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Resumen 

La resistencia a antimicrobianos se ha convertido a día de hoy, en uno de los 

mayores problemas de la salud pública mundial. Los tratamientos mono-terapia con 

los antibióticos disponibles actualmente no cubren con éxito las infecciones de 

bacterias resistentes. Dado que el descubrimiento de nuevos compuestos no es lo 

suficientemente satisfactorio, se plantean otras alternativas como el uso de terapias 

combinadas. Se han encontrado en diferentes estudios interacciones entre 

antibióticos que presentan efectos sinérgicos, consiguiendo inhibir el crecimiento de 

microorganismos con dosis menores que las que se requieren por separado. 

En este trabajo, partimos de 16 antibióticos disponibles en la clínica, con los que 

se ensayaron 128 combinaciones posibles contra una cepa de Staphylococcus aureus 

sensible a meticilina. Con un estudio de interacciones basado en la CIM se hallaron 

17 interacciones prometedoras entre combinaciones de dos antibióticos. Dichas 

combinaciones se validaron por estudios de cinéticas de muerte, consiguiendo un 

total de cinco sinergias y un antagonismo. Entre éstos resultados cabría remarcar 

como contribución novedosa de este trabajo de TFG el descubrimiento del efecto 

sinérgico entre bacitracina y linezolid, y efecto antagónico entre moxifloxacina y 

linezolid. 

Estos estudios deben completarse en un futuro con ensayos in vivo en modelos 

animales, así como estudios in vitro frente a cepas resistentes a meticilina (MRSA) 

con una incidencia relevante en la clínica. 

Abstract 
 
     Nowadays, antimicrobial resistance has become one of the biggest public health 
problems in the world. The ordinary mono-therapy antibiotics treatments do not cover 
successfully the infections caused by resistant bacteria. Due to the fact that the 
discovery of new compounds is not satisfactory enough, other alternatives are 
proposed like the use of combination therapies. Interactions between antibiotics that 
have synergistic effects have been found in different studies, getting inhibited the 
growth of microorganisms with lower doses than the other doses that are required 
separately.                              

In this work, we started with 16 antibiotics available in the clinic, and we tested with 

these until 128 possible combinations against a strain of sensitive-methicillin 

Staphylococcus aureus. With an interaction study based on the Minimal Inhibitory 

Concentrations (MIC), 17 interactions were found between combinations of two 

antibiotics. These combinations were validated by studies of kill-kinetics, achieving a 

total of five synergies and one antagonism. Among these results we should highlight 

like a novel contribution of this TFG, the discovery of a synergistic effect between 

bacitracin and linezolid, and an antagonistic effect between moxifloxacin and linezolid. 

 In the future, these studies should be completed with in vivo tests in animal 

models, as well as studies in vitro against methicillin resistant strains (MRSA), whit a 

relevant clinical incidence. 
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1- Introducción 

1.1) Staphylococcus aureus 

Staphylococcus aureus  (o estafilococo dorado), es una bacteria anaerobia 

facultativa, gran positiva, catalasa positiva, inmóvil y no esporuladora. Un coco de 

0,5-1 µm de diámetro, que se encuentra formando racimos con otros cocos.  Posee 

una característica pared celular con un 50% de péptidoglicano, compuesto por N-

acetilmuránico y N-acetilglucosamina. (1) Crece rápidamente en todos los medios bajo 

condiciones aerobias o microaerófilas. Puede diferenciarse por su pigmentación  

amarilla debida a la estafiloxantina, un carotenoide unido a su membrana, que 

además elimina las especies reactivas de oxígeno protegiendo a la bacteria de ser 

fagocitada.(2) Otra característica distintiva es su capacidad de coagular sangre gracias 

a la secreción de coagulasa  y una proteína de unión al factor von  Willebrand. (3) 

Podemos encontrarla ampliamente distribuida por todo el mundo. Por su forma 

de vida es capaz de detectar diversas señales y usando complejas redes reguladoras 

adaptarse a distintos entornos o modular su virulencia. (4) Un 20-30% de las personas 

son portadores de S. aureus, es decir, están constantemente colonizados (pero no 

infectados) en piel y fosas nasales. Aunque la colonización no implica enfermedad, 

aumenta el riesgo de  infección ya que el reservorio es suficiente para introducirse en 

el huésped cuando su sistema inmunitario está comprometido, llegar a tejidos 

blandos, sistema respiratorio y torrente sanguíneo causando complicaciones.(5). 

Las infecciones que puede causar son muy variadas, yendo desde cutáneas, 

consideradas benignas, hasta otras de riesgo vital (como pueden ser abscesos 

profundos, sepsis, endocarditis o neumonía). En estos abscesos producen unos 

exudados purulentos por medio de los que diseminan a nuevos huéspedes. Es por 

eso que se considera la principal causante de enfermedades nosocomiales, 

contraídas por pacientes ingresados en ambiente intra-hospitalario, donde por medio 

de heridas quirúrgicas penetra en sangre al contactar con material contaminado, otros 

pacientes o el propio personal sanitario. (1) Luego los pacientes hospitalizados e 

inmunocomprometidos están más expuestos a tales infecciones. (6) 

Pero dichas infecciones no solo se deben a malas prácticas sanitarias. En los 

últimos años el espectro de la enfermedad ha cambiado, y ahora están presentes 

entre la población no hospitalizada debido a factores de virulencia particulares y 

presiones selectivas que acaban generado resistencias a tratamientos, haciendo las 

infecciones cada vez más graves y frecuentes. Como S. aureus crece rápidamente en 

múltiples tipos de medio, es una de las principales especies susceptibles a generar 

resistencia y además trasmisible persona a persona, vamos a centrarnos en ésta 

bacteria de gran interés en salud pública. (7). 

1.2) Tratamientos monoterapia 

La opción óptima para tratar infecciones por S. aureus es el uso de antibióticos, 

productos metabólicos naturales que pueden inhibir el crecimiento de otros 

microorganismos, es decir, tienen actividad antimicrobiana. (8) Lo malo de estos 

tratamientos antimicrobianos es que conforme pasa el tiempo pueden ir perdiendo su 

eficacia, ya  que son capaces de adquirir resistencia. (9) 
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En un inicio, el tratamiento de elección contra infecciones de S. aureus era la 

penicilina (β-lactámico que inhibía la síntesis de la pared celular). Pero debido a su 

uso abusivo actualmente el 80% de S. aureus es resistente a penicilina. Con cambios 

químicos en la estructura, se desarrollaron las penicilinas derivadas resistentes 

a penicilasas (oxacilina, nafcilina, dicloxacilina y meticilina), que junto con los 

aminoglicósidos (inhiben la síntesis proteica al bloquear el ribosoma), (10)  fueron los 

fármacos de elección ante resistencia a penicilinas, y los siguientes en recomendarse. 

 
Actualmente, la vancomicina (glicopéptido que inhibe la síntesis del 

peptidoglicano que compone la pared celular) y la daptomicina (lipopéptido cíclico 

natural que se une a la membrana bacteriana causando su despolarización) son los 

únicos antibióticos aprobados por la FDA para combatir S. aureus resistentes a β-

lactámicos, constituyendo las monoterapias de primera línea.(11) Se ha visto que la 

daptomincina tiene mejores resultados a largo plazo que la vancomicina, aun así la 

vancomicina muestra mayor eficacia que otros glicopéptidos. Sin embargo, se ha 

observado que cada vez se necesita más concentración de éstos para inhibir el 

crecimiento, lo que puede limitar la terapia por la aparición de nuevas resistencias. 

 
Agentes más nuevos como linezolid y ceftarolina se han utilizado de forma 

individual para el tratamiento contra S. aureus. Linezolid (oxazolidinona que inhibe la 

síntesis proteica) es una opción efectiva para ciertos tipos de infección, pero debido a 

sus propiedades bacteriostáticas, no se considera tratamiento de primera línea. (12) 

Mientras que la ceftarolina (cefalosporina semi-sintética que actúa contra la síntesis 

de la pared celular en bacterias con cierta resistencia a otros tratamientos), (13) ya está 

aprobada para infecciones complicadas de piel y tejidos blandos. 

