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Métodos multimalla geométricos en mallas semi-estructuradas de Voronoi:

Resumen

Las ecuaciones en derivadas parciales son ampliamente utilizadas para modelizar gran cantidad de 
problemas físicos, debido a que son el tipo de ecuaciones que se usa para representar la naturaleza. 
Sin  embargo,  aunque  están  ampliamente  extendidas  en  su  uso,  no  siempre  se  pueden  resolver 
analíticamente, y hay por tanto, que resolverlas numéricamente discretizándolas en una malla. Esta 
metodología, permite obtener los resultados deseados dentro de un dominio dadas unas condiciones 
de contorno.  Por contra,  los sistemas de ecuaciones  obtenidos  son muy grandes.  Esto conlleva 
escoger  muy  cuidadosamente  qué  metodología  se  va  a  utilizar  para  resolverlo  si  no  queremos 
malgastar recursos y tiempo. Dentro de los posibles algoritmos, el método multimalla destaca por su 
velocidad y por que el número de iteraciones necesarias para resolver es independiente del número 
de incógnitas.

Dentro de los métodos multimalla, nos encontramos dos, el geométrico y el algebraico. El primero, 
es muy rápido pero solo se puede aplicar en dominios simples, el algebraico por otra parte es más 
lento pero se puede usar  en formas complejas. Nosotros, en este trabajo hemos utilizado un método 
semi-estructurado que consiste en realizar una triangulación no estructurada sobre el dominio, como 
en el caso algebraico, para captar bien la superficie, y posteriormente dentro de cada triángulo, 
subdividirlos  geométricamente,  conectando  los  puntos  medios  de  los  lados  cuantas  veces  sea 
necesario  para  obtener  la  precisión  deseada.  Además,  dentro  de  cada  triángulo  de  la  malla  no 
estructurada se pueden seguir diferentes estrategias dependiendo de las características de este, por 
ejemplo si es equilátero o isósceles, permitiendo una mayor optimización.

Concretamente,  hemos  utilizado  una  malla  de  Delaunay  como  triangulación  grosera  y 
posteriormente hemos discretizado mediante volúmenes finitos.  Como centros  de los triángulos 
hemos usado los centros de Voronoi, toda malla Delaunay tiene asociada una de Voronoi, por sus 
buenas características; como por ejemplo que este centro es siempre perpendicular a los lados, lo 
que permite aproximar las derivadas con diferencias finitas. Sin embargo, el uso de estos puntos, a 
pesar  de  sus  ventajas,  introduce  anisotropía  en  la  discretización,  exige  el  uso  de  triángulos 
acutángulos,  así  como al ir  avanzando a lo largo de la jerarquía de mallas los puntos no están 
anidados, es decir, al restringir o prolongar los puntos no coinciden en coordenadas. Esto significa, 
que el  método multimalla va a perder rendimiento si no hacemos nada para compensarlo.  Para 
solucionar estos dos problemas hemos diseñado un conjunto de suavizadores que compensan los 
problemas de anisotropía y de no anidamiento, obteniendo unos resultados muy satisfactorios. 

Fijándonos en casos más particulares, podemos tener materiales cuyas propiedades varíen de un 
punto a otro, por ejemplo, un material compuesto. Si la variación de estas propiedades es de varios 
órdenes de magnitud, el algoritmo multimalla convencional no va a funcionar correctamente. Sin 
embargo, este problema puede solventarse si en la malla más fina se utiliza la media harmónica en 
las zonas de contacto y en las mallas bastas del multimalla se tiene en cuenta que se debe mantener 
la continuidad en el flujo. Esto se consigue utilizando el operador de Galerkin en las mallas más 
bastas. A su vez, hemos propuesto un algoritmo que permite obtener este operador en el caso de 
mallas triangulares, utilizando solamente moléculas en su cálculo. 

Los métodos propuestos, tanto los suavizadores, como el operador de Galerkin han sido puestos a 
prueba en varios ejemplos numéricos para comprobar su eficacia.
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Chapter 1

Introduction

In this work, we are interested in the multigrid solution of the large sparse system
of equations, arising from the cell-centered finite volume discretization of a two-
dimensional partial differential equation on acute Delaunay triangulations. The
use of Delaunay grids is motivated by the good properties of the discretizations
obtained on this type of triangulations; by requiring them to be acute, we achieve
monotonicity properties, see [4, 5, 16]. Every Delaunay grid has an associated
dual mesh, known as Voronoi tesselation [28], constituted by convex polygons,
each one composed of the points closer to a Delaunay vertex (its center) than
to any other.

Voronoi polygons naturally appear in many situations in nature, such as the
hottest parts of the sun, ice melting, and even on giraffe skin. Apart from these
relations connected with natural science, not directly related to the numerical
solution of PDEs, more relevant for us is the use of Voronoi grids for the dis-
cretization by finite volumes for oil reservoir simulations, oceanographic models,
and other complex problems in science and engineering which are derived from
conservation laws.

Finite volume methods are discretizations locally preserving some conserva-
tion properties. A first approach to this kind of methods was introduced for
one-dimensional problems by Samarskii in 1960, see [24], as a finite difference
method called balance method (or integro-interpolation method). For many
years finite volume methods on rectangular and triangular grids were used in
heat transfer and computational fluid mechanics [6, 20, 22]. From the theoretical
point of view, we refer to the reader to Eymard et al. [9].

One of the most important aspects in the numerical solution of partial dif-
ferential equations is the efficient solution of the corresponding large systems
of equations arising from their discretization. Multigrid methods [3, 11, 27] are
among the most powerful techniques for solving such type of algebraic systems,
and they have become very popular among the scientific community. Basically,
multigrid methods are based on the property of a strong smoothing effect on
the error of many iterative methods, together with the fact that an smooth
function can be well represented on coarser grids, where its approximation is
less expensive. The multigrid performance strongly depends on the choice of
the components of the algorithm, which are problem dependent, and it is crucial
an harmonic interplay between the smoothing and the coarse-grid correction.
There are two basic approaches to multigrid solvers: geometric and algebraic
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multigrid. Whereas in geometric multigrid a hierarchy of grids must be pro-
posed, in algebraic multigrid no information is used concerning the grid on
which the governing PDE is discretized.
The focus on this work is to consider geometric multigrid methods. Not many
authors have applied geometric multigrid methods on cell-centered discretiza-
tions. Most of these works have been done in rectangular grids. Historically, the
pioneer work is due to Wesseling, [31], in which a multigrid method for interface
problems was constructed to simulate oil reservoir problems. This work started
a chain reaction of papers focused on this subject, see [12, 13, 14, 15, 29, 30, 32].
The W-cycle convergence of these multigrid methods, in the case of natural in-
jection as prolongation, was theoretically analyzed by Bramble et al. [2], and in
the case of V-cycle, the convergence was proved by Kwak et al. in [17] using
certain weighted prolongation operators. By other hand, on triangular grids,
Kwak et al., [18, 19], proposed a new multigrid method, extending their previ-
ous works.

