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Me gustaria, por tanto, dar las gracias Enrique Artal por su excelente orientacién y soporte
durante todo el proceso de realizacién de mi trabajo. También me gustaria dar las gracias a
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ya que sin su cooperacion no habria sido capaz de llevar a cabo este proyecto.

A todos mis companeros de la universidad: me gustaria daros las gracias por vuestra increible
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Rodrigo Morén
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Summary

The gaol of this work is characterize the smooth conics in the complex projective plane
from a differential geometry point of view. The first question that arises is how these conics are
embedded in P? and how they inherit a metric from the projective plane. As a previous step
I introduce the complex projective space complex which is endowed with a hermitian metric.
The work is divised into three parts. The first two will introduce us concepts necessary to work
with and the last will deal with the actual goal of the work. Next I will explain what is in each
of them.

In the first part, we begin by briefly defining what is the tensor product of any two vector
spaces in order to find a natural isomorphism between the space of bilinear forms and the tensor
product of the dual of a vector space with itself and, in addition, defining what are the alternate
forms, as a subspace of the latter. This will allow us to express Hermitian forms as elements in
these spaces, something that allows us to obtain comfortable expressions, which behave quite
naturally. In turn, we will show how a complex vector space can be seen as a real one, something
that will be useful in order to characterize the Hermitian forms, and to work with the tangent
spaces of the manifolds in the next chapter. Finally we will define what a sesquilineal form
is, as a previous step to consider hermitian forms, We define a Hermitian scalar product and
we present some examples of hermitian forms written as a linear combination of tensors and
alternating forms.

In the second chapter we will introduce the concept of derivations in a real manifold in order
to define its tangent space. Once done, we will briefly introduce the concepts of 1-forms, 2-forms
and fields. Subsequently, we extend these concepts to analytical manifolds. In particular, we
will compare real and complex tangent spaces. With these concepts we can define what is a
Hermitian product in an analytical manifold, express it as an element in the tensor product
of the dual the complex tangent space and its conjugate (which is an exterior product if we
consider only the real structure). Its real part is a Riemannian metric and the imaginary one
an alternate 2-form. To finish this chapter we will define the complex projective space which
is the ambient space of the objects we are going to study: we will present its topological and
analytic manifold structures. The projective line is homeomorphic to the 2-sphere and P? can
be expressed as the with the disjoint union of a copy of C? (open and dense) with the projective
line of infinity (closed).

The third and final chapter will collect all the results of our work. Once the terrain is
prepared with the previous chapters, we will equip the projective space with a metric, the
Fubini-Study metric, to later restrict it to the projective line, projective plane and to the conics
within the latter. This metric is defined by a hermitian metric in the vector space defining the
projective space.

Proposition 1. The riemannian metric of the projective line (obtained as the real part of the
hermitian metric) is isometric to the riemannian metric of a sphere of radius % in R3.

This is done studying the metric in a chart. As a consequence, with the distance defined by
the infimum of lenghts of rectifiable paths in P!, this space has 5 as diameter, and moreover,
for any P € P!, 3!Q € P! such that d(P,Q) = 1. If we consider the vector lines in C? defined
by P, @, the distance is the angle (in [0, %]) of these lines, with respect to the scalar product.
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vi Summary

This also can be extended to the projective plane, and gives us the following interesting
result, the diameter of the projective plane seen as metric space is 5§ and even more, the set
of elements where it is reached the maximum diameter is a projective line and is the space
orthogonal to the one generated by a point of the projective plane seen as a vector line. This is
a consequence of the previous results, once one proves that geodesics are contained in projective
lines.

The rest of the chapter is devoted to the geometric study of smooth conics in P2. It is well-
known that there exists a change of coordinates in P? sending a smooth conic to the standard
conic #3 + 2% + 23 = 0. This is no more true if we admit only change of coordinates preserving

the hermitian metric.

Proposition 2. Let C C P? be a smooth conic. Then ther is a change of coordinates preserving
the hermitian metric sending C to

Crs = {[x0 : 21 : T2] € P*|2] + rx] + s%23 = 0}

where 0 < s < r < 1. Moreover if one can send Cy, s, to Cp, s, (with the previous conditions
for i, si), then ri =ry and s; = sa.

In particular, if one is interested in the metric properties of a smooth conic, it is enough
to study C, s as above. Algebraic parametrizations of the conics provide isothermal charts, for
which it is easy to find invariants as Gauss curvature.

Theorem 3. Let C, s a smooth conic as above. Then, its Gauss curvature has the following
properties.

s [f s=1r =1, we have constant curvature K = 2.

» If s =1r <1, we have Knlax = —2s% +4 in [—i(y3s® +v}) s vds® — 7 ¢ 2syouil, Yo, y1 €
R2\ {0}, and Kuyin = % at the points [0 : £i : 1].

» Ifs <r =1, we have Knax = —25* + 4 at the points [+i : 0 : 1] and Kpin = 2(2‘122_1) m
[s223 — 22 1 i(2ds? + 22) : 2wom1], ;0,71 € R?\ {0}.
4_9,2 22
v Ifs<r <1, we have kpax = —2(‘:72%) at the points [r: £i : 0] and Kyin = %
at the points [0 : £is : r]. Also in this case, we have two saddle points in [£is : 0 : 1]

2 (7‘4—2s2>
= 7

where K = —

s

One can check that the extremal values of the curvature can be used to recover r,s. Note
also that the case r = s = 1 is quite special as they have the same riemannian metric as a
sphere of radius % in R3, in particular the conic with equation x% + 37% + x% = 0 is homothetic
to the projective line. As a final result, we prove that two smooth conics are homothetic if and
only if they are isometric.
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Capitulo 1

Breve introduccion al algebra
tensorial y formas hermiticas

El objetivo del trabajo va a ser estudiar las rectas y conicas dentro del plano proyectivo
complejo con una métrica hermitiana fija. En este capitulo vamos a comenzar con una breve
introduccién al dlgebra tensorial y mostrar su relaciéon con las formas sesquilineales y hermiticas.
Veremos que podremos verlas como tensores y 2-formas alternadas. Esta interpretacién nos
permitird trabajar mas comodamente.

1.1. Algebra tensorial

Sean V,W dos espacios vectoriales sobre un cuerpo K. Queremos encontrar un espacio
vectorial que parametrice las aplicaciones bilineales de V, W.

Definicién 1.1. El producto tensorial de V, W es un par (U, p) donde U es un espacio vectorial
yp:V xXW — U es una aplicacién bilineal tal que VF : V x W — H aplicacién bilineal en
un espacio vectorial H existe una tnica aplicacién lineal F : U — H que satisface el siguiente
diagrama conmutativo:

V xW
pl X
U--—-----+H
I

El siguiente lema es sencillo y garantiza la unicidad del producto tensorial.

Lema 1.2. Si el producto tensorial de dos espacios vectoriales existe, es unico. De manera mds
precisa, sean (Uj,p;), i = 1,2, dos productos tensoriales de V,W. Entonces, existe un unico
isomorfismo ® : Uy — Us que satisface el siguiente diagrama conmutativo:

VxW

/ \n\t
U1 ********** § T > U2

Queda por ver que existe dicho producto tensorial. Para ello vamos a construir un espacio
vectorial T" que no es de dimensién finita. Una base de este espacio vectorial esta formada por
los elementos de V' x W los elementos de T son las combinaciones lineales finitas de elementos
{(v,w) | v e V,we W}. Dentro de T vamos a considerar el subespacio vectorial R engendrado

1



2 Capitulo 1. Breve introduccion al algebra tensorial y formas hermiticas

por los siguientes tipos de elementos

(v1 + v2,w) — (v1,w) — (v2,w), vi,v € Viw e W,
(U7w1+w2)_(vvwl)_(vvw2)7 v e Viw,wy €W,
(tv,w) — t(v,w), (v, tw) — t(v,w), veV,weW,tekK.

Vamos a denotar V @g W := T/R (normalmente omitiremos el subindice); ademés la clase
de equivalencia de (v,w) en V ® W se denotard como v ® w. Vamos a definir la aplicacién
p: VW = V&®&W como p(v,w) :=v®w. Los generadores de R se han elegido para que esta
aplicacién sea bilineal, ya que estos se traducen en

(V1 +v2) ®wW = v ® W + V2 @ W, v, v2 € Viw e W,
v ® (W) +w2) = v w + v ws, v e V,wy,wy €W,
(tv) @w =t(v @ w) =v & (tw), veV,weW,tekK

Sea H otro espacio vectorial y sea F' : V x W — H una aplicacién bilineal. Definimos
primero una aplicacién F : T'— H tal que F (v,w) = F(v,w); esta aplicacién existe y es tnica
por definir los elementos de V' x W una base de T. Ademas, la bilinealidad de F' implica que
R C ker F. Esto permite definir una aplicacién F : V. @ W — U para la que se satisface el
siguiente diagrama

(v, w) T )
AN
v w V®WT>H

Es facil ver que F es la tinica aplicacién (lineal) que satisface el diagrama para p y F, por lo que
(V ® W, p) cumple las propiedades de producto tensorial. Habitualmente diremos simplemente
que V ® W es el producto tensorial de V, W.