 
Problema: las resistencias 

La resistencia a los antimicrobianos (AMR) se ha convertido en uno de los 

principales problemas de salud pública del siglo XXI que amenaza la prevención y 

el tratamiento efectivo de infecciones bacterianas, que ya no son susceptibles a los 

medicamentos comunes. Frente a esta realidad, la necesidad de actuar para evitar 

una crisis global es imperativa, por eso, la Organización Mundial de la Salud ha 

reconocido la necesidad de un esfuerzo coordinado para contener las AMR ya 

existentes y frenar la aparición de otras nuevas. Para ello es necesario fortalecer los 

sistemas de salud y vigilancia; mejorar el uso de antimicrobianos; prevenir y controlar 

las infecciones; desarrollar una intensa labor de búsqueda e identificación de nuevos 

antimicrobianos e implementar técnicas/protocolos para evaluar la efectividad. (14) 

 

En Europa, el número de muertes debidas a bacterias resistentes a múltiples 

fármacos se estimó entre 25000 y 400000 (15). Además, el impacto económico de las 

resistencias es difícil de cuantificar, ya que se deben tener en cuenta el costo de 

antibióticos (cuando aparecen resistencias a los antimicrobianos de primera línea, el 

tratamiento debe cambiarse a otros de segunda o tercera línea, que son más caros), 

equipos especializados, hospitalización prolongada y procedimientos de aislamiento.  

 

Se identifican cuatro sectores involucrados en el desarrollo de la resistencia a 

los antibióticos: la medicina humana en la comunidad y en el hospital, la producción 

animal (el uso de éstos como promotores del crecimiento), la agricultura, y el 

https://es.wikipedia.org/wiki/Penicilina
https://es.wikipedia.org/wiki/Penicilasa
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compartimento ambiental (el suelo y agua supone un medio de transporte de muchas 

resistencias) (15). Muchos estudios indican falta de conocimiento sobre los antibióticos 

en la población general, sobre todo de su actividad y sus efectos adversos. Tanto el 

uso excesivo como inapropiado de antibióticos (elección o dosificación inadecuada) 

contribuyen al aumento de las resistencias a los antibióticos. (16) 

 

La resistencia a los antibióticos es un fenómeno natural, constante y evolutivo, 

pero que se puede ver acelerado cuando los microorganismos están expuestos a 

demasiados antibióticos. El desarrollo de resistencias puede ocurrir como un 

mecanismo de defensa (disminuyendo la eficacia del antibiótico) o como mecanismo 

de competencia, cuando la presión selectiva del antibiótico mata a las bacterias 

susceptibles o inhibe su crecimiento, mientras que las que son resistentes de forma 

natural o intrínseca tienen una mayor probabilidad de sobrevivir y multiplicarse. (17) 

 

Pero éste problema existe desde hace tiempo. La penicilina se aplicó 

clínicamente a gran escala, y tras varios años de uso apareció el S. aureus resistente: 

PRSA. Las cepas PRSA llevan un gen que codifica para la penicilinasa, enzima que 

hidroliza el anillo β-lactama de la Penicilina para inactivar su actividad. Éstas PRSA se 

controlaron con la introducción de meticilina resistente a β-lactamasas. Pero poco 

después de su uso rutinario como monoterapia, se informó de la existencia de MRSA, 

un S. aureus resistente a meticilina y a otros β-lactámicos, incluidas oxacilina, 

dicloxacilina, y cefalosporinas. Por resistir múltiples fármacos, MRSA se considera 

una superbacteria, un patógeno más agresivo, responsable de muchas de las 

infecciones nombradas anteriormente, pero con peor pronóstico y mayor prevalencia. 

La vancomicina se usó como último recurso en el tratamiento de infecciones por S. 

aureus. Pero del mismo modo que con meticilina, su uso monoterápico generó una 

cepa resistente: VISA. La propagación de las cepas PRSA, MRSA o VISA provocó el 

desarrollo de nuevos antibióticos. Sin embargo, ya se ha informado de la existencia 

de cepas resistentes a muchos de los antibióticos recientemente comercializados. (19) 

 

1.3) Descubrimiento de nuevos fármacos y reposicionamiento 

Ante las nuevas resistencias emergentes aparecen dos posibles alternativas a los 

tratamientos monoterapia; la búsqueda de nuevas dianas para antibióticos, o la 

búsqueda de nuevos compuestos químicos eficaces.  

 
La búsqueda de antibióticos existe desde hace muchos años. Es por eso que 

tenemos técnicas clásicas de búsqueda como la modificación química de productos 

activos ya caracterizados (penicilinas semisintéticas mejoradas) (19) o “screenings” de 

productos naturales a partir del estudio de microorganismos ambientales (como las 

bacteriocinas, péptidos antimicrobianos sintetizados por otros microorganismos).(20) 

También disponemos de nuevos métodos de búsqueda que han aparecido gracias al 

desarrollo de la biología molecular y la genética, permitiendo encontrar dianas 

moleculares comunes entre diferentes microorganismos y ausentes en el ser humano, 

consiguiendo así antibióticos de amplio espectro y selectividad por la diana. Pero 

estos estudios denominados “target-based approach” (encontrar una diana para 

inhibirla) ofrecen pocos resultados. (21) El mayor inconveniente de éste diseño 

racional de antibióticos es que un buen inhibidor de diana no tiene por qué presentar 

necesariamente actividad antimicrobiana, de modo que al probar su eficacia frente al 
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microorganismo entero, este no es capaz de inhibir el crecimiento de la célula, ya que 

influye todo el entorno celular en la eficacia final. Por eso, se ha regresado a los 

métodos clásicos como los “screening” de células enteras (whole-cell) los cuales 

seleccionan directamente el antimicrobiano entre los candidatos, pero no permiten 

saber cuál es exactamente la diana del compuesto ni su mecanismo de acción. 

 

Como vemos, encontrar un nuevo antimicrobiano es una tarea difícil, y la industria 

farmacéutica no suele interesarse por tal búsqueda debido a todas sus limitaciones: 

regulaciones muy estrictas, dificultades técnicas, procesos laboriosos o mucho tiempo 

de investigación. Solamente se han aprobados unos 40 antibióticos por año en los 

últimos cinco años, y solo 2 clases nuevas se han comercializado en 30 años. (22) 

 

La tasa de éxito del descubrimiento y desarrollo de nuevos fármacos no aborda 

como gustaría la necesidad clínica, por eso existen otras alternativas para atender tal 

necesidad, como la reutilización de compuestos existentes. Este método se denomina 

reposicionamiento o “repurposing” (23), donde medicamentos ya aprobados han 

ganado un nuevo impulso por la identificación de su efectividad en nuevas terapias 

para las que en un principio no estaban destinadas. Para dar con estos compuestos 

se hacen cribados de colecciones de cientos de compuestos que se encuentran en el 

mercado. En el caso de encontrar uno que inhiba al microorganismo, se le daría una  

nueva utilidad. La ventaja de estas técnicas es la posibilidad de acortar los tiempos 

de búsqueda, ya que no es necesario repetir ensayos preclínicos ni clínicos de fase I, 

éstos ya se realizaron en los primeros estudios del compuesto, consiguiendo reducir 

así 10-17 añosa 3-8 años.(24) El inconveniente del reposicionamiento es que muchos 

compuestos tienen poca potencia para la nueva indicación que se les concede; esto 

limitaría su aplicación, ya que se necesitarían concentraciones demasiado elevadas 

para conseguir inhibir el crecimiento del microorganismo. (25) 

1.4) Tratamiento combinado: Las sinergias 

Una estrategia alternativa para aumentar la tasa de éxito del reposicionamiento y 

combatir las resistencias es la combinación de fármacos, de 2 o más compuestos con 

diferentes mecanismos de acción conocidos, complementarios y compatibles. (26) 

El propósito de estudiar combinaciones antibióticas es determinar si existe un 

efecto sinérgico, es decir, que la actividad conjunta de la mezcla binaria sea mayor 

que la suma de actividades por separado, de modo que en presencia el uno del otro 

se potencia la acción y se necesite menos dosis total para alcanzar el efecto inhibidor 

que si se usasen por separado, reduciendo de este modo los potenciales efectos 

secundarios como problemas de citotoxicidad. Pero el efecto de la combinación 

también puede ser indiferente o incluso antagónico; cuando la suma de actividades 

individuales es mayor que la actividad conjunta. (27) 

Cabe resaltar que las interacciones que se encuentran ocurren in vitro, y la 

significancia clínica puede ser todavía incierta ya que no tienen en cuenta las 

fluctuaciones de la concentración antibiótica en el organismo (la farmacocinética), ni la 

actividad del compuesto activo en el lugar de acción (la farmacodinámica). (28) Pero de 

todas formas, estos estudios son esperanzadores para el tratamiento de 

enfermedades infecciosas, y de interés en salud pública. 
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Se ha visto necesario el desarrollo de técnicas de muestreo experimental y de 

puntuación, que evidencien si ocurre interacción entre compuestos antibióticos y que 

midan la eficiencia de forma discriminatoria.(29) Una de las pruebas más utilizadas y 

sencillas es la titulación de tablero de ajedrez (Checkerboard), que representa 

gráficamente el comportamiento conjunto de 2 compuestos.(30) En este estudio, se 

introduce el cultivo bacteriano de interés  a una concentración determinada, y se 

hacen diluciones de dos antibióticos, incluyendo valores mayores y menores de la 

CIM (concentración inhibitoria mínima capaz de evitar el crecimiento) determinada 

previamente para cada agente por separado. Una vez hallada las nuevas CIMs del 

compuesto A en presencia de B y viceversa se determina la FIC (concentración 

inhibitoria fraccional), una expresión matemática que se usa para determinar el tipo de 

efecto resultante de la combinación. (31) 

 

 

Figura 1(referencia 30 de la bibliografía): Técnica Checkerboard o tablero de ajedrez. Arriba las 

gráficas de diluciones de los antimicrobianos A y B. Abajo  representaciones mediante isobologramas de 

los 3 tipos de interacción que podemos encontrar; indiferencia (o no interacción), sinergia y antagonismo, 

según el perfil de la curva.  

