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Resumen

Se presenta una introducción a la teoŕıa cuántica de campos en espacio-tiempos no con-
mutativos. Primero se da una justificación a por qué ir más allá de la teoŕıa cuántica de
campos relativista, presentando la gravedad como una teoŕıa cuántica de campos y discu-
tiendo el origen de las divergencias ultravioletas. Después se explora el concepto de una
teoŕıa no local a través de la no conmutatividad del espacio-tiempo. Se discute el caso de la
no conmutatividad canónica mediante el procedimiento de la cuantización de Weyl y se da
una descripción fenomenológica de la teoŕıa perturbativa para una teoŕıa escalar mostrando
el fenómeno de la mezcla infrarrojo ultravioleta. Se discute la invariancia bajo transforma-
ciones de Poincaré de dicha teoŕıa y se comienza a estudiar el espacio-tiempo κ-Minkowski
por analoǵıa al estudio de la invariancia del caso canónico.
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5.1. Preliminares: ¿por qué álgebras de Hopf? . . . . . . . . . . . . . . . . . . . . . . 19
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6.3. κ-Poincaré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



7. Conclusiones 25

A. Notación y unidades 26

B. Aparición de ghost con derivadas de orden superior a 2 26
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C.1.4. Álgebra de Hopf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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1. Introducción

La teoŕıa de la Relatividad General puede ser tratada como una teoŕıa cuántica de campos.
De hecho, el lagrangiano de la teoŕıa puede ser derivado de manera perturbativa como el único
compatible con la unitariedad de una teoŕıa mediada por una part́ıcula sin masa de spin 2. La
teoŕıa, sin embargo, no es renormalizable, lo que implica que, aun siendo consistente con los
principios de la teoŕıa cuántica de campos, no se pueden calcular amplitudes de dispersión con
ella y, por tanto, no se pueden realizar predicciones. De este problema surge la pregunta de si es
posible formular una teoŕıa cuántica de campos en la que no sea necesaria la renormalización.
Para ello, hay que comprender de dónde surgen las divergencias ultravioletas en una teoŕıa
cuántica de campos, ya que son la causa de que sea necesario dicho procedimiento. En este
trabajo se observa que se puede ver el origen de estas divergencias en la localidad de la teoŕıa;
el hecho de poder evaluar los campos en un punto concreto del espacio-tiempo hace que las
integrales involucradas en los cálculos de las secciones de dispersión diverjan.

Con esta observación surge la idea de explorar espacio-tiempos en los que se pierda la noción
de localidad. Igual que sucede con el espacio de fases en el paso de la mecánica clásica a la
cuántica, la no conmutatividad es una propiedad que cumple este propósito. En este trabajo se
estudian dos tipos de no conmutatividades para el espacio-tiempo. La primera es la del espacio-
tiempo no conmutativo canónico, que presenta el caso más simple, pero en el que se puede llevar
a cabo la formulación de la teoŕıa perturbativa de los diagramas de Feynman y una discusión
fenomenológica.

La segunda no comutatividad presentada en este trabajo es κ-Minkowski, un nuevo ejemplo
de espacio-tiempo que presenta un nuevo desaf́ıo. En este espacio la formulación de la teoŕıa
se hace más complicada, haciendo más dif́ıcil la discusión fenomenológica. Sin embargo, en este
marco se estudian aspectos como la invariancia bajo transformaciones de Poincaré y cómo se
debe generalizar el concepto de grupo de Poincaré para adaptarlo al marco de una teoŕıa no
conmutativa, aśı como las ambigüedades de dicha generalización.

2. Teoŕıas mediadas por bosones sin masa

En esta sección vamos a construir los lagrangianos invariantes bajo transformaciones de
Lorentz más generales posibles que describan part́ıculas interactuantes de spin entero sin masa,
asumiendo la única condición de no permitir estados de norma negativa, que denominamos
ghosts, ya que la norma de un estado se interpreta como una probabilidad. El objetivo de esta
sección es mostrar que el lagrangiano de la Relatividad General puede ser derivado como el
único que describe part́ıculas interactuantes sin masa y de spin 2. Sugeriremos en esta sección
la referencia [1].

2.1. Part́ıculas de spin 1

Para ilustrar el procedimiento, empezamos con el caso de spin 1. Una part́ıcula de spin
1 tiene 3 estados de polarización, luego, para describirla, tomaremos un campo cuadrivectorial
visto como una representación 4 = 3⊕1 del grupo de Lorentz. Hay que fijar un grado de libertad
que corresponde al de la representación de spin 0. Denotaremos A(x) a dicho campo vectorial.

El lagrangiano describe las mismas ecuaciones en cualquier sistema de referencia inercial,
cuyas transformaciones entre sistemas vienen dadas por el grupo de Poincaré. Esto es equivalente
a decir que el lagrangiano es un escalar bajo el grupo de Poincaré. El lagrangiano más general
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posible depende de los cuadrivectores (Aµ) y (∂µ); en particular, debemos buscar todos los
escalares posibles a partir de estos dos cuadrivectores. Antes de continuar, hay que remarcar
que un término de orden superior a 2 en Aµ se interpretará como una interacción. Añadimos
además la condición de que las derivadas no pueden superar el segundo orden, ya que, como
mostraremos más adelante, derivadas de orden superior a dos permitiŕıan estados de norma
negativa. Con estas restricciones obtenemos el lagrangiano

L = aAµ�A
µ + bAµ∂

µ∂νA
ν +

1

2
m2AµA

µ, (2.1)

donde a, b y 1
2m

2 son constantes reales cualesquiera. Sabemos que este lagrangiano describirá
en general part́ıculas con 4 estados de polarización.

Para continuar, notemos que cualquier campo vectorial puede descomponerse de la forma

Aµ(x) = AT
µ

+ ∂µπ(x), (2.2)

con un grado de libertad en la elección de π(x), ya que transformando

AT
µ → AT

µ
+ ∂µα(x),

π → π− α(x),
(2.3)

la descomposición (2.2) queda invariante. El campo π es un campo escalar, de spin 0, que
como hab́ıamos adelantado, no debe tener significado f́ısico en nuestra discusión sobre part́ıculas
de spin 1. En este sentido, elegir un α(x) concreto es fijar el gauge sobre AT

µ
. De ahora en

adelante utilizaremos el gauge de Lorentz ∂µA
T µ = 0. Para ello, en una descomposición genérica

(2.2) basta elegir α cumpliendo ∂µA
T µ = −�2α. Llamaremos modo transversal a AT

µ
y modo

longitudinal a π en el gauge de Lorentz. Utilizando esta descomposición podemos reescribir el
lagrangiano (2.1) como

L = aAT µ�A
T µ +

1

2
m2AT µA

T µ − (a+ b)π�2π− 1

2
m2π�π. (2.4)

El lagrangiano anterior (2.4) es equivalente a (2.1) porque ambos dan lugar a la misma
acción.

Estudiaremos ahora la parte de la acción correspondiente al campo escalar π(x). El propa-
gador de esta función es

Ππ(k) = − 1

2(a+ b)k4 −m2k2
=

1

m2

[
1

k2
− a+ b

(a+ b)k2 − 1
2m

2

]
, (2.5)

que representa dos part́ıculas, una de las cuales presenta estados de norma negativa o ghost,
para a+ b 6= 0, como se expone en el Apéndice B. En general, cualquier término de más de dos
derivadas da lugar a estados de probabilidad negativa por el mismo argumento aqúı expuesto.
Este hecho nos fuerza a tomar a = −b. Vemos que el modo longitudinal solo aparece en el
término de masa y es un término cinético proporcional a m2.

En particular, si a = 1
2 ,

L =
1

2
Aµ�A

µ − 1

2
Aµ∂

µ∂νA
ν +

1

2
m2AµA

µ = −1

4
FµνFµν +

1

2
m2AµA

µ, (2.6)

con Fµν = ∂µAν − ∂µAν . Este lagrangiano es formalmente igual al de la QED1 con un término
de masa, en ausencia de interacción.

1Electrodinámica Cuántica.
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Para el ĺımite sin masa tomaremos

LA = −1

4
FµνFµν . (2.7)

El modo longitudinal no aparece, luego, podemos deducir que la elección de cualquier modo
longitudinal dejará invariante el lagrangiano. Aśı, este es invariante bajo transformaciones del
tipo

Aµ → Aµ + ∂µπ. (2.8)

En presencia de interacción podŕıa aparecer un término cinético en el modo longitudinal,
como en (2.4). No obstante, esto daŕıa lugar a interacciones infinitamente grandes. Por ejemplo,
una interacción podŕıa ser

Lπ = Zπ�π + λπ3. (2.9)

Podemos tomar cualquier normalización para π sin alterar el término cinético del lagrangiano,
de manera que podemos hacer πc =

√
Zπ y reescribir

Lπ = πc�πc +
λ

Z
2
3

π3
c . (2.10)

Para Z → 0, este término da lugar a interacciones infinitas, luego, para evitar esta pato-
loǵıa, debemos garantizar que el término cinético del modo longitudinal π�π no aparezca en el
lagrangiano. Para ello hay que asegurar que bajo transformaciones del tipo (2.8) el lagrangiano
total se mantiene invariante. Esto equivale a decir que Aµ debe acoplarse a una cuadricorriente
conservada Jµ con ∂µJ

µ = 0.

