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SIGLAS Y ABREVIATURAS 

1H RMN Resonancia magnética nuclear de protón 

13C RMN  Resonancia magnética nuclear de carbono-13 

AcOEt Acetato de etilo 

ADC Albúmina, dextrosa, catalasa 

BCG Bacilo de Calmette y Guérin 

bis-GMPA Ácido 2,2’-bis(gliciloximetil)propiónico 

bis-MPA Ácido 2,2’-bis(hidroximetil)propiónico 

COSY Espectroscopia de correlación 

DCC N,N’-diciclohexilcarbodiimida 

DCM Diclorometano 

DCU N,N’ – diciclohexilurea 

DLS Dispersión dinámica de luz 

DMAP 4-(dimetilamino)piridina 

DMF N,N’-dimetilformamida 

DMSO Dimetilsulfóxido  

DPTS 4-toluensulfonato de 4-(dimetilamino)piridinio 

ESI+ Espectroscopia de ionización positiva 

FTIR Espectroscopia infrarroja con Transformada de Fourier 

HoBt 1-hidroxibenzotriazol hidrato 

HPLC Cromatografía líquida de alta resolución 

MALDI-TOF Desorción/ionización láser asistida por matriz – Tiempo de vuelo 

MDR-TB Tuberculosis multirresistente 

MeOH Metanol 

MIC Concentración mínima inhibitoria 

Monómero de bis-GMPA bis-GMPA protegido con t-Boc 

MS Espectrometría de masas 

OMS Organización Mundial de la Salud 

PMMA Polimetilmetacrilato 

RR-TB Tuberculosis resistente a rifampicina 

SEC Cromatografía de exclusión por tamaño 

t-Boc Tert-butoxicarbonilo 

TBTA Tris[(1-bencil-1H-1,2,3-triazol-4-il)metil]amina 

t-Boc glicina N-(tert-butoxicarbonil)glicina 

TFA Ácido trifluoroacético 

THF Tetrahidrofurano 

UFC Unidades formadoras de colonia 

VIH Virus de la inmunodeficiencia humana 

XDR-TB Tuberculosis extremadamente resistente 
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0. Resumen /Abstract 
La tuberculosis es una enfermedad infecciosa que afecta a más de diez millones de personas cada 

año, por lo que supone un importante problema de salud pública. Además, en los últimos tiempos 

ha habido un incremento de los casos de cepas resistentes a fármacos, lo que implica el uso de 

tratamientos con medicamentos de segunda línea que suelen provocar importantes efectos 

adversos debido a su toxicidad. En el afán de encontrar nuevas alternativas terapéuticas con menos 

efectos perjudiciales, las nanopartículas han demostrado ser una potente herramienta para su uso 

como antibacterianos y nanotransportadores de fármacos. 

Los dendrímeros tipo Jano son estructuras asimétricas, compuestas por una hemiesfera hidrófoba 

y una hidrófila, lo que les permite formar estructuras supramoleculares en disolución acuosa que 

pueden encapsular fármacos. En este trabajo se ha sintetizado un dendrón de bis-GMPA de tercera 

generación siguiendo una estrategia divergente, para posteriormente unirlo a través de su punto 

focal, mediante una cicloadición azida-alquino catalizada por Cu (I), a un dendrón de bis-MPA 

de segunda generación funcionalizado con dos cadenas de ácido esteárico. 

Posteriormente, el dendrímero Jano sintetizado fue utilizado de forma eficiente para la 

encapsulación de fármacos antituberculosos: isoniazida, etambutol, estreptomicina, rifampicina y 

bedaquilina. Los nanoagregados manifestaron actividad antimicrobiana contra BCG, como 

consecuencia del fármaco encapsulado, y baja toxicidad contra la línea celular Hep G2. Además, 

mediante microscopía electrónica de transmisión y dispersión dinámica de luz se estudió la 

morfología y tamaño de los nanoagregados, comprobando que en disolución acuosa formaban 

estructuras micelares. A pesar de que los resultados obtenidos son prometedores, es necesario 

hacer nuevos ensayos, especialmente para cuantificar la cantidad de cada fármaco encapsulado 

de forma precisa. 

 

Tuberculosis is an infectious disease that affects more than ten million people each year, which 

is a major public health problem. In addition, in recent years, there has been an increase in cases 

of drug-resistant strains, which implies the use of treatments with second-line drugs that usually 

cause significant side effects due to their toxicity. In the eagerness to find new therapeutic 

alternatives with less harmful effects, nanoparticles have proved to be a powerful tool for their 

use as antibacterials and drug nanocarriers. 

The Janus dendrimers are asymmetric structures, composed of a hydrophobic and a hydrophilic 

hemisphere, which allows them to form supramolecular structures in aqueous solution that can 

encapsulate drugs. In this work, a third-generation bis-GMPA dendron was synthesized following 

a divergent strategy, to later joint it through its focal point, through an azide-alkyne cycloaddition 

reaction catalyzed by Cu (I), to a bis-MPA second generation dendron functionalized with two 

chains of stearic acid. 

Subsequently, the synthesized Janus dendrimer was used efficiently for the encapsulation of 

antituberculous drugs: isoniazid, ethambutol, streptomycin, rifampicin and bedaquiline. The 

nanoaggregates showed antimicrobial activity against BCG, as a consequence of the encapsulated 

drug, and low toxicity against the Hep G2 cell line. In addition, by means of transmission electron 

microscopy and dynamic light scattering, the morphology and size of the nanoaggregates was 

studied, confirming that, in aqueous solution, they formed micellar structures. Although the 

results obtained are promising, it is necessary to make new tests, especially to quantify the amount 

of each drug encapsulated in a precise way.  
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1. Introducción 
 

La tuberculosis es una enfermedad infecciosa que en 2016 afectó a 10.4 millones de personas en 

todo el mundo según los registros de la Organización Mundial de la Salud (OMS). Se considera 

la novena causa de muerte mundial, siendo la primera de la lista debida a un único agente 

infeccioso, inclusive por delante del VIH. Además, se calcula que aproximadamente un cuarto de 

la población mundial es portadora de tuberculosis latente, que son aquellos individuos infectados 

pero que no desarrollan la enfermedad ni pueden transmitirla.  

En 2016 la tuberculosis registró una tasa de mortalidad media del 16%, aunque estas cifras varían 

dependiendo de la localización geográfica, siendo en África superiores al 20%. Se estima que en 

2016 hubo aproximadamente 1.3 millones de muertes debidas únicamente a esta enfermedad a 

las cuales se han de sumar las 374.000 muertes de sujetos infectados al mismo tiempo con el VIH, 

lo que hace que sea un importante factor de riesgo. Sin embargo, esta enfermedad presenta claras 

diferencias regionales, registrándose la mayor incidencia en la región del Sureste Asiático (45% 

de los casos) y África (25%) (1). 

En base a los datos epidemiológicos, es innegable que se trata de un problema de salud pública 

grave, por lo que es necesario el desarrollo de estrategias que permitan abordarlo de forma 

eficiente. 

El agente causal de esta enfermedad es el patógeno Mycobacterium tuberculosis. Se trata de un 

bacilo Gram positivo, aerobio facultativo y ácido alcohol resistente, debido a su alto contenido en 

lípidos en la pared celular. Su envoltura es muy hidrofóbica y por esto crecen formando agregados 

en forma de filamentos con ramificaciones (2).   

Su mecanismo de transmisión más frecuente es por vía aérea, ya que los enfermos expulsan 

bacilos en suspensión cuando tosen o estornudan que, al ser inhalados por otra persona, podrán 

causar una nueva infección. En la mayoría de los infectados, la respuesta inmunitaria puede evitar 

el desarrollo de enfermedad y los bacilos son eliminados totalmente o bien permanecen en estado 

latente. Sin embargo, en otros individuos, aproximadamente el 10%, el sistema inmune no es 

capaz de controlar la infección y se produce el desarrollo de la enfermedad con sus 

manifestaciones clínicas características (3).  El principal factor de riesgo que incrementa la 

probabilidad de sufrir la enfermedad es la coinfección por VIH, pero hay otros como son la 

diabetes, la silicosis, las terapias inmunosupresoras, la insuficiencia renal crónica, las neoplasias, 

el tabaquismo, etc. (1). 

A pesar de los progresos que se están haciendo en la lucha contra la tuberculosis, estableciendo 

estrategias de prevención, diagnóstico y facilitando el acceso a tratamiento, ha surgido en los 

últimos años un nuevo problema: la aparición de cepas multi-resistentes a fármacos, lo que ha 

generado una nueva amenaza sanitaria. Se usan tres términos diferentes para clasificar su grado 

de resistencia: 

- Tuberculosis resistente a rifampicina (RR-TB) que es uno de los antimicrobianos más 

potentes utilizados para el tratamiento de esta enfermedad. 

- Tuberculosis multirresistente (MDR-TB). En este caso, las bacterias muestran resistencia 

a la rifampicina y la isoniazida por lo que la enfermedad requiere el uso de fármacos de 

segunda línea (fluoroquinolonas y fármacos inyectables como la amicacina, capreomicina 

o kanamicina) al igual que la RR-TB. 
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- Tuberculosis extremadamente resistente (XDR-TB), que se define como un caso de 

MDR-TB en el que además se presenta resistencia contra una fluoroquinolona y a uno de 

los agentes inyectables de segunda línea (amicacina, capreomicina o kanamicina).  

La OMS estima que en 2016 se dieron un total de 600.000 casos de MDR/RR-TB y 8000  

infectados por XDR-TB, lo que supone un incremento con respecto a las cifras de 2015 (1). Sin 

embargo, los tratamientos con medicamentos de segunda línea para las cepas multirresistentes 

son caros, prolongados en el tiempo y en muchos casos requieren de la combinación de múltiples 

fármacos que suelen acarrear importantes efectos adversos debido a su toxicidad. Aunque en los 

últimos años se ha aprobado el uso de nuevos medicamentos como la bedaquilina y delamanid 

para la MDR-TB, es obvio que se necesitan nuevas estrategias para un desarrollo más rápido y 

eficiente de nuevos tratamientos con menos efectos adversos. De hecho, las nanopartículas han 

demostrado ser una potente herramienta para su uso como antibacterianos y nanotransportadores 

de fármacos(4). Mediante el uso de nanopartículas podrían reducirse los efectos secundarios de 

estos tratamientos debido a la mejora de la eficacia antimicrobiana de los fármacos encapsulados, 

lo que podría conllevar a disminuir las concentraciones administradas y quizá la duración de los 

tratamientos. 

Las nanopartículas se caracterizan por tener un tamaño extraordinariamente pequeño y pueden 

ser de una gran variedad de materiales. Su interés en el campo de la medicina es que tienen la 

posibilidad de funcionar como transportadores de fármacos ya que incrementan la estabilidad, 

biodisponibilidad y direccionamiento de éstos. Además, pueden mejorar o solucionar algunos 

otros problemas como la baja solubilidad en agua o la citotoxicidad de algunos de estos 

compuestos. 

Un tipo específico de nanopartículas son los dendrímeros, que se describen como polímeros 

sintéticos, esféricos y altamente ramificados. Comparados con los polímeros lineales 

tradicionales, los dendrímeros son mucho más eficientes en el transporte de fármacos debido a 

sus sobresalientes propiedades: monodispersidad, pequeño tamaño, biocompatibilidad y buena 

farmacocinética (5).  

Los dendrímeros están constituidos por tres partes: 

un núcleo central, que determina la forma y el 

tamaño; brazos internos, formados por la 

repetición un monómero; y los grupos funcionales 

externos. Cada capa existente entre el núcleo y la 

periferia constituye lo que se denomina como 

generación de la estructura dendrítica. Además, las 

unidades estructurales que los constituyen pueden 

dejar cavidades en el interior de la macromolécula 

(6), que podrán ser utilizadas para el transporte de 

diferentes compuestos que se situarán en una 

región u otra dependiendo de sus características 

químicas. 

Debido a sus prometedoras propiedades, los dendrímeros han sido aplicados en el campo de la 

medicina para múltiples funciones. Han sido usados como nanotransportadores de fármacos para 

terapias antimicrobianas contra la malaria (7, 8), también para la encapsulación de fármacos 

antitumorales como la doxorrubicina (9) y la 10-hidroxicamptotecina (10) y como terapia antiviral 

contra el virus de la hepatitis C actuando como transportadores de camptotecina (11).  Por otra 

Figura 1 – Estructura general de un dendrímero (6). 
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parte, también ha destacado su uso para la transfección de células eucariotas y su potencial 

aplicación en terapia génica, mostrando ser unas buenas estructuras para tales fines debido a su 

capacidad para interaccionar con el ADN y el ARN (12-14). 

Existen diversidad de dendrímeros dependiendo de su estructura: copolímeros híbridos 

dendronizados, megámeros, redes dendríticas… (6). En los últimos años, se ha desarrollado un 

nuevo tipo de dendrímero, el tipo Jano. Se denominan de este modo debido al dios Romano que 

lleva el mismo nombre y que es representado por una cabeza con dos caras que miran en sentidos 

opuestos. Estos dendrímeros son estructuras asimétricas, compuestas por una hemiesfera 

hidrófoba y una hidrófila, pudiendo tener cada una de ellas diferentes tamaños y grupos 

terminales. Esta estructura anfífila los diferencia de los otros tipos de dendrímeros 

convencionales, lo que les ofrece la posibilidad de formar complejos auto-ensamblados generando 

estructuras supramoleculares (15). 