Proposicion 1.3. Sean V,W dos espacios vectoriales de dimension finita.

(1) Sea (v1,...,v,) una base de V' y sea (wi, ..., wy) una base de W. Entonces, la familia

(v; ® w])g;l;? es una base de V@ W ; en particular, dimV @ W = dim V dim W.

(2) Hay un isomorfismo natural V@ W — Hom(V, W) determinado por la aplicacidn bilineal
O V*x W — Hom(V, W) definida como sigue. Sean o € V*, w € W, entonces ®(a,w) :
V — W es el homomorfismo

O (o, w)(v) := a(v)w, veV

(3) Hay un isomorfismo natural V@ W* — (V. @ W)* determinado por la aplicacion bilineal
OV xW* = (VW) definida como sigue. Sean o € V*, 3 € W*, entonces ®(a, ) :
VoW — K es el homomorfismo

O(a, B)(v@w) = a(v)f(w), veViweW
(bien definido por las propiedades del producto tensorial).
(4) Hay un isomorfismo natural V* @ W* — Bil(V, W).

Demostracion. (1) + (2) Por las relaciones en el producto tensorial, es ficil ver que la familia

-----

Sea Bil(V, W) el espacio vectorial de las formas bilineales de V,W. Por la definicién de
producto tensorial, tenemos una aplicacién lineal ® : Bil(V, W) — (V @ W)* (el superindice
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* indica espacio dual). Esta aplicacién es obviamente inyectiva, por lo que dimV dim W =
dimBil(V, W) < dim(V ® W)* = dimV ® W. Como las dimensiones coinciden, el sistema
generador es base. En particular tenemos un isomorfismo natural Bil(V, W) = (V @ W)*. El
resto de los resultados son sencillos. O

Observacion 1.4. Hay un isomorfismo natural V@ W — W @V tal quesive Vyw e W, se
tiene que v®@w — w®v. En particular identificando Bil(V, V) = V*® V*, las formas bilineales
simétricas son las invariantes por el anterior isomorfismo.

Ahora, fijamos un espacio vectorial V' (de dimensién finita). Vamos a definir el espacio A" V.
Denotamos por V" el producto tensorial de r copias de V.
Definimos A"V como el subespacio de V®" engendrado por los elementos de la forma

Ul/\"'/\v’l‘:: Z(—1)0U15®.--®U7,07 ’Ul,...,?}re‘/.
ceX,

Es inmediato ver que vie A -+ A v = (—1)%v1 A--- Av,.. Nos va a interesar especialmente
el caso r = 2. Ya hemos identificado V**2 con Bil(V;K), de manera que si aj,as € V* y
v1,v9 € V, si vemos a1 ® ag como una forma bilineal, entonces

(051 ® a2)(’l)1,7)2) = al(vl)ag(vg).

Denotemos por Ath(V; K) el espacio de las 2-formas alternadas; como subespacio de Bil(V; K) =
V*®2 ge identifica con /\2 V*, de manera que si aj, a9 € V* y vy, v9 € V), si vemos a; A ag como
una forma alternada, entonces

(0&1 A\ 052)(111,112) = Oq(Ul)OQ(’UQ) — ag(vl)ag(vz).

1.2. Espacios vectoriales complejos

Sea V un C-espacio vectorial de dimensiéon n. Con este espacio vectorial tenemos varias
operaciones interesantes. La primera es que si olvidamos la multiplicacién por ¢, tenemos un
R-espacio vectorial de dimensién 2n, que denotaremos como Vi. Denotaremos V el mismo
conjunto, con la misma estructura de R-espacio vectorial pero con un nuevo C-producto -, por
el que siv e V(=V),y z € C, entonces z-v = z - v (donde - es el producto original de V).

Si v = (v1,...,v,) es una base ordenada de V', entonces, también es una base ordenada de
V, mientras que vg = (v1,iv1, ..., vn,iv,) es una base (ordenada) de Vg. Si v € V tenemos las
siguientes igualdades:

ai

a1 + iby a1 — ib1 by

vV=V- : =V : =VR| :
an + iby, an — iby, an

n

Hay un espacio vectorial que nos va a interesar de manera particular. Es el C-espacio vec-
torial Homg(V; C) de las aplicaciones R-lineales de V' en C; la posibilidad de tener estructura
de C-espacio vectorial viene de la presencia de C como espacio de llegada. Notar que V' y C son
C-espacios vectoriales, y ambos, pueden verse como R-espacios vectoriales.

Observemos que dimpVg = 2n y dimrCr = 2. Entonces dimg Homg (V'; C) = 4n por lo que
dimc Homg(V;C) = 2n.

Es inmediato que V* = Homc(V; C) es un subespacio vectorial (complejo) de Homg (V'; C).
Si a € V*, podemos definir @ : V — C como a(v) := a(v), Yo € V. Observemos que V* := {@ |

5%

a € V*} también es subespacio de Homg(V;C). Es mas V* =V .




4 Capitulo 1. Breve introduccion al algebra tensorial y formas hermiticas

Proposicién 1.5. El espacio vectorial Homg(V; C) es suma directa V* @& V",

Demostracion. Como los dos sumandos son espacios de dimensién compleja n, basta probar
que VNV ={0}. Seaa e V* NV, yv e V:

ia(v) = a(i-v) = a(—iv) = —ia(v) = a(v) = 0.
Por tanto, a = 0. O
Sea (vi,...,v,) una C-base de V', y sea aq,...,q, su base dual en V*. Observemos que
aq,...,05 es su base dual en v

Los elementos de V* son las formas C-lineales de V', mientras que los elementos de V" son
las formas C-lineales de V, o expresado en términos de V, las formas semilineales. Es decir,
aquellas que cumplen:

at-u+s-v)=t-u+3s-v, YuveVViseC.

Es decir, toda aplicacién R-lineal de V en C se descompone de forma tnica como suma de una
forma C-lineal y de una forma C-semilineal.

Proposicién 1.6. La conjugacion compleja define un automorfismo R-lineal de Homg(V'; C)
que intercambia V* y 748

Esto va a jugar un papel importante para caracterizar las formas hermitianas. Con las dos

secciones introducidas, ya podemos definir el concepto de formas hermtianas con una notacion
. T
tensorial, como elementos en V* Q@ V.

1.3. Formas sesquilineales y hermitianas

Ya hemos visto que el producto tensorial nos permite expresar las formas bilineales. Va-
mos a ver cdmo, para espacios vectoriales complejos, podemos expresar también las formas
sesquilineales.

Sea V un C-espacio vectorial de dimensién n. Recordemos que una forma sesquilineal es
una aplicaciéon h: V x V — C que es R-bilineal y tal que

h(t-u,s-v)=1t-5-h(u,v), Yu,v € V,Vt,s € C.

Dicho de otro modo, es una forma C-bilineal en V x V, o equivalentemente, se puede identificar
con un elemento en V* @ V.

Ejemplo 1.7. En V = C" definimos la forma

h:C'xC"—=C, h((z1,---,2n), (w1,...,wy)) ::sz-ﬂ)j.

Jj=1
Es facil ver que es sesquilineal. Si (w1, . ..,w;,) denota la base dual en (C™)* de la base candnica,
recordemos que (w1, . ..,wy) es una base de las formas semilineales. Entonces h = Z?Zl w; ®W;.

Veamos que esta forma tiene una propiedad suplementaria:

h((wl, .. ,wn), (21, ... ,zn)):ij - Zj :ZZ]' S Wy = h((zl, ... ,Zn), (wl, .. ,wn)).
=1 j=1

Definiciéon 1.8. Sea V un C-espacio vectorial. Una forma hermitiana sobre V es una forma
sesquilineal h tal que
h(v,u) = h(u,v), u,veW
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Si h es una forma hermitiana sobre V', entonces si v € V', como h(v,v) = h(v, V), tenemos
que h(v,v) € R.

Definicién 1.9. Una forma hermitiana sobre V es un producto escalar hermitiano si h(v,v) >
0, Vv e V' \ {0}.

Estas formas son las que van a jugar el papel de las formas simétricas en el caso de los
o o . ;. . 1. T7K N
espacios vectoriales complejos. Asi, identificando las formas sesquilineales con V* ® V', si con-
sideramos los R-isomorfismos

VFeV 2V eV ViV S, Vo vt
a®Rf — BR« 04®B%>6®B

entonces, h es hermitiana si o(h) = conj(h).

Proposicion 1.10. Sea h una forma hermitiana sobre un C-espacio vectorial V. Entonces
Reh es un R-forma bilineal simétrica e Sh es una R-forma bilineal antisimétrica. St h es un
producto escalar hermitiano, entonces Re h es un producto escalar.