For an irregular domain, it is very common to apply regular refinement to
an unstructured input grid. In this way, a hierarchy of locally structured grids
is generated. To perform this refinement, each triangle is divided into four con-
gruent ones by connecting the midpoints of their edges. In this way, a hierarchy
of grids is obtained, where transfer operators between two consecutive levels can
be defined. These grids provide a suitable framework for the implementation
of a geometric multigrid algorithm, permitting the use of stencil-based data
structures, see [1], being necessary only a few stencils to represent the discrete
operator, reducing drastically the memory required. In this work, very simple
local inter-grid transfer operators have been chosen to make easier the com-
munication between different input blocks. For this reason, powerful smoothers
have to be designed. Different smoothers are used on each input block of the ini-
tial unstructured grid, depending on its geometry. Notice that these smoothers
couldn’t be implemented on a pure unstructured grid. We are speaking about,
for example, the line-type smoothers, very necessary in the case of anisotropic
problems.

Regarding particular applications, the diffusion equation with discontinu-
ous coefficients is widely used in computational fluid dynamics. However, it is
well-known that when standard multigrid is applied for solving equations with
highly varying discontinuous coefficients, a deterioration in the convergence of
the method can be obtained, and even divergence can be observed.

In the case of cell-centered approximations, the main idea to circumvent the
problem is to use Galerkin approximation [32] on coarse grids. The disadvantage
usually observed when using this approach, is that the stencils of the coarse-
grid operators are often larger than the corresponding fine-grid stencil, what is
problematic especially in three dimensions. However, note that the use of sim-
ple transfer operators preserves four-point stencils in the case of cell-centered
schemes on triangular grids.

In the case of composite materials their components have nearly constant
diffusivity, but vary by several orders of magnitude. In these cases, it is quite
common to idealize the diffusivity by a piecewise constant function. This makes
suitable the use of semi-structured grids to deal with these problems.
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The rest of the work is organized as follows: Chapter 2 presents the ba-
sic principles of Multigrid. Chapter 3 is devoted to present the cell-centered
discretization, deriving the corresponding equations which define the discrete
operator for both unstructured and structured triangular grids. A multigrid
method for this kind of scheme is proposed in Chapter 4. In particular, spe-
cial smoothers are designed to overcome troubles arising from some difficult
grid-geometries. In Chapter 5, the good performance of the proposed multigrid
methods is demonstrated on structured triangular grids, comparing the behavior
of the considered smoothers for different grid-geometries. In Chapter 6, some
test examples are presented to show the applicability of the strategies followed
throughout all the work. Finally, in Chapter 7, we focus the previous work in
the resolution of diffusion equation with piece-wise discontinuous coefficients.
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Chapter 2

Introduction to Multigrid

Multigrid methods, are a family of iterative methods based on the property
of some classical iterative algorithms, which can annihilate the high frequency
components of the error after few iterations, which leads to an smoothed error,
see Figure 2.1.

Figure 2.1: Representation of the error after: 0, 5, 10 and 50 iterations of a
classical iterative algorithm.

Considering a linear problem,

Au = b, (2.1)

where A is an n× n matrix, u the unknowns vector and b the right hand side.
Let us consider the following splitting notation:

A = M −N, (2.2)

where M is an easily invertible matrix. By substituting in 2.1 we obtain (M −
N)u = b or equivalently, Mu = Nu+b. Now, by denoting um as the approximate
solution after the m-iteration, the general scheme for an iterative algorithm is:

um+1 = M−1Num +M−1b (2.3)
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If we call ue to the exact solution, we can define the error in the iteration
m, as em = ue − um, and the residual rm = b − Aum. We can combine these
expressions with (2.1) in order to get a system of equations for the error:

rm = b−Aue +Aem = Aem, (2.4)

therefore, we can solve a system for the error in order to get a better approxi-
mation of the solution. If we now combine the smoothing property, that allows
to represent the error in a coarser grid without data loss, with the possibility to
solve an equation for the error, we can define the following strategy:

1◦ Smooth.

2◦ Represent the error in a coarser grid.

3◦ Solve the equation exactly.

4◦ Use the error calculated to correct the approximation, um.

5◦ Iterate until obtaining the desired precision.

The above explained method is called two-grids method. Its efficiency is
not a high improvement, however, its convergence rate is constant not matter
the number of nodes, this is also known as h-independence rate. Nevertheless,
two-grids method can be improved if, in the third step, we approximate the
analytical solution by using another two-grids method and so on, leading to
the so called multigrid method, which keeps the h-independence rate, and its
numerical cost is about O(n× n).

Regarding the second and the forth step we can split the inter-grid transfer
operators in:

• Restriction: Introduce, the data from a fine grid to a coarse one, it can
be done by simple injection, just introduce in the coarse grid the value of
the nodes that relies in the same coordinates, or by an average of nodes.

• Prolongation: Interpolate the solution of the coarse grid to the nodes of a
finer one. The simplest, the adjoint of the simple injection, is to introduce
the data from the coarse grid directly to a cluster of nodes.

One can realize that the performance of the multigrid method relies on the
smoother, coarse grid transfer method and in the interpolation from a coarser
grid to a finer one. The intercourse between the smoother and the inter-grid
transfer operators are the key in multigrid. In fact there are two families of
multigrid methods, depending on their intercourse:

• Geometric multigrid: The coarsening is fixed, usually the coarser grid is
twice the finer, and the smoother must annihilate the half of the frequency
errors. These methods are fast, but the geometry must be simple.

• Algebraic multigrid: The smoother is fixed, and the coarsening must adapt
itself in order to compensate what the smoother cannot smooth. These
family fits very easily complex geometries, but they are slower than the
geometric multigrid.
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Figure 2.2: Relation, along the grids, between nodes for a simple injection and
its adjoint.

Regarding the smoothers, the most common smoothers are the Jacobi iter-
ative method with a relaxation parameter, Gauss-Seidel algorithm and a mod-
ification of the Gauss-Seidel, in which you apply a Gauss-Seidel step but in a
chessboard manner, i.e: first the odd nodes and next the even ones, see Fig-
ure 2.3.

Figure 2.3: Red-Black smoother on a triangular grid.

There are three kind of multigrid methods depending on the effort to ap-
proximate the error on coarser grids, one get three different multigrid methods,
V-cycle, W-cycle and F-cycle, see Figure 2.4. V-cycle is the fastest, but the
weakest, F-cycle is usually preferred over W-cycle since it achieve similar re-
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sults with just a 60% of numerical work [27].

Figure 2.4: V-cycle, F-cycle and W cycle respectively.