La diferencia de polaridades entre ambos dendrones del dendrímero tipo Jano es un factor clave 

que va a favorecer su agregación espontánea en agua, formando estructuras supramoleculares que 

presentarán una capa externa hidrofílica que rodea y estabiliza a una interior hidrofóbica, 

pudiendo adoptar múltiples morfologías: micelas, vesículas, estructuras multicapa… 

Dependiendo de la relación entre el tamaño de la región hidrófoba e hidrófila se pueden observar 

diferentes tipos de agregados que son capaces de encapsular fármacos (16). 

La síntesis de estos compuestos es compleja y se puede hacer mediante una estrategia divergente 

o convergente.  En la estrategia divergente el dendrímero se construye de forma radial hacia 

afuera, partiendo de un núcleo multifuncional. De este modo, el dendrímero crece capa por capa 

mediante sucesivos ciclos de adición de moléculas, aumentando una generación tras cada 

reacción, incrementando su diámetro y duplicando el número de grupos terminales en la 

superficie. Por otro lado, en la estrategia convergente, el dendrímero es sintetizado desde la 

periferia hacia el interior, lo que implica la construcción de dendrones de forma separada y 

después su unión a través de su punto focal a un núcleo multifuncional (17). 

El método convergente es el que genera mejores resultados, por ello, recientemente han aparecido 

nuevas aproximaciones basadas en él para mejorar la eficacia y la producción: crecimiento doble 

exponencial, estrategias hipermonoméricas, ortogonales y quimio-selectivas. De hecho es el 

acoplamiento quimio-selectivo mediante química click para la unión de dos dendrones por 

cicloadición azida-alquino catalizada por cobre (I) el método más utilizado (15). Esta técnica 

permite la obtención de dendrímeros  con gran pureza y alto rendimiento a través de la formación 

de 1,2,3-triazoles (6). 

Los dendrímeros pueden estar basados en la utilización de diferentes tipos de monómeros como 

molécula polimérica que dará lugar a su estructura base: poli(amidoamina) (PAMAM), 

poli(imina) (PPI), poli-(L)-lisina (PPL), ácido 2,2’-bis(hidroximetil)propiónico (bis-MPA), 

poliglicerol… Posteriormente, estos dendrímeros pueden ser funcionalizados con una amplia 

variedad de grupos/moléculas terminales, lo que condicionará sus propiedades físico-químicas. 

Se ha observado que los dendrímeros que poseen en la periferia grupos amino manifiestan buenas 

propiedades para el transporte de fármacos unidos de forma no covalente. Los grupos cargados 

positivamente de su periferia, pueden interaccionar con las membranas celulares que tienen una 

carga negativa y también establecer interacciones con los diferentes fármacos. A raíz de esto, el 

grupo de Cristales Líquidos y Polímeros (CLIP) de la Universidad de Zaragoza, como resultado 

de la tesis de Alexandre Lancelot, desarrolló un nuevo tipo de dendrón basado en el ácido 2,2’-
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bis(gliciloximetil)propiónico (bis-GMPA). Esta nueva arquitectura dispone de motivos glicina 

tanto en el interior como en la periferia del dendrón, aumentando su carácter hidrófilo y 

permitiendo la formación de puentes de hidrógeno de un modo más favorable con pequeñas 

moléculas, como fármacos (18). 

 

La línea de investigación de este grupo continúa en el campo de los dendrímeros, estudiando el 

potencial de los tipo Jano como nanotransportadores de fármacos para el tratamiento de diferentes 

patologías. Para ello, se están realizando múltiples valoraciones de diferentes combinaciones de 

partes hidrofílicas e hidrofóbicas y su interacción con diferentes tipos de fármacos para ser usados 

como agentes terapéuticos. En concreto, en este trabajo, y continuando con la línea de 

investigación del grupo, se ha seleccionado sintetizar un dendrímero tipo Jano con una parte 

hidrófoba formada por un dendrón de 1ª generación de bis-MPA funcionalizado con ácido 

esteárico y una región hidrófila constituida por un dendrón de bis-GMPA de 3ª generación, con 

el objetivo de ser utilizado como agente transportador de fármacos contra la tuberculosis. 

2. Objetivos 
 

Se plantean tres objetivos principales en este trabajo: 

- Sintetizar y caracterizar un dendrímero tipo Jano formado por un dendrón de bis-GMPA 

de 3ª generación en su región hidrofílica y un dendrón de bis-MPA de 1ª generación, 

funcionalizado con dos cadenas de ácido esteárico, en su parte hidrofóbica.  

 

- Analizar la capacidad del dendrímero como nanotransportador de fármacos 

antituberculosos: isoniazida, etambutol, estreptomicina, bedaquilina y rifampicina. 

 

- Estudiar las características de los nanoagregados formados por el dendrímero junto con 

cada uno de los antimicrobianos estudiados: morfología, tamaño, citotoxicidad y 

cuantificación de fármaco encapsulado. 

  

Amidas internas 
Dendrón de bis-MPA de 3ª 

generación 

Dendrón de bis-GMPA de 
3ª generación 

Figura 2 - Dendrones de bis-MPA (izquierda) y bis-GMPA (derecha). 
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3. Plan de trabajo 
 

Para lograr alcanzar los objetivos anteriormente propuestos se ha seguido el siguiente esquema 

de trabajo: 

1. Síntesis y caracterización del dendrón de bis-GMPA de 3ª generación. 

2. Formación del dendrímero tipo Jano y caracterización. 

3. Encapsulación de los cinco fármacos seleccionados, por separado, y determinación, in 

vitro, de la capacidad antimicrobiana de los nanoagregados frente a micobacterias. 

4. Estudio de las características de los nanoagregados formados. 

a. Morfología 

b. Tamaño 

c. Cuantificación de fármaco encapsulado 

d. Citotoxicidad 

4. Materiales y métodos 
 

4.1. Síntesis química 

 

Todos los procedimientos que se han llevado a cabo para la síntesis de cada uno de los compuestos 

que se recogen en esta sección están basados en la tesis de Alexandre Lancelot (18) aunque se 

han realizado diferentes adaptaciones para mejorar el rendimiento y la eficacia del proceso. Los 

protocolos se encuentran explicados de forma detallada en el Anexo 1 de este documento, donde 

se especifican todos los reactivos utilizados, condiciones de reacción, cantidades, procedimientos, 

etc., y cualquier otro aspecto que sea necesario de mención para la comprensión y el desarrollo 

del proceso de síntesis. 

Asimismo, acompañando a la descripción de cada una de las reacciones, se encuentran los 

resultados de caracterización, por todas las técnicas empleadas, para cada uno de los compuestos. 

Los disolventes y reactivos de los que se hizo uso para el proceso de síntesis química fueron 

adquiridos a la casa comercial Sigma-Aldrich, a excepción del TBTA, DPTS, monómero de bis-

MPA y el dendrón hidrófobo de [bis-MPA,G1](C17)2 que se sintetizaron previamente en el 

laboratorio. 

4.1.1. Metodología 

 

Únicamente las reacciones simbolizadas por flechas naranjas, son las que se han realizado en el 

transcurso de este trabajo. Para que en apartados posteriores su designación sea más sencilla, a 

cada una de las reacciones llevadas a cabo se les ha asignado un número, que en los esquemas de 

síntesis siguientes (figuras 3, 4 y 5) aparecen rodeados por un círculo naranja. 
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- Síntesis del ácido 2,2’-bis(gliciloximetil)propiónico (bis-GMPA)  protegido por el grupo 

N-(tert-butoxicarbonilo) (t-Boc)  (monómero de bis-GMPA). 

 

La síntesis del monómero de bis-GMPA a partir de bis-MPA consta de 3 pasos. En primer lugar, 

se realizó la protección del  -OH del grupo carboxilo del bis-MPA mediante  la adición de un 

grupo bencilo. Esta reacción tiene lugar por un ataque nucleófilo del grupo ácido del bis-MPA 

sobre el metileno unido al Br en el bromuro de bencilo, dando lugar a una reacción de sustitución 

formando el éster correspondiente.  

Seguidamente, se protegieron los grupos -OH terminales mediante la adición de N-(tert-

butoxicarbonil)glicina (t-Boc glicina) que además de impedir la reactividad de la molécula por 

esta zona, incorporará las amidas internas y los grupos funcionales amino de la periferia a los que 

se ha hecho alusión anteriormente. Esta reacción es llevada a cabo mediante una esterificación de 

Steglich catalizada por 4-toluensulfonato de 4-(dimetilamino)piridinio (DPTS) y usando N,N’-

diciclohexilcarbodiimida (DCC) como agente acoplante.  

Finalmente, se desprotegió el grupo ácido mediante una reacción de hidrogenación catalizada por 

Pd/C, eliminándose el grupo bencilo. 

  

 

Figura 3 - Esquema de síntesis del monómero de bis-GMPA. 

BnOOC-[bisMPA,G1]-(OH)
2
 Bromuro de bencilo [bisMPA,G1]-(OH)

2
 

BnOOC-[bisMPA,G1]-(NHBoc)
2
 Monómero de bis-GMPA 

+ 

H
2
 

Pd/C 

GlyBoc(OH),  

DPTS, DCC 

  

KOH 

100oC 

1 

2 

3 



8 
 

- Síntesis del dendrón de bis-GMPA de 3ª generación N3-[bisGMPA,G3]-(NHBoc)8 

 

 

En primer lugar, el 6-clorohexan-1-ol reaccionó con azida de sodio disuelta en dimetilformamida 

(DMF) a 100oC con el objetivo de generar una reacción de sustitución nucleófila para reemplazar 

el átomo de cloro por el grupo azida, generándose así el punto focal del dendrón que 

posteriormente podrá ser utilizado para la realización de la cicloadición azida-alquino. 

Posteriormente, al compuesto resultante  (6-azidahexan-1-ol) se le adicionó un monómero de bis-

MPA, que previamente fue protegido formando un grupo acetal, mediante esterificación de 

Steglich. Se usó DPTS como catalizador, DCC como agente acoplante y diclorometano (DCM) 

Monómero de bis-GMPA 
HOBt,nH2O 
DMAP 
DCC 

Monómero de bis-GMPA 
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6-azidahexan-1-ol N3-[bisMPA,G1]-(acetal)1 
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N
3
-[bisGMPA,G1]-(NH

3

+ 
Cl

-
)

2
 

N
3
-[bisGMPA,G2]-(NH

3

+ 
TFA

-
)

4
 N3-[bisGMPA,G2]-(NHBoc)4 

N3-[bisGMPA,G3]-(NHBoc)8 

Figura 4 - Esquema de síntesis del dendrón de 3ª generación de bis-GMPA 
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como disolvente. A continuación, se procedió a la desprotección de los grupos OH terminales 

mediante una resina de intercambio iónico Dowex©H+ que permite la hidrólisis del grupo acetal. 

Seguidamente, puesto que se ha utilizado una estrategia divergente, para la síntesis de las 

diferentes generaciones del dendrón de bis-GMPA, se han alternado esterificaciones de Steglich 

con desprotecciones de los grupos terminales -NH3
+. Las esterificaciones se llevaron a cabo 

mediante un acoplamiento amida con el monómero de bis-GMPA en el que intervienen: DCC y 

1-hidroxibenzotriazol hidrato (HoBt) como agentes acoplantes y DMAP como activador del 

monómero de bis-GMPA. La escisión de los grupos t-Boc se hizo mediante condiciones ácidas. 

En primer lugar, se empleó una disolución de HCl/AcOEt (3M). Sin embargo, en las 

desprotecciones posteriores se utilizó el método descrito por Stenström  et al.(19) basado en el 

uso de una disolución de ácido trifluoroacético/cloroformo (1:1 en volumen).  

- Síntesis del dendrímero tipo Jano (C17)2[bisMPA,G1]-[bisGMPA,G3](NH3
+ TFA-)8 

CuSO
4
,5H

2
O   

(L)-ascorbato  
TBTA 

+ 

(C17)
2 

[bisMPA,G1]-[bisGMPA,G3](NHBoc)
8
 

 

HTFA/Cloroformo 
 (1:1 en volumen) 

(C17)
2 

[bisMPA,G1]-[bisGMPA,G3](NH
3

+ 
TFA

-
)

8
 

Ξ-[bisMPA,G1] (C17)
2
 

N3- [bisGMPA,G3]-(NHBoc)
8
 

Figura 5 - Esquema del proceso de síntesis del dendrímero tipo Jano 

7 

6 
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El dendrón N3-[bisGMPA,G3]-(NHBoc)8 anteriormente sintetizado, fue ensamblado a través de 

su punto focal, formado por una azida, a un dendrón de bis-MPA de 1ª generación funcionalizado 

con dos cadenas de ácido esteárico. Este segundo dendrón, dispone en su punto focal de un grupo 

alquino, por ello, para la unión de ambos se realizó una cicloadición azida-alquino catalizada por 

Cu(I) conocida como química click, cuyo resultado es la formación de un grupo triazol que une 

ambos dendrones. 

Se preparó el catalizador in situ, antes del inicio de la reacción. Para ello se empleó CuSO4,5H2O 

disuelto en DMF que fue reducido por (L)-ascorbato para formar Cu(I) y acomplejado por tris[(1-

bencil-1H-1,2,3-triazol-4-il)metil]amina (TBTA) para mantenerlo de forma estable. Una vez el 

catalizador estuvo preparado se añadió a una mezcla de ambos dendrones disueltos en DMF para 

llevar a cabo la cicloadición azida-alquino. Fue indispensable que toda la reacción se realizara en 

atmósfera desoxigenada para impedir la oxidación del catalizador. 