Construyamos ahora las interacciones con un campo escalar φ, que viene descrito por el
lagrangiano Lφ. La interacción más simple que podemos introducir es Lint = JµAµ, donde Jµ

es una cuadricorriente formada a partir φ. Aśı el lagrangiano total queda

L = Lφ + LA + Lint. (2.11)

La cuadricorriente más simple que podemos construir es Jµ = −i (φ∗∂µφ− φ∂µφ∗). Esta
interacción no debe acoplarse al término longitudinal de ninguna manera, ya que este carece de
sentido f́ısco y el lagrangiano libre es invariante bajo una elección arbitraria de π. Esto equivale a
decir que la interacción debe ser invariante bajo transformaciones (2.8), que sobre el lagrangiano
con interacción que hemos descrito transforma

Lint → −iAµ (φ∗∂µφ− φ∂µφ∗)− iπ (φ�φ∗ − φ∗�φ) ,
L → L− iπ (φ�φ∗ − φ∗�φ) .

(2.12)

El término extra que ha surgido debe ser reabsorbido. Esto puede ser llevado a cabo trans-
formando el campo escalar φ en función de π. Para hallar esta transformación procedemos
perturbativamente. Hemos de tener además en cuenta que al transformar φ también cambiará
Lφ.

Buscando una transformación lineal en π, hacemos φ→ φ−iπ. Teniendo en cuenta el término
cinético ∂µφ∂

µφ∗ de Lφ,

∂µφ∂
µφ∗ → ∂µφ∂

µφ∗ + iπ (φ�φ∗ − φ∗�φ)− (πφ∗)�(πφ). (2.13)

La transformación propuesta no deja términos lineales en π al transformar

Lint + Lφ|cin = −iAµ (φ∗∂µφ− φ∂µφ∗) + ∂µφ∂
µφ∗. (2.14)
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Podemos continuar con el segundo orden de la transformación en φ. Los términos cuadráticos
en π que aparecen pueden cancelarse con la transformación φ → φ − iπ − 1

2π
2, pero ahora es

necesario añadir un término adicional al lagrangiano

L = −1

4
FµνFµν − iAµ (φ∗∂µφ− φ∂µφ∗) + ∂µφ∂

µφ∗ +AµAµφ
∗φ, (2.15)

que queda invariante hasta términos cúbicos. No hace falta que calculemos más órdenes si nos
damos cuenta de que este lagrangiano es exactamente invariante bajo transformaciones del tipo{

Aµ → Aµ + ∂µπ,
φ → e−iπφ.

(2.16)

Este es el lagrangiano que describe la interacción del campo electromagnético con un campo
escalar.

2.2. Part́ıculas de spin 2

El procedimiento anterior se puede repetir con part́ıculas de spin 2. Estas part́ıculas tienen 5
estados de polarización y se pueden describir con tensores simétricos hµν con las correspondientes
restricciones. Podemos extender la descomposición (2.2) para un tensor de orden 2 de la siguiente
manera

hµν = hTµν + ∂µπν + ∂νπµ, (2.17)

eligiendo el gauge ∂µhTµν = 0. El tensor simétrico tiene 10 parámetros libres, luego debemos fijar
5. Podemos representar 3 estados de polarización en πµ como en el caso de spin 1. Este campo,
a su vez, puede descomponerse en

π = πTµ + ∂µπ
L, (2.18)

con ∂µπTµ = 0. Imponiendo las condiciones

∂µhTµν = 0 que fija 4 parámetros,

∂µπTµ = 0 que fija 1 parámetro,

quedan los 5 estados de polarización deseados. Escribamos ahora el lagrangiano de orden 2 más
general posible con hµν y ∂µ, como en el caso anterior con términos, como máximo cuadráticos,
tanto en h como en ∂.

L =
∑
i

hµν∂ρ∂σhλξC
((µν)|(ρσ)|(λξ))
i +

∑
j

B
(µν)(λξ)
j hµνhλξ, (2.19)

donde C
((µν)|(ρσ)|(λξ))
i y B

(µν)(λξ)
j son base de todos los posibles tensores simétricos en los ı́ndices

indicados.

Podemos reescribir este lagrangino como

L = a hµν�h
µν + b h ν

µ ∂µ∂αh
α
ν + c h�h+ d h∂µ∂νh

µν +
1

2
m2
(
xhµνh

µν + y h2
)
, (2.20)

con h = h µ
µ . Analicemos el término de masa con las descomposiciones (2.17) y (2.18):
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Lm =
1

2
m2
(
x
(
hTµνh

µνT + 2
(
(∂µπ

µ)2 − πµ�π
µ
))

+ y h2
)

=
1

2
m2
[
x
(
hTµνh

µνT + 2
(

2πL�2πL − πTµ�π
µT
))

+ y
(
hT

2
+ 4�πL + 4πL�2πL

)]
= 2m2(x+ y)πL�2πL + · · · .

(2.21)

Para evitar derivadas de orden superior a 2 elegimos x = −y. Se puede repetir el análisis con el
término restante y elegir las constantes apropiadas para que el lagrangiano quede

L =
1

4
hµν�h

µν − 1

2
h ν
µ ∂µ∂αh

α
ν +

1

2
h∂µ∂νh

µν − 1

4
h�h+

1

4
m2
(
hµνh

µν − h2
)
. (2.22)

En el ĺımite sin masa,

L =
1

4
hµν�h

µν − 1

2
h ν
µ ∂µ∂αh

α
ν +

1

2
h∂µ∂νh

µν − 1

4
h�h. (2.23)

Como en el caso de spin 1, el modo πµ carece de sentido f́ısico. Debemos evitar, por tanto,
la aparición del campo πµ en las interacciones al realizar transformaciones

hµν → hµν + ∂µπν + ∂νπµ. (2.24)

Esto se consigue con interacciones del tipo Lint = hµνTµν , donde Tµν es un tensor simétrico que
cumple ∂µTµν = 0. La interacción más simple que podemos introducir con un campo escalar es

L1 =
1

2
hφ, (2.25)

que bajo transformaciones (2.24) queda L1 → L1 +∂µπ
µφ. Como en el caso anterior, buscaremos

eliminar los términos en π orden a orden, hallando una transformación de π y añadiendo términos
al lagrangiano; además en este caso nos veremos forzados a añadir términos a la transformación
(2.24).

Podemos eliminar el término cuadrático en dos campos modificando el lagrangiano L2 =
L1 + φ y transformando φ→ φ+ πµ∂µφ; el lagrangiano transforma con L2 → L2 + 1

2hπ
µ∂µφ+

πν∂νφ∂µπ
µ.

Para eliminar el término 1
2h∂µπ

µφ podemos ver πµ como un desplazamiento infinitesimal del
argumento φ y por tanto realizamos un desplazamiento infinitesimal sobre el argumento hµν ,
hµν → hµν + ∂µπν + ∂νπµ + πα∂

αhµν .

Continuando la sucesión, si añadimos L3 = L2 + 1
8h

2φ, bajo transformaciones (2.8) y la
transformación de hµν antes descrita

L3 → L3 + (πν∂νφ)(∂µπ
µ) + (∂νπ

ν)(∂µπ
µ)φ+O(4), (2.26)

donde O(4) son términos en 4 o más campos, los términos lineales en π han desaparecido para los
productos de tres o menos campos. Como estamos realizando una transformación infinitesimal
en π, los términos lineales en este factor no deben aparecer en la expansión de Lint, mientras que
los términos cuadráticos o de orden superior son resultado de no considerar la transformación
completa en función de π.

Para el caso de spin 1 buscamos transformaciones en el lagrangiano y en el campo φ que
anulan los términos de orden 1 en π, cosa que conseguimos en el paso (2.14); aqúı, sin embargo,
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entre los términos en 4 o más campos sigue habiendo términos lineales en π (o sus derivadas) y
nos vemos obligados a considerar una transformación

hµν → hµν + ∂µπν + ∂νπµ + πα∂
αhµν + (∂µπ

α)hαν + (∂νπ
α)hµα. (2.27)

Continuando con la expansión del lagrangiano, comprobamos que podemos anular los térmi-
nos lineales en π añadiendo infinitos términos de manera que la interacción final se puede expresar
como [1]

Lint =

√
−det

(
ηµν +

1

M
hµν

)
φ, (2.28)

siendo M una constante con dimensiones de masa para hacer que hµν tenga dimensiones de
masa. No necesitamos continuar con la transformación a segundo orden si notamos que este
lagrangiano es invariante a todo orden en π para transformaciones

φ → φ(xµ + πµ),

hµν → (ηαµ + ∂απµ) (ηβν + ∂βπν)
[
ηαβ + hαβ(xξ + πξ)

]
− ηµν , (2.29)

donde los cambios de coordenadas en el argumento de φ y hµν se entienden como la expansión
en serie de Taylor. Para hµν esta es la ley de transformación de tensores bajo cambios generales
de coordenadas.

Como hemos modificado la transformación de hµν hemos de modificar el lagrangiano de
la part́ıcula libre (2.23) para que sea invariante bajo la transformación (2.29). Aśı, el término
cinético es

Lcin =

√
−det

(
ηµν +

1

M
hµν

)
R

[
ηµν +

1

M
hµν

]
, (2.30)

donde R es el escalar de Ricci. Si hacemos M = MPl (la escala de Planck) hemos deducido el
lagrangiano de la relatividad general, siendo este el único lagrangiano posible que permite una
interacción mediada por una part́ıcula sin masa de spin 2 que no dé lugar a ghosts.

