0) —z)

Los valores de control que se usan mds usualmente en este modelo de Hindmarsh-Rose son a =
l,c=1,d=5,s =4y xp =—1,6 En la grafica que mostramos a continuacién observamos como se
comporta el sistema en funcién de /'y b.
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chaotic-burstin
Plateau-bursting

s y Spike-Count (SC)

38 I r : \ quiescence

parameter |

2.4 E . Square-wave bursting

a8 26 aF it 29 3 31 32
parameter b

Figura 1.12: En esta imagen vemos como cambia el sistema en funcién de / y de b.[3]

La imagen 1.12 es una simulacién de como se comporta el sistema en funcién de los diferentes pa-
rametros. Fijando / trazamos una horizontal y seleccionamos diferentes valores para b en funcién de los
cambios que podamos observar en el modelo. Por un lado tenemos una serie de picos donde tendremos
un " chaotic bursting", perteneciente a la "square wave bursting", o zona de la bifurcacién homoclinica,
y por otro, un "quiescence", que corresponde a la zona de reposo.

También tenemos un pardmetro € de control para el adelanto y la demora de la activacion de la
corriente slow del modelo neuronal. El valor de este pardmetro serd pequefio, generalmente € = 0,01.
Este pardmetro me genera un sistema "fast-slow"(rdpido-lento). Este tipo de sistema estd explicado en
el préximo capitulo.

A continuacién vamos a considerar los dos pardmetros que mds influyen en el sistema "fast-slow"
que propusieron Hindmarsh y Rose. Estos parametros serdn los que mds caractericen el subsistema ra-
pido ya que nos daran diferentes bifurcaciones con lo que el sistema evolucionard de forma diferente.
Algunos de estos pardmetros hemos visto como cambian en 1.12.

Para el estudio que realizaremos mds adelante cogeremos siempre / = 4 y cambiaremos los para-
metros de b los cuales serdn b = 2,52 y b = 2,7. Cogemos estos debido a que como se observa en el
gréfico 1.12 observamos un cambio en nuestro modelo, con el cual tendremos o bien un "bursting" de
tipo fold/Hopf o bien un "bursting” de tipo fold/homoclinico respectivamente.

Veamos a continuacién cémo se comportan las soluciones del sistema con estos valores de las va-
riables. Primero veamos cémo queda el sistema.

X=y—xX+bx*—z+4
y=1-5x>—y (1.6)
z=¢€(4(x+1,6) —2)
Como bien hemos dicho al principio del capitulo, las dos primeras ecuaciones corresponden al sub-
sistema rédpido, correspondiente a las ecuaciones de la membrana celular y de los iones sodio/potasio,

mientras que la tercera ecuacion corresponde al subsistema lento, que corresponde con otros iones que
intervienen en el proceso.

A continuacién mostramos cdmo son las soluciones del sistema segtin los valores del parametro b.
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Figura 1.14: Grafico correspondiente a b = 2,57.

Aunque lo vayamos a ver mds adelante, como bien hemos estudiado previamente nos encontramos
frente a los casos de los "bursting" de tipo fold/Hopf y "bursting” de tipo fold/homoclinico. La fase
activa en el caso de el "bursting” de tipo fold/Hopf tiene muchos mds picos que enel "bursting” de tipo
fold/homoclinico. Ademds, aunque ahora no estén representados, veremos cémo en el caso b = 2.7 la
6rbita homoclinica choca contra un punto silla produciendo la bifurcacién homoclinica y pasando del
subsistema rdpido al subsistema lento, o dicho de otra forma, de la fase activa a la fase de reposo.

Por otro lado, en el caso b = 2,7 nos encontramos frente ael "bursting" de tipo fold/Hopf. En este
caso veremos como los focos cambian a puntos sillas. En este proceso, los valores propios de la ma-
triz jacobiana de estos focos se convertirdn en imaginarios puros produciendo asi una bifurcacién de
Andronov-Hopf supercritica.