Tras el transcurso de la cicloadición, se procedió a la purificación del dendrímero mediante la 

realización de lavados con brine (disolución de agua saturada de NaCl), lavados con solución de 

KCN y el uso de cromatografía en columna de sílica gel. 

Por último, se realizó la desprotección de los grupos amino-terminales mediante la escisión del 

grupo t-Boc en medio ácido (TFA/cloroformo (1:1 en volumen)) y purificación por precipitación 

en dietiléter frío. 

4.1.2. Caracterización de los compuestos 

 

En la caracterización de cada uno de los compuestos químicos sintetizados se utilizó resonancia 

magnética nuclear (RMN) de 1H y 13C,  realizada con un espectrómetro Bruker AV-400 (1H: 400 

MHz, 13C: 100 MHz). Se hizo uso de cloroformo o metanol deuterados como disolventes para la 

preparación de las muestras, según la solubilidad de cada producto. En los espectros resultantes, 

los desplazamientos químicos vienen expresados en ppm con respecto al tetrametilsilano y el pico 

del disolvente utilizado se usó como estándar interno.  Asimismo, para aquellos compuestos de 

mayor complejidad se ha hecho uso de espectroscopia de correlación (COSY) para verificar la 

presencia de todos los tipos de protones. 

Para el análisis del peso molecular, la espectrometría de masas ha sido la técnica de referencia. 

Se usó un sistema Bruker Microflex utilizando técnica de ESI+ o MALDI-TOF con láser de 

nitrógeno (337nm) y ditranol como matriz, dependiendo del peso molecular del compuesto a 

analizar. En el caso del dendrímero Jano (C17)2[bisMPA,G1]-[bisGMPA,G3](NHBoc)8 se hizo 

uso de cromatografía de exclusión por tamaño (SEC)  utilizando un sistema Waters e2695 

Alliance con dos columnas Styragel HR4 y HR1 (500 y 104 Å de tamaño de poro) y un detector 

evaporativo de dispersión de luz. La concentración de muestra fue de 1mg/mL  en THF (de grado 

apto para HPLC) con un flujo de 1 mL/min. Como estándar de calibrado se utilizó 

polimetilmetacrilato (PMMA). 

 

También se caracterizaron todos los compuestos por espectroscopía  infrarroja (FTIR), con un 

equipo Bruker Vertex 70. Se obtuvieron espectros de transmitancia (ATR) abarcando los números 

de onda desde 4000 cm-1 a 600 cm-1 con una resolución de 4 cm-1.  
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4.2. Encapsulación de fármacos 

Se han seleccionado cinco fármacos antituberculosos diferentes para realizar el proceso de 

encapsulación. La isoniazida, la rifampicina, el etambutol y la estreptomicina son fármacos 

considerados de primera línea para el tratamiento de la tuberculosis, debido a que tienen una alta 

eficacia y baja toxicidad. Respecto a sus mecanismos de acción, son dispares, y cada uno de ellos 

interviene sobre diferentes elementos bacterianos: 

- La isoniazida es un pro-fármaco que debe de ser activado por la hemoproteína catalasa-

oxidasa KatG. Inhibe a la enzima InhA una reductasa implicada en la síntesis de ácidos grasos 

(ácido micólico), fundamentales para la formación de la pared bacteriana. Tiene una acción 

bactericida contra las bacterias de rápido crecimiento y bacteriostática contra las que se 

dividen despacio. 

- La rifampicina se une a la subunidad-β de la RNA polimerasa dependiente de DNA, 

impidiendo la síntesis de RNA (transcripción). Puede ser bactericida o bacteriostática, 

dependiendo de las concentraciones utilizadas. 

- El etambutol, inhibe a las enzimas arabinosil transferasas implicadas en la formación de la 

pared celular, por lo que es un bacteriostático.  

- La estreptomicina es un aminoglicósido inyectable que impide la síntesis proteica por su 

interacción de la subunidad 30S ribosomal, por lo que es un bacteriostático. Se dispone en 

forma de estreptomicina-sulfato. 

El quinto fármaco con el que se va a trabajar es la bedaquilina (en forma de bedaquilina-fumarato). 

Se trata de un agente antituberculosis recientemente aprobado ante la necesidad de nuevas 

opciones de tratamiento contra las formas de tuberculosis multirresistentes (MDR-TB), y el 

problema de su uso es que presenta una elevada cardiotoxicidad. Se trata de una diarilquinolina 

que inhibe específicamente la ATP sintasa (20) y forma parte de los fármacos utilizados para el 

tratamiento de la tuberculosis MDR o XDR únicamente. 

Para el proceso de encapsulación se tuvieron en cuenta sus solubilidades en agua o disolventes 

orgánicos con el objetivo de seleccionar el procedimiento más adecuado.  

Isoniazida Etambutol Estreptomicina 

 
 

 

Rifampicina Bedaquilina 

 

 

Figura 6 - Estructuras moleculares de los antimicrobianos usados para la encapsulación (20). 

Se usó el método oil-in-water descrito en la tesis de Alexandre Lancelot (18) para la 

encapsulación de todos los fármacos, salvo la bedaquilina. Este método consiste en la generación 

de dos fases: una orgánica (DCM) y una acuosa (agua destilada). Se disuelven el dendrímero y el 

fármaco por separado, uno en cada una de las fases, siendo la solubilidad del fármaco el principal 

 

Solubles en agua / 

hidrófilos 

 

 

NO solubles agua / 

hidrófobos 
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condicionante. Se genera una emulsión de ambas, y debido a que el DCM se evapora lentamente, 

las moléculas disueltas en la fase orgánica pasan a la fase acuosa de forma obligada. Dependiendo 

de la solubilidad de los fármacos, el proceso de encapsulación difiere en algunos pasos, los cuales 

se exponen a continuación. 

Para los fármacos hidrosolubles (etambutol, isoniazida y estreptomicina) se disolvió el 

dendrímero a concentración 1 mg/mL en DCM y los fármacos en agua destilada a una 

concentración de 1 mg/mL también. Sobre la disolución de dendrímero se adicionó un volumen 

adecuado de la solución de fármaco para que la concentración final del dendrímero en agua fuera 

1 mg/mL, quedando por lo tanto la relación en masa fármaco:dendrímero 1:1. Esta mezcla se 

mantuvo en agitación durante aproximadamente 6 horas, hasta la completa evaporación del DCM. 

Posteriormente, el fármaco no encapsulado se eliminó mediante diálisis frente a 200 mL de agua 

destilada durante 18 horas, a 4oC, usando una membrana de 1kDa. 

La rifampicina, al ser un fármaco liposoluble, se disolvió en DCM [1mg/mL] y el dendrímero en 

agua destilada [1 mg/mL]. Se mezclaron volúmenes a partes iguales y se dejó evaporar el DCM 

como anteriormente. En este caso, para eliminar el fármaco no encapsulado se agregó al medio 

una disolución de NaOH (1M) para basificar el medio hasta un pH de 10 (comprobado con tira 

colorimétrica). Esto provoca que el fármaco no encapsulado precipite y pueda ser retirado 

mediante filtración usando un filtro de 0.2 µm. 

En el caso de la bedaquilina, al encontrarse disuelta en DMSO, el método a utilizar fue la técnica 

de difusión de solvente. En primer lugar, se formaron los agregados de dendrímero, disolviendo 

éste en DCM y añadiendo agua para que la concentración final del dendrímero en agua fuera de 

1 mg/mL. Como anteriormente, se dejó evaporar el DCM y tras esto se adicionó la disolución de 

bedaquilina [10 mg/mL]. Únicamente se dispuso de 314 μl de los 458 μl que eran necesarios para 

alcanzar la relación fármaco:dendrímero 1:1, por lo que la relación final obtenida fue 0.69:1. Se 

dejó la mezcla en agitación durante 12 horas a 4oC para que el fármaco pudiera llegar al núcleo 

hidrofóbico del agregado. Después el DMSO se eliminó mediante diálisis con membrana de 1 

kDa durante 18 horas a 4 oC. 

4.3. Evaluación de la actividad antimicrobiana in vitro de los nanoagregados 

Los estudios llevados a cabo para determinar la actividad antimicrobiana de los nanoagregados, 

se han realizado con una cepa de Mycobacterium bovis atenuada, el bacilo de Calmette y Guérin 

o más comúnmente conocido por sus siglas como BCG. La elección de esta micobacteria para los 

estudios ha sido debida a su elevado grado de similitud con Mycobacterium tuberculosis (99,9% 

a nivel genómico). Sin embargo, BCG posee la ventaja con respecto a M.tuberculosis de que es 

una bacteria inocua (de hecho, BCG es la actual vacuna contra la tuberculosis en humanos), por 

lo que no es necesario manipularla en un laboratorio con nivel de bioseguridad P3. 

Para este ensayo, se utilizaron placas de 96 pocillos en las que se sembró BCG a una densidad 

final de 105 UFC/mL en medio de cultivo Middlebrook 7H9 Broth con glicerol al 0.2% (v/v) y 

suplementado al 10% con ADC (albúmina, dextrosa, catalasa). Para ajustar la densidad celular se 

hizo una medición de la densidad óptica del cultivo a 600 nm y se tomó como referencia el valor 

de 0.125 unidades de densidad óptica = 107 UFC/mL. 

Se enfrentó a las bacterias a seis muestras diferentes: las encapsulaciones de los cinco fármacos 

preparadas con anterioridad y una disolución de nanopartículas vacías. De cada una de ellas se 

hizo un gradiente de concentraciones, de tal modo que las concentraciones finales en los pocillos, 

con respecto al dendrímero, fueron las siguientes: 125, 63.5, 31.25, 15.62, 7.81, 3.91, 1.95, 0.98, 
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0.49, 0.24, 0.12, 0.06, 0.03, 0.015, 0.008, 0.004, todas ellas expresadas en µg/mL. Las placas se 

mantuvieron en cultivo durante 6 días en estufa a 37oC. 

A cada uno de los pocillos se adicionaron 30 µl del colorante vital resazurina, un compuesto azul 

que, en presencia de actividad celular, es reducido adquiriendo una coloración rosa, fácilmente 

identificable de forma visual y que permitió identificar la presencia o no de microorganismos en 

los pocillos. Las placas se dejaron cultivar a 37oC y se observaron los resultados a las 24 y 48 

horas. 

Paralelamente al procedimiento descrito, para determinar la concentración mínima inhibitoria 

(MIC) de cada uno de los antimicrobianos ,se realizó un ensayo con los fármacos de forma libre 

(sin encapsular) con el objetivo de poder hacer así un estudio comparativo frente a las 

nanopartículas. Las concentraciones que se utilizaron de antibiótico fueron: 63.5, 31.25, 15.62, 

7.81, 3.91, 1.95, 0.98, 0.49, 0.24, 0.12, 0.06, 0.03, 0.015, 0.008, 0.004, 0.002 expresadas en 

µg/mL. Como control positivo de crecimiento microbiano, algunos pocillos se sembraron con 

BCG y no se les adicionó ningún compuesto (antimicrobiano o nanopartículas), y como control 

negativo, algunos pocillos no se inocularon con BCG. 

Todos los reactivos utilizados para este ensayo fueron adquiridos de la casa Sigma-Aldrich a 

excepción de la bedaquilina-fumarato que fue obtenida de AURUM Pharmatech LLC. 

4.4. Caracterización de los nanoagregados 

• Dispersión dinámica de luz (DLS) 

El DLS es una técnica espectroscópica que permite la determinar los radios hidrodinámicos de 

las partículas que se encuentran en una disolución. Se basa en la medición de la luz dispersada 

por la muestra en solución cuando sobre ella incide un láser de longitud de onda conocida. El 

tamaño de la partícula es determinado por la medición de los cambios aleatorios que se producen 

en la luz dispersada como consecuencia del movimiento Browniano de las partículas en la 

disolución. Posteriormente el sistema transforma estos datos en la distribución del tamaño de 

partícula. Para ello se utilizó un sistema Malvern Zetasizer Nano ZS que posee un láser de He-Ne 

con una longitud de onda de 633 nm y un ángulo de detección de 173°. Los parámetros 

introducidos en el sistema fueron: 3 mediciones de 12 scans cada una, a temperatura de 25 oC. Se 

analizaron las nanopartículas cargadas con los cinco tipos de fármacos y las vacías a una 

concentración de 25 µg de dendrímero/mL. 

• TEM 

Para el estudio de la morfología y el diámetro de los nanoagregados formados, se hizo uso de 

microscopía electrónica de transmisión (TEM). Las muestras se prepararon usando rejillas de 

cobre Holey carbón film 300 mesh sobre las que se vertió una gota de disolución de nanoagregado 

a una concentración de 1 mg de dendrímero/mL. Tras retirar el exceso de líquido, la muestra se 

tiñó con una solución acuosa de ácido fosfotúngstico al 3% que genera una tinción negativa. De 

nuevo se eliminó el exceso de líquido con un papel absorbente y se dejaron secar durante 24 horas.  

• Cuantificación de fármaco encapsulado 

La cuantificación de los fármacos utilizados es compleja, por lo que se han seleccionado dos 

métodos diferentes: 

- Cuantificación por espectrofotometría UV-vis 

Por este método, únicamente se trató de cuantificar la isoniazida, la rifampicina y la bedaquilina, 

puesto que el etambutol y la estreptomicina no manifiestan absorbancia en esta zona. Se generaron 



14 
 

disoluciones de los distintos fármacos a diferentes concentraciones para hacer una recta de 

calibrado y poder determinar el coeficiente de extinción molar (ɛ) para cada uno de los 

compuestos a la longitud de onda en la que presentan un pico de máxima absorción. El equipo 

utilizado para este método fue un espectrofotómetro Cary 100 Bio. 