As final appointment, multigrid methods perform very well for elliptic and
parabolic equations, nevertheless for hyperbolic problems its efficiency is com-
promised, since the error is more difficult to smooth, however it is also possi-
ble [27].
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Chapter 3

Discretization of a diffusion
problem on Voronoi grids

3.1 Discretization on triangular unstructured grids

We are going to construct a finite volume discretization scheme on the Voronoi
mesh associated with a Delaunay triangulation for the following boundary value
problem:

−∆v = f, in Ω, (3.1)

v = 0, on ∂Ω. (3.2)

Firstly, we suppose to have a Delaunay triangulation T on the domain Ω, sat-
isfying the usual admissibility assumption (see [5]), i.e. the intersection of two
different triangles is either empty, a vertex, or a whole edge. Besides, as com-
mented in the introduction, we restrict ourselves to an acute triangulation.
The grid points associated with the cell-centered scheme are the centers of the

Figure 3.1: Unstructured mesh and its associated Voronoi grid.

circumscribed circle of each triangle, defining a Voronoi mesh, see Figure 3.1.
Notice that from the previous restriction with regard to the angles of the trian-
gulation, we are sure that each Voronoi point falls inside of a triangle. More-
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over, the segment connecting two neighboring Voronoi points goes trough the
midpoint of the common edge of their corresponding triangles, being also per-
pendicular to it. This latter property allows us to approximate the derivative in
the normal direction, by the difference quotient on both Voronoi points. Using
the divergence theorem on a triangle T of the triangulation T , the following
balance equation holds:

−
∫
l1

∇v · n1 dl1 −
∫
l2

∇v · n2 dl2 −
∫
l3

∇v · n3 dl3 =

∫
T

f(x) dx. (3.3)

where ni is the unit outward normal vector on the corresponding edge li of
triangle T.
Now, each of these line integrals are approximated as the length of the cor-
responding edge multiplied by the flux evaluated in the midpoint of the edge.
Afterwards, we approximate such fluxes using the Voronoi points. With regard
to the integral in the right-hand side, we consider the following approximation:∫

T

f(x) dx ≈ meas(T ) f(xc), (3.4)

being xc the Voronoi point of triangle T, and where meas(T ) is the area of T.
Denoting x1, x2, x3 the Voronoi points of the triangles adjacent to T with

Figure 3.2: Notation for neighboring Voronoi points on an unstructured grid.

common edges l1, l2 and l3, respectively, and di the distance between points xc

and xi, di = dist(xc,xi), with i = 1, 2, 3, (see Figure 3.2), we finally obtain the
equation corresponding to node xc :

− 1

meas(T )

3∑
i=1

(
meas(li)

vh(xi)− vh(xc)

di

)
= f(xc). (3.5)

3.2 Discretization on triangular structured grids

Now, we are going to consider the particular case of the discretization of problem
(3.1) on an structured triangular grid. In this kind of grids, it is very usual to
work in stencil notation because it takes advantage of the structured ordering of
the unknowns which contribute in the discretization on a fixed grid-point. In an
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structured grid, any point is surrounded by the same grid-pattern, and using a
suitable numbering of the grid-points it is easy to capture this pattern in a small
matrix or “stencil” which stores the contributions of the neighboring unknowns.
Then, first of all, a suitable numbering of the grid-points is needed. In triangular
grids, a unitary basis of R2, {e1, e2}, where e1, and e2 are unit vectors defining
the oblique coordinate system, is considered fitting the geometry of the triangle,
as can be seen in Figure 3.3. Hence, a local numeration can be fixed according

a) b)

Figure 3.3: a) New basis in R2 fitting the geometry of a triangular grid, and
local numeration for the regular Delaunay grid obtained on a triangular domain.
b) Corresponding Voronoi mesh.

to the definition of the spatial basis. In this way, a manner of numbering nodes
very convenient for identifying the neighboring nodes can be defined.
We consider a triangular grid arising on a triangular domain by applying a fixed
number of regular refinement steps `. This is done in the way that, on each
refinement step every triangle is divided into four congruent ones by connecting
the midpoints of their edges.
Then, we can define the corresponding grid in the following way:

G` = {x = k1h1 e1 + k2h2 e2 | k1 = 0, . . . , 2`, k2 = 0, . . . , k1}, (3.6)

where h = (h1, h2) is the grid spacing associated with the refinement level ` (h1
is the grid spacing in the direction of e1, and h2 in the direction of e2), so that
the grid G` can also be denoted by Gh.
Thus, for a refinement level `, a local numeration with double index (k1, k2),
k1 = 0, . . . , 2`, k2 = 0, . . . , k1, is used in such a way that the indexes of the
vertices of the triangle are (0, 0), (2`, 0), (2`, 2`), as it can also be observed in
Figure 3.3a) for ` = 2.

By other hand, the considered discretization is based on the dual Voronoi
mesh, represented in Figure 3.3b). In the particular case in which an structured
grid as considered here is used, the obtained finite difference scheme results to
be different depending on the grid point. More concretely, one-half of the grid
points, those corresponding to an up oriented triangle, have the same equation
and the other half, those corresponding to a down oriented triangle, have a
“mirror image stencil”, see Figure 3.4. In this sense, the Voronoi mesh, denoted
by Vh could be split up into two sub-grids V u

h (associated with the up-oriented
triangles) and V d

h , (corresponding to the down-oriented triangles), as seen in
Figure 3.3b). These sub-grids can be defined from the grid Gh, in the following
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Figure 3.4: Stencils corresponding to two different grid-points: one associated
with an up oriented triangle and the other with a down oriented triangle.

way:

V u
h = {xu

k1,k2
= (k1 + δ1)h1 e1 + (k2 + δ2)h2 e2 | k1h1 e1 + k2h2 e2 ∈ Gh},(3.7)

V d
h = {xd

k1,k2
= (k1 + δ′1)h1 e1 + (k2 + δ′2)h2 e2 | k1h1 e1 + k2h2 e2 ∈ Gh},(3.8)

where δi, δ
′
i, with i = 1, 2, are suitable scalar values to reach Voronoi points from

the primal ones following the considered local coordinate system, see Figure 3.5.

Figure 3.5: Voronoi mesh split into two sub-grids, and corresponding values of
δi and δ′i.

Then, a grid-function, vh, defined on the Voronoi mesh Vh, could be split up
into two different sub-grid functions, vuh and vdh, associated with sub-grids V u

h

and V d
h , respectively.

In this way, given an arbitrary pair (k1, k2) associated with a node of Gh,
the equations corresponding to the two Voronoi points xu

k1,k2
and xv

k1,k2
, are
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given by

Luu
h vuh(xu

k1,k2
) + Lud

h vdh(xd
k1,k2

) = fuh (xu
k1,k2

), (3.9)

Ldu
h vuh(xu

k1,k2
) + Ldd

h v
d
h(xd

k1,k2
) = fdh(xd

k1,k2
), (3.10)

where these “scalar” operators are given in stencil form as:

Luuh =
1

meas(T )


0 0 0

0
l1

d1

+
l2

d2

+
l3

d3

0

0 0 0

 , Ludh =
1

meas(T )



0 0 0

0 −
l1

d1

−
l3

d3

0 −
l2

d2

0

 ,

Lduh =
1

meas(T )


0 −

l2

d2

0

−
l3

d3

−
l1

d1

0

0 0 0

 , Lddh =
1

meas(T )


0 0 0

0
l1

d1

+
l2

d2

+
l3

d3

0

0 0 0

 .

3.2.1 Stencil dependence on two angles characterizing the
triangular grid.

In order to know a priori the strong and weak connections between neighboring
unknowns depending on the grid geometry, we are going to rewrite the stencils
in function of some parameters characterizing the grid, that is, two angles, α
and β, and the length l, of one edge of an arbitrary triangle of the grid, see
Figure 3.6. As we will see, this is going to be very useful for the design of
smoothers for different geometries, taking into account the strong connections
appearing in the stencils.