 

Con las gráficas de las FIC, podemos ver el perfil de la interacción. Una curva con 

forma cóncava es característica de sinergia, con forma convexa característica de 

antagonismo, pero si en lugar de una curva obtenemos una recta de pendiente 

negativa, se debe a que la combinación de antibióticos no presenta interacción. 

 

Una ventaja de estos estudios es la inclusión de miles de compuestos que ya 

están clínicamente aprobados así como la reintroducción de compuestos que habían 

perdido su eficacia. En estos estudios se pueden ensayar  hasta 100 combinaciones 

de dosis diferentes, reduciendo así el tiempo que requiere encontrar un compuesto y 

su aprobación. 
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2- Objetivo 

 

Con la aplicación de técnicas que permiten estudiar las posibles interacciones 

entre diferentes compuestos (Synergy Screening) se persiguen los siguientes 

objetivos: 

1) Realizar cribados de compuestos aprobados en la clínica en búsqueda de 

combinaciones sinérgicas contra S. aureus sensible a meticilina. 

2) Caracterizar y verificar in vitro las interacciones de interés encontradas en el 

cribado anterior. 

3- Materiales y métodos 

 

El screening o búsqueda de interacciones consta de 4 etapas, a lo largo de las 

cuales nos quedamos con menos candidatos, hasta dar con aquellos que cumplen las 

características de sinergia.   

1. Calculamos las concentraciones mínimas inhibitorias de cada compuesto 

por separado para nuestra cepa, las CIM.  

 

2. Realizamos una primera aproximación del cribado sinérgico en la que se 

ensayan concentraciones concretas de antibiótico 

 

3. Caracterizamos a más detalle las interacciones encontradas, donde se 

prueba un rango de concentraciones más amplio mediante Checkerboards.  

  

4. Verificamos el efecto sinérgico y determinamos si nuestras combinaciones 

son bactericidas o bacteriostáticas usando cinéticas de muerte. 

 

Figura 2: Cascada de progresión del estudio de combinaciones usada en este proyecto. 

3.1- Antibióticos utilizados 

Los antibióticos utilizados en éste trabajo fueron obtenidos de la casa comercial 

Sigma y pertenecen a la colección de compuestos del Grupo de Genética de 

Micobacterias. Los compuestos fueron disueltos a una concentración madre o stock 

de 10 mg/mL en sus respectivos disolventes (DMSO, H2O o etanol) y guardados a       

-20ºC hasta su utilización. 

Los antibióticos (16 en total) fueron seleccionados con el objetivo de obtener la 

mayor representación posible de familias antibióticas y mecanismos moleculares de 

acción, para tratar de cubrir el mayor número posible de dianas bacterianas a las que 

1) Cálculo de CIM 
individuales

2) Búsqueda de 
efecto sinérgico

3) Checker-
boards

4) Cinéticas de 
muerte
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atacar. Se pueden encontrar más detalles referentes a los compuestos en la Tabla  

del Anexo 1. 

3.2- Materiales y medios de cultivo 

Se han empleado medios Mueller Hinton, especialmente líquido, pero también se 

hizo uso de Mueller Hinton y LB sólidos (con 1,5% de agar). Para la preparación de 

este MHII se siguieron las instrucciones de la casa comercial FLUKA, y 

posteriormente se añadieron sales de CaCl2  a 10g/L y MgSO4 a 10g/L (550 y 300 μL 

respectivamente por cada 250 mL de medio) para enriquecerlo y conseguir las 

características deseadas. Respecto al medio LB, en la tabla del Anexo 2 podemos 

encontrar la preparación (tanto del líquido como del sólido). 

 Todo el material utilizado era estéril. Las manipulaciones de las bacterias se 

realizaron en campana de flujo vertical para evitar cualquier contaminación, y en un 

nivel de bioseguridad P2. Y la incubación de S. aureus se realizó en estufa a 37ºC. 

3.3- Cepa de trabajo y preparación del material celular. 

Partimos de una cepa de Staphylococcus aureus. Se trata de la cepa CECT 794 

de MSSA (sensible a meticilina), que se encuentra congelada a -20ºC con glicerol 

como agente crioprotector.  

A partir de un eppendorf con dicha cepa, tomamos 100µl para incubarlos en medio 

LB a 37ºC. Al día siguiente preparamos alícuotas, en los que mezclamos 300µl del 

inoculo en LB con 700µl de glicerol al 50%. Estas alícuotas serán nuestro material 

celular a lo largo de los experimentos, y lo llamaremos inóculo bacteriano. Es 

importante usar uno por cada experimento, ya que una vez descongelados no pueden 

volver al congelador, sino su viabilidad se vería afectada. 

Para calcular el número de unidades formadoras de colonias (UFCs) que tenemos 

por mililitro cogimos una alícuota e hicimos diluciones seriadas 1/10 en PBS (100μl 

inóculo + 900µl PBS) sembrando las distintas concentraciones en placas de Petri con 

LB-agar, las incubamos a 37ºC y al día siguiente contamos las UFCs. La 

concentración de las cepas que habíamos congelado era de 2’8x108 UFCs/mL   

Sabiendo el número de células que tenemos de partida es más fácil hacer las 

preparaciones para futuros experimentos.  

3.4- Cálculo de las CIM líquidas y sólidas 

A partir de la CIM teórica, calculamos la concentración máxima (Cmax) que vamos 

a estudiar. Con el stock de cada antibiótico preparamos un Mix en el que teníamos 

una concentración de 2xCmax. Para cada antibiótico hicimos un replicado del cálculo. 

En placas de 96 pocillos colocamos MHII de las columnas 2 a 11, los diferentes 

mixes en la columna 1, e hicimos diluciones seriadas 1:2. Una vez tuvimos la placa 

con el gradiente de concentraciones de antibiótico junto al medio, preparamos el 

inoculo, el cual debía tener una concentración de 2x105celulas/mL en 10mL de MHII. 

Inoculadas las placas con 75μL de la preparación, incubamos a 37ºC durante 1 día. 
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Figura 3.1: Preparación de la placa con diluciones seriadas 

1:2 de cada antibiótico. En los pocillos en verde los mixes a 

concentración 2xCmax, en azul el control positivo (medio e 

inóculo) y en rojo el control negativo solo con medio MHII. 

Para valorar si S. aureus había crecido, realizamos 

un ensayo con MTT, una sal de tetrazoleo soluble en 

agua y de color amarillo que al reducirse pasa a 

formazano, un compuesto insoluble y de color violeta. Al 

añadir MTT 5mg/mL con 20% de Tween en cada pocillo 

incubamos durante 1 hora para que se metabolice. Una vez apareció color oscuro en 

aquellos pocillos que presentaban crecimiento microbiano, llevamos las placas al 

espectofotómetro, para medir la absorbancia a 580nm.  

Con las absorbancias, calculamos la absorbancia relativa de cada pocillo respecto 

al control positivo. Para ello aplicamos la siguiente fórmula: 

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑖𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑎 =
Absorbancia del pocillo ∗ 100

Absorbancia control positivo − Absorbancia residual del medio
 

La absorbancia del medio por sí solo nos la proporcionó el control negativo. 

Con las absorbancias relativas se determinó qué pocillo presentaba la CIM, ya que 

establecimos que por debajo de un 20% de absorbancia, el antibiótico había inhibido 

el crecimiento. Sabiendo el pocillo sacamos el valor de la CIM (μg/mL). 