- Actividad antimicrobiana residual de las aguas de diálisis: 

Este método lo que pretende es realizar una cuantificación indirecta del fármaco encapsulado 

mediante la determinación de la cantidad de fármaco libre que hay en las aguas de diálisis que se 

han generado tras el proceso de encapsulación, mediante la evaluación de su actividad 

antimicrobiana. Para ello las aguas de los fármacos hidrófilos encapsulados según el método oil-

in-water (isoniazida, etambutol y estreptomicina) se han agregado a cultivos de BCG siguiendo 

el mismo protocolo que el determinado para los nanoagregados, detallado en el apartado 4.3. 

• Citotoxicidad 

Es fundamental verificar que los nanoagregados sintetizados no sean citototóxicos para las células 

humanas si en un futuro quisieran usarse como posibles agentes terapéuticos, por lo que son 

indispensables los estudios de biocompatibilidad.  

Se ha realizado un ensayo con MTT (bromuro de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazol), 

que se basa en la reducción de este compuesto a su sal insoluble formazán ((E,Z)-5-(4,5-

dimetiltiazol-2-il)-1,3-difenilformazano) llevada a cabo por las reductasas celulares utilizando 

NAD(P)H. Es un método colorimétrico que permite determinar la actividad metabólica que tiene 

el cultivo y asociar esto a la toxicidad de los compuestos adicionados.  

En este ensayo, se utilizó la línea celular Hep G2, que son células inmortales que derivan de un 

carcinoma hepático humano. Tienen morfología epitelial y crecen de forma adherente en las 

placas de cultivo generando pequeños agregados. 

Para la realización de este ensayo, se utilizaron placas de 96 pocillos en las que se sembraron 100 

µl de suspensión celular Hep G2 a una densidad celular de 2.5x104 cel/mL en medio DMEM con 

1g/mL de glucosa y suplementado con piruvato y glutamina . Las placas se mantuvieron en cultivo 

durante 32 horas en estufa a 37 oC, atmósfera al 5% de CO2 y 100% de humedad relativa.  

Posteriormente se retiró el medio y se añadieron 100 µl de los diferentes compuestos a ensayar 

(nanoagregados y fármacos libres) diluidos en medio de cultivo según las siguientes 

concentraciones: 

- Fármacos libres (µg/mL): 62.5, 31.25, 15.62, 7.81, 3.9, 1.95, 0.97, 0.05. 

- Nanoagregados con fármacos (µg de dendrímero/mL): 125, 62.5, 31.25, 15.62, 7.81, 3.9, 

1.95, 0.97. 

- Nanoagregados sin fármacos (µg de dendrímero/mL): 500, 250, 125, 62.5, 31.25, 15.62, 7.81, 

3.9, 1.95, 0.97. 

Además, se incorporaron pocillos como controles negativos y positivos: 

- Negativo:    (-) Hep G2 con DMSO disuelta al 50% en medio DMEM   

(--) DMEM sin células 
(---) Hep G2 con DMEM disuelto al 50% en agua miliQ   (solo en una placa) 

- Positivo: células Hep G2 con 100% medio DMEM 

Todos los compuestos, para cada una de las concentraciones, se ensayaron por triplicado, por lo 

que, a modo de ejemplo, la distribución de una de las placas fue la siguiente: 
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 1 2 3 4 5 6 7 8 9 10 11 12 

A + 125 125 125 125 125 125 125 125 125 -- + 

B + 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 -- + 

C + 31.25 31.25 31.25 31.25 31.25 31.25 31.25 31.25 31.25 -- + 

D + 15.62 15.62 15.62 15.62 15.62 15.62 15.62 15.62 15.62 -- + 

E + 7.81 7.81 7.81 7.81 7.81 7.81 7.81 7.81 7.81 - + 

F + 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 - + 

G + 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 - + 

H + 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 - + 

 

Los compuestos restantes se distribuyeron de forma similar a la figura 7, pero atendiendo a las 

concentraciones utilizadas en cada caso. 

Tras 24 horas de incubación, se retiró nuevamente el medio de cultivo y se añadieron 50 µl de 

MTT a una concentración final de 1 mg/mL utilizando agua miliQ y medio de cultivo sin rojo 

fenol para su preparación. Tras la adición del MTT, se dejaron incubar las placas durante 2 horas.  

Por último, se decantó el contenido de los pocillos y se agregaron 100 µl de isopropanol para 

solubilizar las sales de formazán y se procedió a la lectura de la absorbancia a 570 nm en un lector 

de placas. 

Los reactivos utilizados en este ensayo se adquirieron en diferentes casas comerciales. Los medios 

de cultivo son procedentes de la casa Gibco y el MTT junto con el isopropanol de Sigma-Aldrich. 

5. Resultados y discusión 

5.1. Síntesis química 

Para la formación del dendrímero tipo Jano (C17)2[bisMPA,G1]-[bisGMPA,G3](NH3
+ TFA-)8 se 

ha realizado una proceso que se compone de tres pasos fundamentales: síntesis del monómero de 

bis-GMPA, síntesis del dendrón de 3ª generación formado por la adición de monómeros de bis-

GMPA y por último, constitución del dendrímero tipo Jano.   

La caracterización de cada uno de los compuestos obtenidos en el proceso de síntesis se hizo 

mediante H1 RMN, C13 RMN, FTIR, MS (ESI+/MALDI-TOF) y SEC. A continuación, se recogen 

los aspectos más relevantes de todo el procedimiento. Los resultados completos de la 

caracterización de todos los compuestos se encuentran en el Anexo 1 de este trabajo. 

- Síntesis del monómero de bis-GMPA 

La síntesis del monómero de bis-GMPA se realizó en tres pasos, partiendo de bis-MPA, que se 

adquirió de forma comercial. En este proceso, se adicionaron mediante esterificación de Steglich 

las glicinas internas protegidas por los grupos t-Boc. Los rendimientos obtenidos en cada una de 

las reacciones y el rendimiento global fueron los siguientes: 

Reacción 1 2 3  Rendimiento global 

Rendimiento 51.8% 84.1% 98.7%  44.1% 

Isoniazida   Etambutol   Estreptomicina 

Figura 7 - Representación esquemática de una placa de 96 pocillos del ensayo de toxicidad. 

Tabla 1- Rendimientos obtenidos en la síntesis del monómero de bis-GMPA 
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Existen una serie de señales características que permitieron identificar fácilmente que el proceso 

de síntesis del monómero había transcurrido de forma correcta. Como consecuencia de la reacción 

1 en los espectros se mostraron los H1 aromáticos del grupo bencilo añadido a un desplazamiento 

químico (δ) de 7.36. Tras el transcurso de la reacción 2, aparecieron las señales pertenecientes a 

los H1 de los metilos del grupo t-Boc fácilmente identificables al ser una señal muy intensa. Por 

último, tras la reacción 3, las señales de los protones aromáticos del bencilo no aparecieron. 

- Síntesis del dendrón de bis-GMPA de 3ª generación N3-[bisGMPA,G3]-(NHBoc)8 

En la síntesis del dendrón de 3ª generación de bis-GMPA se han desarrollado dos reacciones: la 

desprotección del compuesto N3-[bisGMPA,G1]-(NHBoc)2  (reacción 4) y el crecimiento del 

dendrón de 2ª a 3ª generación mediante la adición de cuatro monómeros de bis-GMPA (reacción 

5).  

En lo referente a la reacción 4, se ha desarrollado en medio ácido, mediante una disolución de 

HCl/AcOEt 3M. En un principio la reacción no transcurrió de un modo adecuado dado que su 

avance era demasiado lento. Se creyó que esto era debido a que el compuesto no se encontraba 

correctamente disuelto, lo que se solventó calentando la mezcla a 50oC, mejorando así la 

solubilidad del dendrón en AcOEt. Como consecuencia de la escisión del grupo t-Boc se provoca 

la generación de la correspondiente sal de cloruro de amonio que precipita en el matraz. Se 

comprobó en los espectros H1 RMN y C13 RMN la correcta desaparición de las señales 

pertenecientes al grupo t-Boc. El rendimiento obtenido en esta reacción fue del 94.2%. Dado que 

la eficacia de este método de desprotección no fue la deseada, ya que la reacción debió de ponerse 

en múltiples ocasiones, se acordó utilizar para desprotecciones posteriores el método basado en 

el ácido trifluoroacético. 

En cuanto a la reacción 5, la correcta inserción de los monómeros de bis-GMPA tras la 

esterificación de Steglich puede visualizarse en el H1 RMN por la identificación de los picos a 

1.44 ppm correspondientes a los protones de los metilos del grupo t-Boc, así como la verificación 

Protones 
aromáticos 

Grupo t-Boc 

OH 

Figura 8 - Comparación de espectros de H1 RMN de las reacciones 1, 2 y 3. 
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de la presencia del resto de señales para detectar cualquier posible proceso de degradación. Sin 

embargo, a pesar de que los picos característicos del compuesto en el H1 RMN estaban todos 

presentes, sus integraciones, en muchos de los casos, aparecían incrementadas casi al doble, 

tomando como referencia el triplete a 3.27 ppm. Esto hizo sospechar que quizá se debiera a la 

existencia de dos o más especies debido a que la reacción de esterificación no hubiera conseguido 

la adición completa con los cuatro monómeros de bis-GMPA en todas las moléculas.  Por esto se 

creyó que debían de existir moléculas que poseían un menor número de grupos terminales -NH3
+ 

a causa de esta funcionalización incompleta. Además, mediante MS (MALDI-TOF) los resultados 

tampoco eran concluyentes ya que, además de la masa esperada, aparecían otra serie de picos de 

menor peso, probablemente como consecuencia de la fragmentación del dendrón. Por todo esto, 

se decidió poner a reaccionar de nuevo el dendrón en presencia de un exceso de monómero de 

bis-GMPA para intentar que la reacción transcurriera por completo y se sustituyeran los grupos 

terminales restantes. Sin embargo, no se obtuvieron mejores resultados en las pruebas de 

caracterización realizadas con posterioridad. El rendimiento obtenido tras la reacción 5 fue muy 

bajo, del 22.5%, probablemente debido a los múltiples procedimientos que se realizaron para 

tratar de lograr la obtención y purificación del dendrón. 

La espectroscopía de correlación (COSY) fue fundamental para este compuesto ya que permitió 

verificar la presencia de todos los tipos de protones dado que en algunas zonas del H1 RMN las 

señales no quedaban demasiado claras debido a la existencia de mucho ruido. Finalmente, a pesar 

de que la integración de las señales del H1 RMN no eran adecuadas, se decidió proseguir con el 

proceso de síntesis, ya que, aunque no todas las moléculas estuvieran correctamente formadas, 

esto no debería de afectar en gran medida al uso posterior del dendrímero. 

- Síntesis del dendrímero tipo Jano (C17)2[bisMPA,G1]-[bisGMPA,G3](NH3
+ TFA-)8 

Para el acoplamiento del dendrón hidrófilo de bis-GMPA al hidrófobo de bis-MPA 

funcionalizado con ácido esteárico, se llevó a cabo una cicloadición azida-alquino catalizada por 

Cu (I). Para ello, el Cu (I) fue preparado in situ a partir de la reducción de Cu (II) mediante la 

adición (L)-ascorbato y TBTA. El dendrón hidrofóbico se puso en exceso con el objetivo de 

obtener el máximo rendimiento posible y facilitar la posterior purificación en columna de sílica 

gel gracias a la diferencia de polaridades.  El rendimiento obtenido en esta reacción fue del 78.0%. 

El dendrímero recién formado se desprotegió para dejar sus grupos amino-terminales libres 

mediante el uso de TFA disuelto en cloroformo (1:1 en volumen) y se purificó posteriormente por 

precipitación en dietiléter frío, obteniéndose un rendimiento de 60.9%. Es un rendimiento bajo 

para una reacción de desprotección, lo que probablemente fue debido a que debieron de realizarse 

varias precipitaciones en dietiléter frío hasta conseguir el producto lo más puro posible. La masa 

final obtenida del dendrímero Jano (C17)2[bisMPA,G1]-[bisGMPA,G3](NH3
+ TFA-)8 fue de 

316.9 mg. 

Dado que en dendrímero (C17)2[bisMPA,G1]-[bisGMPA,G3](NHBoc)8 posee una masa 

molecular demasiado alta como para realizar MS, el compuesto se caracterizó por cromatografía 

de exclusión por tamaño (SEC). Este análisis sirvió para constatar las suposiciones anteriormente 

realizadas, verificando la existencia de dos especies diferentes. La especie mayoritaria se trata del 

dendrímero completamente formado, pero aparece una segunda minoritaria a un mayor tiempo de 

retención, por lo que tiene una menor masa molecular. Probablemente esto sea debido a que se 

encuentre incompleta porque no se haya adicionado uno de los monómeros de bis-GMPA en la 

reacción 5. Esto puede verse en la figura A1.22 donde el pico estrecho, característico de una 

molécula monodispersa, como es un dendrímero de estas características, posee un pequeño 

hombro, señal de que existe una segunda especie.  A pesar de que haya dos tipos de moléculas 
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diferentes, esto no debería de afectar a su capacidad de formar agregados supramoleculares en 

disolución acuosa. 