Therefore, we are going to describe in detail the computation of the stencil for
an arbitrary down-oriented Voronoi grid-point xd

k1,k2
in V d

h . With this purpose,
we can write the coordinates of the points involved in such stencil (see Figure 3.6)
in terms of the previously explained geometric parameters in the following way:

xd
k1,k2

=
l

2

(
sinα cosβ

3 sin(α+ β)
+ 2,

cos(α− β)

sin(α+ β)

)
, (3.11)

xu
k1,k2

=
l

2
(3,− cot(α+ β)) , (3.12)

xu
k1−1,k2

=
l

2
(1,− cot(α+ β)) , (3.13)

xu
k1,k2+1 =

l

2

(
2 sinα cosβ

sin(α+ β)
+ 1,

2 sinα sinβ

sin(α+ β)
− cot(α+ β)

)
. (3.14)

Since all the parameters involved in the stencil (area, distances between Voronoi
points and lengths of the edges) are independent of the chosen coordinate sys-
tem, for simplicity, these coordinates have been computed in the Cartesian
coordinate system with respect to the origin, see Figure 3.6.

Due to the fact that the area of an arbitrary triangle T is given in terms of
the geometric parameters as

meas(T ) =
l2 sinα sinβ

2 sin(α+ β)
, (3.15)

13



Figure 3.6: Notation for neighboring Voronoi points on an structured grid,
characterized by angles α and β.

and the lengths of the sides of T are l2 = l, l1 =
l sinβ

sin(α+ β)
, and l3 =

l sinα

sin(α+ β)
,

after simple calculations, we finally obtain the stencils:

Ldu
h =

2 sin(α+ β)

l2 sinα sinβ

 0 tan(α+ β) 0
− tanα − tanβ 0

0 0 0

 , (3.16)

Ldd
h =

2 sin(α+ β)

l2 sinα sinβ

 0 0 0
0 tan(α+ β)− tanα− tanβ 0
0 0 0

 . (3.17)

As previously commented, for an arbitrary up-oriented Voronoi grid-point xu
k1,k2

in V u
h the stencil would be the “mirror image stencil” of (3.16)-(3.17), that is,

Luu
h =

2 sin(α+ β)

l2 sinα sinβ

 0 0 0
0 tan(α+ β)− tanα− tanβ 0
0 0 0

 , (3.18)

Lud
h =

2 sin(α+ β)

l2 sinα sinβ

 0 0 0
0 − tanβ − tanα
0 tan(α+ β) 0

 . (3.19)

Notice that depending on the angles characterizing the grid, some strong
connections appear between unknowns and this fact makes that we will have to
take care in the design of the smoothers in a geometric multigrid method, as
will be discussed in next chapter.
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Chapter 4

Multigrid method

The performance of geometric multigrid methods is strongly dependent on the
choice of adequate components to the considered problem. The main compo-
nents are the smoother Sh, inter-grid transfer operators: restriction I2hh and
prolongation Ih2h, and the coarse-grid operator L2h. These components have to
be chosen so that they efficiently interplay with each other in order to obtain
a good connection between the relaxation and the coarse-grid correction. In
this chapter the proposed cell-centered multigrid algorithm is described. All
the attention is focused in the detailed explanation of the considered smoothers
and the special features appearing due to the cell-centered character of the dis-
cretization.

Although the presentation of such components is done on a regular struc-
tured grid, our purpose is to apply the proposed multigrid method in the frame-
work of semi-structured grids. Therefore, the choice of the corresponding com-
ponents is done also with a view to this application. In this case, we will use
a block-wise multigrid algorithm, where each triangle of the coarsest grid is
treated as a different block with regard to the smoothing process. This block-
wise strategy is suitable thanks to the possibility of choosing different smoothers
for triangles having different geometries, thus resulting in an improvement of
the characteristics of our algorithm. Besides, we will have to take care in the
communication among the triangles of the coarsest triangulation. Next, we are
going to describe the components of the algorithm that we are going to consider
throughout all this work.

4.1 Coarse-grid correction

In the application of geometric multigrid, a hierarchy of grids is needed in order
to accelerate the convergence of the smoother, by using solutions obtained on
the coarser meshes as corrections. As previously commented, in order to obtain
such hierarchy of grids, we divide the initial triangles into four congruent ones
by connecting the midpoints of the edges, and so forth until the mesh has the
desired fine scale to approximate the solution of the problem.
When vertex-centered discretizations are considered on triangular grids, grid
points laying on coarser grids also belong to the finer grids, giving rise to a
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so-called nested hierarchy of grids. However, when the considered cell-centered
discretizations are used, it is worth to note that except in the case of equilateral
triangles, the grid hierarchy results to be non-nested, see Figure 4.1.

Figure 4.1: Nested (left) and non-nested (right) hierarchies.

This makes the interplay between smoothing and coarse-grid correction spe-
cially difficult, requiring the design of new smoothers or new inter-grid transfer
operators. With a view to the application of the proposed multigrid method on
semi-structured grids, our proposal is to consider very simple inter-grid opera-
tors, since this will facilitate the communication between the blocks composing
these grids. In particular, injection operator is considered as the prolongation,
and its adjoint is chosen as the restriction, resulting in the fact that only the
four fine-grid points surrounding a coarse-grid point contribute to its restric-
tion. More concretely, the considered restriction operator, I2hh , is given in the
following way

I
2h
h =

 (I2hh )uu (I2hh )ud

(I2hh )du (I2hh )dd

 , with



(I2hh )uu =

 0 0 0
0 1/4 0
0 0 0

 , (I2hh )ud =

 0 0 0
0 1/4 1/4
0 1/4 0

 ,

(I2hh )du =

 0 1/4 0
1/4 1/4 0
0 0 0

 , (I2hh )dd =

 0 0 0
0 1/4 0
0 0 0

 ,

as shown in Figure 7.9, and the corresponding prolongation fulfils Ih2h = 4 I2hh .
The choice of these inter-grid transfer operators leads us to make an effort in the

Figure 4.2: Restriction operator.

smoothing process. Then, we must design efficient smoothers capable of taking
charge of the remaining components of the error, which cannot be eliminated by
the coarse-grid correction part of the algorithm. Actually, the design of suitable
smoothers for cell-centered grids is a challenge in this context.
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4.2 Smoothers

The smoother usually plays an important role in multigrid algorithms, mainly in
the geometric approach, resulting the choice of a suitable smoother an important
feature for the efficiency of these methods. Moreover, as previously commented,
in the framework we are working with, this choice is even more relevant.
Due to the general observation that errors become smooth if strongly connected
unknowns are collectively updated, appropriate smoothers have been designed
depending on the magnitude of the coefficients of the stencils, given in (3.16)-
(3.19). The following smoothers have been considered and tested in order to
fulfil the previous requirement.