Se percibe que la fase activa en el caso del "bursting”" de tipo fold/Hopf es més duradera que en el
caso del "bursting" de tipo fold/homoclinico. Esto es debido a que en este caso la orbita periédica no
llega a colisionar con ningtin punto silla, cosa que provocaria el "bursting" de tipo fold/homoclinico. Al
no llegar a colisionar, como veremos mds adelante, la solucién llega hasta la bifurcacion del subsistema
répido que es de tipo Hopf.

En cambio, la fase de reposo es mds duradera en el caso del "bursting" de tipo fold/homoclinico. Al
colisionar la érbita periddica hace que el subsistema rapido finalice antes de lo debido. El subsistema
lento en cambio, debido a este fendmeno, tiene una duracién més larga ya que el tiempo necesario hasta
alcanzar la bifurcacién de tipo fold serd mayor.






Capitulo 2

Modelo 2D

En este capitulo estudiaremos la reduccién del modelo de Hindmarsh y Rose y consideraremos el
subsistema rdpido. Esta reduccién se produce cuando el € tiende a 0. Cuando esto ocurre, la tercera
ecuacién que corresponde a la ecuacién lenta nos queda z = 0. Asi z = constante.

En el momento de que esto ocurra nos vamos a encontrar frente al subsistema rdpido, en el cual
haremos un andlisis, tanto analitico como numérico, con el que podremos obtener ciertas propiedades y
obtener las bifurcaciones con las que la fase rapida concluird dejando paso a la fase de reposo.

Esta reduccién se hace para poder hacer un estudio mas sencillo del sistema ya que como veremos
en el siguiente capitulo, gracias a los teoremas de Fenichel, podremos extrapolar las soluciones obteni-
das en este sistema al sistema tres dimensional.

El tipo de sistema "fast-slow" estd definido por dos subsistemas, uno rapido, el que estudiaremos
en este capitulo, y otro lento. Estos subsistemas estdn determinados por un €. Si hacemos tender este €
a cero esto nos da como resultado el susbsistema rapido. Este tipo de sistema se puede definir como

{ x:f(x,y)
y=¢eg(x,y)

. . 1 .
Aunque también lo podemos reformular considerando 6 = s obteniendo

{ Ox = f(x7y)
y=2g(x,y)

Como hemos dicho previamente, que el valor de €, o 0 segin en el caso que estemos, sea muy
pequeiio nos va a determinar los dos subsistemas, el rdpido y el lento. En el primer sistema "fast-slow"
que hemos escrito, el que usaremos de ahora en adelante, si hacemos tender € a cero nos encontraremos
frente al sistema

{ngww
y=

De esta forma tendremos que la variable y serd una constante y nos quedard el subsistema rapido
X = f(x,y). Gracias a esto podemos hacer un estudio del sistema a través de dos sistemas mucho mas
sencillos en los que extraer propiedades tendrd un menos coste computacional. Ademds, los "bursting"
se producen en la fase de activacidn, es decir, en el subsistema rdpido, luego su identificacion resultard
mads manejable.

15
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Por lo tanto, nuestro subsistema rdpido de ecuaciones diferenciales sera:

N -
{x—y B +bx>—z+4 .0

y=1-5x>—y

2.1. Estudio analitico

En esta seccidn aplicaremos diferentes técnicas para obtener resultados analiticos con los que poder
ver el comportamiento del sistema. Comenzaremos el estudio calculando los puntos criticos de este
nuevo sistema. Para obtenerlos tendremos que igualar a cero cada ecuacion.

Proposicion 2.1. Las soluciones del sistema 2.1 son:

x| = g(bgj;)z +%b+\3/;*%

yi =1—5x}
xp = SO L (i34 1) 4+ 4b—
y2 =1 —5x3
vy = AR LV ) 303
yv3=1-— 5x§

1
donde r = 3 (b—5)> — 1z + 6\/%’3 — 10062 — (263 — 3062 + 150b — 115)z 4 922 + 5006 — 222 4

N D

Veamos graficamente como se distribuyen los puntos criticos del sistema (2.1).