Como señales destacadas en el análisis del H1 RMN, tras la cicloadición se observó fácilmente la 

desaparición del triplete a un δ de 3.27 ppm del dendrón de bis-GMPA, que son los dos protones 

del carbono más próximo a la azida (por lo que ha reaccionado en su totalidad) y la presencia de 

un singlete a 7.61 ppm  que forma parte del triazol. Además, se verificó la existencia de todas las 

señales de ambos dendrones para identificar cualquier tipo de degradación. Al igual que 

anteriormente y como era de esperar, en el análisis por integración de los picos del H1 RMN se 

observa como las señales correspondientes a los protones del dendrón de bis-GMPA siguen dando 

valores por encima de los correctos. 

El espectro FTIR el dendrón de bis-GMPA presenta una señal muy característica a 2096 cm-1 

correspondiente a la azida, que tras la realización de la cicloadición fue eliminada. Después de la 

desprotección de los grupos -NH3
+ terminales puede observarse como desapareció la señal del 

C=O carbamato a 1699 cm-1 y se hizo más ancha la banda del enlace N-H+ a 3600-2570 cm-1. 

 

Figura 9 - Espectros FTIR del dendrón de 3ª generación de bis-GMPA (verde), el dendrímero Jano 

(C17)2[bisMPA,G1]-[bisGMPA,G3](NHBoc)8  (naranja) y el dendrímero Jano  (C17)2[bisMPA,G1]- 

[bisGMPA,G3](NH3
+ TFA-)8 (azul). 

5.2. Formación y caracterización de los nanoagregados dendríticos 

transportadores de fármacos 

5.2.1. Actividad antimicrobiana 

Para determinar la actividad antimicrobiana de los nanoagregados y las MIC de los fármacos 

libres, se realizó un ensayo con BCG, en el que se enfrentó a la bacteria a diferentes 

concentraciones de estos compuestos. Posteriormente, tras incubar el cultivo durante 6 días, se 

añadió resazurina, un colorante que permite identificar la existencia de actividad metabólica en el 

cultivo, y por lo tanto evaluar el efecto antimicrobiano. El ensayo se repitió dos veces, con un 

intervalo de tiempo de 8 días con el objetivo de evaluar la reproducibilidad del mismo. 

Las MIC determinadas para los fármacos libres en μg/mL fueron las siguientes: 

5001000150020002500300035004000

Número de onda (cm-1)

Dendrímero desprotegido Dendrímero protegido Dendrón bisGMPA

Carbamato

Azida 

bs N-H+ 
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Etambutol Isoniazida Estreptomicina Bedaquilina Rifampicina 

1.95 0.49 0.49 0.03 - 0.015 0.06 - 0.03 

Tabla 2 - MICs determinadas para cada uno de los fármacos libres  expresadas en µg/mL 

En general los valores de MIC obtenidos se ajustaron los datos de referencia en cultivo líquido 

con los que trabaja el grupo de Genética de Micobacterias de la Universidad de Zaragoza, 

admitiendo una dilución (1:2) como una variabilidad dentro de lo aceptable. Sin embargo, para el 

caso de la rifampicina sí que se han observado diferencias significativas ya que ellos tienen 

determinada una MIC de 0.0015 μg/mL. Se 

desconoce cuál puede haber sido el motivo de este 

resultado, aunque se puede especular con la mala 

solubilidad de la rifampicina en medio acuoso. 

 En cuanto a los datos obtenidos del cultivo con 

nanoagregados, todos ellos mostraron actividad 

antimicrobiana salvo las nanopartículas vacías, sin 

fármaco. Esto viene a indicar que se ha producido 

una eficiente encapsulación de todos los compuestos 

seleccionados y que la actividad antimicrobiana es 

debida al fármaco y no a la posible toxicidad del 

dendrímero sobre las bacterias. Las MIC obtenidas 

para cada uno de los tipos de nanoagregados, 

expresadas en μg de dendrímero/mL se recogen en la 

tabla 3. 

 

Los resultados del segundo ensayo son bastante concordantes con respecto a los del primero salvo 

en el caso de la rifampicina encapsulada. En el primer experimento se obtuvo una MIC de 0.03 

μg de dendrímero /mL, lo cual es más esperable debido a la elevada capacidad antimicrobiana de 

este compuesto. Esta disminución de la actividad tan acusada se cree que fue debida al hecho de 

que es la única disolución de nanoagregado que tuvo un pH muy básico, lo que pudo haber 

afectado tanto a la estructura del dendrímero, como a la estabilidad del fármaco. Es bastante 

probable que, en los 8 días que hubo de diferencia entre un ensayo y otro, se produjera algún tipo 

de degradación, especialmente de la rifampicina, ya que se apreció un cambio de color 

significativo en la preparación. El pH básico de la disolución no tuvo efecto sobre el cultivo dado 

que se adicionó de forma muy diluida y además los medios de cultivo poseen sustancias 

tamponantes (se comprobó con tira colorimétrica). Llaman la atención también los valores altos 

de MIC obtenidos para la bedaquilina encapsulada, siendo que es un fármaco que de forma libre 

tiene una elevada actividad antimicrobiana. Esto podría deberse al hecho de que para el proceso 

de encapsulación la relación fármaco:dendrímero utilizada fue de 0.69:1 (a diferencia de la 1:1 

utilizada en los otros fármacos),  la mala solubilidad de la bedaquilina en agua o quizá a una 

interacción muy fuerte entre el dendrímero y la bedaquilina. 

Etambutol Isoniazida Estreptomicina 

1.95 0.49 0.49 

Bedaquilina Rifampicina 

3.91 0.49 
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Figura 10 - Resultado del segundo ensayo realizado para evaluar la 
actividad antimicrobiana de los nanoagregados contra BCG. Tabla 3 – MIC de las nanopartículas cargadas con 

antimicrobianos expresadas en µg de dendrímero/mL 
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5.2.2. Cuantificación de fármaco encapsulado 

Se ha tratado de cuantificar mediante mediciones directas o indirectas el porcentaje de fármaco 

encapsulado en cada uno de los casos. Sin embargo, la estreptomicina, el etambutol y la 

bedaquilina no absorben en longitudes de onda (λ) que puedan ser determinadas mediante un 

espectrofotómetro UV-visible. Por lo tanto, esta técnica únicamente pudo usarse para precisar la 

eficiencia de encapsulación de la isoniazida y la rifampicina. 

En el caso de la isoniazida, el compuesto presenta un máximo de absorción a una λ de 264 nm, 

que fue utilizado para la cuantificación de fármaco (figura A2.1). En este caso, se usó un método 

indirecto, midiendo la concentración de fármaco presente en las aguas de diálisis. Para ello, 

previamente se realizó una recta de calibrado sobre la que poder extrapolar los resultados 

obtenidos (figura A2.2). La absorbancia de la muestra fue de 0.405, lo que se corresponde con 

una concentración de 11,76 μg/mL. Puesto que el volumen de las aguas de diálisis era de 200 mL, 

la cantidad de isoniazida sin encapsular fue de 2.35 mg, lo que supone una eficiencia de 

encapsulación del 52.42%. 

Para la cuantificación de la rifampicina se usó un método directo al tratarse de un fármaco 

hidrófobo, que consistió tomar una alícuota de 100 μl de la disolución de los nanoagregados con 

fármaco encapsulado y disgregarlos en 1.9 mL de DMSO. Al igual que anteriormente, se preparó 

una recta patrón y se midió la absorbancia en la región de máxima absorción. En base a los 

resultados obtenidos, la eficiencia de encapsulación es del 5.21% lo cual es un resultado 

demasiado bajo para lo esperado según las características físico-químicas del fármaco. Dado que 

se trata de una molécula hidrófoba, es de suponer que la posibilidad de poderse albergar en un 

núcleo apolar cuando se pone en contacto con el dendrímero, le va a proporcionar un medio 

adecuado para su encapsulación al estar obligada a disolverse en medio acuoso. También es cierto 

que la rifampicina es un fármaco con un alto peso molecular, lo que podría condicionar 

negativamente su alojamiento en el interior de los nanoagregados. 

Ante este resultado un poco desconcertante, se dedujo que tuvo lugar algún problema en el 

proceso de encapsulación.  Debido al procedimiento usado, la disolución del fármaco encapsulado 

permaneció durante un largo tiempo a un pH muy básico, en torno a 10, lo que debió de afectar a 

la estructura de la rifampicina ya que sufrió un cambio de color bastante notable, de un naranja 

brillante a un ocre oscuro. De hecho, puede observarse como el espectro de absorción en el UV-

visible ha cambiado para la muestra encapsulada, frente a rifampicina libre disuelta (figura A2.3). 

Además, los datos obtenidos de actividad antimicrobiana de los nanoagregados tampoco 

concuerdan con una eficiencia de encapsulación tan baja como la aquí determinada. 

Por esta razón, la cuantificación estimada para la rifampicina no se ha considerado como válida 

ni el método utilizado para la encapsulación tampoco, ya que debería de eliminarse el 

procedimiento de basificación del pH o bien neutralizarse de forma rápida. 

En el método de siembra frente a BCG de las aguas de diálisis ni siquiera los pocillos más 

concentrados provocaron inhibición del crecimiento microbiano. La concentración más alta 

ensayada se correspondía con una dilución de las aguas de diálisis 1:4. Únicamente puede 

afirmarse que la concentración de fármaco en cada uno de los pocillos es inferior a las MIC. Por 

ello, puede suponerse que la eficiencia de encapsulación para el etambutol ha sido superior al 

64% y la de la estreptomicina y la isoniazida superiores al 92% (demasiado altas). Esto no 

concuerda con el valor anteriormente obtenido para la isoniazida por UV-vis, lo que es debido a 

la variabilidad que tiene este método y su falta de precisión. Además, el hecho de dar unas MIC 

basadas en dos ensayos todavía aumenta más el grado de imprecisión. Por lo tanto, la eficiencia 
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de encapsulación válida será la determinada por espectrofotometría y los otros resultados no se 

considerarán. Este experimento ha servido para ver como no se trata de una metodología adecuada 

para realizar mediciones precisas. 

Por lo tanto, queda pendiente la cuantificación de cada uno de los fármacos encapsulados 

mediante métodos fiables y de precisión, como por ejemplo HPLC, que es el más ampliamente 

usado en la comunidad científica para la medición de estos fármacos.  

5.2.3. Morfología y tamaño 

Todos los nanoagregados sintetizados, seis en total (los cinco fármacos encapsulados y el 

dendrímero solo), se caracterizaron por TEM y DLS con el objetivo de conseguir determinar su 

morfología y tamaño. 

Mediante el uso de la microscopia electrónica de transmisión se pudo visualizar la morfología de 

los nanoagregados. Se usó una tinción negativa a base de ácido fosfotúngstico, que al poseer 

átomos de tungsteno, con un elevado número atómico, cuando incide el haz de electrones da una 

coloración oscura de fondo sobre la que resaltan los nanoagregados de forma brillante al no poseer 

átomos pesados. La morfología predominante observada fueron micelas esféricas que formaban 

partículas discretas, especialmente en el caso de los nanoagregados de fármacos hidrófobos y los 

de dendrímero vacío (Imagen A2.1). Sin embargo, en el caso de la rifampicina (Imagen A2.6), 

aunque la morfología predominante sigue siendo de tipo esférico, aparecen en determinadas 

regiones unas estructuras con forma tipo gusano. Por otra parte, en el caso de los fármacos 

hidrófilos isoniazida, etambutol y estreptomicina (Imágenes A2.2/3/4), especialmente en los dos 

primeros, es frecuente encontrar partículas esféricas de un tamaño muy reducido formando 

grandes agregados entre sí.  

Se utilizó DLS para la medida del radio hidrodinámico de los nanoagregados. Esta técnica evalúa 

el tamaño de las partículas mediante dos tipos de análisis: intensidad y número. La determinación 

por intensidad da más relevancia a las partículas de mayor tamaño, ya que dispersan una mayor 

cantidad de luz, sin embargo, da una mejor determinación del tamaño real de partícula.  Por otro 

lado, el tratamiento por número se aproxima más a la distribución de tamaño real que se encuentra 

en la disolución y cuantifica menos fielmente el diámetro. En la tabla 4 se muestran los resultados 

obtenidos por DLS y TEM expresados en nm. 

Tabla 4- Tamaño de los nanoagregados vacíos y cargados con fármacos mediante DLS y TEM expresados en nm (media ± 

desviación típica). 

 DLS 
TEM 

 Intensidad Número 

Dendrímero sin carga 14 ± 2 12 ± 2 14 ± 6 

Dendrímero + 

Etambutol 

13 ± 3 

239 ± 58 
10 ± 2 13 ± 2 

Dendrímero + 

Isoniazida 

150 ± 25 

10 ± 2 
9 ± 2 14 ± 6 

Dendrímero + 

Estreptomicina 

19 ± 7 

418 ± 160 

4433 ± 916 

10 ± 3 11 ± 2 

Dendrímero + 

Bedaquilina 
464 ± 249 216 ± 141 

11 ± 3 

171 ± 41 

Dendrímero + 

Rifampicina 

40 ± 21 

225 ± 74 

4821 ± 718 

18 ± 5 38 ± 29 



22 
 

Los resultados alcanzados por TEM y DLS, en lo que respecta al diámetro de las partículas de 

menor tamaño para cada uno de los fármacos, son bastante coincidentes y parece ser que se trata 

de la población mayoritaria.  Los otros tamaños detectados mediante datos de DLS de intensidad 

pueden tener diferentes explicaciones:  las señales de más de 4000 nm probablemente sean 

debidas a contaminaciones con partículas de polvo y las de rangos intermedios (entre 150 y 420 

nm) quizá sean consecuencia de fenómenos de agregación entre partículas más pequeñas que han 

podido observarse también a través de TEM. Mediante microscopía se ha podido constatar como 

los grandes agregados de partículas de pequeño tamaño son más frecuentes en los fármacos 

hidrofílicos (Imagen A2.3). Esto podría deberse a que, al situarse los fármacos en la periferia del 

nanoagregado, por su naturaleza polar, pueden actuar como puente y permitir la asociación entre 

diferentes micelas. Sin embargo, estas interacciones no son favorables cuando los fármacos son 

hidrófobos ya que se alojan en el interior de la estructura. En estos casos, la carga fuertemente 

positiva de las micelas dendríticas debido a los grupos terminales -NH3
- las haría mantenerse unas 

alejadas de otras formando partículas discretas. 