4.2.1 Jacobi smoother.

For almost equilateral triangles, the magnitude of all the entries of the stencils
is similar, and therefore a point-wise smoother is enough to satisfactorily reduce
the components of the error. The easiest smoother to perform is a Jacobi type
smoother, which consists of computing the approximation of each unknown, by
using non-updated values of the rest of the unknowns. Notice that this implies
that it makes not difference the order in which the grid points are visited, what
makes Jacobi scheme well-suited for parallel processing. However, for difficult
problems, usually this smoother does not give enough satisfactory results, and
some variants have to be considered.
As is the case for Jacobi smoother presented here, some standard smoothers are
based on a decomposition on the positive and negative parts of the operator,
which correspond to the updated an non-updated unknowns before the current
step. Here we are going to present the corresponding decomposition for Jacobi
smoother. In order to do this, only the positive part of the operator is displayed.
Taking into account that only the diagonal blocks of the operator contribute in
this positive part, it holds

(Luu
h )+ = Luu

h , (Ldd
h )+ = Ldd

h . (4.1)

4.2.2 Red-Black smoother.

Due to the fact that unknowns related to up or down-oriented triangles have
no direct connection with each other, it seems natural to simultaneously update
all unknowns associated with equally oriented triangles, giving rise to a pattern
relaxation scheme. Since two different types of grid-points are distinguished, a
two-color relaxation process, called here Red-Black smoother, is considered.
More concretely, one iteration of this relaxation scheme consists of two partial
steps. In the first one, unknowns corresponding to up-oriented triangles are
updated, and in the second step those associated with the down-oriented tri-
angles are relaxed by using the updated values. Thus, the complete smoothing
operator Sh is given by the composition of two partial step operators, Su

h and
Sd
h, which correspond to apply a Jacobi step on each type of grid-points, that

is, Sh = Sd
h Su

h. These partial step operators are characterized by a different
decomposition than the previous Jacobi over all the grid-points, in the way that
for Su

h, for example, the positive parts of the scalar operators are:

(Luu
h )+ = Luu

h , (Ldd
h )+ = Ih, (4.2)
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and if Sd
h is considered, the identity operator will correspond to (Luu

h )+, and
(Ldd

h )+ = Ldd
h .

4.2.3 Diamond smoothers.

For almost rectangular triangles, a strong connection between only two nodes
involved in the stencil appears, due to the anisotropy of the Voronoi mesh.
Therefore, since the common lore claims that smoothing must be done in the
direction of the strong connection, in this case, both unknowns will have to be
simultaneously relaxed. These unknowns are associated with the closest Voronoi
points corresponding to different-oriented triangles, as seen in Figure 4.3a).
Therefore, a small (2 × 2)-system must be solved for each of these pairs of
unknowns. Different orderings can be chosen to visit these blocks. We have
chosen the lexicographic one, but of course, many orderings are possible.
In triangular grids, three different diamond smoothers, associated with the three
edges of a triangle, can be defined. If a triangle characterized by angles α and β
is considered, we can assign a different color to each of its vertex, in the way that,
for example, black color is associated with the vertex corresponding to angle α,
green color with that vertex associated with β, and red color corresponds to
vertex of angle 180o − (α + β). In this manner, each diamond smoother can
be named with the color corresponding to the vertex opposite to its associated
edge. Following this rule, diamond smoother appearing in Figure 4.3a) is called
green-diamond smoother.

a) b)

Figure 4.3: a) Green-diamond smoother and b) Red-wormy smoother.

This smoother is based on a decomposition of positive and negative parts of
the operator. Although three different diamond smoothers can be considered,
the corresponding decomposition can be done analogously. Then, in order to do
this description, we consider the green-diamond smoother, which can be seen
in Figure 4.3a). The positive parts of the involved scalar operators are given as
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follows:

(Luu
h )+ = Luu

h , (Lud
h )+ =

 0 0 0
0 sud0,0 0
0 sud0,−1 0

 ,
(Ldu

h )+ =

 0 0 0
sdu−1,0 sdu0,0 0

0 0 0

 , (Ldd
h )+ = Ldd

h .

(4.3)

4.2.4 Wormy smoothers.

When a very small angle characterizes the triangulation, the strong coupling
appears between the Voronoi points associated with the up and down-oriented
triangles connected in the direction of the edge opposite to the vertex corre-
sponding to this small angle. Therefore, all those points are simultaneously
updated, see Figure 4.3b), and a tridiagonal system must be solved for each
of these “wormy-lines”. For this reason, this smoother will be called wormy-
smoother.
Similarly to the previous case of the diamond smoother, in triangular grids,
three different wormy-smoothers can be defined associated with the three edges
of a triangle. Again, each wormy-smoother can be named with the color corre-
sponding to the vertex opposite to its associated edge. Following this criterion,
wormy-smoother appearing in Figure 4.3b) is called red-wormy smoother. No-
tice that these smoothers can be performed by visiting the “lines” from vertex
to edge or, on the contrary, from edge to vertex, and this latest is the chosen
option. From the description of this smoother, we can obtain the decomposition
of the discrete operator which gives rise to wormy-smoother. Analogously to
the diamond smoother, three different wormy smoothers can be defined, whose
decomposition can be obtained in a similar way. In order to present the corre-
sponding decomposition of the operator, the red-wormy smoother, displayed in
Figure 4.3b), is considered. In this way, the positive parts of the scalar operators
result as follows:

(Luu
h )+ = Luu

h , (Lud
h )+ =

 0 0 0
0 sud0,0 sud1,0
0 sud0,−1 0

 ,
(Ldu

h )+ =

 0 0 0
sdu−1,0 sdu0,0 0

0 0 0

 , (Ldd
h )+ = Ldd

h .

(4.4)

Concluding, we can say that each of these wormy-smoothers will be suitable
when the angle corresponding to the vertex of its color is small, and in this
way, any possible triangulation will have associated a wormy-smoother giving a
satisfactory convergence factor.
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Chapter 5

Results of the proposed
multigrid method on
structured grids

In order to see the suitability of the introduced smoothers in the design of
an efficient multigrid algorithm, we present some experiments comparing their
behavior in regular structured grids. In particular, model problem (3.1)-(3.2) is
solved in the structured grid arising from the regular refinement of a triangular
domain, characterized by two of their angles. In all the presented experiments,
an F (2, 2)−cycle is considered. F−cycle is preferred to V−cycle due to the poor
chosen inter-grid transfer operators.