2 27
15 15
1 Mﬂ\ 1
05 *g,:h 0.5 #élg:h
0 * 0 *
+
x 0.5 X 05 &
.
.
1 1 *
*
15 15 *
-2 -2
2.5 2.5
3 3
8 % -4 2 0 2 4 [ 8 8 % - 2 0 2 4 6 8
z z

Figura 2.1: Las imégenes corresponden a los puntos criticos de los pardmetros b = 2,52 y b = 2,7
respectivamente.

Los puntos negros corresponden a los puntos de bifurcacién de tipo Hopf que explicaremos mas
adelante. Los puntos de equilibrio verdes corresponden a focos que son estables mientras los rojos es
que son focos inestables. Esta diferencia en la estabilidad del sistema van a colaborar a cémo se rige la
evolucidn del sistema. Los puntos criticos que aparecen después de la segunda bifurcacién son puntos
sillas, que son puntos inestables aunque observamos que a medida que evoluciona el sistema estos pun-
tos vuelven a ser focos estables. Veremos mds adelante que la aparicién de estos puntos de equilibrio de
tipo silla van a determinar qué tipo de bifurcacién global vamos a tener en el sistema.
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En ambas graficas aunque puedan parecer que son similares, las bifurcaciones a nivel global no lo
son. En el primer caso tenemos dos bifurcaciones Andronov-Hopf, que demostraremos a lo largo del
capitulo, mientras que en el otro caso la primera bifurcacion corresponde a una bifurcacién de tipo Hopf
y la otra bifrucacién es una bifurcacién de tipo Hopf que no se va a alcanzar en el sistema general, ya
que aparecerd un "bursting" fold/homoclinico.

Veamos si este sistema tiene Orbitas periddicas. Para ello usaremos el Criterio de Bendixson.

Teorema 2.2 (Criterio de Bendixson). Sea D C R? simplemente conexo y sea el sistema diferencial

{ x=f(x,y)

y=g(x,y)

tal que f,g € C'. Entonces el sistema diferencial solo puede tener orbitas periodicas en D si la diver-
gencia N/ (f,g) cambia de signo en D o si \7(f,g) = 0.

Hagamos el estudio en nuestro problema

) )
a(y—x3+bx2—z+4)+a—y(l —5x* —y) = —3x> +2bx— 1

Como cambia de signo puede tener Orbitas periddicas. Analiticamente no las podemos obtener ya
que nuestro sistema no se puede resolver analiticamente al ser un sistema complejo. Por ello, el estudio
de o6rbitas periddicas lo dejaremos para més adelante cuando hagamos el estudio numérico y dibujemos
las soluciones obtenidas en este sistema.

Busquemos ahora los posibles puntos donde hay una bifurcacion. Para la bifurcacién Andronov-
Hopf buscaremos que los valores propios sean imaginarios puros y para la bifurcacién "saddle-node"
tendremos un valor propio igual a cero y el resto imaginarios puros.

Proposicion 2.3. El sistema 2.1 tiene dos bifurcaciones de tipo Hopf en los puntos

 180+2b% 3007+ (—2b* +30b—3)Vb2—3  180+2b> — 3007 + (2b> —30b+3)V/b> -3
B 27 I 27

Demostracion. En primer lugar calculemos la matriz jacobiana y estudiemos la estabilidad de los puntos
de equilibrio.

21 22

3% 4+2bx 1
Jac(x,y) = < 10x _1 > (2.2)
Los valores propios son:
' —3x2 4+ 2bx — 1 £ /9x* — 12bx3 + (402 — 6)x2 + (4b — 40)x + 1 2.3
= 5 )
Para que sean imaginarios puros se tiene que cumplir
b—+vb*>*-3 b b* -3
B4 2x—1=0=>x=— ", x3= brvor—5
3 3
Por tanto
180 +2b% — 30b% + (—2b* +30b — 3)Vb? -3 180 +2b% — 30b* + (2b* — 30b+ 3) Vb2 — 3
71 = 2=