Ejemplo 1.11. Sea V un C-espacio vectorial de dimensién n y sea wi,...,w, una base de
V*. Denotaremos «j := Rew; y 3; := Qwj, formas lineales reales. Una forma hermitiana h se
escribe como

n
h = Zajwj ®w; + Z (bjkOJj & Wi + Ejkwk ®Wj), a; € R,bj, € C.
j=1 1<j<k<n

Si denotamos bji = wuj + vj:

Reh = Zaj(ocj ® o+ B ® By)+

j=1

> ujlo @ ak + ap ® o + B @ B + B ® By)+
1<j<k<n

D vkl @ B+ B @y — B © ag — i @ By),
1<j<k<n

C\?h:Za]ﬂj/\aj—i- Z Ujk(,Bj/\Oék-f—ﬂk/\aj)—l- Z vjk(aj/\ozk+ﬁj/\ﬁk).

j=1 1<j<k<n 1<j<k<n

Proposicion 1.12. Sea h una forma hermitiana sobre V y sean o y B sus partes real e ima-
ginaria.

1. Las formas bilineales o y B se determinan mutuamente, es decir, si v,w € V, entonces:

a(v,iw) = —a(iv,w) = B(v,w), B(iv,w) = —F(v,iw) = a(v,w).

2. Las formas bilineales o y B son ortogonales para la multiplicacion por i, es decir, si
v,w €V, entonces:

a(iv,iw) = a(v,w), Bliv,iw) = (v, w).
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Nos van a interesar de manera particular las formas bilineales alternadas de Vg, que son
elementos de /\2 VR, y también las R-aplicaciones bilineales alternadas de V' con valores en C
que denotaremos

/\(QCV* = A’V @r C.
Para ellas también utilizaremos la notaciéon A. Todos los espacios tratados son subespacios de
Homg (V; C)®2,

Ejemplo 1.13. Sea w € V*; tenemos que w ® @ es claramente una forma hermitiana. Su parte
real o
WROW+wWwRwW
2
es una forma simétrica real y su parte imaginaria

WRW—WRw w AW

21 24
es una forma alternada real. Con esta expresién es ficil recuperar la forma hermitiana original.

Si wi,ws € V*, entonces
h:=w; @ws + wy @ Wy

es una forma hermitiana. Observemos que
h= (w1 +w2) ® (W1 +w2) — w1 @W1 — wa ® Wa,

es decir, toda forma hermitiana se escribe como combinacion lineal de productos alternados de
una forma C-lineal y su conjugada. En este caso la parte imaginaria de h es:

S — W1 QW +wo ®wy — w1 @wy —wa X wq W N wo + wo N\ Wy
24 21 '

Una vez visto estos ejemplos, ya tenemos totalmente introducidas las formas hermitianas,

paso necesario antes de definir el concepto de producto hermitiano en una variedad que haremos

a lo largo del siguiente capitulo.



Capitulo 2

Conceptos necesarios de geometria
diferencial y plano proyectivo
complejo

Antes de pasar al estudio de cénicas, vamos a estudiar el espacio proyectivo complejo y
ciertos conceptos necesarios para saber inducir una métrica sobre este, algo fundamental para
poder trabajar con las cénicas como una variedad riemanniana. El objetivo de este capitulo
es introducir todos los conceptos necesarios de geometria diferencial para poder definir una
métrica en una variedad analitica para posteriormente estudiar P? y darle estructura de variedad
analitica, asi podremos ver en el ultimo capitulo qué métrica hermitiana tenemos en dicha
variedad.

2.1. Derivaciones, campos y derivaciones en C"

Sea M una variedad diferenciable. El primer objeto importante de dicha variedad es el
fibrado tangente T'M, que es una variedad diferenciable con una proyeccion © : TM — M
en la que Vp € M, 7 1(p) = T, M el espacio tangente a p en M que estd formado por las
derivaciones de los gérmenes de funciones diferenciables en un entorno de p.

Definamos el concepto de germen. En el espacio

Cor(M) :={f:V = R|p eV entorno abierto de p, f C*}
definimos la siguiente relacién de equivalencia:
f:VoaR~g:W—oR < {geVnW]| f(q) =g(q)} es entorno de p.

Los gérmenes de funciones diferenciables son las clases de equivalencia por esta relacién. Por

abuso de notacién en ocasiones identificaremos una funcién y su germen en un punto. El conjunto
) 0o [

de gérmenes se denota C MpR Y €s una R-dlgebra.

Definicion 2.1. Una derivacidn de la variedad M en p es una aplicacion R-lineal D : Cﬁp,R —
R tal que D(fg) = D(f)g(p) + f(p)D(9)-

Proposicién 2.2. Sea M una variedad n-dimensional, Vp € M se tiene que Tp M es un espacio
vectorial real de dimension n, tal que las n derivaciones naturales en cada punto p € M, lasn
derivadas parciales evaluadas en el punto p: %W 1 <i < n son una base de este.

Omitimos la demostracién de este resultado, pero vamos a ver cémo se obtienen las de-
rivaciones. Antes de seguir es conveniente pasar a expresiones coordenadas. Sea x : U — M
una carta, U C R™ abierto conexo. Denotemos V := x(U). Dado p € V, T,V admite como

7
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base (% )i*_;. Recordemos la definicién de estos elementos viendo cémo actiian por derivacién
Pt

sobre el germen f de una funcién en p:

0 (.= 0oX) gy,

81‘,‘ |p 8901

Corolario 2.3. Sea M una variedad n-dimensional, Yp € M se tiene que Ty M es un espacio
vectorial real de dimension n, tal que tiene como base (dzip)i;.

Observacion 2.4. Si f : M — R es una aplicacién diferenciable, p € M, entonces dfp, : To,M — R
es la forma lineal definida por dfp(v) := v(f), Vv € T, M.

Notemos que, siguiendo con expresiones coordenadas, efectivamente dx; es la diferencial de
la funcién z; : V' — R, obtenida al componer x~! con la i-ésima proyeccién:

dasy <a )— 0 (g = 20X gy = 0Ty = 5

N Oizvjlp ij Omj

Proposicién 2.5. Sea f : M — R una funcién C®, y sea f := fox. Entonces, sip € V = x(U):

n a rs
Ao = > 2L o))y,
j=1"""

Demostracion. Basta calcular la accién de dfy sobre los vectores de la base. O

Los campos diferenciables (definidos global o localmente) son las secciones de este fibrado,
es decir las aplicaciones diferenciables X : U — TM, U C M abierto, tal que X(p) € TpM,
Vp € U. Tradicionalmente la imagen se denota por Xp,.

Si X es un campo sobre U y f : U — R es una funcién C*°, entonces X (f) : U — R es otra
funcién C* obtenida al derivar f en cada punto p segin el vector (derivaciéon) Xp.

Denotamos por C*>°(M) el espacio de funciones diferenciables (con valores en R) y por X(M)
el espacio de campos tangentes; haremos lo mismo para abiertos U C M. El espacio C*°(M)
es una R-algebra, mientras que X(M) es un C*°(M )-médulo. La accién anterior es R-lineal y
cumple la regla de Leibniz:

X(f-9)=X(f)-9+[f-(9), VXeX(M)VfgeCl*(M).

En realidad, es lo mismo un campo que una aplicacién R-lineal X : C*(M) — C*(M) que
cumple la regla de Leibniz.

Proposicién 2.6. Siw es una 1-forma C> sobre M y X € X(M), entonces la funcion w(X) :
M — R dada por w(X)(p) := wp(Xp) es C*. Es mds sea @ : X(M) — C*°(M) una aplicacion
C*°(M)-lineal. Entonces I\w 1-forma diferenciable tal que ©(X) = w(X), VX € X(M). De
hecho, identificaremos habitualmente w con &.

Dejamos la Proposicion sin demostrar ya que no hemos dado los detalles de las definiciones
de TM, T*M, y de hecho, la dejaremos como definicién de 1-formas. El espacio de 1-formas se
denota como £*(M) y es una C*°(M)-algebra.

Proposicién 2.7. Sea f € C°°(M). La diferencial de f es la 1-forma df tal que df (X) := X (f).
Como hemos hecho con las 1-formas vamos a definir las 2-formas (alternadas).

Definicion 2.8. Una 2-forma alternada de M es una aplicacién C*°-bilineal alternada w :
X(M)? — C>°(M). El espacio de las 2-formas alternadas se denota £?(M) y es una C*(M)-
algebra.
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Observacion 2.9. Como definicién alternativa y equivalente una 2-forma alternada de M consiste
en la asignacién para cada p € M de una 2-forma alternada wp : (IpM)? — R tal que si
X1, X2 € X(M) entonces la funcién w(X;, X2) es C*.

Observacion 2.10. Las 2-formas definen en cada punto un elemento de /\2 T3 M, que tiene como
base, p e V
dwilp A dx,-ZP, 1< <4 <n.