Repetimos el cálculo de CIM pero ahora en medio sólido (con agar) para 

comprobar si los valores hallados son concisos y reproducibles.  

En este caso usamos placas de 24 pocillos, donde añadimos 2mL de MHII-agar 

por pocillo y dejamos que solidificase. Preparamos diluciones seriadas de los stocks 

de antibióticos. Como sabemos la Cmax de cada antibiótico, calculamos qué volumen 

del stock coger para en un volumen final de 2mL tener la concentración deseada. 

Añadimos éstos volúmenes de más concentrado (pocillo 1) a más diluido (pocillo 11). 

El pocillo 12 será el control positivo sin antibiótico.  

En este caso el inoculo tenía 103células/mL, y como partíamos de 2x108células/mL 

primero hicimos una dilución 1:10, y luego una 1:200 en un volumen final de 1mL. De 

este mililitro añadimos 10µL a cada pocillo. Incubamos las placas a 37ºC, y al cabo de 

3 días comprobamos a simple vista en qué pocillos había aparecido crecimiento. 

3.5- Búsqueda de efecto sinérgico 

Vamos a calcular la CIM de cada compuesto (B o secundario) pero en este caso 

en presencia de una concentración fija de otro compuesto (A o primario). Buscamos 

una reducción en la CIM del compuesto B de hasta 4 unidades en presencia del A.  

Preparamos 3 placas de diluciones seriadas para cada antibiótico (compuestos B) 

en placas de 96. A la primera de éstas únicamente añadimos inóculo bacteriano (el 

control), a la segunda  una concentración 1/4 de la CIM del compuesto A, y a la 

tercera 1/8 de la CIM. Como tenemos las CIM en medio líquido, pudimos sacar cuanto 

sería 1/4 y 1/8 de las CIM, y el volumen de stock necesario para alcanzar esas 
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concentraciones. Respecto al inóculo bacteriano, usamos una concentración de 

2x105celulas/mL en 10mL de MHII, y de ésta preparación añadimos 75 μL por pocillo.  

 Figura 3.2 (referencia 36 de la bibliografia): 

Representación de las 3 placas con diluciones del 

compuesto secundario, el crecimiento bacteriano en 

rosa y la inhibición en azul, con una reducción de CIM 

en la dilución 7 (rodeado en negro). Arriba sin 

compuesto primario, en medio con 1/8xCIM del PC, y 

abajo con 1/4xCIM del PC.  

Incubamos a 37ºC y al día siguiente 

añadimos MTT con 20% de Tween para leer las 

placas. A la hora pasamos al espectrofotómetro, 

donde medimos la absorbancia a 580nm.  

Sacamos los valores CIM para cada antibiótico a partir de la absorbancia, y 

observamos las variaciones de estos valores. Lo que buscamos fue una situación en 

la que la CIM del compuesto B en presencia del A bajase al menos 4 veces respecto 

a la CIM del compuesto B solo, lo cual determinaría una interacción con efecto 

sinérgico. Pero del mismo modo que podía ocurrir reducción, la CIM podía aumentar, 

lo cual también era interesante. Si el aumento era de más de 4 unidades se 

consideraría efecto antagónico. Con las siguientes fórmulas hicimos el cálculo para 

todas las combinaciones antibióticas ensayadas: 

 𝑆𝑖𝑛𝑒𝑟𝑔𝑖𝑎:  
CIM compuesto B sin compuesto A

CIM compuesto B con  
1

4
  o  

1

8
  del compuesto A

 > 4 

𝐴𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑚𝑜:  
CIM compuesto B sin compuesto A

CIM compuesto B con  
1

4
  o  

1

8
  del compuesto A

  < 0,25 

Para tener una representación visual de las interacciones encontradas, 

representamos el porcentaje de crecimiento bacteriano frente a la concentración 

(μg/mL) del compuesto secundario (B) en las 3 situaciones; sin compuesto primario 

(A), en presencia de una concentración fija 1/4xCIM y 1/8xCIM de A.  

3.6- Checkerboards 

Con las combinaciones que según el experimento anterior presentaban interacción 

mas las que decidimos continuar caracterizando (19 en total), hicimos el experimento 

checkerboard o tablero de ajedrez, en el que ya no enfrentábamos un antibiótico 

frente a otro de dosis fija, sino que se cruzaban múltiples dosis de ambos antibióticos, 

en búsqueda de una sinergia más detallada. 

Figura 3.3 (referencia 37 de la bibliografía): Técnica 

checkerboard, con diluciones seriadas en horizontal del 

compuesto A (placa 1), en vertical del compuesto B 

(placa 2) y la combinación de A y B (placa 3).  

En este caso los Mixes añadidos en las 

columna y fila 1 estaban a una concentración  

4xCIM, ya que íbamos a hacer 2 diluciones 1:2. 
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Para juntar los 2 compuestos en la tercera placa tomamos 50μL de cada pocillo, y 

los colocamos manteniendo las mismas posiciones que la placa de origen, reduciendo 

así la concentración a 2x. El inóculo bacteriano estaba a concentración de 

2x105células/mL, en 10mL de MHII. Al añadir a cada pocillo 100μL de la preparación 

de inóculo, redujimos la concentración del antibiótico a 1xCIM. 

Incubamos a 37ºC durante un día, y antes leer las palcas con MTT como en los 

experimentos anteriores, hicimos una réplica en placa para calcular la CBM 

(concentración bactericida mínima capad de destruir el 99,9% del inóculo). Para ello 

cogimos un pequeño volumen de cada pocillo y los pasamos a una placa de LB-agar 

manteniendo las posiciones. Tras incubar estas replicas sin antibiótico durante un día 

a 37ºC, le añadimos a cada pocillo Resazurina, un indicador redox que permite 

detectar la viabilidad de las células por la conversión de una tinción azul a un color 

rosáceo debido a la reducción de dicho compuesto. Cuando terminó de metabolizarse 

el compuesto, analizamos las palcas a simple vista para hallar la CBM. 

La CBM nos permitió saber si el antibiótico tenían efecto bacteriostático (solo 

inhibía el crecimiento) o bactericida (mataba a las bacterias), ya que si el compuesto 

Resazurina se reducía y ocurría el cambio de color indicaba que las bacterias habían 

recuperado su crecimiento y que el antibiótico era bacteriostático. 

Respecto a las placas que leímos con MTT, calculamos las CIM. Pero para tener 

un verdadero criterio de exclusión y elegir las combinaciones de antibióticos correctas, 

utilizamos un método de puntuación basado en la FIC (concentración inhibitoria 

fraccional) que comparaba la CIM de un compuesto en presencia de otro frente a su 

CIM cuando se encuentra solo (en el control). Calculamos la FIC del compuesto B, y a 

estas le sumamos la FIC del compuesto A. Las fórmulas usadas son las siguientes: 

𝐹𝐼𝐶 (𝐵) =
CIM compuesto B en presencia del compuesto A

CIM compuesto B solo
  

𝐹𝐼𝐶 (𝐴) =
CIM compuesto A en presencia del compuesto B

CIM compuesto A solo
   ;    𝐹𝐼𝐶𝐼 = 𝐹𝐼𝐶 𝐴 + 𝐹𝐼𝐶 𝐵 

Al sumar FIC B y FIC A obtuvimos un valor FICI (fracción inhibitoria índice) para 

cada combinación, y según dicho valor se asignaba directamente el tipo de 

interacción que ocurría en la combinación por un criterio estandarizado (30). 

Tanto FIC A como B van a variar según la dosis del pocillo, luego calculamos las 

FIC A y B para cada dosis de compuestos A y B, y representamos como varia una 

respecto a la otra, obteniendo el perfil de interacción. 

3.7- Cinéticas de muerte 

Una vez acotado el estudio a 6 combinaciones (5 sinergias y 1 antagonismo), 

pasamos a caracterizar mediante cinéticas de muerte la interacción de las 

combinaciones a largo plazo frente cultivos bacterianos de S. aureus. 

En un frasco de cultivo, el Flask madre (control inicial a tiempo cero),  pusimos 

60mL de MHII y añadimos 0,03mL de inóculo para alcanzar una concentración de 

105células/mL. Con una pequeña muestra del cultivo, hicimos diluciones seriadas 1:10 

en PBS. Sembramos estas diluciones en placas Petri con LB-agar y las incubamos a 
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37ºC para contar al día siguiente las UFCs (unidades formadoras de colonias) que 

tenía el control inicial. 