27 ’ 27
Asi sustituyendo por b = 2,52 y b = 2,7 obtenemos dénde vamos a tener las bifurcaciones. En el
caso b = 2,52 tenemos una bifurcacién Hopf en z = —3,26466911496911 (El otro punto que nos sale

como bifurcacién tiene que ser otra cosa como por ejemplo un fold) mientras que en el caso b = 2,7
tenemos dos bifurcaciones Hopf en z; = —4,84042603162419 y en 7z, = 4,88975936495752. O
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Observamos que no tenemos en el sistema 2.1 dos bifurcaciones de tipo Hopf para cada valor del
pardmetro b y no hay ninguna bifurcacién de tipo "saddle-node".

2.2. Estudio numérico

En esta seccidn trataremos de mostrar numéricamente los resultados analiticos obtenidos en la sec-
cién anterior. Ademads obtendremos algunos resultados que no hemos podido demostrar u obtener de
forma analitica, como es el caso de las 6rbitas periddicas ya que nuestro sistema no tiene una solucién
que podamos expresar mediante formulas. Con los datos obtenidos en esta seccion interpretaremos co-
mo evoluciona el modelo neuronal.

En primer lugar, integramos el sistema en funcion de z, que serd una constante a la que iremos dando
diferentes valores y obtenemos las siguientes soluciones

Figura 2.2: La primera imagen corresponde al pardmetro de b = 2,52 mientras que la segunda cores-
ponde al de b = 2.,7. Observamos que la solucién inestable no aparece en las gréficas.

Como observamos en estas dos imdgenes tenemos que para el pardmetro b = 2,52 tenemos dos bi-
furcaciones que como hemos demostrado en el apartado anterior, serdn dos Hopf. Tambien podemos
reparar en las dos bifurcaciones que hay con el pardmetro b = 2,7 donde contemplamos que, aunque el
comienzo es similar, debido a la bifurcacién de tipo Hopf que se encuentra en ambos subsistemas, el
final es bastante diferente ya que, entre otros motivos, tenemos bifurcaciones distintas, por un lado una
Hopf y por otro lado, como la 6rbita homoclinica colisiona contra el punto de equilibrio de tipo silla,
una bifurcacién homoclinica.

En el caso b =2,7 vemos que hay como otra solucion. Esto es debido a que tenemos una bifurcacion
de tipo Hopf que hace que las érbitas periddicas vayan creciendo a medida que va decreciendo z pero
veremos que rdpidamente colisionan contra los puntos silla.

También observamos que los puntos criticos estables obtenidos en el estudio analitico y vistos en
2.1 son solucién del sistema. Los puntos de equilibrio que son inestables no aparecen dibujados. Po-
demos visualizar que en el sistema general tendremos 6rbitas periddicas como bien se aprecian sus
proyecciones en el plano.
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Figura 2.3: Observamos como se ajusta la solucion del sistema de ecuaciones y los puntos criticos. La
primera corresponde a b = 2,52 y lasegundaa b =2,7

Visualizamos en ambas graficas como se ajustan los puntos criticos con las soluciones obtenidas nu-
mericamente. De hecho los puntos criticos estables son soluciones. Entre ambas bifurcaciones tenemos
unos focos inestables que van hasta las drbitas periddicas. A partir de la segunda bifurcacién de Hopf
en ambas graficas, tenemos puntos sillas que son inestables hasta que se transforman en focos estables.
En la primera grafica tenemos que las 6rbitas periddicas se desarrollan hasta la segunda bifurcacién. En
cambio en la segunda las drbitas periédicas rompen cuando tocan el punto silla. Esto es debido a la otra
bifurcacién que tenemos que es de tipo homoclinica, explicada previamente.

Como estamos en el espacio dos dimensional el punto donde se produce la bifurcacién saddle-node
no lo podemos obtener. Uno de los motivos por el cual no se puede obtener es que este sistema no se
puede linealizar entonces no lo podemos poner de la forma descrita en 1.4 y no podemos ver que ocurre
en el origen.