Estos elementos determinan una 2-forma dz;, A dx;, sobre V. Una 2-forma w sobre V' se puede
escribir como

w = Z fi17i2d$i1 A\ dl’iQ, fi1,i2 S COO(V)

1<i1<ia<n

2.2. Variedades analiticas

Pero a nosotros nos van a interesar las variedades analiticas complejas, las cuales vamos a
introducir ahora y, del mismo modo, definir su espacio tangente.

La definiciéon formal de estas variedades es la misma que la definicién de las variedades
diferenciables, reemplazando abiertos de R™ por abiertos de C" y difeomorfismos C*° por apli-
caciones biholomorfas. Aunque estos cambios son aparentemente formales la rigidez de las
aplicaciones analiticas crea alguna diferencia importante.

Una variedad analitica M de dimensién n también se puede ver como una variedad dife-
renciable My orientada de dimensién 2n, ya que las aplicaciones biholomorfas son difeomorfis-
mos C* si identificamos C" = R?".

Definicion 2.11. Sea M variedad analitica, y sea V C M un abierto. El espacio de funciones
holomorfas en V' se denota Hol(V') y C*°(V;C) es el espacio de funciones C* con valores en C.

Observacidén 2.12. El espacio Hol(V) es una C-algebra y el espacio C*°(V';C) es una Hol(V)-
algebra (que contiene Hol(V')). Observemos que Hol(V') también estd en C*°(V; C); es el espacio
de las funciones antiholomorfas.

También podemos definir los espacios de gérmenes de funciones holomorfas, de funciones
antiholomorfas o de funciones diferenciables (con valores en C) en un punto p. De esta manera
tenemos varios espacios de derivaciones.

Denotaremos Cﬁp’R, Cﬁ,p,@ los espacio de gérmenes de funciones diferenciables con valores
reales y complejos. También denotaremos Holp, a7 el espacio de gérmenes de funciones holomorfas
y Holp as el espacio de gérmenes de las funciones antiholomorfas.

Definicién 2.13. El espacio tangente (complejo) TpM de M en el p es el espacio de C-
derivaciones de Holp 7.

Observacion 2.14. Sea M una variedad analitica y Mg la misma como variedad diferenciable.
Tenemos Ty, M y T, Mg el espacio de derivaciones de funciones C*°. Ahora, tomamos 0 € D, C C
un disco centrado en el origen de radio € y sea v : D, — M funcién holomorfa tal que v(0) = p.
Tenemos que %(0) € T, M ya que ¥(0)(f) = (fov)'(0) € C con f : M — C holomorfa. Entonces
si cogemos la restriccién 7 = 7)_¢ ) : (—¢€,€) = M lo podemos ver como una derivacién real
7(0) € TpMg. Esto nos va a dar una identificacién entre (T, M)g y Tp Mg que es simplemente
olvidarnos del producto por i. Ademds la accién de los niimeros complejos es ¥ (_ic,e)(0) =

Z.’Y\(—e,e)'
El siguiente paso es estudiar los duales de estos espacios vectoriales. El que més nos va a

interesar es Homg (Tp Mg, C) = Homc (Tp Mg ®r C, C), que es un C-espacio vectorial en el que
tenemos dos bases importantes, si fijamos una cartaz : U — M, p € z(U), U C C™ abierto. Por
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una parte, tenemos las aplicaciones dzj‘p : TpMr ®r C — C; dado D € Ty Mg ®r C, tenemos

que dzj|p(D) := D(z;), donde zj : V — C es la composicién de z~! con la j-ésima projeccién.

Anélogamente se definen d2j| . d:nj| . dyj‘ pi estos dos ultimos se interpretaran simultanea-
mente como el elementos en Home(Tp Mg @r C,C) y en T3 Mg; y como zj = x; + iy;, tenemos

dzjlp = dajjp +idyjp,  dZj)p = dzj)p — idyj|p.

Esto nos va a permitir hablar de Ty M ® T;M ya que (dzjjp)j=1,...n €s una base de T5M y
(d2j|p)j:17“_7n es una base de T;M.

Definicion 2.15. Un producto hermitiano h sobre una variedad analitica M consiste en asignar
a cada p € M un producto hermitiano hy en el C-espacio vectorial T, M, de manera que si
V C M es un abierto y X,Y son campos diferenciables sobre V' entonces, h(X,Y) : V — C es
una funcién C*°.

Observacion 2.16. Podemos interpretar hp como un elemento de 75 M ®TI’§ M con las siguientes
propiedades. Dada una carta z,

h = Z fj de & dij + Z (gjk de ® dz + Gk dzp ® dij),
j=1

1<j<k<n

fi V=R, gjr : V — C diferenciables, tal que la matriz

fi
9jk
Jjk e
fn
es definida positiva. Dicho de otra manera, Reh es una métrica Riemanniana e Sh es una
2-forma alternada.

Definicion 2.17. Una 2-forma alternada compleja w sobre una variedad analitica M consiste
en asignar a cada p € M un producto hermitiano wp en el C-espacio vectorial T, M, de manera
que si V. C M es un abierto y X7, X5 son campos diferenciables sobre V' entonces, w(X1, X2) :
V — C es una funcién C*>. Notemos que wp € A’ T5Mg ® C.

Sabiendo esto, vamos a introducir nuestra variedad analitica donde vamos a trabajar y en
el siguiente capitulo usaremos estos conceptos para ver que métrica podemos darle al espacio
proyectivo complejo, y en particular, a la recta y plano proyectivo complejos.

2.3. El espacio proyectivo complejo

Vamos a introducir propiedades topoldgicas y analiticas del espacio proyectivo complejo,
normalmente sin demostraciéon. Hay diversas formas de ver el espacio proyectivo complejo. Sea
V un C-espacio vectorial de dimensién n + 1. Entonces,

P(V)={H C V | H C-subespacio vectorial, dim¢c H = 1}.

Consideremos la accién ¥ : C* x V' \ {0} — V' \ {0} definida por la multiplicacién. El espacio
P(V') se identifica con el cociente V'\ {0} /C*. Esta dltima identificacién es 1til, ya que tomando
la topologia usual en V| podemos tomar en P(V') la topologia cociente. Los elementos de P(V)
se denotaran como el nombre del subespacio o como clases de equivalencia [v], con v € V'\ {0},
de manera que [v] = [zv], z € C*.
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Ejemplo 2.18. Todos los espacios proyectivos de espacios vectoriales de la misma dimensién
son isomorfos. En particular, denotaremos P* := P(C"*!). Los elementos de P" se denotan
mediante las coordenadas homogéneas:

[0 @1 i 2y con (o, 21,...,2,) # 0,
y|zo:xy i xy] = [twg : tay - txy], t € C
Lema 2.19. Sea w: V' \ {0} — P(V) la proyeccion cociente. La aplicacion 7 es abierta.

Fijemos una métrica hermitiana h en V. Denotaremos como habitualmente ||v|| = \/h(v, V).
El espacio
n+1
St = {ve V| Ivl =1} < v\ {0)

es homeomorfo a S2"+1,

Proposicion 2.20. El espacio proyectivo es conexo por caminos, compacto, localmente conexo
por caminos, localmente compacto y sequndo numerable.

Fijemos un subespacio vectorial S C V; P(S) se dice que es un subespacio proyectivo de
P(V). Observemos que 7~ 1(P(S)) = S\ {0}; como este es un cerrado de V' \ {0}, entonces, P(S)
es un cerrado de P(V'). En particular P(V') \ P(S) es un abierto.

Tomemos ahora S un hiperplano de V' (subespacio vectorial de codimensién 1). Tomemos
una base vi,...,v, de S. Sea vop € V'\ S. En particular, la familia v := (vg, vy,...,Vv,) es una
base de V' y la aplicacién

o, : C"T 5V, Oy (2) i =vz

es un homeomorfismo, donde identificamos v con una matriz fila y z con una matriz columna.

Proposicién 2.21. Con las notaciones anteriores, la aplicacion ¥y, : C" — P(V') dada por

n
t 1
z:="(21,...,2n) >V = vo—i—g zjvj |,
z =

es un homeomorfismo sobre la imagen, que es el abierto P(V') \ P(S5).

Demostracion. Sea Wy, : C* — V'\ {0}, la aplicacién dada por Wy (21, ..., 2,) = VoI 2V
Es claramente continua y como ¥y, = 7o \ilw, entonces Uy, es continua.