Una teoŕıa de gravedad cuántica entiende la relatividad general de esta manera: la interacción
gravitatoria es una teoŕıa cuántica de campos mediada por una part́ıcula sin masa de spin 2,
el gravitón. A pesar de haber obtenido de manera natural este lagrangiano como consecuencia
de los principios de la teoŕıa cuántica de campos, existen problemas a la hora de interpretar los
resultados de esta teoŕıa. En la sección siguiente mostraremos el origen de estos problemas.

3. Divergencias ultravioletas en teoŕıa cuántica de campos

El problema al tratar la gravedad como una teoŕıa cuántica surge al tratar de renormali-
zar la teoŕıa. En las teoŕıas cuánticas de campos, al calcular las amplitudes de probabilidad de
transición entre estados, surgen cantidades infinitas que deben ser reabsorbidas para obtener
cantidades finitas y coherentes. En esta sección se busca presentar con un ejemplo sencillo el
tratamiento de estos infinitos, conocidos como divergencias ultravioletas, mediante la renorma-
lización. Se expondrá también el por qué de la imposibilidad de aplicar este procedimiento a la
teoŕıa de la gravedad cuántica derivada en la sección anterior.
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3.1. Teoŕıa φ4

Como ejemplo tomaremos la teoŕıa φ4. Esta teoŕıa describe un campo escalar φ cuya acción
es

S(4)[φ] =

∫
d4x

[
1

2
∂µφ(x)∂µφ(x)− m2

0

2
φ(x)2 − λ0

4!
φ(x)4

]
. (3.1)

Se puede describir entonces por el lagrangiano

L =
1

2
∂µφ(x)∂µφ(x)− m2

0

2
φ(x)2 − λ0

4!
φ(x)4. (3.2)

Al tratar esta teoŕıa, los campos φ(x) son operadores que crean y destruyen part́ıculas sobre
el vaćıo |0〉. Calculamos los elementos de matriz de S que representa la amplitud de transición
〈p1, p2, · · · , pn, tf |k1, k2, · · · , km, ti〉, donde los estados están etiquetados por los momentos ini-
ciales y finales. Vamos a tratar el término de interacción como una perturbación

Lint = −λ0

4!
φ(x)4 → Hint =

λ0

4!
φ(x)4. (3.3)

Gracias a la fórmula LSZ (Lehmann-Symanzik-Zimmermann) podemos relacionar estas am-
plitudes con los valores esperados en el vaćıo de

〈0|T
{
φ(x1) . . . φ(xm)φ(y1) . . . φ(yn) exp

[
−i
∫

d4xHint(x)

]}
|0〉, (3.4)

donde T es el operador de ordenación temporal. Tratar perturbativamente este problema equivale
a desarrollar la exponencial término a término. Para cada término podemos asociar un diagrama
de Feynman; por ejemplo, un diagrama en un proceso con un solo vértice y cuatro lineas externas
equivale a

x

x1

x2

x3

x4

= −i λ0

∫
d4x〈0|T

{
φ(x1)φ(x2)φ(x3)φ(x4)φ(x)4

}
|0〉. (3.5)

Cada producto 〈0|T {φ(x1)φ(x)} |0〉 = D(x1−x) es un propagador de Feynman que podemos
calcular expĺıcitamente. Esta integral es función de las cuatro variables xi, luego podemos realizar
la transformada de Fourier en cada una de ellas y estudiar el problema en el espacio de momentos,
quedando el diagrama

p1

p2

k1

k2

= −i λ0(2π)4δ4(p1 + p2 − k1 − k2)D̃(p1)D̃(p2)D̃(k1)D̃(k2). (3.6)

Obtenemos aqúı δ4(p1 + p2 − k1 − k2), que representa la conservación de momento en el
vértice. Podemos, sin embargo, considerar un proceso en el que solo está fijado el momento
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externo p de la siguiente manera

=

〈0|T{φ(x1)φ(x2)φ(x)φ(x)φ(x)φ(x)}|0〉 := D(x1 − x)D(x2 − x)D(x− x). (3.7)

Este proceso corresponde a la emisión y absorción de una part́ıcula de momento indefinido
q y la contribución de un diagrama de este tipo a la amplitud de dispersión viene dada por

k

q

k

= −i λ0(2π)4D̃(k)× 1

2

∫
d4q

(2π)4
D̃(q)× D̃(k). (3.8)

El valor de D̃(q) es expĺıcitamente D̃(q) = i
q2−m2

0
, luego la integral es

∫ d4q
(2π)4

i
q2−m2

0
, que es

una integral divergente. Si establecemos un momento máximo al que integrar obtenemos

−iΓ =
λ0

2(2π)4

∫
q2<Λ2

d4q

q2 +m2
0

=
λ0

16π2

(
Λ2 −m2

0 ln

(
Λ2 +m2

0

m2
0

))
. (3.9)

Aśı, hemos regularizado la integral con un regulador o cutoff Λ. Vemos que la divergencia
de la integral se da cuando Λ → ∞, es decir, cuando consideramos valores del momento arbi-
trariamente grandes. Este tipo de divergencia es lo que se denomina divergencia ultravioleta.
Considerando todos los diagramas a un loop, la autointeracción de φ queda

+ + · · ·

= D̃(q)
∞∑
n=0

(−iΓD̃(q))n =
i

q2 −m2
0

1

1− Γ
q2−m2

0

=
i

q2 −m2
0 − Γ

. (3.10)

De esta manera, las correcciones a un loop imponen un desplazamiento en la masa m2
0 → m2

0 +Γ,
pero este desplazamiento es infinito cuando hacemos Λ → ∞. Sin embargo, si redefinimos el
parámetro de masa del lagrangiano m2 = m2

0 + Γ, no tenemos que considerar los diagramas a
un loop a la hora de calcular las amplitudes de dispersión. Con una redefinición del parámetro
m hemos eliminado las divergencias ultravioletas debidas a este tipo de diagrama y, aunque esta
redefinición pierda sentido al hacer Λ → ∞, podemos medir una m finita como la enerǵıa en
reposo de la part́ıcula descrita por este campo. Por tanto, m0 seŕıa un desplazamiento infinito del
valor experimental. Este procedimiento se puede generalizar: podemos dejar de considerar ciertos
diagramas realizando redefiniciones sobre el lagrangiano. Para ilustrar un ejemplo (aunque con
diagramas que no son divergentes más allá del diagrama a un loop) vamos a considerar la
autointeracción del campo.
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Podemos añadir todos los diagramas con dos patas externas a órdenes superiores; por ejem-

plo,

q q

que depende de q2. Sumados como en el caso a un loop dan D̃M2(q) =

i
q2−m2

0−M2(q2)
.

Notar que M2(q2) es una función obtenida como la suma infinita de una serie en λ0 y que
como tal se puede calcular término a término en λ0. Podemos interpretar el polo

q2 −m2
0 −M2(q2)

∣∣
q2=m2 = 0 (3.11)

como la masa f́ısica que podemos medir. Para dejar de considerar los efectos de la autointeracción,
y por tanto este tipo de diagramas, vemos que podemos redefinir

m2 = m2
0 +M2(m2), (3.12)

y en un entorno de m2, q2−m2
0−M2(q2) = (q2−m2)

(
1− dM(p2)

dp2

)
+ · · · . Por tanto D̃M2(q) =

i

(q2−m2)
(

1− dM(p2)

dp2

) + términos regulares.

Si redefinimos el campo φ = Z
1
2
φ φr, con Zφ =

(
1− dM(p2)

dp2

)−1
, tenemos un propagador para

φr, D̃r(q) = i
q2−m2 + términos regulares.

Es decir, si calculamos las amplitudes de dispersión usando φr ya no tenemos que considerar
los diagramas de autointeracción. De manera análoga, renormalizar la teoŕıa φ4 es, antes de
hacer el ĺımite Λ→∞ para cierto regularizador Λ, redefinir

φ = Z
1
2
φ φr, m0 = Z

1
2
mm, λ0 = Zλλ, (3.13)

con los parámetros m y λ finitos. Reescribimos el lagrangiano

L =
1

2
Zφ∂µφr(x)∂µφr(x)− Z1

m2

2
φr(x)2 − Z2

λ

4!
φr(x)4

=
1

2
∂µφr(x)∂µφr(x)− m2

2
φr(x)2 − λ

4!
φr(x)4

+
1

2
δZφ∂µφr(x)∂µφr(x)− δZ1

m2

2
φr(x)2 − δZ2

λ

4!
φr(x)4

= Lr + δL, (3.14)

donde δZi se conocen como contratérminos. Tras la redefinición, los diagramas divergentes for-
man parte del lagrangiano de contratérminos δL y, para calcular amplitudes de dispersión,
podemos tomar el lagrangiano Lr, que tiene en cuenta solo campos renormalizados, evitando
incluir los diagramas que divergen para Λ→∞.

Renormalizar una teoŕıa cualquiera es buscar una redefinición de los campos y parámetros
del lagrangiano como en (3.13), de manera que no sea necesario considerar diagramas divergentes
para obtener amplitudes de dispersión.