Capitulo 3

Extrapolacion al modelo 3D

Hasta ahora hemos estado haciendo un estudio del subsistema rapido donde hemos podido visualizar
doénde ocurren las bifurcaciones de una forma sencilla y cémo evoluciona el sistema. Ahora queremos
que los resultados obtenidos en este subsistema se sigan garantizando en el modelo global, incluyendo
el subsistema lento. Para ello vamos a necesitar la ayuda de los teoremas de Fenichel que nos van a
asegurar que los resultados obtenidos en el subsistema ripido sigan siendo ciertos.

Estos teoremas van a ser de forma local para cada punto de equilibrio ya que nos van a decir que va
a existir una variedad en la que el subsistema rdpido es difeomorfo al sistema 1.6, conservando asi las
propiedades de este subsistema.

Concluiremos este capitulo con las ilustraciones superpuestas de las soluciones del subsistema ra-
pido con la solucién del sistema general. Por lo tanto, tal y como veremos cada vez que tengamos un
sistema "fast-slow" lo podremos descomponer en los subsistemas rapidos y los subsistemas lentos, fa-
cilitando el estudio y reduciendo considerablemente el gasto computacional.

Ademds, tendremos una mejor vision y entendimiento de los resultados obtenidos en el subsistema
rapido, aunque perderemos alguna solucién obtenida como es en el caso de b = 2,7 que las 6rbitas
periddicas que partian de la segunda bifurcacién de ripo Hopf hacia la primera en el sistema general
desaparece.

3.1. Teoremas de Fenichel

Los siguientes teoremas ([4], [5]) nos van a garantizar que los resultados obtenidos en el subsis-
tema rdpido, de forma local, van a estar presentes en el sistema general.Para ello en ambos teoremas
necesitaremos tener un epsilon lo suficientemente pequefio para poder obtener la propiedad que sean
difeomormos ambos sistemas.

En los teoremas de Fenichel la formulacién del sistema "fast-slow" no es la que venimos usando
hasta ahora con el €. La notacion que usa es

{ 0x = f(x,y)
y=2g(x,y)

1 . .
Recordar que § = —. Por motivos de notacién vamos a llamar a este § como €.
E

Antes de nada, para la comprension de estos teormas vamos a necesitar una serie de términos que
no hemos definido con anterioridad.

21
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Definicién. Un conjunto V es un conjunto invariante de la ecuacion y = h(y) si y(tfy) € V para algtin
fo € R implica que y(¢) € V.

En definitiva lo que nos quiere decir esta definicién es que un sistema es invariante si no estd in-
fluenciado explicitamente por el tiempo.

Definicion. Un conjunto abierto V es un conjunto localmente invariante respecto a un conjunto abierto
W bajo el sistema y = h(y) si V es un subconjunto de W y si cualquier trayectoria que abandona V
abandona simultaneamente W.

Ademds necesitaremos un teorema que nos asegure que el flujo va a ser topologicamente conjugado
tras la linealizacién del sistema.

Teorema 3.1 (Hartman-Grobman). Sea x* un punto de equilibrio hiperbélico de un campo f € €' con
flujo ¢, (x). Entonces hay un entorno N de x* tal que @ es topologicamente conjugado al flujo generado
por la linealizacion de f.

En los siguientes teoremas hablaremos de que existe una variedad donde el flujo es invariante. As{
que para la comprensién también necesitaremos la definicién de variedad.

Definicion. Sea un campo vectorial f que define un flujo ¢, ¢, : N — R" entonces dado un punto fijo xo
se define:

1) Variedad estable del punto fijo xo generado por ¢ a W* = {x|¢,(x) — xo cuando r — oo, ¢ (x) € N,t >
X()}

2) Variedad inestable del punto fijo xo generado por ¢ a W* = {x|¢,(x) — xo cuando t — —oo, @ (x) €
N,t < X()}

Definicion. Sea M una variedad compacta suave (0 ), f : M — M un difeomorfismo y Df : TM —
TM la diferencial de f. Una variedad f-invariante A de M se define como una variedad invariante
normalmente hiperbdlica si la restriccion de A al grupo tangente de M admite una particion en la suma
de tres subgrupos D f-invariantes, uno perteneciente al grupo tangente de A y los otros correspondientes
a los subespacios estables e inestables de A € R" matriz del sistema diferencial.