Con el resto del Flask madre preparamos pequeños Flask, y a cada uno le añadimos 

el volumen de antibiótico correspondiente para alcanzar la concentración deseada 

(1/5 de la CIM o 1x la CIM). Estos Flask los incubamos durante un día, tomando 

controles del crecimiento bacteriano a lo largo de diferentes tiempos (t= 1, 3, 6, 24 y 

48horas).  *En el caso del antagonismo, en lugar de concentraciones 1/5 de la CIM, 

pusimos concentración 5 veces mayor que la CIM. 

 

Para los controles se necesitó por cada pareja de antibióticos, una placa de 96 

pocillos con  PBS y una placa de cultivo rectangular con LB-agar. 

 Inoculamos en los diferentes pocillos de la columna 1 una muestra de cada Flask, 

e hicimos diluciones seriadas 1:10 con el PBS que habíamos añadido a la placa. 

Cogimos un pequeño volumen de cada pocillo para sembrarlo en la placa de LB-agar, 

manteniendo el orden de los pocillos y con cuidado de que las gotas no se mezclasen 

(estas placas de siembra en agar carecían de pocillos). Incubamos las placas a 37ºC 

para contar al día siguiente el número de UFCs que había en cada fila de la réplica, y 

por lo tanto en cada Flask. A las 3 horas de comenzar el experimento, repetimos el 

proceso con los mismos Flask para tener el número de UFCs a otro tiempo. Y una vez 

pasadas 6, 24 y 48 horas volvimos a repetir el proceso. De este modo caracterizamos 

el crecimiento bacteriano ante diferentes combinaciones de antibiótico durante 48 

horas de contacto con el cultivo. 

Conociendo las UFCs que había a cada tiempo y en cada Flask, calculamos el 

logaritmo en base 10 de la media de UFCs, y lo representamos frente al tiempo 

obteniendo así las cinéticas de muerte. Las fórmulas usadas fueron: 

UFC/mL =
 UFC media 

Volumen plaqueado (μL)
 x 

1000 μL 

1mL
         log10 UFC/mL = x (valor entre 0 y 10)  

4- Resultados 
 

4.1- Cálculo de las CIM líquidas y sólidas 

Por medio de las absorbancias pudimos saber el pocillo que tenia la CIM. Como 

conocíamos la dilución de ese pocillo, y la concentración que habíamos puesto 

hallamos el valor CIM (µg/mL) para cada antibiótico. 

Flash control 5mL MHII y 0,03mL inoculo bacteriano (control) 

Flash 1/5 A 5mL MHII y 0,03mL inoculo bacteriano + compuesto A a 1/5 de su CIM 

Flash 1x A 5mL MHII y 0,03mL inoculo bacteriano + compuesto A a su concentración CIM 

Flash 1/5 B 5mL MHII y 0,03mL inoculo bacteriano + compuesto B a 1/5 de su CIM 

Flash 1x B 5mL MHII y 0,03mL inoculo bacteriano + compuesto B a su concentración CIM 

Flash 1/5A + 1/5B 5mL MHII y 0,03mL inoculo bacteriano + compuestos A y B a 1/5 de sus  CIMs 

Flash 1xA + 1xB 5mL MHII y 0,03mL inoculo bacteriano + compuestos A y B a sus concentraciones CIMs 
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CIM en líquido: Antibiótico CIM (µg/mL) Antibiótico CIM (µg/mL) 

 
Moxifloxacina 0,023 Minociclina 1 

 
Bacitracina 16 Amikacina 5 

 
Amoxicilina 0,5 Estreptomicina 50 

 
Cloxacilina 0,31 Rifampicina 0,0062 

 
Econazol 5 Cloranfenicol 2 

 
Trimetoprim 10 Vancomicina 0,31 

 
Linezolid 1,25 Meropenem 0,18 

 
Gentamicina 0,31 Tetraciclina 0,5 

 

Tabla 4.1: Concentraciones inhibitorias mínimas de cada uno de los antibióticos que 

hemos probado contra nuestra cepa de S. aureus en Mueller Hinton II líquido. 

Respecto a las CIM sólidas, valoramos en qué 

pocillo ocurría la inhibición de crecimiento a 

simple vista. El pocillo anterior al primero en 

presentar un halo de crecimiento era el que 

contenía la CIM. Como sabemos la concentración 

que pusimos en ese pocillo, hallamos la CIM. 

Imagen 4.2: Resultado de una placa de CIM en 

sólido. En rojo los pocillo que contienen la CIM de 2 

antibióticos diferentes.  

CIM en sólido: Antibiótico CIM (µg/mL) Antibiótico CIM (µg/mL) 

 
Moxifloxacina 0,0625 Minociclina 0,093 

 
Bacitracina 5 Amikacina 16 

 
Amoxicilina 0,5 Estreptomicina 5 

 
Cloxacilina 0,0062 Rifampicina 0,62 

 
Econazol 2 Cloranfenicol 5 

 
Trimetoprim 1,25 Vancomicina 0,5 

 
Linezolid 0,37 Meropenem 1,25 

 
Gentamicina 0,25 Tetraciclina 2,5 

 

Tabla 4.3: Concentraciones inhibitorias mínimas de cada uno de los antibióticos que 

hemos probado contra nuestra cepa de S. aureus en medio Mueller Hinton II sólido. 

Vemos que los valores CIM entre el medio líquido y sólido no han cambiado 

mucho, indicándonos la reproducibilidad del cálculo de CIMs. Tomamos estos valores 

como válidos, aunque para futuros experimentos tendremos en cuenta el valor de CIM 

en líquido ya que se realizaran en dicho medio. 

4.2- Búsqueda de efecto sinérgico 

A partir de las absorbancias volvemos a sacar el valor CIM como hicimos 

anteriormente, para cada antibiótico tanto solo como en presencia de otro.  

Tuvimos que reajustar los cálculos, ya que pusimos 1/4 y 1/8 de las CIM que 

habíamos calculado al inicio, pero al hacer un control en éste experimento obtuvimos 

unas nuevas CIM con algunas desviaciones* (en su mayoría, habían aumentado), por 
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lo que las concentraciones que habíamos inoculado en algunos casos, en realidad no 

eran 1/4 y 1/8, sino menores, pudiendo haber perdido alguna interacción sinérgica. 

Este era el caso de los compuestos meropenem o tetraciclina, de los cuales añadimos 

1/8 y 1/16 de la CIM. 

*Los stocks de antibiótico pueden perder actividad con el tiempo si realizamos 

muchos ciclos de congelación y descongelación, necesitando más concentración para 

alcanzar el mismo efecto; motivo por el que algunas CIM pueden aumentar. 

Comparando el valor de CIM de la placa control con las CIM de cada antibiótico en 

presencia de otro, buscamos las combinaciones en las que la CIM del compuesto B 

en presencia del compuesto A baje (o suba) al menos 4 veces su valor.  

 Sinergia: CIM combinación/ CIM control  > 4  

 No interacción: CIM combinación/ CIM control  0,25-4 

 Antagonismo: CIM combinación/ CIM control  < 0,25 

Siguiendo éste criterio, determinamos el tipo de interacción de las 128 combinaciones 

ensayadas y obtuvimos la siguiente tabla: 

 

Tabla 4.4: Caracterización del tipo de interacción que ocurre en cada combinación. En 

horizontal el compuesto A (añadido a concentración fija) y en vertical el compuesto B. En 

colores y siglas se indica el tipo de interacción, siendo en verde (Sy) efecto sinérgico, en 

amarillo (NI) no ocurre interacción, y en rojo (An) efecto antagónico.  

Los valores CIM obtenidos para cada combinación y la comparación de éstos, que 

nos permitió elaborar la tabla anterior, pueden encontrarse en las Tablas del Anexo 3. 

Según la tabla 4.4 y el criterio explicado anteriormente para considerar efecto 

sinérgico, obtuvimos 13 interacciones diferentes, de las cuales 11 presentaban efecto 

sinérgico y 2 efecto antagónico (descartando no interacciones). Pero además 

añadimos cuatro combinaciones más con los que teníamos duda y decidimos 

continuar los experimentos con ellas. En total las 17 combinaciones de la tabla de a 

continuación pasaron a la siguiente fase: 
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   Combinación 

 

 Moxifloxacina + Econazol, Bacitracina + (Econazol/ Linezolid/ Amoxicilina), Cloxacilina + 

(Moxifloxacina/ Bacitracina/ Trimetoprim/ Linezolid), Rifampicina + Cloranfenicol, Minociclina + 

(Amikacina/ Rifampicina/ Cloranfenicol/ Meropenem/ Vancomicina) y Vancomicina + Estreptomicina  

Antagonismo   Moxifloxacina + Linezolid y Cloranfenicol + Vancomicina  

 

Tabla 4.5: Interacciones encontradas en una primera aproximación de la búsqueda de 

efectos sinérgicos. 