Si las divergencias que aparecen a cualquier orden son debidas a un número finito de subdia-
gramas, como en el caso de la teoŕıa φ4, con un número finito de redefiniciones del tipo (3.13)
podemos absorber todas las divergencias de la teoŕıa, pudiendo calcular todas la amplitudes de
dispersión hasta cualquier orden y obteniendo siempre resultados finitos. Bajo estas condiciones
se dice que la teoŕıa es renormalizable.
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3.2. Gravedad Cuántica

Podemos establecer un criterio para saber cuándo un diagrama será divergente. Si k es el
momento de integración, definimos el grado superficial de divergencia como

G = (potencias de k en el numerador)− (potencias de k en el denominador). (3.15)

En general, si G ≥ 0 la integral diverge. Tomemos ahora un lagrangiano de interacción que
tiene una constante de acoplamiento λ con unidades de [masa]m. Al desarrollar la exponencial
en (3.4), obtendremos términos a todos los órdenes de λ. En concreto, para un diagrama con
V vértices estamos considerando el término a orden λV y, para valores de k = Λ, donde Λ
representa valores arbitrariamente grandes, el integrando será proporcional a λV ΛG, quedando
el diagrama de dimensiones [masa]V m+G.

Sea φ el campo que estamos tratando. El término cinético del lagrangiano será Lcin = m2φ2.
Como la acción es adimensional, podemos deducir que [L] = [masa]4 y por tanto [φ] = [masa].
Supongamos que el diagrama que estamos considerando tiene N patas externas; dimensio-
nalmente esto es igual a considerar un término de interacción en el lagangiano ηφN donde
[η] = [masa]4−N . Por tanto, la dimensión del diagrama debe ser [masa]4−N .

Por análisis dimensional
[masa]V m+G = [masa]4−N , (3.16)

es decir V m+G = 4−N . Para un acoplamiento con m < 0 podemos hacer G arbitrariamente
grande aumentando V . Esto significa que para cada orden surgen diagramas con un orden de
divergencia superior a los anteriores y, por tanto, no se puede renormalizar la teoŕıa con un
número finito de constantes de renormalización. Esto significa que no podemos absorber las
divergencias en un número finito de parámetros provenientes de medidas experimentales como
hab́ıamos hecho con el parámetro m para la teoŕıa φ4. Esto limita nuestra capacidad de realizar
predicciones con la teoŕıa, ya que no sabemos en general cómo calcular la amplitud de dispersión.

En la teoŕıa de la gravedad cuántica que hemos derivado en la Subsección 2.2, el término
cinético es (2.23), mientras el lagrangiano completo es (2.30). Podemos ver que el término del
desarrollo es proporcional a

Lint ∝
1

M
�h3, (3.17)

con M una constante con dimensiones de masa. Por el argumento desarrollado en esta sección,
la gravedad vista como una interacción mediada por una part́ıcula de spin 2 sin masa es no
renormalizable, en el sentido de que no podemos absorber las integrales divergentes con un
número finito de contratérminos.

3.3. Localidad de las interacciones

Nos preguntamos ahora si existe la posibilidad de hacer una teoŕıa cuántica de campos en
la que no aparezcan nunca las divergencias ultravioletas. En una teoŕıa de este tipo, realizar
predicciones en la teoŕıa cuántica de la gravedad no seŕıa un problema, ya que no es necesaria
la renormalización para absorber las divergencias. Para continuar en esta dirección, primero
observemos de dónde surgen las divergencias. En (3.9) vimos que imponer un cutoff Λ al mo-
mento máximo sobre el que integrar hace que la divergencia desaparezca. Esto puede sugerir que
la teoŕıa no es válida para valores arbitrariamente altos del momento. Si suponemos que para
ciertos valores k > Λ la teoŕıa ya no es válida, podŕıamos establecer un regulador natural que
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haga desaparecer las divergencias. Por otra parte, podemos relacionar esta idea con la idea de
localidad. El ejemplo de integral divergente que estamos discutiendo puede reescribirse como∫

d4q

(2π)4
D̃(q). (3.18)

Este factor viene de evaluar en x = y el propagador D(x − y) → D(0), que reescrito de otra
manera es D(x− y) = 〈0|T{φ(x)φ(y)} |0〉; es decir, el producto de dos campos evaluado en un
mismo punto del espacio no está definido. Es esta la idea que motiva a ir más allá de la teoŕıa
cuántica de campos local. En las siguientes secciones trataremos de explorar la no localidad de
una teoŕıa cuántica de campos a través de la no conmutatividad del espacio-tiempo.

4. Espacio-tiempo no conmutativo canónico

En mecánica cuántica podemos cuantizar un sistema clásico cambiando las coordenadas
del espacio de fases xi y pj por operadores hermı́ticos x̂i y p̂j que cumplen las relaciones de
conmutación de Heisenbreg

[
x̂i, p̂j

]
= i}δij . Tras esta cuantización, el concepto de punto en el

espacio de fases se ve sustituido por el de celda de Planck, mientras que en el ĺımite } → 0 se
recupera el espacio de fases clásico.

Nos preguntamos cuál será la fenomenoloǵıa al introducir una no conmutatividad de este
tipo en las coordenadas del espacio-tiempo sobre las que se definen los lagrangianos de la teoŕıa
cuántica de campos. Cambiaremos ahora las coordenadas xµ por operadores hermı́ticos x̂µ que
cumplen la relación de conmutación

[x̂µ, x̂ν ] = iΘµν . (4.1)

Para realizar un estudio más general tomaremos D como dimensión del espacio-tiempo y
denotaremos las coordenadas con ı́ndices latinos. Aśı, los operadores son xj , donde j toma D
valores, y Θij es la matriz considerada. Estudiaremos el caso canónico, el más simple, donde Θij

es una matriz real, constante y antisimétrica de dimensión D ×D [2]. Estamos sustituyendo de
esta manera la estructura de variedad del espacio-tiempo por un espacio de Hilbert de estados
de x̂i.

4.1. Cuantización de Weyl

Nos interesa saber cómo se redefine la acción en ese espacio. En el espacio conmutativo es

S =

∫
d4xL(φ(x), ∂νφ(x)), (4.2)

donde L puede ser visto como una función de xµ que decrece lo suficientemente rápido en
el infinito. Para nuestro espacio podemos suponer que los campos considerados pertenecen al
espacio de Schwartz definido por

A =

{
f |f : RD → C, sup

x

(
1 + |x|2

)k+n1+···+nD |∂n1
1 · · · ∂

nD
D f(x)|2 <∞ ∀k, ni ∈ Z+

}
, (4.3)

con ∂i = ∂
∂xi

. A es un espacio de Banach con la norma L∞ (‖f‖∞ = supx|f(x)|) y podemos
describir dichas funciones por su transformada de Fourier

f̃(k) =

∫
dDxe−ikix

i
f(x). (4.4)
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Estableceremos una correspondencia entre las funciones de A y las funciones definidas sobre
el espacio no conmutativo, de manera que al hacer Θ = 0 la correspondencia coincida con
la identidad. Este procedimiento que vamos a seguir se conoce como cuantización de Weyl.
Introducimos el śımbolo de Weyl de una función a través de su transformada de Fourier

Ŵ[f ] =

∫
dDk

(2π)D
f̃(k)eikix̂

i
. (4.5)

Si f(x) es real, f̃∗(k) = f̃(−k) y Ŵ[f ] es hermı́tico. Como ejemplo, Ŵ[eikix
i
] = eikix̂

i
. Si

introducimos la definición de transformada de Fourier (4.4) en (4.5),

Ŵ[f ] =

∫
dDxf(x)

∫
dDk

(2π)D
e−ikix

i
eikix̂

i
=

∫
dDxf(x)∆̂(x), (4.6)

donde se ha introducido el operador ∆̂(x) =
∫

dDk
(2π)D

e−ikix
i
eikix̂

i
. Se obtiene, aśı, una correspon-

dencia expĺıcita, a través del operador hermı́tico ∆̂(x) = ∆̂(x)†, entre las funciones de A y el
espacio de funciones sobre operadores, que denotaremos Ŵ[A].

En el caso conmutativo, ∆̂(x) = δ(x̂ − x), y por tanto Ŵ[f(x)] = f(x̂); es decir, en el caso
conmutativo no hemos introducido ningún cambio en la función.

Llegados a este punto, queremos invertir la relación y recuperar f(x) a través de Ŵ[f(x)].
Para ello, buscamos una caracterización de ∆̂(x) que sea independiente de x y que nos permita
normalizar el operador. Para llegar a esta caracterización definiremos la derivada de un opera-

dor. ∂̂i es un operador antihermı́tico que actúa sobre el espacio de operadores,
[
∂̂i, x̂

j
]

= δji y[
∂̂i, ∂̂j

]
= 0, luego la derivada sobre eikix̂

i
es
[
∂̂j , e

ikix̂
i
]

= ikje
ikix̂

i
.