We begin by considering an equilateral triangular domain. As any anisotropy
arises from the grid resulting of a regular refinement, it could be seen natu-
ral to think in applying a simple point-wise smoother, like Jacobi or lexico-
graphic Gauss-Seidel, to this kind of triangulations. However, as previously
commented, for this situation a pattern relaxation scheme could be more ap-
propriately. Thus, we are going to present some convergence results on a regular
equilateral grid, comparing the behavior of multigrid by considering: undamped
Jacobi smoother, Red-Black smoother, ω−Red-Black smoother (with ω = 1.15)
and diamond smoother. In Figure 5.1a), we show the history of the convergence
on a grid obtained after eight refinement levels, and by considering as stopping
criterion to reduce the maximum residual until 10−8. First of all, a rather sur-
prising observation could be concluded from this figure: the performance of un-
damped Jacobi appears to be a satisfactory choice as smoother for cell-centered
discretizations on triangular grids (as also seen for other type of discretizations
on triangular grids, [10], and in the context of full-multigrid on rectangular
grids, [23]), despite the well-known lack of smoothing property of this iterative
scheme. Notwithstanding this unusual behavior, the obtained Jacobi results
are largely improved by Red-Black smoother and diamond smoother. At the
same time, the convergence factors provided by both smoothers are enhanced
by the Red-Black smoother with relaxation parameter ω = 1.15, which has been
obtained by experimental tests. This improving effect was pointed out in [21]
for cell-centered discretizations on rectangular grids, where it was validated by
a local Fourier analysis. Moreover, the good behavior of the multigrid based
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a) b)

Figure 5.1: a) Comparison of smoothers on an equilateral triangular grid. b)
History of the convergence for different numbers of refinement levels by using
ω−Red-Black smoother.

on the ω−Red-Black smoother is confirmed in Figure 5.1b), where its robust-
ness with regard to the discretization parameter is shown. In this figure, the
history of the convergence of the method is displayed for different numbers of
refinement levels, resulting to be independent. Therefore, we conclude from this
experiment that ω−Red-Black smoother seems to be a good choice for almost
equilateral triangulations.
However, this good behavior deteriorates very quickly when the shape of the
triangle tends to be rectangular or is characterized by a very small angle.

In the case of almost rectangular triangles, point-wise smoothers are not
suitable anymore due to the anisotropy of the Voronoi mesh. By other hand,
diamond smoother results in a very efficient smoother when this kind of grids
are considered. As an example, a triangular domain characterized by angles
α = 45o and β = 85o is fixed. In Figure 5.2a), the history of the multigrid
convergence by using different smoothers is displayed. More concretely, Red-
Black, ω−Red-Black and diamond smoothers are used in this comparison. In
all cases, the finest grid results by applying eight refinement levels to the initial
triangular domain.

a) b)

Figure 5.2: a) Comparison of smoothers on an almost rectangular triangular
grid. b) History of the convergence for different numbers of refinement levels by
using diamond smoother.
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As we can observe, very poor rates are obtained when both Red-Black
smoothers are considered, whereas the convergence factors provided by the new
diamond smoother are very satisfactory, achieving the convergence in only eleven
cycles. Besides, in Figure 5.2b), where the history of the convergence is shown
for different numbers of refinement levels, the robustness of this smoother with
respect to the space discretization parameter is demonstrated.
Although convergence factors provided by diamond smoother are very satis-
factory for many grid configurations, when a triangulation characterized by a
very small angle is used, this smoother gives rise to poor rates. This behavior
can be seen in Figure 5.3, where asymptotic convergence factors of the dia-
mond smoother based multigrid are shown for a wide range of pairs of angles
characterizing the grid.

Figure 5.3: Experimentally computed convergence factors for the diamond
smoother based multigrid and four smoothing steps, for different triangles in
function of two of their angles.

To overcome these troubles appearing when the primal mesh is anisotropic,
wormy-smoother in the direction of the anisotropy is a suitable smoother, largely
improving the convergence factors provided by the rest of point-wise or block-
wise smoothers. To validate this statement, we are going to compare the multi-
grid convergence by using each one of the smoothers proposed in this work,
when an isosceles triangle with a small angle of 10o is considered as domain
of our problem. With this purpose, in Figure 5.4a), the multigrid convergence
provided by using ω−Red-Black, diamond and wormy smoothers is depicted for
eight refinement levels. From this picture, it is clear that wormy-smoother is
the best choice for this type of triangulations. Moreover, an h−independent
convergence is also shown in Figure 5.4b).

Concluding, from the results presented in this chapter, it seems that a reason-
able strategy to follow would be to apply the point-wise ω−Red-Black smoother
for almost equilateral triangles, the collective diamond smoother for almost rect-
angular triangles, and finally the appropriate block collective wormy smoother

22



a) b)

Figure 5.4: a) Comparison of smoothers on an isosceles triangular grid with
smallest angle 10o. b) History of the convergence for different numbers of re-
finement levels by using wormy-smoother.

when triangulations with a small angle appear.
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Chapter 6

Numerical experiments

From the practical point of view, for any given triangular geometry would be
nice to be capable of choosing a suitable smoother in order to reach a desired
convergence factor. Moreover, for semi-structured grids, it is imperative to know
the smoother to use for each triangle of the input grid, in order to achieve glob-
ally a desired convergence factor. In order to reach this, a set-up phase has been
implemented in the multigrid code; it consists of reading an already calculated
database containing the most efficient strategy depending on the triangle angles.
The corresponding guideline to reach a global convergence factor about 0.1 is
shown in Figure 6.1, and it has been numerically calculated by doing extensive
computations in regular triangular grids.

Figure 6.1: Guideline to choose suitable smoothers to reach an asymptotic con-
vergence factor about 0.1 on different triangles.

Strategy shown in Figure 6.1 has been followed in the two model problems
considered here: a Laplace problem in an A-shaped domain, and a convection-
diffusion problem in an square domain. In both problems, aCute software, [7,
8], which is based on Triangle, [25, 26], has been used to generate the initial
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unstructured acute Delaunay triangulation.

6.1 Laplace problem in an A-shaped domain

In the first numerical experiment, model problem (3.1) is solved in an A-shaped
domain, as shown in Figure 6.2. To this purpose, an initial unstructured grid
composed of 201 triangles is considered, as depicted in Figure 6.2a). From this
mesh, a hierarchy of grids is constructed by applying regular refinement, and the
grid resulting after one refinement step is shown in Figure 6.2b), as an example.

a) b)

Figure 6.2: a) Coarsest unstructured grid. b) Grid obtained after one regular
refinement level.

Following the guideline displayed in Figure 6.1, we have chosen the most
efficient smoother for each triangle of the input unstructured triangulation. Se-
lected smoothers can be seen in Figure 6.3a). It is important to remark that
to achieve the desired global convergence factor, an extra relaxation on Voronoi
nodes close to the internal boundaries of the initial coarsest grid, has been
necessary.

After applying the proposed strategy by using an F-cycle, the history of the
convergence for different numbers of refinement levels is shown in Figure 6.3b).
The stopping criterion has been chosen as the maximum residual to be less
than 10−8. It is observed that the convergence is independent of the space
discretization parameter h, and that in few iterations the residual is reduced as
desired. Moreover, an asymptotic convergence factor about 0.1 is obtained by
taking a random initial guess and zero right-hand side.

6.2 Convection-diffusion problem on a square
domain

The strategy proposed in this work can be applied to more complex problems
as, for example, a convection-diffusion model, which can be written in divergent
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a) b)

Figure 6.3: a) Different smoothers for the triangles composing the initial trian-
gulation of the A-shaped domain. b) Multigrid convergence for Poisson problem
on the A-shaped domain.

form as:
−∇ · (∇v + b v) = f, in Ω, (6.1)

where b(x) is a given velocity field, whose divergence is assumed to be zero.
In order to obtain a difference scheme by the cell-centered finite volume method,
we follow the same approach that we have explained in detail in Chapter 3, by
using a central difference scheme to approximate the convective term. In this
numerical experiment an square domain of unit length and Dirichlet boundary
conditions are considered, and a constant vector b = (1, 0) is fixed in the whole
domain. Thus, the following equation on each of the grid-nodes xc results:

− 1

meas(T )

3∑
i=1

(
meas(li)

(
vh(xi)− vh(xc)

di
+ b · ni

vh(xi) + vh(xc)

2

))
= f(xc).