Para comprobar visualmente el efecto sinérgico encontrado en estas 

combinaciones, representamos el porcentaje de crecimiento bacteriano obtenido  para 

cada antibiótico en 3 situaciones: solo, en presencia de 1/4 y de 1/8 de la CIM  de otro 

antibiótico. Las siguientes 4 gráficas muestran los resultados más relevantes: 

 

 

Gráficas 5 A, B, C y D: Representaciones del crecimiento dosis respuesta bacteriano (en 

tanto por ciento) frente a la concentración (μg/mL) del compuesto B en 3 situaciones distintas. 

En azul, únicamente el compuesto B (indicado en el eje X), en verde el compuesto B más 1/8 

de la CIM del segundo antibiótico (compuesto A), y en rojo el compuesto B más 1/4 de la CIM 

del compuesto A. 

La gráfica 5.D (sinergia entre cloxacilina y bacitracina) es la que mejores 

resultados presenta. Conforme aumentamos la concentración del antibiótico inicial 

(bacitracina como compuesto B) va disminuyendo el crecimiento bacteriano, pero esta 

Sinergia 
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disminución se alcanza con menos concentración de bacitracina  al combinarse con 

una concentración fija de compuesto A (1/8 de cloxacilina). La inhibición del 

crecimiento aún es más brusca y rápida con una concentración fija mayor (1/4 de 

cloxacilina). En el caso de bacitracina y linezolid (gráfica 5.C), al reajustar los cálculos 

con las CIM del control, vimos que en realidad las concentraciones añadidas de 

bacitracina eran 1/8 y 1/16 de la CIM, pero a pesar de ello mostraban un buen efecto 

sinérgico. Respecto a las sinergias entre minociclina y cloranfenicol o minociclina y 

amikacina (Gráficas 5.A y 5.B respectivamente) el perfil de las curvas no está tan 

claro, aun así ambas combinaciones muestran que con 1/4 de minociclina, se requiere 

menor cantidad del compuesto B para alcanzar la inhibición bacteriana. 

Analizando las 17 gráficas comprobamos si el efecto sinérgico (o antagónico) se 

cumple. A pesar de que en algunas de ellas no se apreciaba perfectamente el efecto 

sinérgico como en las anteriormente, continuamos los ensayos con las 17 

combinaciones, ya que el cálculo nos estaba indicando que sí había sinergia. 

4.3- Checkerboard 

A partir de las absorbancias volvemos a sacar el valor CIM para cada par de 

antibióticos. Pero en este caso lo que interesa para poder discriminar el tipo de 

interacción es la FICI. Según el valor FICI de cada combinación se asigna el tipo de 

interacción. 

Tabla 4.6: Tipo de interacción estandarizado que 

correspondiente al valor de FICI obtenido. 

Calculamos las FIC de los compuestos A y B 

aplicando las fórmulas ya explicadas, y con la suma de 

éstas hallamos FICI. Un caso concreto sería: 

 Si la CIM de bacitracina fue 64 μg/mL, la de linezolid 2,5 μg/mL, la de 

bacitracina en presencia de linezolid bajó a 8 μg/mL y la de linezolid en 

presencia de bacitracina bajó a 0,3125 μg/mL, la FICI sería la siguiente: 

𝐹𝐼𝐶 𝐵 (𝐿𝑁𝑍) =
0,3125

2,5
= 0,125 

𝐹𝐼𝐶 𝐴 (𝐵𝐶𝑇) =
8

64
= 0,125 

 𝐹𝐼𝐶 𝐴 + 𝐹𝐼𝐶 𝐵 = 𝐹𝐼𝐶𝐼 = 0,25 

Según el criterio estándar establecido, con una FICI menor de 0,5 se trata de sinergia. 

 Si la CIM de linezolid es 2,5 μg/mL, la de moxifloxacina 0,04686 μg/mL,  la de 

moxifloxacina en presencia de linezolid subió a 0,1874 μg/mL y la de linezolid en 

presencia de moxifloxacina fue 1,25 μg/mL, la FICI sería la siguiente: 

𝐹𝐼𝐶 𝐵 (𝐿𝑁𝑍) =
1,25

2,5
= 0,5 

𝐹𝐼𝐶 𝐴 (𝑀𝑂𝑋) =
0,1874

0,04686
= 4 

Valor FICI Tipo de 
interacción 

< 0,5 Sinergia 

0,5-4 No interacción 

>4 Antagonismo 
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𝐹𝐼𝐶 𝐴 + 𝐹𝐼𝐶 𝐵 = 𝐹𝐼𝐶𝐼 = 4,5 

Según éste valor de FICI, ésta interacción tiene un efecto antagónico. 

Siguiendo este cálculo para las 17 combinaciones, obtuvimos la siguiente tabla: 

Tabla 4.7: Resultados del checkerboard 

donde aparece la FIC de cada par de 

compuestos, la FICI de la combinación, y el 

tipo de interacción que se le asigna según 

ese valor FICI. En verde (Sy) efecto 

sinérgico, en amarillo (Ni) cuando no ocurre 

interacción, y en rojo (An) efecto antagónico.  

La gráfica con las CIM y FIC de cada 

compuesto por separado pueden 

encontrarse en la Tabla del Anexo 4. 

No se pudo determinar el tipo de 

interacción que ocurría entre cloxacilina 

(CXL) y trimetoprim (TMT). Respecto a 

la interacción minociclina + cloranfenicol 

se obtuvo una FICI de más de 0,5 

(0,56), aun así la aceptamos como 

sinergia. Únicamente con las 5 sinergias 

obtenidas y el antagonismo, pasamos al 

siguiente experimento. 

En cuanto a las replicas en LB-agar, tras incubarlas y observarlas vimos lo siguiente: 

   

Imagen 4.7: Ejemplos de sinergismo (izquierda, bacitracina con linezolid)  y antagonismo 

(derecha, moxifloxacina con linezolid). 

Con éstas replicas estudiamos la CBM, para saber si el antibiótico usado era 

bacteriostático o bactericida. En el caso de estas dos combinaciones vemos que el 

efecto es bactericida. El compuesto Resazurina al metabolizarse por las células  pasa 

de un color azul a otro rosáceo, pero en los pocillos donde se inhibió el crecimiento no 

ha vuelto a crecer microorganismos, manteniéndose el color azul. 

Por otro lado, con estas placas podemos ver el perfil que tiene la interacción. En el 

caso de la sinergia (bacitracina y linezolid) aparece una curva cóncava característica 

del efecto sinérgico, indicando que donde se juntan ambos compuestos se inhibe el 



18 
 

crecimiento, mientras que en el antagonismo (moxifloxacina y linezolid) aparece una 

curva convexa indicando que donde se juntan, el microorganismo tiene más 

crecimiento que donde solo hay un compuesto. Si no hubiese interacción, no 

aparecería ningún tipo de curva.  

El perfil de interacción también se puede obtener con el cálculo de FIC A y B a 

cada dosis diferente de compuesto A y B. Representamos como varía FIC A respecto 

FIC B para las 6 combinaciones exitosas obtenidas con la técnica checkerboard: 

 

 

 

Gráficas 6.A, B, C y D: Representación de los valores  FIC del compuesto A (en los ejes X) 

y del B (en los ejes Y), obtenidos a diferentes dosis. En azul las gráficas de las sinergias 

(Bacitracina + Linezolid, Minociclina + Cloranfenicol y Bacitracina + Amoxicilina), mientras que 

en rojo la gráfica del antagonismo (Moxifloxacina + linezolid). Las líneas discontinuas marcan 

el perfil de no interacción. 

En estas gráficas (junto con las de BCT+CXL y CXL+LNZ), podemos ver el perfil 

de interacción: en BCT+LNZ (Gráfica 6.A) una clara sinergia donde aparece una curva 

cóncava muy próxima a los ejes (con poca dosis de ambos compuestos se inhibe el 

crecimiento). Con BCT+AMX (6.D) obtenemos un perfil sinérgico muy parecido. En 

cambio, con MIN+CRF (6.C) no es tan fuerte la sinergia, el perfil es casi de “no 

interacción” con una parte por encima y otra por debajo de la discontinua, aun así  

continuamos con esta sinergia. Respecto al antagonismo entre MOX+LNZ (6.B) 

vemos un perfil de curva convexa, sobrepasando la discontinua (con poca dosis de 

ambos compuestos las bacterias crecen más que con dosis de un solo compuesto), 

de hecho; por la forma de la curva, sería moxifloxacina quien pierde actividad en 

presencia de linezolid presentando un gran aumento en su FIC de hasta un valor 4. 