Aśı, podemos ver cómo actúa la derivada sobre ∆̂(x):[
∂̂j , ∆̂(x)

]
=

∫
dDk

(2π)D
e−ikix

i
[
∂̂j , e

ikix̂
i
]

=

∫
dDk

(2π)D
ikje

−ikixieikix̂
i

= −∂j∆̂(x). (4.7)

Introduciendo esta expresión en (4.6) e integrando por partes vemos que[
∂̂j , Ŵ[f ]

]
=

∫
dDx∂jf(x)∆̂(x) = Ŵ[∂if ]. (4.8)

Para un desplazamiento infinitesimal, a primer orden

∆̂(x+ ε) =
(
1 + εi∂i

)
∆̂(x) =

(
∆̂(x)− εi

[
∂̂i, ∆̂(x)

])
'
(

1− εi∂̂i
)

∆̂(x)
(

1 + εi∂̂i

)
, (4.9)

luego ∆̂(x + v) = e−v
i∂̂i∆̂(x)ev

i∂̂i . Con esta caracterización, vemos que el desplazamiento está

dado por el operador unitario ev
i∂̂i y que cualquier aplicación ćıclica tendrá un valor constante

sobre ∆̂(x). En particular, tomaremos una aplicación lineal y ćıclica que toma valores en C y

que llamaremos traza y se define como Tr : Ŵ[A]→ C, con Tr
(

∆̂(x)
)

= 1:

Tr
(
Ŵ[f ]

)
=

∫
dDxf(x). (4.10)

Esto, sin embargo, no nos permite invertir la acción de Ŵ. Pero, usando la fórmula Baker-

Campbell-Hausdorff (BCH), podemos reescribir eikix̂
i
eik
′
ix̂
i

= e−
i
2

Θijkik
′
jei(k+k′)ix̂i , de donde se
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deduce

∆̂(x) ∆̂(y) =

∫∫
dDk

(2π)D
dDk′

(2π)D

∫
dDz ei(k+k′)izi ∆̂(z) e−

i
2

Θijkik
′
j e−ikix

i−ik′iyi . (4.11)

Ahora, suponiendo que Θ es una matriz constante, invertible y antisimétrica (lo que implica
que D debe ser par) podemos realizar las integrales en k y k′ y obtener

∆̂(x) ∆̂(y) =
1

πD|det Θ|

∫
dDz ∆̂(z)e−2i(Θ−1)ij(x−z)i(y−z)j . (4.12)

Tomando la traza
Tr
(

∆̂(x) ∆̂(y)
)

= δD(x− y), (4.13)

de donde obtenemos que

f(x) = Tr
(

∆̂(x)Ŵ[f ]
)
. (4.14)

En resumen, hemos establecido una correspondencia entre A y el espacio de operadores Ŵ[A]

que viene dada por la aplicación Ŵ y es invertible con inversa Tr
(

∆̂(x) ·
)

. Es decir, tenemos

una correspondencia 1-1 entre ambos espacios.

4.2. Producto estrella

Consideremos ahora f, g ∈ A y estudiemos el producto Ŵ[f ] Ŵ[g]. Usando (4.6) y (4.12)
obtenemos

Ŵ[f ] Ŵ[g] =
1

πD| det Θ|

∫∫
dDtdDy f(t)g(y)

∫
dDz ∆̂(z)e−2i(Θ−1)ij(t−z)i(y−z)j , (4.15)

luego, si invertimos la aplicación Ŵ como en (4.14), y hacemos uso de (4.13), resulta natu-

ral definir el producto estrella de Groenewold-Moyal como (f ? g) (x) = Tr
(
Ŵ[f ] Ŵ[g]∆̂(x)

)
.

Podemos obtener una expresión expĺıcita utilizando (4.11) e identificando la transformada de
Fourier de f y g

Ŵ[f ] Ŵ[g] =

∫
dDz ∆̂(z) e

i
2

Θij∂xi ∂
y
j f(x)g(y)

∣∣∣
x=y=z

= Ŵ[f ? g],

donde se ha realizado el cambio de variable k′j → kj + k′j , teniendo en cuenta que Θijkikj = 0
por ser Θ antisimétrica.

Por tanto, podemos reescribir el producto estrella de funciones como

f(x) ? g(x) = e
i
2

Θij∂yi ∂
z
j f(y)g(z)

∣∣∣
y=z=x

. (4.16)

Este producto es asociativo pero no conmutativo, y en el ĺımite Θ = 0 se reduce al producto
ordinario de funciones. Para n funciones es fácil ver que el producto (4.16) se extiende a

f1(x) ? · · · ? fn(x) =
∏
a<b

exp

(
i

2
θij ∂xai ∂xbj

)
f1(x1) · · · fn(xn)

∣∣∣∣∣
x1=···=xn=x

. (4.17)

Vamos a trabajar con acciones como (4.2), por lo que nos interesan las cantidades integrales.
Debido a (4.10) podemos recabar información sobre el producto estrella bajo śımbolo integral.
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Gracias a la propiedad ćıclica de la traza, la integral del producto estrella de funciones será
invariante bajo permutaciones ćıclicas, pero no bajo una permutación cualquiera.

Tr
(
Ŵ[f1] · · · Ŵ[fn]

)
=

∫
dDx f1(x) ? · · · ? fn(x). (4.18)

En particular, para los términos cuadráticos,∫
dDx f(x) ? g(x) =

∫
dDx f(x) g(x), (4.19)

es decir, los términos cuadráticos de un lagrangiano no se verán modificados por la naturaleza
no conmutativa del espacio-tiempo.

4.3. Teoŕıa perturbativa para la teoŕıa φn

Observemos los efectos de describir la teoŕıa escalar eucĺıdea φn con śımbolos de Weyl. Para
el caso n = 4, la acción (3.1), en el espacio eucĺıdeo, será sustituida por

S(4)[φ] = Tr

(
1

2

[
∂̂i , Ŵ[φ]

]2
+
m2

2
Ŵ[φ]2 +

λ

4!
Ŵ[φ]4

)
. (4.20)

Teniendo en cuenta que los términos cuadráticos no vaŕıan con respecto al caso conmutativo,

S(4)[φ] =

∫
dDx

[
1

2
∂iφ(x)∂iφ(x) +

m2

2
φ(x)2 +

λ

4!
φ(x) ? φ(x) ? φ(x) ? φ(x)

]
. (4.21)

El término que vaŕıa con respecto a la teoŕıa conmutativa es el término de interacción, es

decir, Tr
(
Ŵ[φ]4

)
contiene la información relevante a estudiar. De la ecuación (4.16) y de (4.17)

podemos observar que en el espacio de momentos el producto estrella de cuatro funciones puede
reescribirse como

Tr
(
Ŵ[φ]4

)
=

4∏
a=1

∫
dDka
(2π)D

φ̃(ka) (2π)D δD

(
4∑

a=1

ka

)
V (k1, k2, k3, k4), (4.22)

donde
V (k1, k2, k3, k4) =

∏
a<b

e−
i
2
kaiΘ

ijkbj . (4.23)

Es decir, como en la teoŕıa conmutativa, tenemos el término δD
(∑4

a=1 ka

)
, que implica la

conservación de momento en el vértice y, además, se añade un factor oscilante V (k1, k2, k3, k4)
que esperamos que cancele las divergencias de la teoŕıa. Podemos simplificar la notación in-
troduciendo el producto bilineal antisimétrico × que a cada par de cuadrivectores ka, kb les
asocia

ka × kb = kaiΘ
ijkbj = −kb × ka. (4.24)
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l2

l1

l1

l2

l3

l3

V2
V1

Figura 4.1: Un diagrama planar
con tres patas por vértice.

Supongamos que tenemos ahora una interacción de

orden n. Tr
(
Ŵ[φ]n

)
incluirá por lo tanto un factor

de la siguiente manera

V (k1, . . . , kn) =
∏
a<b

e−
i
2
ka×kb . (4.25)

Lo que necesitamos conocer para calcular V es el or-
den ćıclico con el que los momentos ki atraviesan el
vértice. Es importante que la numeración de los ki
sea tal que ki y ki+1 sean contiguos.
Gracias a la conservación del momento en el vérti-
ce sabemos que

∑n
a=1 ka = 0, y podemos realizar

el cambio de variable ki = li − li+1 identificando
ln+1 = l1

V (l1, · · · , ln) =
n∏
j=1

e−
i
2
lj×lj+1 . (4.26)

Con este resultado podemos calcular el valor de los vértices asociados a distintos diagramas
de la teoŕıa. Para ello, sustituiremos cada momento del vértice por dos ĺıneas paralelas con
sentidos opuestos representando el cambio de variable ki = li − li+1.

Diagramas planares

Cuando calculamos el factor V asociado a un diagrama planar como en la Figura 4.1, ve-
mos que la contribución a V para los momentos internos es igual y opuesta en los dos vérti-
ces que le corresponden. Por tanto, V , que será producto de cada factor Vi, verá cancelada
la contribución de cada ĺınea de momento interno. De esta manera, el factor V es un fac-
tor de fase global que solo depende de los momentos externos y que viene dado por (4.23),
con ki sólo momentos externos. Obtenemos, aśı, que no hay ningún cambio en la convergen-
cia de las integrales. La teoŕıa será renormalizable si y solo si la teoŕıa para Θ = 0 lo es.