Cabe destacar que, en el caso de la rifampicina, los nanoagregados muestran un mayor tamaño 

promedio, lo que puede ser debido al hecho de que es un fármaco hidrófobo de una gran masa 

molecular (822 Da) que al alojarse en el interior de las micelas haga que éstas incrementen sus 

dimensiones de un modo significativo. 

Únicamente los datos de la bedaquilina obtenidos por TEM y DLS no guardan demasiada 

relación. Aunque cabe destacar que este fármaco ha sido para el único que se han encontrado, de 

forma puntual, una serie de micelas de gran tamaño (Imagen A2.5) por TEM. Sin embargo, la 

mayoría predominante eran partículas similares a las encontradas en los otros compuestos en la 

preparación visualizada por TEM.  

En definitiva, de forma mayoritaria, el dendrímero en disolución acuosa se encuentra formando 

pequeñas micelas (~13 nm) y su tamaño no se ve condicionado por la encapsulación de los 

diferentes fármacos salvo la rifampicina, que provoca un aumento bastante considerable debido 

a su elevada masa molecular. La bedaquilina parece tener un efecto similar pero deberían de 

hacerse nuevas mediciones para confirmarlo. 

5.2.4. Citotoxicidad 

Cualquier tipo de producto que vaya a tener un uso potencial sobre los seres humanos u otros 

organismos, ha de analizarse para valorar su potencial efecto citotóxico. En este caso se hizo un 

ensayo MTT utilizando la línea celular Hep G2, ampliamente usada en la comunidad científica 

para la realización de este tipo de estudios. Se testaron todos los tipos de nanoagregados 

sintetizados y también los fármacos libres con el objetivo de poder hacer un análisis comparativo. 

Los resultados obtenidos se encuentran representados gráficamente en las figuras 11 y 12.  

Figura 11- Viabilidad celular de las células Hep G2 ante los distintos tipos de fármacos libres. 
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Figura 12-Viabilidad celular de la línea Hep G2 a diferentes concentraciones de fármaco encapsulado. 

El dendrímero únicamente manifestó elevada toxicidad cuando se expuso a elevadas 

concentraciones a las células (500 μg/mL), lo que está reflejado en la figura A2.4.  

Es importante atender a los resultados obtenidos para la bedaquilina. Se trata de un fármaco con 

una elevada citotoxidad tal y como puede verse en la figura 11 y llama la atención el hecho de 

que en la bedaquilina encapsulada, el efecto citotóxico ha desaparecido a cualquier concentración 

de dendrímero.  Podría pensarse que es debido a que la cantidad de bedaquilina en los 

nanoagregados es mínima, pero se ha visto anteriormente como poseen un notable efecto 

antimicrobiano en el ensayo con BCG. Esto es un punto muy interesante y que debería de 

estudiarse posteriormente con mayor detenimiento puesto que la toxicidad es el principal 

problema de este nuevo fármaco antituberculosis aprobado especialmente para el tratamiento de 

las MDR-TB. 

Las conclusiones que se pueden extraer de los datos obtenidos en este ensayo son limitadas debido 

a dos motivos: en primer lugar, dado que se desconoce con precisión la cantidad de fármaco 

encapsulado, es difícil hacer una comparación con los datos correspondientes al fármaco libre; y 

en segundo lugar, las absorbancias detectadas tras la solubilización de los cristales de formazán 

fueron extremadamente bajas en todos los pocillos de las placas. Por ello sería conveniente repetir 

este ensayo sembrando a una mayor densidad celular inicial en cada pocillo y conociendo 

previamente la cantidad de fármaco encapsulado de forma precisa. 

 

Sintetizando de un modo global los resultados obtenidos en la totalidad de los experimentos 

realizados, parece vislumbrarse como este tipo de dendrímero Jano basado en un dendrón de bis-

GMPA de 3ª generación y un dendrón de bis-MPA de 1ª generación funcionalizado con dos 

cadenas de ácido esteárico podría mejorar las propiedades farmacológicas de los antibióticos 

ensayados. 

Los objetivos del trabajo planteaban la síntesis química de un dendrímero tipo Jano (C17)2 

[bisMPA,G1]-[bisGMPA,G3](NH3
+ TFA-)8 la cual se ha logrado, salvo por el hecho de que existe 

una mezcla de especies, aunque el dendrímero deseado representa la mayoritaria. También se ha 

conseguido la encapsulación de diferentes fármacos antituberculosos manteniendo su actividad 

antimicrobiana. Dado que entre los objetivos de este trabajo también se pretendía la 

caracterización de estos complejos supramoleculares, se realizaron diferentes ensayos para su 

estudio: DLS, TEM, citotoxicidad... Sin embargo, sería precisa la realización de nuevos 

experimentos para determinar otras cuestiones como: cinética de liberación, internalización, 

estudio de la interacción nanoagregado-bacteria, etc. 
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6. Conclusiones / Conclusions 
Se realizó la síntesis de un dendrón de bis-GMPA de 3ª generación para posteriormente formar 

un dendrímero tipo Jano con un segundo dendrón de bis-MPA de 1ª generación funcionalizado 

con ácido esteárico. Aunque la mayoría de las moléculas presentaron la estructura deseada, una 

pequeña fracción mostró un menor peso molecular, probablemente debido al hecho de que la 

última reacción de esterificación de Steglich para el crecimiento de 2ª a 3ª generación del dendrón 

de bis-GMPA  no fue completamente eficaz. 

El dendrímero es capaz de encapsular y generar complejos supramoleculares tanto con fármacos 

hidrófobos (rifampicina y bedaquilina) como hidrófilos (etambutol, isoniazida y estreptomicina) 

en disolución acuosa, formando mayoritariamente micelas de un diámetro de ~13nm, salvo en el 

caso de la rifampicina, que al tener un elevado peso molecular las dimensiones son mayores. 

Es necesaria la utilización de técnicas precisas que permitan cuantificar el fármaco encapsulado 

en cada uno de los casos, siendo el HPLC la técnica de referencia más adecuada para este objetivo. 

Sin conocer la cuantificación concreta del fármaco es difícil establecer si el dendrímero potencia 

o disminuye la capacidad antimicrobiana de los compuestos probados. 

Estos nanoagregados presentan poder antimicrobiano contra BGC como consecuencia del 

fármaco encapsulado y no parecen ser tóxicos para las células eucariotas (Hep G2), lo que hace 

que el dendrímero sintetizado sea un buen candidato para continuar los estudios con él como 

nanotransportador de fármacos. 

 

The synthesis of a 3rd generation bis-GMPA dendron was carried out to subsequently form a 

Janus-type dendrimer with a second 1st generation bis-MPA dendron functionalized with stearic 

acid. Although most molecules exhibited the desired structure, a small fraction showed a lower 

molecular weight, probably due to the fact that last Steglich's esterification reaction for the 2nd 

to 3rd generation growth of the bis-GMPA dendron was not completely effective.  

The dendrimer is capable of encapsulating and generating supramolecular complexes with both 

hydrophobic (rifampicin and bedaquiline) and hydrophilic (ethambutol, isoniazid and 

streptomycin) drugs in aqueous solution, forming mostly micelles with a diameter of ~ 13nm, 

except in the case of rifampicin due to its higher molecular weight the dimensions are greater. 

It is necessary to use precise techniques to quantify the encapsulated drug in each case, being 

HPLC the most appropriate reference technique for this purpose. Without knowing the specific 

quantification of the drug it is difficult to establish whether the dendrimer enhances or decreases 

the antimicrobial capacity of the tested compounds. 

These nanoaggregates have antimicrobial power against BGC as a consequence of the 

encapsulated drug and do not appear to be toxic for eukaryotic cells (Hep G2), which makes the 

synthesized dendrimer a good candidate to continue studies with it as a drug nanocarrier.  



25 
 

7. Bibliografía 
1. Global tuberculosis report 2017. Ginebra (Suiza): World Health Organization; 2017. 
2. Madigan MT, Martinko JM, Parker J. Brock: Biología de los microorganismos. 10ª ed. 
Madrid2010. 
3. Rodríguez JC. Tuberculosis latente. Revista chilena de enfermedades respiratorias. 
2012;28:61-8. 
4. Costa-Gouveia J, Aínsa JA, Brodin P, Lucía A. How can nanoparticles contribute to 
antituberculosis therapy? Drug Discov Today. 2017;22(3):600-7. 
5. Lin YS, Lee MY, Yang CH, Huang KS. Active targeted drug delivery for microbes using 
nano-carriers. Curr Top Med Chem. 2015;15(15):1525-31. 
6. Marcos M, Serrano JL. Polímeros dendríticos. Anales de la Real Sociedad Española de 
Química. 2009;2:103-10. 
7. Bhadra D, Bhadra S, Jain NK. PEGylated peptide dendrimeric carriers for the delivery of 
antimalarial drug chloroquine phosphate. Pharm Res. 2006;23(3):623-33. 
8. Movellan J, Urbán P, Moles E, de la Fuente JM, Sierra T, Serrano JL, et al. Amphiphilic 
dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. 
Biomaterials. 2014;35(27):7940-50. 
9. Padilla De Jesús OL, Ihre HR, Gagne L, Fréchet JM, Szoka FC. Polyester dendritic systems 
for drug delivery applications: in vitro and in vivo evaluation. Bioconjug Chem. 2002;13(3):453-
61. 
10. Kong X, Yu K, Yu M, Feng Y, Wang J, Li M, et al. A novel multifunctional poly(amidoamine) 
dendrimeric delivery system with superior encapsulation capacity for targeted delivery of the 
chemotherapy drug 10-hydroxycamptothecin. Int J Pharm. 2014;465(1-2):378-87. 
11. Lancelot A, Clavería-Gimenob R, Velázquez-Campoyc A, Abian O, Serrano JL, Sierra T. 
Nanostructures based on ammonium-terminated amphiphilic Janus  dendrimers as 
camptothecin carriers with antiviral activity European Polymer Journal. 2017;90:136-49. 
12. Reul R, Nguyen J, Kissel T. Amine-modified hyperbranched polyesters as non-toxic, 
biodegradable gene delivery systems. Biomaterials. 2009;30(29):5815-24. 
13. Malhotra S, Bauer H, Tschiche A, Staedtler AM, Mohr A, Calderón M, et al. Glycine-
terminated dendritic amphiphiles for nonviral gene delivery. Biomacromolecules. 
2012;13(10):3087-98. 
14. Lancelot A, González-Pastor R, Concellón A, Sierra T, Martín-Duque P, Serrano JL. DNA 
Transfection to Mesenchymal Stem Cells Using a Novel Type of Pseudodendrimer Based on 2,2-
Bis(hydroxymethyl)propionic Acid. Bioconjug Chem. 2017;28(4):1135-50. 
15. Sikwal DR, Kalhapure RS, Govender T. An emerging class of amphiphilic dendrimers for 
pharmaceutical and biomedical applications: Janus amphiphilic dendrimers. Eur J Pharm Sci. 
2017;97:113-34. 
16. Fedeli E, Lancelot A, Jose´ Luis Serrano JL, Calvo P, Sierra P. Self-assembling amphiphilic 
Janus dendrimers:  mesomorphic properties and aggregation in water New Journal of 
Chemistry. 2015;39(3):1960-7. 
17. Amaral A, Góis J, Serra AC, Coelho JFJ. Synthesis of well controlled dendritic 
structures  for biomedical applications IEEE 3rd Portuguese Meeting in Bioengineering 
(ENBENG)2013. 
18. Lancelot A. New dendritic derivatives for applications in nanomedicine: drug delivery 
and gene transfection: Universidad de Zaragoza; 2017. 
19. Stenström P, Hjorth E, Zhang Y, Andrén OCJ, Guette-Marquet S, Schultzberg M, et al. 
Synthesis and in Vitro Evaluation of Monodisperse Amino-Functional Polyester Dendrimers with 
Rapid Degradability and Antibacterial Properties. Biomacromolecules. 2017;18(12):4323-30. 
20. Handbook of anti-tuberculosis agents. Introduction. Tuberculosis (Edinb). 
2008;88(2):85-6. 

 



26 
 

 

Anexos 
  



27 
 

ANEXO 1: Síntesis química 
 

En esta sección se encuentran descritas todas las reacciones químicas llevadas a cabo en este 

trabajo. Se especifican reactivos, cantidades, volúmenes, temperaturas, tiempos, etc., y todas 

aquellas cuestiones que sean de interés para la realización de cada una de las reacciones. 

Además, se recogen y detallan todos los resultados obtenidos mediante las diferentes pruebas de 

caracterización de todos los compuestos sintetizados. 
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Descripción de la reacción: síntesis de 2,2’-bis(gliciloximetil)propionato de bencilo 

BnOOC-[bisMPA,G1]-(OH)2.  