(6.2)

Figure 6.4: Coarsest unstructured grid together with the associated Voronoi
mesh.
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We consider an initial unstructured grid, composed of 96 triangles, as seen in
Figure 6.4, in which, for illustration, the dual Voronoi mesh has been displayed.
The hierarchy of grids is obtained by regular refinement. As the convective
part of the problem is not dominant, and its derivatives are of lower order, the
behavior of the multigrid will be similar to that obtained for a pure diffusive
problem, and therefore we will follow the guideline given in Figure 6.1 to choose
the suitable local smoother on each input triangle, and this selection is displayed
in Figure 6.5. The proposed geometric multigrid method is applied to solve the
corresponding large sparse linear system of equations. An F-cycle is used to test
the independency of the multigrid convergence with regard to the discretization
parameters.

Figure 6.5: Different smoothers considered on each triangular block of the input
grid.

N. of levels N. of unknowns N. of cycles ρh
4 24576 9 0.09
5 98304 9 0.09
6 393216 9 0.09
7 1572864 9 0.10
8 6291456 9 0.10

Table 6.1: Number of iterations to reduce the initial residual in a factor of
10−10, and corresponding asymptotic convergence rates for different numbers of
refinement levels, by using an F-cycle

In Table 6.1, for different numbers of refinement levels, the asymptotic con-
vergence rate, ρh, and the number of iterations necessary to reduce the initial
residual in a factor of 10−10, are displayed.
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Chapter 7

Piecewise discontinuous
diffusion coefficient

In this chapter we will consider the diffusion problem:

−∇ · (κ(x, y)∇u) = f, in Ω, (7.1)

u = g, on Γ (7.2)

where κ(x, y) is a discontinuous the diffusion coefficient. In particular, here we
are interested in problems were κ is piecewise constant. Considering again the
cell-centered discretization scheme, equation 3.5 reads now as:

− 1

meas(T )

3∑
i=1

(
κHi meas(li)

vh(xi)− vh(xc)

di

)
= f(xc). (7.3)

Where x1, x2, x3 are the Voronoi points of the triangles adjacent to T with
common edges l1, l2 and l3, respectively, and di the distance between points xc

and xi, with i = 1, 2, 3, (see Figure 3.2). The coefficient κHi appearing in (7.3)
is the harmonic average given by:

κHi =
2κcκi
κc + κi

, (7.4)

which is the most accurate method of known techniques of averaging, [32, 24].
In this way, given an arbitrary pair (k1, k2) associated with a node of Gh,

the equations corresponding to the two Voronoi points xu
k1,k2

and xv
k1,k2

, are
given by

Luu
h vuh(xu

k1,k2
) + Lud

h vdh(xd
k1,k2

) = fuh (xu
k1,k2

), (7.5)

Ldu
h vuh(xu

k1,k2
) + Ldd

h v
d
h(xd

k1,k2
) = fdh(xd

k1,k2
), (7.6)

where “scalar” operators Luu
h , Lud

h , Ldu
h and Ldd

h can be obtained from equa-
tion (7.3), and are given in stencil form as:
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Luuh =
1

meas(T )


0 0 0

0 κ
H
1

l1

d1

+ κ
H
2

l2

d2

+ κ
H
3

l3

d3

0

0 0 0

 , Ludh =
1

meas(T )



0 0 0

0 −κH1
l1

d1

−κH3
l3

d3

0 −κH2
l2

d2

0

 ,

Lduh =
1

meas(T )


0 −κH2

l2

d2

0

−κH3
l3

d3

−κH1
l1

d1

0

0 0 0

 , Lddh =
1

meas(T )


0 0 0

0 κ
H
1

l1

d1

+ κ
H
2

l2

d2

+ κ
H
3

l3

d3

0

0 0 0

 ,

where the distances d1, d2, d3 and the lengths l1, l2, l3 are defined depending
on the orientation of the triangle, as seen in Figure 7.1. For example, for an
up-oriented triangle d2 is defined as the distance between xu

k1,k2
and xd

k1,k2−1,
and l2 as the length of the edge between those Voronoi points.

(a) (b)

Figure 7.1: Notation used to construct the stencil on a Voronoi point at (a) an
up-oriented triangle or at (b) a down-oriented triangle.

When the semi-structured grid is considered, different stencils are necessary
to describe the discrete operator on the structured grid arising on a triangle T
of this mesh. Notice that all the down-oriented triangles comprising this grid
are “interior”, that is, they only connect with up-oriented triangles of T. In
this way, the stencils corresponding to their Voronoi nodes will be identical.
However, for those grid-points associated with up-oriented triangles, different
stencils appear depending on their location, since it is necessary to take into
account the connections with other triangles belonging to other block of the
coarsest grid.

7.1 Galerkin operator

When large jumps in the diffusion coefficient κ occur in the domain, a di-
rect discretization on coarse grids may not work properly. However, in most
of the multigrid methods for discontinuous coefficients problems, the Galerkin
approach have been used satisfactorily. This method consists of defining the
coarse-grid operator in terms of the fine-grid operator, Lk, the restriction,Ik−1k

and the prolongation, Ikk−1, in the following way:

Lk−1 = Ik−1k LkIkk−1 (7.7)

With this method, it is not straight to work directly with stencil notation
as the operations are matrix multiplications.
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We propose an easy algorithm to calculate Lk−1 using only stencils. This
method must be applied once per stencil operator. Firstly, the notation for this
algorithm needs to be modified, nevertheless using the following conversion of
the previously explained stencils, its application is straightforward:

Stencil =

 0 0 0
Lud
h (0, 0) Luu

h (0, 0) Lud
h (1, 0)

0 Lud
h (0, 1) 0

 . (7.8)

Secondly, we have to define an stencil of stencils:

St(j, i) =

 0 0 0
SE(jj, ii) SC(jj, ii) SW (jj, ii)

0 SN (jj, ii)|SS(jj, ii) 0

 , (7.9)

Where the subfix is their position in cardinal coordinates, being SC the center,
see Figure 7.2.

Figure 7.2: Stencils notation to be used in the Stencil of Stencils

All the stencils coordinates must be defined from −1 to 1, being the center
(0, 0), and the κ must be included. The stencil of stencil, St must be a 4
dimensional array in which the two first coordinates are the position of the
stencil, and the last two the coordinates the position entries of that stencil. The
algorithm is as follows:

Program Galerkin_Operator

StencilC = 0

n = 0

center = 1

!Compute A_coarse

do ii = 0 to 1

do jj = 1 to -1 add -1

do i = 0 to 1

do j = 1 to -1 add -1

n = n + 1

if ((ii = 0 and jj = 0) or (i = 0 and j = 0) or

(n = center)) then

StencilC(0,0) = StencilC(0,0) +

+ S_t(j,i,-jj,ii) * R(j,i)

30



else

StencilC(jj,ii) = StencilC(jj,ii) +

+ S_t(-j,i,jj,ii) * R(-j,i)

end do

end do

n = 0

center = center + 1

end do

end do

!Store stencil

StencilC = StencilC * Cf

Where Cf, is an scale constant to compensate the fact that the local prolonga-
tion and restriction do not satisfy the following inequation [32]:

mp +mr > m. (7.10)

In this equation, mp and mr are the order of the prolongation and the restric-
tion, respectively, that is, the highest degree plus one of polynomials that are
interpolated exactly, and m is the order of the differential equation.