Como P(V)\P(S) es abierto, y 7~ 1 (P(V)\P(S)) = V'\S, entonces la restriccién m : V\ S —
P(V) \ P(S) también es una aplicacién cociente. Por el siguiente diagrama

o1

1% » Cntl
[ J
VS —L Cntl {z =0} (20,21, - -, Zn)
o | 1
P(V)\ P(S) — ¥ % cn (22)

la aplicacién v es claramente continua y como la restriccién de 7 es cociente, deducimos que
U ! es continua. O

Corolario 2.22. El espacio proyectivo es Hausdorff.
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Basta tomar, dados dos puntos distintos P = [v],QQ = [w], una base v de V tal que
P,Q € U (C") y aplicar que C" es Hausdorff. El resultado siguiente es consecuencia de ser g
una aplicacion sobreyectiva entre un compacto y un Hausdorff.

Corolario 2.23. Sea s : Sinﬂ — P(V) la restriccion de w. Entonces, ws es cerrada y, en
particular, cociente.

Tomemos dos bases v = (vo,V1,...,V,) y W = (Wo,W1,...,W,) de V. Queremos comparar
VU, y VUy. Consideremos el cambio de base:

v =wA, A= %‘% € GL(n+ 1;C), t e C,a,b e C", B € Mat(n;C).
Supongamos que ¥y (z) € Uy (C™):

PO £ R ) B 1 R
TV T 7W[b+BgJ t+laz’

Asi, la composicién W' o Uy, estd definida C™ \ {t + faz = 0}. Se trata de un abierto no vacio
de C", ya que como A es inversible ¢ y a no se pueden anular simultdneamente. Si

t

s '
C

A7l =

podemos enunciar lo siguiente.

Proposicién 2.24. Con las notaciones anteriores, sea Uy = Wy (C") N Wy (C"), abierto de
P(V). Entonces
U (Upw) ={2€C" [t +'az#0}, U ' (Upw) ={2€C"|s+z+#0}.

v w

La aplicacion Wt o Wy : U YUy ) — Vo (Uy ) es biholomorfa. En particular, P(V) es una
variedad analitica.

Ejemplo 2.25. Nos quedamos con el caso n = 2, ya que es el plano proyectivo el que nos va a
interesar.

Consideremos P? = P(C3), con la base canénica ey, ej, es. Con distintas reordenaciones de
esta base obtenemos las aplicaciones

c2 2o, p? c2 2, p? c2 L2, p2
(21,22) — [1: 21 : 29] (21,22) — [z0: 1: 29 (21,22) — [20: 21 : 1]
(%, %) < [Zo 4 22] (%, %) < [Zo 4 22] (%, %) —— [Z() A ZQ]

Las imagenes de estas aplicaciones forman un cubrimiento abierto de P? y las aplicaciones son
cartas de la variedad analitica.

Ejemplo 2.26. Como ¥y es un homeomorfismo sobre la imagen es habitual identificar su
imagen con C?. Observemos que

Pz \ \I/()((CZ) = {[0 21 22] ‘ [21 : 22] € Pl} = Péo

Es decir, podemos identificar P? = C2]]P!. Cambiando de carta, cualquier hiperplano proyec-
tivo sirve como hiperplano del infinito, y su complemento es C2.

Ejemplo 2.27. La recta proyectiva P! se configura segiin hemos visto como C]]P°, donde
PO es un punto que se suele denotar como co. Asi P! es la compactificacién de Alexandroff de
C = R?, es decir es homeomorfo a una esfera.



Capitulo 3

Rectas y conicas en el espacio
proyectivo

En este capitulo vamos a tratar de resolver el centro de nuestro estudio. Para comenzar
veremos qué métrica ponemos al plano proyectivo y ver cual induce en las rectas y conicas
dentro de este espacio, sacaremos caracteristicas de las cénicas por conocerlas mas como objeto
matemético dentro de P2, para finalmente buscar como caracterizar estos conjuntos.

3.1. Meétrica hermitiana sobre la recta y el plano proyectivo
complejo
Consideremos la variedad analitica C"*! con el producto hermitiano usual, es decir h :
Crtl x € — C tal que h(v,w) := W (los vectores se identifican con matrices columna).
Recordemos que Vp € C"*1 podemos identificar T,C" ™! con C**!, considerando un vector

v como el vector tangente a la curva t — p+tv en t = 0. Con esta identificacién, podemos dar
una métrica hermitiana h para la que hy = h. Es decir,

n
h=> dz®dz.
§=0
Observacion 3.1. Sean p1,p2 € C"1\ {0} tal que [p1] = [p2] en P", es decir, existe t € C*
tal que pe = tp1. Consideremos la aplicacién )\, : C**1\ {0} — C"*1\ {0}. Es una aplicacién

holomorfa tal que A\;(p1) = p2. En particular, tenemos su diferencial dAp, : Ty, (C"1\ {0}) =
Crtl — C*t = T, (CH\ {0}). Tenemos:

d)\t|p1(v) =T = MPp1+7V)g= (T pa+trv))_y=tv.
Veamos cémo se comporta la métrica hermitiana:
hp, (A1, (V1) dAijp, (V2)) = B(tvi, tva) = [t h(v1,v2) = [t hp, (v1, va).

En particular, \; es una isometria si y solo si [¢t| = 1.

Consideremos ahora la métrica hermitiana h de C"1 \ {0} tal que h —> (por esta

divisién solo lo definimos en C**1\ {0}). Tenemos

T Zdz] o

13
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Con las notaciones anteriores:

h(tvy,tvy t2hv1,v2 ~
( 1 . ) _ ‘ ’ 2( 2) :hpl(V17V2)~
2]l " llpall

hp, (A, (V1), At jp, (V2)) =

Es decir, A; es una isometria de (C"+1\ {0},h), V¢ € C*.
Fijemos ahora p € C"*!\ {0}. Sabemos que Tj,|P" es un espacio vectorial de dimensién n.
Consideremos la aplicacién

drp : Tp(C™T1\ {0}) = C"' — T, P"

No es dificil ver que esta diferencial es sobreyectiva, usando por ejemplo una carta que conten-
ga [p] en su imagen. Ademds, dmp(p) = 0 ya que la curva 7 — [p + 7p] = [p] es constante (||
es pequerio). Por dimensiones, ker drp = C(p). Sea H) 1= C(p)* (observemos que este espacio
no depende del representante p de [p]); es un espacio vectorial de dimensién n para el que la
restricciéon d7rp| : Hp) — TipP™ es un isomorfismo. Podemos tener la tentacion de identificar
ambos espacios pero tenemos que tener cuidado, ya que si t € C*, el siguiente diagrama nos
dice cémo cambia con otro representante:

Hip)

\dﬁlj

d>\t|p =t T[p} pn

4p

Hip)

Esta propiedad nos va a permitir definir una métrica hermitiana h en P" a partir de la métrica h,
ya que la flecha vertical anterior es una isometria para esa métrica y la definicién no depende
del representante escogido.

Vamos a estudiar esta métrica en cartas. Fijemos la carta ¥y : C" — P”; dado z € C™,

tenemos la base 2 1 < j < n. Vamos a denotar wg, ws, ..., wy las coordenadas en C"*!

92 |[1:2]’
para diferenciarla. Los campos anteriores provienen mediante dm de los campos %‘(1 ) La
J )2,
proyeccion de este vector para estar en Hy, es

) z; ) 29

_9 L9
Owj i1, 1+ |z)® \ Qwoa,z

9
T Owj 1 1)

3,(1,z) *

j=1

Con estos datos,

h 9 9 = D (951.2)5 O, (1,2))
hk(é) = h 1:z ( y ) - h 1,2 (87 172 7816, 172 ) = JA\HE LA .
j 0 Gy By ) P10 G2 O L+ I
Asi,
S RE— (1_ Bl ) Ll el
gi\2) = 3 3 | = 7
1+ |z 1+ 2] (1 i H§H2>
ysij#k

—Zj 2k

hjk(z) = —.
()
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Es decir, podemos escribir

~ 1 n
b= > Iz =121 dz @dz > (2 2k ©dE A+ Zrzidze ® dZp))-
<1+||g|| ) j=1 1<j<k<n

La métrica h se conoce como métrica de Fubini-Study.

Ejemplo 3.2. Si n =1, caso de la recta proyectiva, tenemos

~ dz®dz
by = ——-
(1+12P)
Si pasamos a coordenadas reales nos queda
~ dr@de+dy®dy . dxAdy

hyj) = <1+’Z’2)2 l<1+’22)2
1

La parte real es una métrica riemanniana que corresponde a la esfera de radio 5. Para ver la
métrica en S? es tan sencillo como tomar la carta de la proyeccién estereogréafica y nos sale
esta métrica multiplicada por un factor 4. Esto tiene sentido, ya que como hemos visto la recta
proyectiva compleja es homeomorfa a la esfera, y cabe esperar que estemos tomando una métrica

que funcione bien.

Una métrica hermitiana induce una métrica riemanniana y esta a su vez una estructura de
espacio métrico. Vamos a estudiar la estructura inducida primero en P! y luego la generali-
zaremos a P? (extendible hasta P"). Esto mds un par de resulados interesantes van a quedar
recogidos en la siguiente proposicién.