Diagramas no planares

Es destacable notar que lo realmente importante a la ho-
ra de computar V es el orden en el que los momentos
entran en el vértice. Si dos ĺıneas se cruzan sin cortarse,
cambiarán el orden en el que entrarán en sus respectivos
vértices con respecto al caso planar. Para tener en cuen-
ta este efecto, veamos cuál es la fase que induce el cruce
de dos ĺıneas como en la Figura 4.2. Si ambas ĺıneas se
cortasen, pero el momento de cada ĺınea se viese inalte-
rado, la fórmula (4.23) nos daŕıa que el factor de fase es

e−
i
2

(kj×ki−kj×ki−ki×kj+kj×ki) = e−ikj×ki . Este es el factor
que aparece en el diagrama planar con respecto a la fase;
luego, para un diagrama no planar lo calcularemos como
si fuese planar y añadiremos un factor eikj×ki por cada
cruce. En general, podemos contar el número de cruces

kj

k i

Figura 4.2: Ejemplo de cruce sin
cortar en un diagrama no planar.
Cij = 1 para este ejemplo.

con una matriz Cij que cuenta el número de veces que la ĺınea i cruza la ĺınea j. Se cuenta positivo
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p

k k

p

Figura 4.3: Diagramas a un loop planar y no planar. Estos diagramas solo se distinguen en la
teoŕıa no conmutativa.

si kj se mueve hacia la izquierda con respecto a ki. Aśı, el factor de fase total será

V (k1, · · · , kn)e−
i
2
Cijki×kj . (4.27)

4.4. Cálculos a un loop para la teoŕıa φ4

Para un diagrama del tipo de la Figura 4.3, en la teoŕıa conmutativa no hay distinciones
entre el caso planar y el no planar. Sin embargo, al considerar el orden en el cual entran las ĺıneas
al vértice debemos distinguir los dos casos que se muestran en la figura. Para cada diagrama
tenemos

Γ
(2)
1 planar =

λ

3(2π)4

∫
d4k

k2 +m2
, Γ

(2)
1 noplanar =

λ

6(2π)4

∫
d4k

k2 +m2
eik×p.

(4.28)

Ambos difieren en el factor de fase discutido para los diagramas no planares y en un factor
de simetŕıa debido al cambio de p por −p. Sabemos que el diagrama planar es cuadráticamente
divergente. Podemos ver esto si reescribimos las contribuciones de cada integral en función de
parámetros de Swinger, que consiste en sustituir

1

k2 +m2
=

∫ ∞
0

dα e−α(k2+m2) (4.29)

y cambiar el orden de integración. Como son integrales gaussianas, el factor de fase puede
introducirse como un desplazamiento en k. Luego, si denotamos p◦q = −pµΘ2

µνq
ν = |pµΘ2

µνq
ν |,

tenemos que las integrales a calcular son ahora

Γ
(2)
1 planar =

λ

48π2

∫ ∞
0

dα

α2
e−αm

2
, Γ

(2)
1 noplanar =

λ

96π2

∫ ∞
0

dα

α2
e−αm

2− p◦p
α . (4.30)

Para regularizar la primera integral, que sabemos que diverge, tenemos que multiplicar por
un factor que se anule en cero más rápido que α−2 y que podamos eliminar haciendo tender un

cierto regulador Λ→∞. La función e−
1

Λ2α cumple estas condiciones, luego, multiplicando en el
integrando de (4.30) obtenemos

Γ
(2)
1 planar =

λ

48π2

∫ ∞
0

dα

α2
e−αm

2− 1
Λ2α , Γ

(2)
1 noplanar =

λ

96π2

∫ ∞
0

dα

α2
e−αm

2−
p◦p− 1

Λ2
α . (4.31)

Ambas integrales son formalmente iguales si consideramos en la no planar Λef
2 = 1

1/Λ2+p◦p .
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El comportamiento asintótico de la integral con Λ viene dado por

Γ
(2)
1 planar =

λ

48π2

(
Λ2 −m2ln

(
Λ2

m2

)
+O(1)

)
,

Γ
(2)
1 noplanar =

λ

96π2

(
Λ2
eff −m2ln

(
Λ2
eff

m2

)
+O(1)

)
. (4.32)

El diagrama planar diverge al hacer el ĺımite Λ → ∞, sin embargo; Λef = 1
1/Λ2+p◦p →

1
p◦p ,

que es una cantidad finita excepto en el ĺımite Θ → 0 o p ◦ p → 0. Esta segunda condición la
podemos ver como un regulador en el infrarrojo; para p ◦ p ' p2θ2 << 1

Λ2 se recupera Λef ' Λ
y, por tanto, la divergencia ultravioleta. Introducir un regulador Λ para el ultravioleta en los
momentos internos introduce un regulador efectivo para los momentos externos del orden 1

Λθ .

Aśı, se muestra que la divergencia ultravioleta que presenta la teoŕıa conmutativa se ha
sustituido, para el diagrama no planar, por una divergencia infrarroja en el momento p. Es
importante notar que la divergencia ultravioleta viene de la indefinición del momento interno del
loop k, que puede tomar valores arbitrariamente grandes, mientras que la divergencia infrarroja
se debe al momento externo p. Este comportamiento recibe el nombre de mezcla infrarrojo
ultravioleta o IR-UV mixing. Este es el resultado más interesante que encontramos en la teoŕıa
no conmutativa en un diagrama no planar.

Este comportamiento ha sido observado en un diagrama a primer orden y se pueden encontrar
más ejemplos que muestran esta propiedad. Sin embargo, no es una caracteŕıstica inherente a
los diagramas no planares, se pueden encontrar dentro de la teoŕıa φ4 ejemplos de diagramas no
planares de orden superior que presentan divergencias ultravioletas [3].

4.5. Origen de la mezcla IR-UV

En esta subsección resumimos la discusión de la referencia [3]. Vamos a considerar D = 2
con coordenadas x e y sujetas a la relación de conmutación [x, y] = iθ y tomemos el producto
estrella de dos funciones φ1 y φ2, que podemos escribir

(φ1 ? φ2) (x, y) =

=
1

π2θ2

∫∫
d2x1 d2x2 φ1(x1, y1)φ2(x2, y2)e−

2i
θ

[(x−x2)(y−y1)−(x−x1)(y−y2)].

(4.33)

Para calcular el valor del producto estrella vamos a considerar que la funciones tienen soporte
compacto, es decir, solo toman valores apreciables en una región de anchuras ∆xi × ∆yi fuera

de la cual son nulas. Para la integral sobre x1, tenemos que calcular
∫
dx1φ1(x1, y1)ei

x1(y2−y)
θ . Si

las oscilaciones son demasiado rápidas la integral se anulará. Esto se traduce en la condición

∆x1

|y2 − y|
θ

� 1. (4.34)

Es decir, para un punto y2 dado, la integral, como función de y, tomará valores no nulos
dentro de la región de anchura δy2 ' θ

∆x1
. Esto da una correspondencia de la función φ1 sobre

la función φ2 en una región de anchura δy2, como se muestra en la Figura 4.4. Podemos repetir
el argumento para cada variable y obtendremos

δy2 '
θ

∆x1

, δy1 '
θ

∆x2

, δx2 '
θ

∆y1

, δx1 '
θ

∆y2

. (4.35)
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Para el caso en el que φ1 = φ2 = φ, el producto estrella es no nulo en una región de anchura

δx ' máx

(
∆x,

θ

∆y

)
, δy ' máx

(
∆y,

θ

∆x

)
. (4.36)

1δ = Θ/∆1xy

φ1  φ2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

∆1x

φ1 φ2

★

Figura 4.4: Si el valor de φ1

y φ2 solo es no nulo en las re-
giones coloreadas, el produc-
to φ1 ? φ2 es no nulo en la
intersección de las zonas ex-
tendidas que están marcadas
con una ĺınea discontinua.

Es decir, si ∆x,∆y �
√
θ, el producto estrella será no nulo

en una región mucho más grande de dimensiones θ
∆y
× θ

∆x
.

Podemos tener una teoŕıa, la teoŕıa φ3, que cumple(
�−m2

)
φ(x) = λ

2 (φ ? φ) (x), cuya solución podemos dar
perturbativamente hasta primer orden en λ como

φ(x) = φ0(x)− λ

2

∫
dDyG(x− y) (φ0 ? φ0) (y), (4.37)

donde G(x) es la función de Green de la ecuación dife-
rencial homogénea. Como hemos visto, si φ0 toma valores
apreciables en una región muy pequeña ∆xi <<

√
θ, con

θ un valor caracteŕıstico tomado de la matriz Θ, φ0 ? φ0

toma valores distintos de cero para una región de tamaño
δ = θ

∆ >> ∆.
En un diagrama no planar, una part́ıcula virtual de
enerǵıa ω >> 1√

θ
tendrá un tamaño ω−1 <<

√
θ. Sin

embargo, la interacción extenderá sus efectos a un ta-
maño equivalente a ωθ, produciendo efectos a enerǵıas
correspondientes a este tamaño (enerǵıas de 1

θω ) que son
enerǵıas bajas.
Por ello, imponer un regulador ultravioleta Λ para los mo-
mentos internos, implica un regulador efectivo en el infra-
rrojo 1

θΛ para las part́ıculas con las que se interacciona.

Como conclusión, observamos que es la no localidad del producto estrella la que nos induce
un acoplo entre el comportamiento a altas y bajas enerǵıas. La no conmutatividad del espacio-
tiempo nos induce a interacciones no locales que consiguen absorber las divergencias ultravioletas
en ciertos casos. Sin embargo, esto no es suficiente para hacer desaparecer las divergencias de la
teoŕıa.