Es decir, lo que nos quiere decir esta definicién es que una variedad es invariante normalmente
hiperbdlica si se puede descomponer en el plano tangente, la variedad estable y la variedad inestable.

Teorema 3.2 (Existencia de la variedad central). Considerar la ecuacion x = Ax+ f(x) conx e R"y A
una matriz constante n x n, x = 0 un punto critico aislado. La funcion f(x) es €%,k > 2 en un entorno

X
dex=0y H1|1"m W = 0. La variedad estable e inestable de la ecuacion y = Ay son E; y E,, el
x||—0 X
espacio de vectores propios correspondientes a los valores propios con parte real cero es E,. Luego
existen unas variedades estables e inestables Wy y W, que son tangentes a E; y E,, en x =0y son &*.

Existe una variedad € invariante W,, la variedad central, que es tangente a E. en xy.

Con todos estos conceptos estamos preparados para poder entender y aplicar los teoremas de Feni-
chel. El primer teorema de Fenichel nos indicard que la variedad obtenida en el caso limite € = 0 persiste
cuando tenemos un € lo suficientemente pequefio. Esto nos garantizard que el sistema viene influencia
por el subsistema rdpido y por las variedades obtenidas en el caso limite.

Teorema 3.3 (Primer teorema de Fenichel). Si € > 0 suficiente pequeiio, existe una variedad ¢ (
la variedad central) que se encuentra dentro de O(€) en la variedad 4 contenida en el conjunto
{f(x,y,0)} y es difeomorfa para 4. Ademds es localmente invariante bajo el flujo de (2.1) y €”,
incluido en €, para cualquier r < oo.
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El segundo teorema de Fenichl nos garantizard la existencia de variedades estables e inestables de
las variedades limite, estableciendo asi las trayectorias de entrada y de salida.

Teorema 3.4 (Segundo teorema de Fenichel). Suponer .#y C {f(u,v,0) =0} es compacta, posible-
mente con frontera, y normalmente hiperbdlica, y suponer f y g son homogéneas. Luego para € >0y
sufientemente pequeiio, exite una variedad W* (M) y W*( M) que son O(€) cerradas y difeomdrficas
a Ws(y) y W (M) respectivamente, y que son localmente invariante bajo el flujo del sistema (2.1).

Recapitulando, para las hipétesis de estos dos teoremas necesitamos tener un € suficientemente
pequeiio. Recordamos que nuestro € es € = 1072 que aunque no es muy pequefio en nuestro caso nos
vale. Ademds nos dicen que va a existir una variedad en la que el flujo de nuestro subsistema rapido es
invariante. Estos dos teoremas nos permiten explicar el comportamiento de los sistemas "fast-slow".

3.2. Pasoa3D

Recordemos el sistema que teniamos

Xx=y—x>+bx*—z+4
y=1-5x>—y
¢=g(4(x+1,6)-2)

El subsistema rapido tiene como solucién un intervalo méds amplio que el que muestran las gréficas
siguientes. Dicho subsistema tenia dos bifurcaciones tipo Hopf en ambas graficas. La diferencia entre
los casos b = 2,52 y b = 2,7 radica en que la drbita periédica choque o no contra los puntos sillas que
hay después de la segunda bifurcacion de tipo Hopf. Nos centraremos en la parte final, donde aparece la
segunda bifurcacion en el subsistema rapido, ya que es donde se localiza la solucion del sistema general
y obtendremos mds conclusiones.

Si rememoramos el subsistema rdpido, los puntos de equilibrio entre las bifurcaciones eran focos
inestables. A partir de dicha bifurcacién también nos encontramos frente a puntos inestables, pero en
este caso son de tipo silla. A medida que el sistema va evolucionando con el tiempo estos puntos silla
se convierten nuevamente en focos, aunque esta vez seran estables.