Proposicién 3.3. El plano proyectivo tiene un didmetro de 5 y ademds VP € P2, el conjunto
de puntos donde se alcanza el mdzimo para la distancia a P es una recta proyectiva.

Demostracion. Acabamos de ver una métrica en P! para la carta

CLHP’

t— [1:1]

Esto nos permite integrar y medir distancias en esta. Sea [1 : t] € P! con ¢ € C. Sin pérdida
de generalidad vamos a ver la distancia al origen [1 : 0] desde este punto.

Como hemos visto que tenemos la misma métrica que en una esfera tomando la carta de
la proyeccién estereografica, vamos a denotarla como p por comodidad. Tenemos entonces que
p(0) es el polo sur, y si tomamos los circulos maximos que pasan por el polo sur (geodésicas) y
hacemos la antiimagen por la carta p, corresponden exactamente a las rectas que pasan por el
origen.

De aqui, simplemente con integrar la métrica riemanniana que teniamos, se sigue

D = d(0,t) = arctan |¢|

por tanto, tg D = |t

[(u,v)]
([al[[v]]

Ahora, llamamos u = (}) y v = (}), y sea C := € C (este valor es independiente
del representante escogido).

Tenemos que
1

o= L -

= |cos D|
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Por tanto, D = |arccosC| € [0, %].

Este resultado nos dice que tomando dos puntos en la recta proyectiva no es necesario
calcular la geodésica que los une para calcular la distancia. Basta tomar dos representantes de
estos puntos y calcular el arcocoseno del angulo que forman. Notar ademads, que el didametro de
P! es 7, ya que tiene la misma métrica que una esfera de radio %

Vamos a extender el resultado a P2. Tomamos P € P? y un vector direccional v € T,P2.
Sea L C P? la recta proyectiva que pasa por P tal que v € T} pL, por cambios de coordenadas
podemos suponer

L={[x:y:z] €P?z=0}
Ahora definimos sobre L la siguiente isometria
p2 — 2, p2

[x:y:z]—— [x:y:—2]

la cual deja todos los puntos de la recta fijos, es decir, ®(L) = L mas el punto [0: 0 : 1]. Como
deja todos puntos de L fijos, al aplicar la diferencial sobre los vectores tangentes a los puntos
de L estos también se quedan fijos.

Entonces, ahora tomamos la geodésica asociada a P y v. Como por estd isometria P y v se
quedan fijos, por la unicidad de las geodésicas esa geodésica se queda fija, y es mas se queda
fija en el lugar de puntos fijos. Se sigue que la geodésica esta en L por conectividad. Por tanto,
todas las geodésicas estdn en rectas proyectivas, cuya métrica ya hemos estudiado.

Acabamos de ver que en el plano proyectivo podemos calcular la distancia entre dos puntos
del mismo modo que habiamos mostrado anteriormente. Se sigue que dados dos puntos P, (Q €
P2, estos cumplen que d(P, Q) < % ya que la geodésica que los une esta contenida L, y d(P, Q) =
5 siy solo si P 1 @, porque significarfa que su coseno toma valor 0. Si ahora tomamos un
punto P € P?, y a su vez, tomamos el siguiente conjunto

H={QePdr.Q) =7}
es decir, los puntos mas lejanos a P. Resulta que si veo P = C(u), es decir una recta vectorial
engendrada por un vector u, H = Pt y si esto en vez de P? lo vemos en C3, lo que tenemos es
un espacio vectorial de dimension compleja 1 y su ortogonal otro espacio vectorial de dimensién
compleja 2. Esto tiene unas consecuencias métricas, y son que P? tiene didmetro 5y el conjunto
de puntos donde se alcanza el méaximo de este didmetro es una recta proyectiva, que ademaés
es Pt para algtin P € P2, Ademss, si P = [u],Q = [w], la férmula cosd(P, Q) = Huv)l sigue

; . = laflivl]
siendo valida. O

Esto tendra mas consecuencias que veremos una vez que hayamos introducido las cénicas en
la tltima seccién del capitulo. Antes de ello, vamos a ver que métrica tenemos en P? y veremos
una breve secciéon de curvas algebraicas.

Ejemplo 3.4. Si n = 2, caso del espacio proyectivo complejo, tenemos

N (1+ ||Z”2— |z1])dz1 @ dzy + (1 + ||Z||2— |22])dze @ dZa— z1Z2d21 @ dzg + 2221d29 ® dzy
I[1:2] = 3 .
(1+121?)

Esta expresién es nuestra métrica en el espacio proyectivo P2, la cudl usaremos mas adelante,
restringiéndola a las cénicas y asi, poder caracterizarlas. Pero para ello vamos a introducir a
estas primero, ver que expresiéon toman en P? y computaremos con Sagemath dicha métrica en
alguna carta que las parametrice.
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3.2. Curvas algebraicas

En esta secciéon no nos vamos a parar a estudiar con detalle los objetos que introducimos,
pero son necesarios para nuestro estudio. Podriamos hacerlo en general pero vamos a introducir
todo directamente sobre el cuerpo C.

Definiciones 3.5. Un polinomio F' € C[Xy, ..., X,| se dice que es homogéneo de grado d si
todos sus monomios tienen grado d.

Proposicién 3.6. Un polinomio F € C[Xy,...,X,] es homogéneo de grado de d si y sdlo si
para cada A € C
F(\Xy,...,\X,)) = XF(Xo,...,X,)

Definiciones 3.7. Se llama hipersuperficie de P¢ a un conjunto
V(F) ={a € P¢|F(a) = 0}
donde F' € C[Xy,...,X,] es homogéneo de grado positivo.

Observacion 3.8. Si n = 2 diremos que V(F') es una curva algebraica projectiva plana. Si
ademas el polinomio es de grado 2 diremos que es una cénica.

Tiene sentido hablar de los puntos donde se anula un polinomio homogéneo en P¢ ya que
como vemos en el siguiente diagrama

crHi {0}
. F
LS

tenemos que 7~ 1(V(F)) = F~1(0). Usando las propiedades de la topologfa cociente, obtenemos
que son cerradas. Ya solo nos queda ver que es una curva algebraica lisa.

Proposicién 3.9 (Férmula de Euler). Si F' € C[ X1, ..., X,] es homogéneo de grado d entonces
X1+ -+ X, =dF

donde F; = oF

= o
Definicién. Una curva algebraica C se dice lisa si V[zg : z1 : x2] € C los valores F;(xg, z1,x2)

no se anulan simultdneamente. La recta tangente a C' en [z : x] : x2] es la recta de ecuacién

Fo(zo, 1, 22) Xo + Fi(xo, 21, 22) X1 + Fa(zo, 21, 22) X2 = 0.

3.3. Caracterizacién de las cénicas en P?

Sea F € C[xg,x1,x2] polinomio homogéneo de grado 2, es decir, cumple que F(AX) =
A2F(x). Entonces,
C = {[z] € P?|F(z) = 0}

siendo C' una cénica, bien definida como hemos visto en la seccién anterior. En realidad cualquier
cOnica se puede expresar mediante la ecuacién

Zo
(:no T 2132) Alxz | =0, A matriz simétrica no degenerada.
€2
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Ahora, vamos a mostrar un lema y una proposicién que nos va a permitir encontrar una
expresién general para la nuestro polinomio homogéneo F' que nos caracteriza el conjunto el
conjunto de cénicas.

Sea V un espacio vectorial de dimensiéon n + 1. Sean h : V x V — C un producto escalar
hermitiano, y @ : V x V — C una forma bilineal simétrica no degenerada (Q(v,w) =0 Yw €
V = v =0). Ahora sea v = (v, v1,...,0,) € V una base ortonormal (es decir, h(v;,v;) = d;;).
Entonces, sean v,w € V tal que v=vX y w = vY y tenemos asi las siguientes expresiones
para h y Q7

h(v,w)= XY Qv,w)=X'AY

con A = (Q(vs,v;)) matriz simétrica con det A # 0. Ahora, recordemos el conjunto

Sitti={veV||vll=vh(v,v) =1} c V\{0}
que es una variedad compacta homeomorfa a la esfera de dimensién 2n + 1.

Lema 3.10. En las condiciones anteriores, sea v € S}%"H tal que F alcanza un mdrimo en v
con F: S R tal que F(v) = Q(v,v)Q(v,v). Entonces (Clv))h = (C(w))*1€.

Demostracion. Ambos espacios son de la misma dimensién, asi que bastara con demostrar un
contenido.
C) Sea w € (C(v))*" con ||w|| = 1, por tanto sabemos que h(v,w) = 0. Tenemos que

F(v) = (X'AX)(XtAX). Ahora, definimos g(t) = F(y(t)) con y(t) = costv + sentw, y se
sigue que

0=g'(0) = (Y'AX)(X'AX) + (X'AX)(Y'AX) = 2Re ((Y'AX)(X"AX))

Como iw también esta en el ortogonal para h, se sigue que la parte imaginaria también es igual
a 0, por tanto,
0= (Y'AX)(X'AX)

con el segundo término distinto de 0 ya lo tenemos, w € (C<V>)LQ O

Con este lema, se llega a la siguiente proposicién por induccién.