Reacción de protección del grupo carbonilo del bis-MPA mediante un grupo bencilo. 

Esquema: 

 

 

 

 

Procedimiento: 

Disolver bis-MPA (adquirido comercialmente) (20,00g, 149,1 mmol, 1 eq.) en DMF (100 mL) y 

añadir KOH (10,20g, 179mmol, 1.20 eq.). Mantener la mezcla en agitación durante 1 hora a 100 
oC, conectando un reflujo de agua. Adicionar bromuro de bencilo (26,55 mL, 223,7 mmol, 1,50 

eq.) gota a gota. La reacción se deja transcurrir durante toda la noche, manteniendo la temperatura 

de 100 oC. 

Al día siguiente aparece un precipitado que se debe eliminar mediante filtración a vacío con placa 

filtrante. A continuación, añadir 450 mL de agua y realizar 3 extracciones con 200 mL de AcOEt 

cada una. Después, efectuar otras 3 extracciones con 150 mL de brine cada una. Se ha de guardar 

la fase orgánica en todos los procesos de extracción. Secar la fase orgánica obtenida utilizando 

MgSO4 y evaporar disolventes en el rotavapor hasta obtener un aceite amarillo. 

Recristalizar el compuesto añadiendo tolueno (50 mL) caliente y dejar que se enfríe a temperatura 

ambiente. Se obtiene un precipitado blanco que se recupera mediante filtración a vacío. 

Caracterización: 

RMN 1H (400 MHz, CDCl3) δ (ppm): 1.08 (s, 3H, H-8), 2.87 (bs, -OH), 3.75 (d, J=11.3 Hz, 2H, 

H-9), 3.92 (d, J=11.3 Hz, 2H, H-9’), 5.21 (s, 2H, H-5), 7.36 (m, 5H, H-1, H-2, H-3). 

 

RMN 13C (100 MHz, CDCl3) δ (ppm): 17.24 (C-8), 49.37 (C-7), 66.84 (C-5), 68.53 (C-9), 128.00 

(C-3), 128.46 (C-1), 128.78 (C-2), 135.78 (C-4), 175.88 (C-6).  

 

MS (ESI+) m/z (%): Encontrada:  226.1 (31), 247.0 (66)  Calculada para [C12H16O4,H]+ 

225.11  [C12H16O4,Na]+ 247.09. 

FTIR (vmax/cm-1, ATR): 3352 (O-H st), 2943-2885 (C-H st y ar), 1703 (C=O st).  
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Figura A1.1: espectro H1 RMN del compuesto BnOOC-[bisMPA,G1]-(OH)2. 

 

Figura A1.2: espectro C13 RMN del compuesto BnOOC-[bisMPA,G1]-(OH)2. 
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Figura A1.3: espectro de masas (ESI+) del compuesto BnOOC-[bisMPA,G1]-(OH)2. 

 

 

Figura A1.4: espectro FTIR del compuesto BnOOC-[bisMPA,G1]-(OH)2. 
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Descripción de la reacción: síntesis de BnOOC-[bisMPA,G1]-(NHBoc)2. Adición 

del grupo GlyBoc mediante esterificación de Steglich 

 

Esquema: 

 

 

 

 

Procedimiento: 

Disolver BnOOC-[bisMPA,G1]-(OH)2 (10,00 g, 44.62 mmol, 1 eq.) en DCM seco (230 mL) y 

posteriormente añadir Glyboc(OH) (19,54 g, 111,56 mmol, 2,50 eq.) y DPTS (10,51 g, 35,70 

mmol, 0,80 eq.). Mantener la mezcla de reacción en agitación, bajo atmósfera de argón y enfriar 

a 0 oC. Adicionar la DCC (22,99 g, 111,56 mmol, 2,50 eq.) previamente disuelta en DCM seco 

(70 mL) gota a gota.  Conectar de nuevo la atmósfera de argón y dejar transcurrir la reacción a 

temperatura ambiente durante toda la noche. 

Aparece un precipitado blanco, N,N’-diciclohexilurea (DCU), que se elimina por filtración en 

placa filtrante. Eliminar el disolvente por evaporación a vacío. Precipitar la DCU restante 

mediante una mezcla de hexano:AcOEt (10:2) (240 mL) y filtrar de nuevo. Evaporar los 

disolventes en el rotavapor y purificar el compuesto mediante una columna de sílica gel 

(hexano:AcOEt = 8:2), para obtener un aceite incoloro. 

Caracterización: 

RMN 1H (400 MHz, CDCl3) δ (ppm): 1.26 (s, 3H, H-8), 1.44 (s, 18 H, H-14), 3.79 (d, J = 9.3Hz, 

4H, H-11), 4.31 (ABq, J= 11.1 Hz, ΔvAB =25.6Hz, 4H, H-9), 5.00 (bs, -NH), 5.16 (s, 2H, H-5), 

7.36 (m, 5H, H-1, H-2, H-3). 

 

RMN 13C (100 MHz, CDCl3) δ (ppm): 17.9 (C-8), 28.43 (C-14), 42.32 (C-11), 46.44 (C-7), 65.92 

(C-9), 67.14 (C-5), 80.22 (C-13), 128.48 (C-3), 128.65 (C-1), 128.78 (C-2), 135.57 (C-4), 155.84 

(C-12), 169.9 (C-10), 172.1 (C-6). 

 

MS (ESI+) m/z (%): Encontrada 561.4 (68).  Calculada para  [C26H38N2O10,Na]+ 561.24 

FTIR (vmax/cm-1, ATR):  3371 (N-H st), 2970-2935 (C-H st y C-Har st), 1724 (C=O st éster), 1710 

(C=O st carbamato), 1519 (N-H δ), 1456 (CH2, CH3 δ)  1367 (C-N st), 1251 (CO-O st), 1155 (N-

CO-O st), 1135 (O-C-C st) 
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Figura A1.5: espectro H1 RMN del compuesto  BnOOC-[bisMPA,G1]-(NHBoc)2 

 

 

Figura A1.6: espectro C13 RMN del compuesto  BnOOC-[bisMPA,G1]-(NHBoc)2 
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Figura A1.7: espectro de masas (ESI+) del compuesto  BnOOC-[bisMPA,G1]-(NHBoc)2 

 

 

 

Figura A1.8: espectro FTIR del compuesto  BnOOC-[bisMPA,G1]-(NHBoc)2 
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Descripción de la reacción: obtención del monómero de bis-GMPA protegido por 

el grupo t-Boc (monómero de bis-GMPA). 

Reacción de escisión del grupo bencilo por hidrogenación. 

Esquema:  

 

 

 

 

 

 

Procedimiento: 

Disolver el BnOOC-[bisMPA,G1]-(NHBoc)2 (18g, 33.4 mmol, 1eq.) en 161 mL de AcOEt y 

añadir el catalizador Pd/C (0.9g, 0.05 eq. en peso). Hacer 3 ciclos de argón-vacío y 

posteriormente, hacer otros 3 ciclos de vacío-H2. Dejar la reacción transcurrir durante 24 horas. 

Purificar el compuesto por filtración en columna de Celite. 

 

Caracterización: 

RMN 1H (300 MHz, CDCl3) δ (ppm): 1.27 (s, 3H,H-3), 1.44 (s, 18H, H-9), 3.89 (d, J= 5.6 Hz, 

4H, H-6), 4.29 (ABq, J=11.2 Hz  ΔvAB=30.8 Hz, 4H, H-4), 5.23(bs, -NH).  

 

RMN 13C (100 MHz, CDCl3) δ (ppm): 170.26 (C-5), 80.40 (C-8), 65.93 (C-4), 46.11 (C-2), 42.42 

(C-6), 28.43 (C-9), 14.32 (C-3).  

* Las señales del C-1 y el C-7 no aparecen, probablemente debido a que la duración del 

experimento es corta, lo que da una resolución muy limitada.* 

 

MS (ESI+) m/z (%): Encontrada 471.24 (100) Calculada para [C19H32N2O10,Na]+ 471.19  

FTIR (vmax/cm-1, ATR):  3361 (N-H st), 2977-2935 (C-H st), 1739 (C=O st éster), 1693 (C=O st 

carbamato), 1515 (N-H δ), 1456 (CH2 ,CH3  δ), 1367 (C-N st), 1245 (CO-O st), 1151 (N-CO-O 

st) 

BnOOC-[bisMPA,G1]-(NHBoc)2 

H2 

Pd/C 

Monómero de bisGMPA 
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Figura A1.9: espectro H1 RMN del monómero de bis-GMPA 

 

 

 

Figura A1.10: espectro C13 RMN del monómero de bis-GMPA 
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Figura A1.11: espectro de masas (ESI+) del monómero de bis-GMPA 

 

 

 

Figura A1.12: espectro FTIR del monómero de bis-GMPA 
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Descripción de la reacción: síntesis del compuesto N3-[bisGMPA,G1]-(NH3
+Cl-)2.  

Reacción de desprotección en medio ácido mediante HCl. 

Esquema:  

 

 

 

 

 

 

Procedimiento: 

Disolver el N3-[bisGMPA,G1]-(NHBoc)2 (6 g, 10.46 mmol, 1.00 eq.) en AcOEt (19.8 mL) en un 

baño a 50oC. Añadir 19.8 mL de una disolución de HCl 3 M en AcOEt gota a gota. El avance de 

la reacción se ha de seguir mediante capa fina.  

Aparece un precipitado. Para detener la reacción añadir 132 mL de AcOEt y dejar la reacción en 

agitación durante 30 minutos. Después, evaporar los vapores de HCl a vacío y el AcOEt. Realizar 

un lavado con AcOEt y evaporar el disolvente de nuevo hasta sequedad. 

Caracterización: 

RMN 1H (400 MHz, MeOD) δ (ppm): 1.32 (s, 3H, H-9), 1.43 (m, 4H, H-3 y H-4), 1.61 (m, 

2H, H-2), 1.65 (m, 2H, H-5), 3.89 (s, 4H, H-12), 4.16 (t, J = 6.5 Hz, 2H, H-6), 4.45 (ABq, 

J=11.35  Hz, ΔνAB = 2.06  Hz, 4H, H-10). 

*La señal del H-1 (~ 3.2ppm) no aparece debido a que está solapada con la señal del 

disolvente (MeOD). 

 

RMN 13C (100 MHz, MeOD) δ (ppm): 17.99 (C-9), 26.53 (C-4), 27.39 (C-3), 29.40 (C-5), 

29.77 (C-2), 40.96 (C-12), 47.49 (C-8), 52.35 (C-1), 66.59 (C-6), 67.78 (C-10), 168.29 

(C-11), 173.64 (C-7). 

 

MS (ESI+) m/z (%): Encontrada: 374.1779 (100) Calculada para [C15H27N5O6,H]+ 374.2; 

[C15H27N5O6,Na]+ 398.20  

FTIR (vmax/cm-1, ATR):  3650-2516 (N-H+), 2933-2856-2711-2601 (C-H st), 2094 (N3 st), 

1739 (C=O st éster), 1606-1571 (N-H+ δ), 1500 (CH2, CH3 δ), 1419 (C-N st), 1224 (CO-

O st), 1139 (O-C-C st). 

 

N3-[bisGMPA,G1]-(NH3
+Cl-)2 

HCl 

 

N3-[bisGMPA,G1]-(NHBoc)2 
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Figura A1.13: espectro H1 RMN del compuesto N3-[bisGMPA,G1]-(NH3
+Cl-)2 

 

 

Figura A1.14: espectro C13 RMN del compuesto N3-[bisGMPA,G1]-(NH3
+Cl-)2 
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Figura A1.15: espectro de masas (ESI+) del compuesto N3-[bisGMPA,G1]-(NH3
+Cl-)2 

 

 

 

Figura A1.16: espectro FTIR del compuesto N3-[bisGMPA,G1]-(NH3
+Cl-)2 
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Descripción de la reacción: síntesis del compuesto N3-[bisGMPA,G1]-(NH3
+Cl-)2.  

Aumento de la generación del compuesto (3ª) mediante la adición de monómero de bis-GMPA 

por acoplamiento amida.  

Esquema:  

 

 

 

 

 

 

 

 

Procedimiento: 

Disolver el N3-[bisGMPA,G2]-(NH3
+, TFA-)4 (4 g, 3.1 mmol, 1.00 eq.) en DMF seca (50 mL) y 

el monómero de bisGMPA en DCM seco (85 mL). Mezclar ambos compuestos y adicionar 

HoBt,nH2O (2.84g, 18.6 mmol, 6 eq.) y DMAP (2.12 g, 17.36 mmol, 5.6 eq.). Conectar al matraz 

de reacción Ar durante 15 min y  descender la temperatura a 0oC. Por último, añadir DCC disuelta 

en DCM seco (15 mL) y dejar transcurrir la reacción bajo atmósfera de Ar y a temperatura 

ambiente durante 3 días (seguir el avance de reacción por capa fina).  

Aparece un precipitado blanco (DCU) que se ha de eliminar mediante filtración. Evaporar los 

disolventes en el rotavapor. Redisolver el compuesto en DCM y hacer 8 extracciones con brine 

(55mL x 8). Secar el compuesto mediante MgSO4 anhidro y filtrar. Por último purificar en 

columna de silica gel DCM:MeOH (rampa de 98:2 a 95:5).  