Otro resultado de bastante relevancia obtenido en el estudio numérico son las drbitas periddicas.
Previamente hemos definido las dos bifurcaciones globales y qué condiciones se tenian que dar para
poder obtenerlas. El el subsistema rdpido vimos como en uno de los dos casos estas drbitas chocaban
contra los puntos sillas y en el otro cémo llegaban hasta la segunda bifurcacién de Hopf. Estos resulta-
dos, por los teoremas de Fenichel, se mantendran en el sistema general.

Ademads en el subsistema rdpido hemos obtenido algunas soluciones que no van a ser solucién del
modelo. Esto va a ocurrir con b= 2,7 y va a ser causado debido al tipo de "bursting" en el que nos vamos
a encontrar, el "bursting" de tipo fold/homoclinico. Al estar dando la solucién de un estado dindmico es
normal que una vez concluida la fase activa al colisionar la 6rbita periddica con el punto silla pasemos
a la fase de reposo. Ahi radica la explicacién de por qué no vamos a visualizar esas Orbitas periddicas
que surgen de la segunda bifurcacion de tipo Hopf.
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Figura 3.1: Superposicién del subsistema rapido con el sistema global. Corresponde a b = 2,52.

Observamos como en este caso la solucion del sistema 1.6 se superpone perfectamente a la solucién
obtenida en el subsistema rapido (en amarillo). Destacamos que se observa perfectamente la bifurcacion
fold/Hopf. Esta bifurcacion viene generada por la segunda bifurcacién Hopf obtenida en el subsistema
rdpido y la fold que se encuentra en el subsistema lento. También vemos que la solucién obtenida es

muy similar a la gréfica 1.10.

La bifurcacion de tipo fold se encuentra en el subsistema lento, que es donde se encuentra la fase de
reposo, y la que consigue el salto entre la fase de reposo y la fase activa. También podemos destacar que
la bifurcacién de tipo Andronov-Hopf es supercritica, produciéndose asi el paso entre fases, de activa a

reposo.

Sabemos que la bifurcacién de tipo Andronov-Hopf es supercritica a través de su dinamismo, ya
que la complejidad del sistema hace inviable el cédlculo del coeficiente de Lyapunov. Tener en cuenta
cémo las 6rbitas periddicas van reduciendo su radio hasta llegar al punto de equilibrio.

> .10

-20 —

Figura 3.2: Superposicién del subsistema rdpido con el sistema global. Corresponde a b = 2,7.

En este caso tenemos una cosa parecida obtenida con el pardmetro b = 2,52. La solucién del siste-
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ma 1.6 se encarama con bastante precision a la solucidn obtenida en el subsistema rapido. Se observa
claramente cuando se produce la bifurcacién homoclinica, la cual ocurre cuando la érbita periddica se
encuentra contra el punto silla.

Como en el caso de b = 2,52, en el subsistema lento se produce la bifurcacién de tipo fold que
provoca el cambio de fase. Observamos que en este caso la solucién que parte de la segunda bifurcacién
de tipo Hopf (en este caso la que tenemos dibujada en la grifica) no aparece. Esto es debido a que esa
solucidn corresponde al subsistema rapido pero no al subsistema general.

Tras un procedimiento de mallado y aplicando técnicas de continuidad obtenemos una gréafica en
cada caso donde se observa mejor ambos procesos.
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Figura 3.3: "Bursting" de tipo fold/Hopf arriba y "bursting" de tipo fold/homoclinico abajo.[3]

En estas dos imdgenes tenemos una mejor representacion de lo que ocurre. Ademdas gracias a la
recta dibujada z = 0, es decir que z es constante, podemos visualizar el subsistema rapido y el lento,
es decir, la fase activa y la de reposo. También, gracias a las técnicas de continuidad, observamos en el
subsistema répido el intervalo donde se mueven las 6rbitas periddicas, y cémo colisionan en el caso del
"bursting” de tipo fold/homoclinico.
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