When the simple injection is selected, the Galerkin operator is not consistent
and it must substituted by the following expression [33]

Lk−1 =
1

2
Ik−1k LkIkk−1, k = 1, . . . , f (7.11)

this modified version provides better multigrid convergence rate results over the
original Galerkin operator.

7.2 Numerical experiments

In this section we are going to present two numerical experiments to demonstrate
the efficiency of the proposed block-wise multigrid algorithm based on Galerkin
approach. In the first experiment, problem (7.1) is solved on the unit square with
two different distributions of diffusion coefficients. This is a typical benchmark
problem on this study area. In the second one, the same problem is solved on
a more complex domain, simulating a more real situation. In both experiments
the proposed multigrid algorithm is applied by using an F-cycle with two pre-
and two post-smoothing steps.

7.2.1 Diffusion problem on the unit square with various
diffusion coefficients

In the first experiment, we are going to solve problem (7.1) on the unit square
with different diffusion coefficients defined piecewise on two subdomains of dif-
ferent shapes, as shown in Figures 7.3 and 7.4. This consists of a benchmark
problem taken from the literature [32]. More concretely, in the first test case,
the inner subdomain has a rhombus shape with a 0.5 side length, see Figure 7.3,
whereas the second one consists of an hexadecagon with diameter 0.5 simulating
a circle, see Figure 7.4. The right-hand side is defined as f = xy, the Dirichlet
boundary conditions are given by g = x2+y2, and the diffusion coefficient values
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are 0.333× 105 for the internal subdomains and 2 for the rest of the square, see
Figures 7.3 and 7.4. In the same figures the corresponding coarsest grids are
also represented.

a) b)

Figure 7.3: a) Coarsest unstructured mesh for the first test case, and distribution
of diffusion coefficients: 0.333×105 at the white region and 2 at the shaded part.
b) Different smoothers for the triangles of the coarsest grid: white is Red-Black
smoother, diamond smoother is represented by light-grey, and wormy smoother
by dark-grey.

a) b)

Figure 7.4: a) Coarsest unstructured mesh for the second test case, and dis-
tribution of diffusion coefficients: 0.333 × 105 at the white region and 2 at
the shaded part. b) Different smoothers for the triangles of the coarsest grid:
white is Red-Black smoother, diamond smoother is represented by light-grey,
and wormy smoother by dark-grey.

For these examples, Red-Black, Wormy and Diamond smoothers have been
considered, along with some extra-relaxation process on Voronoi nodes close to
the internal boundaries of the initial coarsest grid.

The proposed block-wise multigrid method has been applied to solve both
test cases. Red-black, wormy and diamond smoothers have been used for dif-
ferent triangles of the coarsest grid, as shown in Figures 7.3 7.4. Regarding
the obtained multigrid convergence, in Table 7.2.1, the number of iterations
necessary to reduce the initial residual in a factor of 10−10 are shown for both
test cases, together with the asymptotic convergence rates and the number of
unknowns for each number of refinement levels. We observe an h-independent
convergence for both problems, and although these results are slightly worse
than those obtained in the case of constant diffusion coefficients, as expected,
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Diamond Circle
Levels Unknowns Cycles ρh Cycles ρh

4 6912 8 0.15 8 0.13
5 27648 8 0.18 9 0.17
6 110592 8 0.22 9 0.19
7 442368 8 0.24 9 0.20
8 1769472 9 0.25 9 0.21

Table 7.1: Number of iterations to reduce the residual in a factor of 10−10, and
asymptotic convergence rates for both test cases.

the method shows a very satisfactory convergence. On the other hand, when
direct discretization is used on coarse grids, a very poor convergence rate is
obtained.

7.2.2 Diffusion problem on a composite material domain

In the second experiment, problem (7.1) is solved on a rectangular domain
composed of two different materials with different diffusion coefficients: 1 and
0.001, as we can see in Figure 7.5a).
The considered coarsest grid is also shown in the same figure, and also we can
observe that it is composed of triangles with very disparate geometries. For
this reason different smoothers are considered for the triangles of the coarsest
triangulation. In particular the smoothers chosen for these triangles are shown
in Figure 7.5b). In this way, the block-wise multigrid previously proposed is
used for solving the problem. We want to comment that an extra-relaxation on
Voronoi nodes close to the internal boundaries of the initial coarsest grid has
been necessary.

a) b)

Figure 7.5: a) Diffusion coefficients for the second experiment, white color rep-
resents κ = 0, 001 and grey κ = 1. b) Different used smoothers: white is
red-black, diamond smoother is represented by light-grey and wormy smoother
by dark-grey.

Now we are going to compare the behavior of the multigrid algorithm by con-
sidering both, direct discretization on coarse grids and the Galerkin approach.
For this purpose, in Figure 7.6, the history of the convergence of the method, for
two different refinement levels, to reach a final maximum residual below 10−7,
is displayed. In this case, the method based on direct discretization leads to
divergence, while that based on Galerkin approach yields very satisfactory and
robust results. Moreover, we observe that the convergence is independent of
the discretization parameter, and with only twelve/thirteen cycles the residual
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reaches the desired value. Note, that in this experiment the use of Galerkin
coarse-grid operator is mandatory.

Figure 7.6: Comparison between direct discretization and Galerkin for two dif-
ferent refinement levels.
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Chapter 8

Conclusions

In this work, the design of efficient multigrid methods for cell-centered finite
volume schemes on semi-structured triangular grids has been the main focus.
Due to the cell-centered character of the discretization and because of the appli-
cation of the proposed strategy on semi-structured grids, very simple inter-grid
transfer operators have been used in the design of these methods, leading to
the requirement of stronger smoothers. Thus, appropriate novel smoothers are
proposed depending on the geometry of the grid. Moreover, due to the semi-
structured nature of the grid, different smoothers can be used on each structured
region, giving rise to a block-wise multigrid method. The global behavior relies
on its components on each block. Furthermore, the good behavior of the pro-
posed multigrid method has been illustrated by some numerical experiments.
A fast and h-independent convergence has been obtained, concluding that the
adopted strategy yields very efficient solvers on relatively complex domains for
cell-centered discretizations. Also, the proposed Galerkin operator gives good
convergence rates even for high diffusion coefficient jumps, concluding that this
methodology is efficient also for heterogeneous materials, which, in first instance
are prohibitive. Moreover, the algorithm proposed is fast an efficient as it only
use the collide stencils to get the Galerkin operator, making the user of this
operator more plausible than having to multiply three matrices.
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