5. Invariancia bajo transformaciones de Poincaré del espacio-
tiempo no conmutativo canónico

La definición de la no conmutatividad (4.1) no es invariante bajo transformaciones de Lorentz
al ser Θµν una matriz constante. Sin embargo, podemos preservar la invariancia de esta ecuación
si modificamos la estructura de álgebra de Poincaré estándar P vista como álgebra de Hopf [4].
Primero presentaremos esta estructura algebraica y luego buscaremos la invariancia mediante
una operación llamada twist, como veremos a continuación.

Antes, hemos de hacer una consideración sobre el espacio en el que actúan las transfor-
maciones de Poincaré. En la discusión precedente obteńıamos un producto estrella como aquél
compatible con la identidad Ŵ[f ]Ŵ[g] = Ŵ[f ? g], que es resultado directo de las relaciones
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de conmutación de los operadores x̂ν . En dicho proceso hemos realizado una correspondencia
a través de Ŵ con las coodenadas conmutativas xν . Se deduce de este análisis que el producto
de funciones debe ser modificado por el producto estrella y, por tanto, podemos aplicar este
producto a las coordenadas xν , que dejan de ser conmutativas bajo este producto, y podemos
comprobar que las relaciones de conmutación

[xµ, xν ]? := xµ ? xν − xν ? xµ = iΘµν , (5.1)

son formalmente iguales a (4.1). El grupo de Poincaré actúa sobre estas coordenadas xν y es la
relación (5.1) la que no se preserva bajo rotaciones y boost.

Por otra parte, para componer dos transformaciones tenemos que tener definido dentro del
álgebra de Poincaré la noción de multiplicación, sin embargo, partiendo solo de las relaciones de
conmutación es posible encontrar varios productos distintos que las satisfagan.

5.1. Preliminares: ¿por qué álgebras de Hopf?

En esta sección se presentará de manera informal el concepto de álgebra de Hopf y de
envolvente universal de un álgebra. Se nombrarán conceptos matemáticos sin una presentación
rigurosa, ya que se pretende solo mostrar la idea de por qué surgen estas estructuras algebraicas
al tratar los generadores de los grupos de simetŕıa de un espacio-tiempo no conmutativo. Para
su definición formal consúltese el Apéndice C.

5.1.1. Álgebras de Hopf

Un álgebra H es un C-Espacio vectorial dotado de una operación interna que viene dada
por la aplicación lineal m : H ⊗H → H. Esta operación habitualmente es la multiplicación y se
denota m(a⊗ b) = ab. Sin embargo, se puede considerar el corchete de Lie u otras aplicaciones
bilineales. Para nuestros propósitos, consideraremos que H es unital y asociativa, que significa
que existe un elemento unidad e := 1 y que el producto es asociativo.

Buscamos un álgebra asociativa H, que actuando sobre el espacio de funciones, preserve
la relación (5.1) como lo hace P en la teoŕıa usual. Tomemos ahora una función f = axµ del
álgebra de funciones A. Como la no conmutatividad es un fenómeno que implica solo términos
cuadráticos, un elemento de H que dé cuenta de la no conmutatividad actuando sobre este
vector no ve los efectos de la no conmutatividad y actúa como lo haŕıa P. Denotaremos B̂ a la
acción usual del álgebra H sobre el álgebra A. Esta acción usualmente se denota igual que la
multiplicación para contextos en los que no se quiere hacer hincapié en la naturaleza de álgebra
de Hopf. En un álgebra actuando sobre un espacio de funciones conmutativas, basta con definir
Y B̂xµ para cada Y ∈ H, ya que si ahora consideramos un producto f = xµxν = mA(xµ ⊗ xν)
en el caso usual. Por ejemplo si k ∈ P entonces k(xµxν) = (kxµ)xν + xµ(kxν). En términos de
la notación anterior esto se expresa para Y ∈ H

Y B̂f = mA((Y B̂xµ)⊗ (1B̂xν) + (1B̂xµ)⊗ (Y B̂xν)) :=

mA
(
(Y ⊗ 1+ 1⊗ Y )B̂(xµ ⊗ xν)

)
. (5.2)

Sin embargo, si buscamos que el producto entre dos coordenadas vaŕıe para respetar la
invariancia bajo transformaciones de H, hay que sustituir el término (Y ⊗ 1+ 1⊗ Y ) ∈ H ⊗H
por otro que cumpla nuestros propósitos. Para ello, tomamos una aplicación, llamada coproducto

∆ : H → H ×H, ∆(Y ) =
∑
i

Y(1)
i ⊗ Y(2)

i. (5.3)
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La parte derecha es un elemento genérico de H ⊗H que cumple, para ser consistente con la
asociatividad, el axioma de coasociatividad (∆⊗1) ◦∆ = (1⊗∆) ◦∆. Un álgebra de Hopf es la
estructura algebraica que hace compatible el álgebra H con el coproducto y además está dotada
con una coinversa S : H → H, que calcula el generador de la transformación inversa. Para hacer
compatibles estas operaciones es necesario añadir la counidad ε : H → C, que asegura que la
identidad no se ve deformada. De esta manera redefinimos la acción B de H sobre A como

Y B (fg) := mA (∆(Y ) B (f ⊗ g)) =
∑
i

(Y(1)
i B f)(Y(2)

i B g). (5.4)

Gracias al axioma de coasociatividad basta conocer Y B xµ y ∆(Y ) para conocer la ac-
ción del álgebra sobre cualquier función anaĺıtica. En resumen, para tener un álgebra de Hopf
completa basta con dar (H,m,∆, ε, S) con las definiciones anteriores. Sin embargo, para ver los
efectos de dicho grupo sobre A basta con conocer ∆(Y ) y Y B xµ. En nuestra discusión, solo
consideraremos los coproductos, ya que es el objeto que tiene significado f́ısico sobre los campos.

En el caso (5.2) el coproducto es ∆0. Si Y ∈ H es un generador cualquiera

∆0 : H → H⊗H,∆0(Y ) = Y ⊗ 1+ 1⊗ Y. (5.5)

Para definir el álgebra de Hopf completamente, tenemos que definir la counidad ε0(Y ) = 0 y la
coinversa S0(Y ) = −Y .2

Si H es el álgebra de Poincaré P, se puede extraer un significado f́ısico simple de este
coproducto. El generador Y actúa sobre el estado |p〉, donde p es su momento y conocemos la
acción de Y sobre este estado. El estado de dos part́ıculas es |k〉 = |p1〉 ⊗ |p2〉, que es el estado
producto tensorial y sobre el estado |k〉 actúa el generador ∆(Y ). Este último generador actúa
en un espacio más grande pero se obtiene de manera simple a partir del generador a un solo
estado. La forma particular de (5.5) dice que se actúa sobre cada estado independientemente; por
ejemplo, si Y es el generador de las rotaciones, una rotación en el espacio producto de estados
se obtiene rotando independientemente |p1〉 y |p2〉. Esto se puede denotar también como regla
de Leibniz y modificarla equivale a modificar la suma usual de momentos o momentos angulares
generalizados.

5.1.2. Envolvente universal de un álgebra de Lie

Otra estructura relevante es la envolvente universal de un álgebra de Lie. Los generadores
de P junto con la identidad forman un álgebra asociativa. Si relajamos las propiedades de P
de tal manera que las relaciones de conmutación, llamadas corchetes de Lie, [·, ·] : P ⊗ P ∈ P
sean vistos como una operación independiente de m3, P está siendo tratada como un álgebra
de Lie L . Desde L podemos definir alguna multiplicación m, de manera que ab − ba := [a, b].
El álgebra en la que se define la multiplicación a través del corchete de Lie es la envolvente
universal de L , que se denota U(L ). La ventaja de utilizar la envolvente universal es que no
se dice nada a priori sobre la multiplicación m; simplemente se pide que sea compatible con el
corchete de Lie.

5.2. Álgebra de Poincaré twisteada

Queremos encontrar un álgebra de generadores del grupo de transformaciones que preserve
las relaciones (5.1) con este producto estrella. Utilizaremos la envolvente universal del álgebra

2En un álgebra de Hopf siempre se cumple ε0(1) = 1 y S(1) = 1.
3El corchete de Lie es una aplicación bilineal y antisimétrica que cumple la identidad de Jacobi.
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de Poincaré U(P), ya que nos interesa que se sigan cumpliendo las relaciones de conmutación
para el álgebra de partida. En esta sección veremos que existe una transformación llamada twist,
de U(P) vista como álgebra de Hopf, que define un producto estrella. Veremos que, para el caso
del espacio-tiempo canónico, este procedimiento puede reproducir el producto estrella definido
hasta ahora. No obstante, en secciones posteriores veremos que este procedimiento no siempre
reproduce el producto estrella definido con los operadores de Weyl Ŵ.