Moxifloxacina + Linezolid 

Minociclina + Cloranfenicol 

Bacitracina + Linezolid 

Bacitracina + Amoxicilina 

A) 

D) 

B) 

C) 
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4.4- Crecimiento bacteriano en las cinéticas de muerte 

Con el log10 de las UFC de cada Flask a diferentes tiempos, construimos las 

cinéticas de muerte. Para ello representamos el conjunto de valores log10 frente al 

tiempo, en dos gráficas por cada combinación, una para las concentraciones 1/5 de la 

CIM (o 5x en el caso del antagonismo) y otra para las concentraciones 1xCIM. 

Las siguientes cinéticas de muerte representan el crecimiento bacteriano de 

nuestra cepa ante 5 de las 6 combinaciones que ensayamos, puesto que bacitracina 

con amoxicilina tuvo el mismo resultado que bacitracina con cloxacilina: 

 

 

 

 

  

 

 

   

Antagonismo MOX + LNZ Antagonismo MOX + LNZ 

Sinergia BCT + LNZ Sinergia BCT + LNZ A) 

F) 

B) 

E) 

C) D) 

Sinergia BCT + CXL Sinergia BCT + CXL 
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Gráficas 7.A-J: Representaciones del número de UFC/mL (en logaritmo de base 10) frente al 

tiempo (en horas) para las combinaciones de antibiótico en concentración 1/5 xCIM (A, C, E, G 

e I) y 1xCIM (B, D, F, H y J). En azul la curva de crecimiento bacteriano control (sin 

antibióticos), en verde y rojo las distintas curvas con un solo antibiótico, y en morado la curva 

de crecimiento ante la combinación de dos antibióticos. 

La gráfica para bacitracina con linezolid (8.A) nos verifica la sinergia que habíamos 

encontrado, ya que juntando 1/5 de sus concentraciones CIM conseguimos inhibir el 

crecimiento de forma bactericida, mientras que 1/5 por separado no tienen ningún 

efecto inhibidor. Cuando subimos la concentración a 1xCIM (8.B) la propia bacitracina 

sola es capaz de inhibir el crecimiento, que sería lo esperado. Por otro lado con la 

gráfica de moxifloxacína y linezolid (8.D) reafirmamos un efecto antagonismo, donde 

las concentraciones 5xCIM por separado inhiben el crecimiento pero al juntarlas 

pierden su actividad. En concreto, linezolid reduce la actividad bactericida de 

moxifloxacina, haciendo que la combinación tenga efecto bacteriostático. En ésta 

gráfica linezolid a 5XCIM muestra un rebote de crecimiento, el cual podría deberse a 

la pérdida del efecto antimicrobiano por su degradación o la expresión de 

mecanismos de resistencia por la bacteria 

Bacitracina con cloxacilina (o amoxicilina; ambos β-lactámicos) también presentan 

efecto sinérgico (8.E). Ésta combinación ya estaba descrita en la literatura (32), a pesar 

de ello, con su estudio hemos podido demostrar experimentalmente que sí ocurre 

sinergia. Con las otras dos combinaciones; minociclina +cloranfenicol y cloxacilina + 

linezolid (8.G y 8.I) no se ha podido verificar el efecto sinérgico; con la combinación 

aparece el mismo crecimiento que si no la hubiese. En MIN+CRF (8.H) incluso 

subiendo la concentración a 1XCIM sigue sin apreciarse claramente una sinergia. 

Puede que al pasar el tiempo la minociclina pierda su efecto al tratarse de un 

antibiótico bacteriostático o la bacteria haya expresado mecanismos de resistencia. Y 

en CXL+LNZ (8.J) la combinación 1xCIM inhibe el crecimiento, pero esto se debe al 

propio efecto de LNZ, ya que por sí solo (curva verde) presenta el mismo perfil. 

H) G) G) 

I) 

Sinergia MIN + CRF Sinergia MIN + CRF 

No interacción  CXL + LNZ 

 

J) No interacción  CXL + LNZ 

G) 
No interacción  MIN + CRF 

 

H) No interacción  MIN + CRF 
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5- Discusión 

El uso de mono-terapias antibióticas ha llevado a lo largo de los años a la 

aparición de múltiples resistencias contra diversos microorganismos, entre ellas la 

resistencia a meticilina en S aureus (la cepa MRSA). Como la búsqueda de nuevos 

compuestos antimicrobianos es una tarea larga y costosa, una de las alternativas 

terapéuticas que se plantea es el uso de terapias de combinación. 

 

Hemos ensayado 16 antibióticos aprobados en la clínica, buscando la existencia 

de interacciones sinérgicas entre 128 combinaciones posibles contra una cepa de S. 

aureus sensible a meticilina (MSSA). Se realizó primero un cribado que identificó 17 

combinaciones prometedoras, de las cuales finalmente se validaron 5 sinergias y un 

antagonismo mediante ensayos de cinéticas de muerte. 

 

De estas interacciones hallamos tres grupos de interés: Bacitracina + β-lactámicos 

(cloxacilina y amoxicilina), bacitracina + linezolid y moxifloxacina + linezolid.  

 

La existencia de interacción entre bacitracina y β-lactámicos ya estaba descrita. (32) 

Debido a la importancia de los β-lactámicos por su amplio uso en múltiples terapias, 

encontrar una sinergia supone un gran éxito, ya que los tratamientos convencionales 

que han perdido eficacia ante las resistencias podrían potenciarse de nuevo 

introduciendo un 2º compuesto. La simple adición de bacitracina creando una terapia 

combinada sería una solución simple y sobre todo rápida a infecciones por MRSA. 

La identificación de esta interacción en nuestro estudio nos aportó un control 

interno de la metodología seguida en todo momento. Al obtener en las cinéticas de 

muerte un resultado positivo para ambos β-lactámicos usados (cloxacilina y 

amoxicilina), podemos validar nuestro estudio como correcto. 

 

Sabemos que la adquisición de resistencias puede ocurrir por múltiples razones. 

Entre los mecanismos moleculares involucrados en la resistencia encontramos: 

Minimizar la concentración antibiótica intra-celular (disminuyendo la permeabilidad de 

la membrana o aumentando el flujo de salida del antibiótico por medio de bombas de 

eflujo) (33), mutar el sitio de unión de la diana para protegerla o inactivar el antibiótico 

(por medio de hidrólisis enzimática de proteasas como la β-lactamasa, o con la 

transferencia de grupos químicos inactivantes).(34) También se ha visto que la 

transferencia horizontal de determinados genes puede proporcionar muchas de las 

resistencias actualmente conocidas, como la de MRSA, que se debe a la adquisición 

de un plásmido con el gen mecA, el cual codifica para una proteína que disminuye la 

acción de β-lactámicos, permitiendo la correcta síntesis de la pared celular. (35) 

 

Atendiendo a éstos mecanismos de resistencia podemos plantear las posibles 

razones por las que nuestras interacciones pueden ser más eficaces inhibiendo el 

crecimiento bacteriano. La bacitracina tiene como mecanismo de acción la lisis celular 

debido al daño que ejercen sobre la membrana plasmática. Una razón por la que 

bacitracina muestra varias interacciones con otros compuestos puede ser porque 

aumentan la permeabilidad celular permitiendo, al dañar la membrana, que otros 

antibióticos accedan al interior de la bacteria donde ejercen su acción, como es el 

caso de linezolid, que actúa contra la subunidad 50S del ribosoma. Al presentar 
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linezolid en monoterapia, éste puede que no consiga inhibir al ribosoma ya que las 

bacterias lo expulsan por bombas eflujo, o directamente que no permitan su entrada a 

la célula, pero que al presentarse en terapia combinada, sí consigue llegar hasta el 

ribosoma debido al incremento de permeabilidad. 

 

Cuando juntamos bacitracina con cloxacilina o amoxilicina (β-lactámicos), según el 

mecanismo de acción de ambos compuestos, la bacteria se quedaría sin ningún tipo 

de barrera física. La bacitracina dañará la membrana, y los β-lactámicos impedirán la 

síntesis de la pared celular, de modo que al combinarlos en terapia las células 

quedarían desprotegidas del medio externo, causando la muerte prematura. 