Caracterización: 

RMN 1H (400 MHz, CDCl3) δ (ppm): 1.25 (s, 6H, H-15), 1,27 (s, 3H, H-9), 1.28 (s, 12H, H-21), 

1.44 (m, 76H, H-3, H-4 y H-27), 1.59 (m, 2H, H-2), 1.66 (m, 2H, H-5), 3.28 (t, 2H, H-1), 3.90 (d, 

16H, H-24), 3.95 (d, 4H, H-12), 4.01 (d, 8H, H-18), 4.14 (t, 2H, H-6), [4.21-4.38] (m, 28H, H-

10, H-16 y H-22), 5.42 (bs, -NHBoc), 7.19 (bs, -NHCO). 

 

RMN 13C (100 MHz, CDCl3) δ (ppm):  17.78 (C-21), 18.0 (C-15), 18.3 (C-9), 25.3 (C-4), 26.2 

(C-3), 28.47 (C-5 y C-27), 28.6 (C-2), 42.49(C-12 y C-18), 46.05 (C-8 y C-14), 46.22 (C-20), 

51.45 (C-1), 66.63 (C-6, C-10 y C-16), 80.22 (C-26), 156.18 (C-25), 169.71 (C-11, C-17 y  C-

23). 

*  A pesar de programar un experimento de ~4horas algunos carbonos no se han detectado, lo que no quiere 

decir que no se encuentren en la estructura, ya que por H1-RMN se detectan sus protones. ( C-7, C-13, C-19 

y C-24) 

 

MS (MALDI-TOF) m/z (%): Encontrada: 2577.4(100). Calculada para [C109H175N17O52,Na]+ 

2577,15 

Monómero de  

Bis-GMPA 

HoBt, DMAP, DCC 

 

N3-[bisGMPA,G2]-(NH3
+, TFA-)4 N3-[bisGMPA,G3]-(NHBoc)8 
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FTIR (vmax/cm-1, ATR):  (νmax/cm-1, ATR): 3352 (N-H st), 2977-2927-2854 (C-H st), 2096 

(N3 st), 1747 (C=O st éster), 1695 (C=O st carbamato), 1656 (C=O st amida), 1521 (N-H 

δ), 1458 (CH2,CH3 δ), 1365 (C-N st), 1247 (CO-O st), 1149 (N-CO-O st). 

 

Figura A1.17: espectro H1 RMN del compuesto N3-[bisGMPA,G3]-(NHBoc)8 

 

Figura A1.18 : espectro C13 RMN del compuesto N3-[bisGMPA,G3]-(NHBoc)8 
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Figura A1.19 : espectro de masas (MALDI-TOF) del compuesto N3-[bisGMPA,G3]-(NHBoc)8 

 

 

 

Figura A1.20: espectro FTIR del compuesto N3-[bisGMPA,G3]-(NHBoc)8 
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Descripción de la reacción: síntesis del compuesto (C17)2[bisMPA,G1]- 

[bisGMPA,G3] (NHBoc)8 

 Síntesis del dendrímero tipo Jano mediante la unión del dendrímero hidrófilo 

(NHBoc)8[bisGMPA,G3] y el dendímero hidrófobo [bisMPA,G1](C17)2 por cicloadición              

azida-alcano catalizada por Cu(I) (química click).  

Esquema:  

 

 

 

Procedimiento: 

Agregar los compuestos TBTA (12.45 mg, 0.024 mmol, 0.1 eq.), (L)-ascorbato (9.3mg, 0.047 

mmol, 0.2 eq.) y CuSO4·5H2O (6.92 mg, 0,024 mmol, 0.1 eq.) a un tubo Schlenk y disolver en 3 

mL de DMF. Hacer 3 ciclos de vacío-argón para eliminar el O2.. Dejar la reacción a 45 oC durante 

aproximadamente 30 min (hasta observar cambio de color). 

Disolver el dendrón N3-[bisGMPA,G3]-(NHBoc)8 (500 mg, 0.196 mmol, 1 eq.) y el 

[bisMPA,G1](C17)2 (165.57 mg, 0.235 mmol, 1.2 eq.) en 7 mL de DMF en otro tubo Schlenk. 

Realizar, como anteriormente, 3 ciclos de vacío-Ar y calentar a 45 oC. Canular la solución de 

cobre al segundo tubo Schlenk por presión de Ar. Dejar la reacción a 45 oC durante 5 días 

(comprobar por capa fina). 

Añadir 70 mL de AcoEt a la reacción para extraerla a un embudo de decantación y agregar 100 

ml de brine. Realizar una nueva extracción con otros 70 mL de AcoEt. Lavar la fase orgánica 3 

veces con brine (3x100 mL). Posteriormente, lavar la fase orgánica una vez con una disolución 

de KCN (15 mg en 100 mL de agua) y realizar otros dos lavados con brine (2x100 mL). Secar la 

fase orgánica con MgSO4 y evaporar disolventes a vacío. Finalmente, purificar en columna de 

silica gel DCM:MeOH (rampa de 100% DCM a 9:1). 

  

(C17)2[bisMPA,G1]- [bisGMPA,G3] (NHBoc)8 
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Caracterización: 

RMN 1H (400 MHz, CDCl3) δ (ppm): 0.87 (t, 6H, H-39), 1.21 (s, 3H, H-33), 1.24 (m, 65H, H-

14, H-20 y H-38), 1.27 (s, 12H, H-8), 1.37 (m, 4-H, H-24 y H-25), 1.43 (s, 72H, H-1), 1.51 (m, 

8H, H-37), 1.62 (m, 2H, H-22), 1.93 (m, 2H, H-26), 2.25 (t, 4H, H-36), 3.91 (d, 16H, H-4), 3.95 

(d, 4H, H-16), 4.01 (d, 8H, H-10), 4.12 (t, 2H, H-22), 4 .19 (ABq, 4H,H-34), [4.21-4.37] (m, 30H, 

H-6, H-12, H-18 y H-27), 5.24 (s, 2H, H-30), 5.42 (bs, -NHBoc), 7.20 (bs, -NHCO), 7.61 (s, 1H, 

H-28). 

 

SEC (ref PMMA): Peso molecular: 4261.  Polidispersidad: 1.05.  Calculado para 

[C153H255N17O58]: 3258.75  

FTIR (vmax/cm-1, ATR):  (νmax/cm-1, ATR): 3355 (N-H st), 2975-2923-2852 (C-H st), 1743 (C=O 

stéster), 1699 (C=O st carbamato), 1658 (C=O st amida), 1521 (N-H δ), 1458 (CH2, CH3 δ), 1365 

(C-N st), 1247 (CO-O st), 1155 (N-CO-O st). 

 

 

Figura A1.21: espectro H1 RMN del compuesto (C17)2[bisMPA,G1]- [bisGMPA,G3] (NHBoc)8 
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Figura A1.22: Resultado de SEC del compuesto (C17)2[bisMPA,G1]- [bisGMPA,G3] (NHBoc)8 

 

 

 

Figura A1.23 : espectro FTIR del compuesto (NHBoc)8[bisGMPA,G3]-[bisMPA,G1](C17)2 
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Descripción de la reacción: síntesis del compuesto (C17)2[bisMPA,G1]- 

[bisGMPA,G3] (NH3
+TFA-)8 

Reacción de desprotección de los grupos -NH3
+ terminales por escisión del grupo t-Boc mediante 

ácido trifluoroacético (TFA). 

Esquema:  

 

 

Procedimiento: 

Disolver (NHBoc)8[bisGMPA,G3]-[bisMPA,G1](C17)2 (492.5 mg, 0.15 mmol, 1 eq.) en 1 mL de 

una mezcla de cloroformo y ácido trifluoroacético (1:1). Determinar el avance de reacción por 

cromatografía en capa fina. Eliminar los disolventes y el ácido por evaporación a vacío. 

Redisolver el producto en 1.7 mL de MeOH y precipitar sobre dietiléter frío (170 mL) (relación 

disolvente:dietiléter 1:100). Dejar la precipitación en el congelador durante toda la noche (-16oC). 

Aparece un precipitado blanco que se separa mediante centrifugación (5min a 3500 rpm.). 

Masa obtenida: 316.89 mg   

Caracterización: 

RMN 1H (400 MHz, MeOD) δ (ppm): 0.90 (t, J = 6.8 Hz, 6H, H-36), 1.25 (s, 3H, H-30), 1.27 (s, 

3H, H-17), 1.29 (m, 56H, H-35), 1.31 (s, 6H, H-11), 1.36 (s, 12H, H-5), 1.45 (m, 4H, H-21 y H-

22), 1.53 (m, 4H, H-34), 1.66 (m, 2H, H-20), 1.94 (m, 2H, H-23), 2.26 (t, 4H, H-33), 3.84 (s, 16H, 

H-1), 3.91 (s, 4H, H-13), 4.01 (s, 8H, H-7), 4.13 (t, 2H, H-19), 4.19 (ABq, 4H, H-31), 4.31 (m, 

12H, H-9 y H-15), 4.43 (m, 18H, H-3 y H-24), 5.25 (s, 2H, H-27), 8.04 (s, 1H, H-25). 

 

RMN 13C (100 MHz, CDCl3) δ (ppm): 14.47 (C-36), [17.61-18.16] (C-5, C-11, C-17 y C-30), 

23.74 (C-35), 26.0 (C-34), 26.4 (C-21), 28.68 (C-22), 29.39 (C-20),  [30.16-30.79] (C-35), 31.1 

(C-23), 33.09 (C-35), 34.81 (C-33), 40.85 (C-1), 42.22 (C-7 y C-13), [47.4-47.6] (C-4, C-10, C-

16 y C-29), 50.07 (C-24), [66.20-66.42] (C-19 y C-31), 67.57 (C-15), 67.8 (C-9), 168.3 (C-2), 

[170.98-171.25] (C-8 y C-14), [174.0-174.1] (C-18 y C-28), [174.6-175.2] (C-6, C-12 y C-32). 

(C17)2[bisMPA,G1]- [bisGMPA,G3] (NH3
+TFA-)8  
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*A pesar de que se ha programado un experimento de larga duración (~4 horas) los carbonos C-3, C-25, 

C-26 y C-27 no se han encontrado. 

 

MS (MALDI-TOF) m/z (%): Encontrada: 2459,6(100), 2481.6 (42.1). Calculada para 

[C113H191N17O42,H]+ 2459.3 ; [C113H191N17O42,Na]+ 2481.3 

FTIR (vmax/cm-1, ATR):  (3600-2570 (bs N-H+ st), 2919-2852 (C-H st), 1751 (C=O st éster), 1666 

(C=O st amida y N-H+ δ), 1535 (N-H δ), 1432 (CH2, CH3 δ), 1295 (CO-O st), 1130 (N-CO-O st). 

 

 

Figura A1.24: espectro H1RMN del compuesto (C17)2[bisMPA,G1]-[bisGMPA,G3](NHBoc)8 

 

Figura A1.25: espectro C13 RMN del compuesto (C17)2[bisMPA,G1]-[bisGMPA,G3] (NHBoc)8 
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Figura A1.26: Resultado de MS (MALDI-TOF) de (C17)2[bisMPA,G1]-[bisGMPA,G3] 

(NHBoc)8 

 

Figura A1.27: espectro FTIR del compuesto (C17)2[bisMPA,G1]-[bisGMPA,G3] (NHBoc)8 

0

20

40

60

80

100

5001000150020002500300035004000

Tr
an

sm
it

an
ci

a 
(%

)

Número de onda (cm-1)

Espectro FTIR de (NH4
+TFA-)8[bisGMPA,G3]-

[bisMPA,G1](C17)2

(m/z) 



49 
 

ANEXO 2: Caracterización de los 

nanoagregados 
 

En esta sección se encuentran recogidas todas aquellas figuras que se han generado como 

consecuencia del análisis de las diferentes características de los nanoagregados sintetizados. 

 

Proceso de cuantificación de la isoniazida encapsulada: 
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Figura A2.1: Espectro UV-vis de la isoniazida. 

Figura A2.2: Recta de calibrado de la isoniazida. 
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Proceso de cuantificación de la rifampicina por espectrofotometría UV-Vis: 

 

 

 

 

 

 

 

 

 

 

 

 

Recopilación de algunas de las imágenes de TEM más representativas: 

DENDRÍMERO SIN FÁRMACOS 

 
Imagen A2.1. Micelas producidas por el dendrímero en solitario en disolución acuosa 
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Figura A2.3: Espectros de absorción de la rifampicina. 
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DENDRÍMERO + ETAMBUTOL 

 
Imagen A2.2. Disolución de etambutol encapsulado. Pueden observarse micelas aisladas y 

pequeños agregados. 

 

DENDRÍMERO + ISONIAZIDA 

 
Imagen A2.3. Gran agregado encontrado en la disolución de isoniazida encapsulada. 
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DENSRÍMERO + ESTREPTOMICINA 

 
Imagen A2.4. Disolución de estreptomicina encapsulada. Se observan de forma mayoritaria 

pequeñas micelas pero también algunos agregados de éstas. 

 

DENDRÍMERO + BEDAQUILINA 

 
Imagen A2.5. Grandes micelas localizadas en la muestra de bedaquilina encapsulada. 

También se observan micelas de tamaño similar al de los otros fármacos. 
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DENDRÍMERO + RIFAMPICINA 

 
Imagen A2.6. Preparación de rifampicina encapsulada. Se pueden identificar algunos 

nanoagregados con forma tipo gusano, así como micelas de un diámetro superior a los 

anteriormente vistos. 

 

 

Evaluación de la citotoxicidad del dendrímero contra la línea celular Hep G2. 
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Figura A2.4: Citotoxicidad del dendrímero en disolución acuosa frente a la línea celular Hep 

G2. 