Proposicién 3.11. Sea Q : VXV — C una forma bilineal simétrica, entonces I{vg, v1, ..., v},
base unitaria de V tal que la matriz de (@ en esta base es diagonal, es mds, Irg > r1 > -+ >
rn > 0 tal que
1 0 0
0 1 0
Q= :
0 0 Tn

Como podemos multiplicar por un escalar no nulo y la cénica no cambia, podemos suponer
ro = 1.

Un polinomio homogéneo de grado 2 es una forma cuadrética, y puede ser representado
como una matriz simétrica, en este caso, nos interesa la de esta ltima proposicion, en el caso
n=2.

Cualquier cénica C se puede transformar con un cambio de coordenadas que preserva el
producto riemanniano en

2,22, .2 2
(xo 1 332) 0~ O T1 | =2y +riz] +1ri7)
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Es decir, denotando 71 = r y 19 = s, tenemos que
Crs = {[x0 : x1 : x2) € P2 + r?2? + s%23 = 0}

con 0<s<r<l1.

Antes de estudiar C, ; como una variedad hermitiana o riemanniana, vamos a ver su com-
portamiento con respecto a la distancia de P2.

Sea C' una cénica lisa definida mediante una matriz simétrica A. Sea P = [z : yo : 20] € C,
entonces P+ viene dado por la recta:

P+ = {20X + oY + 207 = 0}

Esta recta viene determinada por las coordenadas homogéneas [Zo : §o : Zo|. Por otra parte, es
facil calcular que la recta tangente a C' en P viene determinada por las coordenadas homogéneas
asociadas a

(a() bo Co) = (x() Yo Zo) A.

Como consecuencia

i) a ap
0= (ZEO Yo Zo) A 1 | <= 0= (CLO bo Co) A_IAA_I bo | = ((lo bo Co) A_l bo
20 o €o

En particular deducimos que un punto P € C, C' determinada por A, cumple que su ortogonal
es tangente a la misma cénica, si y solo si P pertenece a la cénica determinada por A~!.
Como todas las cénicas se pueden expresar como C). 5, podemos resumir el comportamiento con
respecto a la distancia como sigue.

Teorema 3.12. Sea una cénica lisa Crs = {[xo : 1 : x2] € P?|2d + r?2? + s%23 = 0} con
0<s<r<1. Entonces:

» Sis=1r=1, todos puntos P € C, s cumplen que Pt es tangente a la cénica.

» Sis =1 <1, solo los puntos P = [0 : i : 1] € Cys cumplen que Pt es tangente a la
conica.

» Sis <r =1, solo los puntos P = [£i : 1 : 0] € C}.s cumplen que Pt es tangente a la
conica.

= Sis <7 <1, solo los puntos P = [£vr* — st £rv/st —1: sv/1—14 € C,5 cumplen
que Pt es tangente a la cdnica.

Una vez hemos visto esta caracteristica, vamos a seguir estudiar las propiedades métricas
de las cénicas de P2. Con la expresién que le estamos dando a las cénicas C)s vamos a tratar
de parametrizarlas con alguna carta ®. Es decir, buscamos

P! 2 P?
[t1 : ta] —— [fa(to,t1) : g2(to, t1) = ha(to,t1)]

tal que ®(P') = C, ;. Para ello, tomamos un punto en C;. 5, por ejemplo, el punto [r : i : 0] y todas
las rectas que pasan por este que vienen dadas por la la ecuacién r(t) := (zo+irxy) +txo,t € C.
Si hacemos la interseccién de todas estas rectas con C). s obtenemos asi una parametrizaciéon de
C;.s. Despejando una variable de 7(t) = 0 y sustituyéndola en el polinomio homogéneo de C,
obtenemos 2o 2

rNCrs(t) = 57 1 577 (1,

y por tanto, la siguiente carta para todas las cénicas de P?:
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CcP 2 » P2
t—— [r(s® = %) 1i(s® + t%) : 2rt]

Aunque la imagen no esta contenida en una carta estdandar del plano proyectivo (para las que
tenemos expresiones del producto hermitiano), podemos calcular el producto hermitiano en
t # 0 y luego extender por continuidad. Ahora tenemos que ver que métrica tenemos en estas,
para ello llamamos

52 — t2 24 t2
U = v =71
2t 2rt
y calculamos du, dv, du, dv
—(t? + s?) (B + s 2 — g2 s
du = ————=dt du = ————=dt dv = ———dt dv = ———dt
B 22 ! 272 T YT e

Ahora usando la férmula del Ejemplo 3.4. de la métrica hermitiana en P2, calculamos la
expresion analitica de h, la cual denotaremos hc, , que viene dada de la siguiente forma

4 (7“234 128242 4 4 ST + 128200 £ 228 4 st — 8212 — s 4 t252>7“2

he, .=

T,8

~ ~ ~ ~ N2
(1"254 —r26242 _ 26200 4 p2427% 14 4 242 4 49247 + 8200 + t2t2)

Por provenir de una métrica hermitiana, la métrica riemanniana es isoterma en esta carta, es
decir es de la forma h, (2, y)(dz ® dz + dy ® dy), donde z = = + 1y. Si definimos

K = (7“2 + 1)54 +4 (x2 +y2)84 + 2 (r2 — 1) (332 — y2)52 + (7"2 + 1) (:U2 +y2)2

Ky = (1"2 + 1)54 -2 (r2 — 1) (xQ — y2)82 + (T2 + 1) (3:2 —|—y2)2 +4 (932 —|—y2)7‘2

la expresion en coordenadas reales ahora queda muy sencilla

) 2
KQ

Y con esta expresion de la métrica vamos a poder calcular las curvaturas maxima y minima
de las cénicas. Como nuestra métrica es una aplicacion conforme, y la carta escogida para para-
metrizar las cénicas isoterma, vamos a poder obtener la expresion de la curvatura de Gauss sin
necesidad de calcular los simbolos de Christoffel, sino que viene dada por la siguiente expresion

K, = —6_%“5((;%5)11 + (hrs)yy)

con hy s = e2hr.s - Calculamos K, s con Sagemath (Anexo A) y la expresamos en términos de las

funciones anteriores:
254K 5’

KT’S =4- 7“2K§ ‘

Y una vez que tenemos la expresién de la curvatura, llegamos a la caracterizacién de las
cOnicas que vamos a enunciarla a modo de teorema.

Teorema 3.13. Sea una cénica lisa Crs = {[zo : 71 : z2] € P?23 + r?z} + 223 = 0} con
0 < s <r < 1. Entonces podemos conocer las curvaturas mdzrima y minima, distinguiendo
entre los siguientes casos:

» Sis=1r =1, tenemos curvatura constante K = 2.
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» Sis=r <1, tenemos Kpax = =252 +4 en [—i(s® +y?) : 82 — 9% : 25y] y Ko = 72(221_1)
en los puntos [0 : %1 : 1].

v Caso s <r =1, tenemos Kpax = —2s*+4 en los puntos [£i:0: 1] y Ky = 2(288722_1) en
[s2 — 22 1 i(s? + %) : 22].

4_o.2 22

s Caso s < r <1, tenemos K = —2(87,722” en el punto [r:i:0] y Kpm = %

en el punto [0 : = : 1]. Ademds en este caso, tenemos dos puntos sillas en [+is : 0 : 1]
4 5.2

donde K = —2(7087228).

Todo este teorema queda reducido a calcular maximos y minimos de K, que es equivalente

3
a estudiarlos en la funcién (%) . Todas las cuentas quedan recogidas en el Anexo A donde

hemos incluido el cédigo de trabajo de Sagemath.

De este Teorema vemos que una vez que tenemos las curvatura de una cénica C; ; queda
totalmente determinada ya que podemos recuperar tanto r como s a partir de las curvaturas
méaxima y minima. Si nos fijamos en el primer caso, podemos sacar una conclusién bastante
interesante, al obtener curvatura constante K = 2 sabemos que se corresponde a la curvatura

de una esfera de radio %, y antes hemos visto que la recta proyectiva P! estd dotada de la

misma métrica que una esfera de radio % y ademads, es homeomorfa a una esfera, con lo que

llegamos a que existe una homotecia entre la recta proyectiva y la cénica con r = s = 1, es
decir, de la forma x3 + 23 + 23 = 0.

Corolario 3.14. Dos conicas son homotéticas solamente si existe una isometria entre ambas.