 

En cuanto al antagonismo entre moxifloxacina y linezolid no se ha podido llegar a 

una explicación coherente de dicho efecto. moxifloxacina inhibe la topoisomerasa 

impidiendo la replicación del DNA, y linezolid impide la iniciación de la traducción 

proteica. Tales mecanismos no presentan ninguna relación que explique por qué 

linezolid redujo la actividad bactericida de moxifloxacina en nuestro estudio, luego 

serían necesarios nuevos ensayos que caractericen a nivel molecular lo que ocurre. 

 

Respecto a la interacción entre minociclina y cloranfenicol, no pudimos validarla 

como efecto sinérgico según nuestros resultados de cinéticas de muerte, pero si 

atendemos a sus mecanismos de acción vemos que estos son complementarios. 

Minociclina inhibe la subunidad 30S del ribosoma, mientras que cloranfenicol la 50S, 

bloqueando totalmente el ribosoma de las bacterias. Sería conveniente repetir los 

experimentos con ésta combinación para ver si los resultados obtenidos son 

reproducibles, ya que las técnicas de cribado utilizadas pueden tener diferentes 

métodos de interpretación matemática (en nuestro caso la expresión FICI), llegando a 

discriminar combinaciones que en realidad tenían interacción.  

 

Como perspectivas futuras, para que este estudio tenga una verdadera relevancia 

clínica, deberían probarse las interacciones encontradas contra cepas MRSA o VISA, 

ya que es en éstas en las que hay que superar el obstáculo de la resistencia. También 

sería interesante expandir el ensayo contra un mayor número posible de cepas 

clínicas además de S. aureus. Ésta cepa es un buen modelo de estudio pero existen 

otras especies de interés clínico en las que se puede usar estas mismas estrategias. 

 

Un aspecto a tener en cuenta es que estos experimentos de búsqueda y 

validación realizados son todos in vitro, por lo que el siguiente paso que debería 

hacerse es probar una terapia combinada de las sinergias en modelos animales. Es 

importante que la combinación de antibióticos que administramos llegue hasta el sitio 

de acción en la cantidad que queremos y al mismo tiempo para que la sinergia sea 

eficaz, pero sin superar las dosis tóxicas. Por eso deben probarse las interacciones in 

vivo, donde va a influir la farmacodinamia y farmacocinética. (28)  

 

Todos estos estudios de combinatoria ayudarían a solucionar los crecientes 

problemas de resistencias antibióticas actuales. Teniendo en cuenta que los 

compuestos que hemos usado están disponibles a día de hoy para su uso en clínica, 

aprobar el tratamiento de una interacción sinérgica sería relativamente fácil y rápido, 

acortando el tiempo requerido para tratar las infecciones por bacterias resistentes. 
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6- Conclusiones 
 

1. El efecto sinérgico encontrado entre bacitracina y linezolid fue nuestro 

descubrimiento principal. Esta interacción tiene efecto bactericida contra S. 

aureus a concentraciones incluso cinco veces menor que la necesaria para 

inhibir el crecimiento usando mono-terapia de bacitracina. 

 

2. La identificación del efecto sinérgico entre bacitracina y β-lactámicos refuerza la 

teoría ya descrita para dicha interacción, y además sirve de control interno de la 

metodología llevada a cabo en el estudio. 

 

3. También se pueden encontrar efectos antagónicos como el de moxifloxacina y 

linezolid. Al combinarse se pierde el efecto bactericida de moxifloxacina y se 

adquiere un efecto bacteriostático, permitiendo la supervivencia del cultivo. Esta 

asociación no sería recomendable para el tratamiento de infecciones.  

 

4. La metodología llevada a cabo en los chekerboards debe ser siempre validada 

por medio de cinéticas de muerte para verificar las interacciones encontradas. 

 

5. Es necesario probar las sinergias encontradas en cepas resistentes para 

comprobar si aportan una verdadera relevancia clínica como tratamiento  

combinado. 

6- Conclusions 
 

1. The synergistic effect found between bacitracin and linezolid was our main 

discovery. This interaction has a bactericidal effect against S. aureus, even with 

five times less concentration than the necessary to inhibit the growth with 

bacitracin mono-therapy. 

 

2. The identification of synergistic effect between bacitracina and β-lactams   

reinforces the theory already described for this interaction. Also this synergy is 

used like an internal control of the methodology carried out in the study. 

 

3. Antagonistic effects such as moxifloxacin and linezolid can also be found. When 

they are combined, the bactericidal effect of moxifloxacin was lost and a 

bacteriostatic effect is acquired, allowing the survival of the culture. This 

association is not recommended for the treatment of infections. 

 

4. The methodology carried out in the checkerboards must be always validated 

through kill-kinetic tests to verify the interactions that we have found. 

 

5. It is necessary to test the synergies that we have found in resistant strains to 

verify if a true clinical relevance can be obtained as a combined treatment. 
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ANEXOS 

 

Anexo I 

ABX Nombre Familia Disolvente Mecanismo de acción molecular 

MIN Minociclina Tetraciclina DMSO 
Impide la síntesis proteica al inhibir la subunidad 30S 
del ribosoma 

AMK Amikacina Aminoglicósido H2O 
Impide la síntesis proteica al inhibir las dos 
subunidades 30S y 50S del ribosoma 

STR Estreptomicina Aminoglicósido H2O 
Impide la síntesis proteica al inhibir la subunidad 30S 
del ribosoma 

RIF Rifampicina Rifamicina DMSO 
Inhibe la síntesis del RNAm uniéndose a la subunidad 
beta del RNApol 

CRF Cloranfenicol Fenicol Etanol  
Impide la síntesis proteica al inhibir la subunidad 50S 
del ribosoma 

VCM Vancomicina Glicopéptido DMSO 
Inhibe la síntesis del peptido glicano de la pared 
celular (elongación) 

MER Meropenem Beta-lactámico DMSO 
Inhibe la síntesis del peptido glicano de la pared 
celular 

TET Tetraciclina Tetraciclina H2O 
Impide la síntesis proteica al inhibir la subunidad 30S 
del ribosoma 

MOX Moxifloxacina Quinolonas DMSO 
Inhibe la replicación del DNA, ataca a la 
topoisomerasa  

BCT Bacitracina 
Péptido de síntesis 
no ribosomal Etanol  Contra la membrana plasmática 

AMX Amoxicilina Beta-lactámico H2O 
Inhibe la síntesis del peptido glicano de la pared 
celular 

CXL Cloxacilina Beta-lactámico H2O 
Inhibe la síntesis del peptido glicano de la pared 
celular 

ECZ Econazol Azoles DMSO Contra el citocromo P450 

TMT Trimetoprim Diaminopirimidina DMSO Contra el acido fólico 

LNZ Linezolid Oxazolidinona DMSO 
Impide la síntesis proteica al inhibir la subunidad 50S 
del ribosoma 

GEN Gentamicina Aminoglicósido H2O 
Impide la síntesis proteica al inhibir la subunidad 30S 
del ribosoma 

 

Tabla 1: Listado de los 16 antibióticos usados en la búsqueda de sinergias 

antibióticas en el que se especifica las abreviaturas usadas en los marcajes, así como 

el nombre, familia y mecanismo de acción de cada uno de ellos. 

 

 

 



Anexo II 

 

Componente 

Concentración por cada 

litro de LB preparado 

Triptona 10 g/L 

NaCl 5 g/L 

Extracto de levadura 5 g/L 

Agar (en caso de LB sólido) 17 g/L 

 

Tabla 2: Componentes y sus concentraciones para la preparación llevada a cabo de1 

litro de medio LB. 

 

Anexo III 

 



 

Tabla 3: Valores de las CIM obtenidas para todas las combinaciones ensayadas. 

Se compara la CIM obtenida cuando el compuesto B está solo frente a la obtenida al 

añadir concentraciones 1/4 y 1/8 de la CIM de compuesto A. En amarillo aparecen 

subrayadas las variaciones (reducción o aumento) de CIM de más de 4 unidades. En 

verde las 4 combinaciones que a pesar de no reducir 4 veces la CIM, nos pareció 

interesante seguir estudiándolas. 

 

 

 



Anexo IV 

 

 

Tabla 4: Cálculo de la CIM y FIC para cada combinación de compuestos, así como el 

valor FICI y el tipo de interacción asignado por el criterio establecido. Las 

combinaciones, ordenadas por su valor FICI, pueden tener efecto sinérgico (Sy, en 

verde), efecto antagónico (An, en rojo) o no presentar interacción (Ni, en amarillo). 
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