Si una métrica riemanniana la multiplicamos por una constante a > 0, la curvatura de Gauss
de la métrica resultante es a% Las razones entre las curvaturas maxima, minima, adema&s de
los valores en los puntos silla, nos permiten recuperar este resultado. Otra vez la demostracion
pasa por ver si hay alguna relacién (razén de homotecia) entre los cocientes de las curvaturas
minimas (o maximas) en todos los casos de las cénicas. Hemos demostrado con Sagemath que
no existe tal relacién, salvo que evidentemente, si son isométricas. Igual que antes todas cuentas
quedan recogidas en el Anexo B.

Con esto hemos concluido con el objetivo del trabajo, que era sacar toda la informacién en
la medida de lo posible de las rectas y cénicas, y finalmente caracterizarlas, por tanto, damos
por finalizada la investigacion. Este trabajo se podria continuar estudiando lo que ocurre con

curvas de grado mayor.
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Anexo A

A.1. Curvatura

Hoja de calculo de la curvatura de las conicas.

var(’z1,z2,t,dz1,dz2,dt’ ,domain=’complex’)
var(’s,r’ ,domain=’real’)
assume (0<s<=r<=1)

z1=(s8"2-t"2)/2/t
z2=I*(s8"2+t"2)/2/t/r
dz1=(zl.derivative(t)*dt) .factor()
dz2=(z2.derivative(t)*dt) .factor ()

dzlbar=dzl.conjugate ()
dz2bar=dz2.conjugate ()

den=((1+z1*z1.conjugate () +z2*z2.conjugate())"2) .factor()
omegal=((1+z2*z2.conjugate () ) *dzl*dzlbar+(1+z1*zl.conjugate () )*dz2*dz2bar-
z1l.conjugate () *z2*dz1xdz2bar-z2.conjugate () *z1*dz2*dzlbar) .factor ()
h=omega0/den/dt/dt.conjugate ()

var(’x,y’ ,domain="real’)

H=h (t=x+I*y) .factor()

h0=1/2%1og (H)

num=h0.derivative(x,2)+h0.derivative(y,2)
K=(-num/H) . factor ()

A.2. Curvatura maxima/minima, caso s =7 =1
Partimos de la hoja anterior y evaluamos
K(r=1,s=1) .factor()

Al obtener curvatura constante, ya terminamos.

A.3. Curvatura maxima/minima, caso s #r =1

De nuevo, partimos de la primera hoja.

25
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K=K(r=1) .factor()

R.<s1,x1,y1>=QQ[]
F=R.fraction_field()

K1=F (K(x=x1,y=y1,s=s1))
K1x=K1.derivative(x1) .numerator ()
Kiy=K1.derivative(y1) .numerator ()
J=R.ideal (K1x,K1ly)

U=K1x.gcd (K1y)
U.factor()

U1=U.factor () [3] [0]

K1x1=R(K1x/U)
K1y1=R(K1y/U)

v1=K(x=0,y=0) .factor ()

a=s”"2-x"2

Capitulo A. Anexo A

v2=K.subs(y~2==a,y"4==a"2,y"6==a"3,y"8==a"4,y"10==a"5,y"12==a"6) .factor ()

A.4. Curvatura maxima/minima, caso s =r

K=K (r=s) .factor()

R.<s1,x1,y1>=QQ[]
F=R.fraction_field()

K1=F (K (x=x1,y=y1,s=s1))
Kix=K1.derivative(x1) .numerator ()
K1y=K1.derivative(y1) .numerator ()
J=R.ideal (K1x,K1ly)

U=K1x.gcd (K1y)
U.factor ()

U2=U.factor() [-1] [0]
p=s1-2*(x1°2-s172)"2

U1=U.factor () [0] [0]

K1x1=R(K1x/U)
K1y1=R(K1y/U)

v1=K(x=0,y=0) .factor()

v2=K(x=s,y=0) .factor )



Geometria Riemanniana en dimension baja - Rodrigo Morén Sanz

A.5. Curvatura maxima/minima, caso s # r # 1

Partimos de la primera hoja.

A=Matrix (2, [K.derivative(i,j) for i,j in [(x,x),(x,y),(y,x),(y,yI1D)
H(x=0,y=0) .factor()

(H(x=0,y=0) "-1*A(x=0,y=0)) .trace() .factor )
(H(x=0,y=0) "-1*A(x=0,y=0)) .det () .factor ()
R.<r1,s1,x1,y1>=QQ[]

F=R.fraction_field()

K1=F (K(x=x1,y=yl,r=r1,s=s1))
Ki1x=K1.derivative(x1) .numerator ()
Kily=K1.derivative(yl) .numerator ()
J=R.ideal (K1x,K1ly)

U=K1x.gcd (K1y)

U.factor()

U1=U.factor () [1] [0]

p=(y1°2-s172) "2+r172x(x172-s172) "2
K1x1=R(K1x/U)

K1y1=R(K1y/U)

K1x2=R(K1x1/x1)/48

K1y2=R(K1y1/y1)/48

K1x2.degree(yl) ,K1y2.degree(yl)
cfx=K1x2.coefficient ({y1:4})
cfy=K1ly2.coefficient ({y1:4})
(cfx*K1ly2-cfy*K1x2) .factor O
A1=R((cfx*K1ly2-cfy*K1x2)/4/s1"2/(r1"4-1))
dfx=K1x2.coefficient ({x1:4})
dfy=K1y2.coefficient ({x1:4})

Matrix (2, [cfx,cfy,dfx,dfy]) .det () .factor()
A2=R ((dfx*K1y2-dfy*K1x2)/4/s1°2/(r1"4-1))

(A1-A2) .factor()

A2a=(A1-A2) .factor() [3] [0]

27



28 Capitulo A. Anexo A

v1=K(x=0,y=0) .factor ()

%Punto silla
v2=K(x=0,y=s) .factor()

%Punto silla
bool (K(x=0,y=-s) .factor ()==v2)

v3=K(y=0,x=-s) .factor ()



Anexo B

B.1. Homotecias
Hoja de calculo de razén de homotecia entre las conicas.

R.<r,rl,s,s1>=PolynomialRing(QQ,order=’1lex’)

v1=-2%(s-2%r) /T
v2=v1l(r=s,s=r)
v3=2x% (2%r*s-1)/r/s

wl,w2,w3=[_(r=r1,s=s1) for _ in [v1,v2,v3]]

pl=(v2*w3-w2+*v3) .numerator ()
p2=(v3*wl-w3+*v1l) .numerator ()
p3=(v1*w2-wl*v2) .numerator ()

p3.factor()

p1=R(p1/4)
p2=R(p2/4)
p3=R(p3/4)
pt=R(pt/96)

J=R.ideal(p1,p2,p3)
P=J.minimal_associated_primes()
len(P)

P[2]
P[1]
P[0]

A=P[2] .groebner_basis()
len(A)
A[1]
for _ in A:
for vr in R.gens(Q):
if _.degree(vr)==1:
print A.index(_),vr
show(_.coefficient ({vr:1}).factor())

show(_.coefficient ({vr:0}).factor())
ra=-A[1] .coefficient ({r:0})/A[1] .coefficient({r:1})
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sa=-A[1].coefficient ({s:0})/A[1].coefficient({s:1})
J1=R.ideal ([_(r=ra) .numerator() for _ in A])
B=J1.groebner_basis()

len(B)

f=B[0]

s2a=-f.coefficient({s:0})/f.coefficient ({s:2})
ra.factor()

ra2=(rl - 2xs1)"2/(2*rl - sl1)"2%s2a

P

ra(rl=s1-2/2)
ptl=pt(r=ra) .numerator () .factor() [-1] [0]

Ja=R.ideal(f,ptl)
Pa=Ja.minimal_associated_primes()
ra==(ra.numerator()/ra.denominator())
def sdiv3(p):

a=vector(p.coefficients())

u=p.exponents ()

ul=[r"i*r1~j*s~(k/3)*s1~(1) for i,j,k,l in ul

return a*vector(ul)
ra3=sdiv3(ra.numerator())/ra.denominator ()
J1=R.ideal ([_(r=ra) .numerator() for _ in A])
B=J1.groebner_basis()
f=sdiv3(B[0])

f.discriminant(s).factor()
print [_[2] for _ in B[0].exponents()]

B[0] .discriminant(s).factor()

ria=-A[4] .coefficient({r1:0})/A[4] .coefficient({r1:1})
J2=R.ideal([_(rl=rila) .numerator() for _ in A])
L2=J2.minimal_associated_primes()
L2[1]
G=L2[0] .groebner_basis ()
for _ in G:
for vr in R.gens():
if _.degree(vr)==1:
print G.index(_),vr

print [_[3] for _ in G[O].exponents()]

R(G[0] (r=ra) .numerator()/s1°3/(s"3-1)"2)-B[0]
B[0]

q=G[0]

print q.exponents()

Capitulo B. Anexo B
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dis=q.coefficient({s1:3}) "2-4x*q.coefficient({s1:6})*q.coefficient({s1:0})
dis.factor()

disO=dis.factor () [-1] [0]

disO

dis0(s=0)/8
disO0(r=1) .factor()
dis(s=r).factor()
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