Recordemos los elementos de P. Los generadores de las rotaciones y boost de Lorentz son
Mµν , que forman una subálgebra, y Pα son los generadores de las traslaciones. Las relaciones de
conmutación son

[Mµν ,Mαβ] = −i (ηµαMνβ − ηµβMνα − ηναMµβ + ηνβMµα) , (5.6)

[Mµν , Pα] = −i (ηµαPν − ηναPµ) , [Pµ, Pν ] = 0. (5.7)

Para modificar el coproducto usual (5.5), utilizaremos el twist F , que se define como un
elemento F ∈ U(P)⊗ U(P) cumpliendo

(F ⊗ 1)(∆0 ⊗ 1)F = (1⊗F)(∆0 ⊗ 1)F , (5.8)

(1⊗ ε)F = 1 = (ε⊗ 1)F . (5.9)

Con este elemento realizamos la siguiente transformación con u = m((1⊗ S)(F))

{U(P), m ,∆0, ε0, S0} →
{
UF (P), m ,∆F = F ·∆0 · F−1, ε0, uS(Y )u−1

}
. (5.10)

El álgebra de partida U(P) actúa sobre el álgebra de funciones del espacio-tiempo con-
mutativo (A,mA). El álgebra de Hopf deformada actúa, siguiendo la prescripción (5.4), sobre
una deformación del álgebra de funciones AF , en la que el producto estrella que define esta
transformación viene dado por

φ ? ψ = m
[
F−1 B (φ⊗ ψ)

]
. (5.11)

El producto estrella para funciones en el espacio-tiempo canónico discutido en la Subsec-
ción 4.2 se puede considerar como candidato si conseguimos reescribir (4.16) en función de los
generadores de Poincaré. En este caso es posible y da el twist

Fθ = exp

(
i

2
θµνPµ ⊗ Pν

)
. (5.12)

Este twist cumple, además, las ecuaciones (5.8) y (5.9), y es por tanto un twist válido que
respeta la invariancia de (5.1), como se muestra en [4]. Si tomamos como punto de partida este
twist definimos otro camino para definir el producto estrella que, en este caso, es equivalente.

Definiremos ahora por completo el álgebra de Poincaré twisteada PF , cuyos coproductos
podemos calcular gracias a las relaciones de conmutación (5.6)-(5.7) y a la relación (5.13)

Ad eBC = eBCe−B =
∞∑
n=0

1

n!
[B, [B, · · · [︸ ︷︷ ︸

n

B,C] · · · ]] =
∞∑
n=0

(AdB)n

n!
. (5.13)

De esta manera los coproductos son

∆F (Pµ) = Pµ ⊗ 1+ 1⊗ Pµ, (5.14)

∆F (Mν
µ) = Mν

µ ⊗ 1+ 1⊗Mν
µ +

1

2
θαβ

[
δµαPν ⊗ Pβ + δµβPα ⊗ Pν

]
. (5.15)
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Observamos que el coproducto de Pµ es el estándar, lo que es consistente con la discusión
de la Sección 4, donde hemos visto que la ley de composición de momentos no se ve modificada.
Sin embargo, el coproducto de Mν

µ se ve modificado, ya que el coproducto usual no respetaba
la invariancia de las relaciones de conmutación. En este sentido, todas las teoŕıas estudiadas en
secciones anteriores son invariantes bajo el álgebra de Poincaré twisteada.

6. El espacio κ-Minkowski

En esta sección, exploraremos un nuevo tipo de conmutatividad. En las secciones prece-
dentes, los cálculos de la fórmula BCH4 se simplificaban a un término gracias a la propiedad
[x̂i, [x̂j , x̂k]] = 0. Ahora plantearemos un espacio-tiempo en el que esta propiedad no se cum-
ple. El espacio κ-Minkowski es un álgebra de 4 dimensiones cuyos vectores coordenados forman
un álgebra de Lie. Como en el caso precedente, vendrán representados por operadores x̂µ que
cumplen

[x̂0, x̂i] =
i

κ
x̂i. (6.1)

El resto de conmutadores se anulan. La constante κ tiene unidades de masa, que habitual-
mente se interpreta como la escala de Planck.

6.1. Cuantización de Weyl

Como en el caso anterior, definimos el operador Ŵκ[f ] =
∫

d4xf(x)∆̂κ(x), con ∆̂κ =∫
d4k

(2π)4 e
−ikµxµe−ikix̂

i
eik0x̂0

. La elección de la onda plana e−ikix̂
i
eik0x̂0

se debe a la simplicidad

de los cálculos con la fórmula BCH y la distinta elección entre las ondas planas tiene consecuen-
cias que se discuten en la Apéndice D.

La fórmula (4.10) sigue siendo válida pero, al no cumplirse la relación (4.14), la obtención
del producto estrella es más complicada. Para encontrar una expresión de dicho producto con
la fórmula BCH y con las relaciones de conmutación (6.1) obtenemos

e−ik
(1)

ix̂
i
eik

(1)
0x̂0
e−ik

(2)
ix̂
i
eik

(2)
0x̂0

= e
−i
(
k(1)

i+e
− k

(1)
0

κ k(2)
i

)
x̂i

ei(k
(1)

0+k(2)
0)x̂0

. (6.2)

Podemos ahora calcular el producto estrella como se ha definido en la Sección 4 Ŵκ[f ]Ŵκ[g] =∫ ∫
dk4

(2π)4
dq4

(2π)4 f̃(k)g̃(q)e
−i
(
ki+e

− k0
κ qi

)
x̂i

ei(k0+q0)x̂0
. Definiendo (k⊕q) =

(
k0 + q0, ki + e−

k0
κ qi

)
po-

demos definir

(f ?κ g)(x) =

∫ ∫
dk4

(2π)4
dq4ei(k⊕q)µx

µ
f̃(k)g̃(q). (6.3)

Esta expresión es complicada, luego intentaremos extraer el producto estrella por medio del
twist. En términos de álgebras de Hopf, podemos definir los operadores Pµ que actúan de la
siguiente manera

Pµ B e
−ikix̂ieik0x̂0

= kµe
−ikix̂ieik0x̂0 → Pµ B Ŵ[f(x)] = Ŵ[−i∂µf(x)]. (6.4)

4Baker-Campbell-Hausdorff.
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Por tanto, ∆(Pµ) |k〉 |q〉 = (p⊕ q)µ |k〉 |q〉 con |k〉 = e−ikix̂
i
eik0x̂0

, de donde se deduce que la
expresión del coproducto es

∆(P0) = P0 ⊗ 1+ 1⊗ P0,

∆(Pi) = Pi ⊗ 1+ exp

(
−P0

κ

)
⊗ Pi. (6.5)

Como la expresión del producto estrella es complicada, la discusión fenomenológica no se puede
hacer por analoǵıa al caso canónico.

6.2. Invariancia de κ-Minkowski

Podemos buscar un twist, como en la Subsección 5.2, que preserve la invariancia de (6.1),
que nos permitirá identificar un producto estrella de otra manera. En este caso buscamos un
Fκ ∈ U(P) que reproduzca el coproducto obtenido en (6.5). Sin embargo, la búsqueda de dicho
twist se simplifica para un álgebra más grande llamada igl(4)5 [5, 6]. El álgebra está formada
por los generadores de las traslaciones Pµ y los operadores Lνµ definidos como

Lνµ B Ŵκ[f(x)] = Ŵκ[−ixν∂µf(x)]. (6.6)

Por tanto los generadores del álgebra igl(4) cumplen

[Pµ, Pν ] = 0, [Lµν , Pσ] = iδµσPν ,[
Lµν , L

λ
τ

]
= i

(
δµτL

λ
ν − δλνLµτ

)
, (6.7)

y el álgebra de Poincaré es una subálgebra formada por los generadores

Mµν = ηνλL
λ
µ − ηµλLλν . (6.8)

Un elemento Fκ ∈ U(igl(4)) que cumple las condiciones (5.8) y (5.9) y reproduce el copro-
ducto (6.5), tomando D = Lii el operador dilatación D ∈ igl(4), es

Fκ = exp

(
i
P0

κ
⊗D

)
. (6.9)

Este twist se denomina twist abeliano. De esta manera,con la ayuda de la matriz hµν =
δµν − δ0

νδ
µ

0 y con la expresión (Ωµ
ν)γα = (hγνδ

µ
α−hµαδγν), podemos reescribir el coproducto

de los Lµν como

∆(Lµν) = Lµν ⊗ 1+ δµ0
Pν
κ
⊗D + e−

P0
κ
⊗(Ωµν)γρ (1⊗ Lργ) . (6.10)

Junto con (6.5) obtenemos todos los coproductos que caracterizan al álgebra twisteada
UFκ(igl(4)). En el Apéndice E se ampĺıa la expresión de este coproducto y se presenta la ex-
presión de las coinversas que caracterizan por completo el álgebra de Hopf. Al hacer el ĺımite
κ → ∞, se recupera el coproducto estándar, lo que concuerda con la suposición de que κ es la
masa de Planck y los efectos de la no conmutatividad no aparecen a bajas enerǵıas. Para los
generadores de Lorentz (6.8) el coproducto es

∆κ(Mµ
ν) = Mµ

ν ⊗ 1+

[
δµ0
Pν
κ
− δν0

Pµ
κ

]
⊗D +

(
e−

P0
κ
⊗(Ωµν)γρ − e−

P0
κ
⊗(Ωνµ)γρ

)
(1⊗Mρ

γ).

(6.11)

5Acrónimo de Inhomogeneus general linear algebra.
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De esta manera obtenemos un coproducto para P que depende de D, que no es un elemento
de dicho álgebra. Este twist define un producto estrella ∗κ, cuya expresión es

(f ∗κ g)(x) := exp

(
i

κ

∂

∂y0
zi

∂

∂zi

)
f(y)g(z)

∣∣∣∣
y=z=x

(6.12)

Este producto estrella ∗κ y el obtenido en (6.3) no coinciden. En este caso buscar el producto
estrella a través del grupo de transformaciones no es equivalente al cálculo directo con Ŵ. Al
calcular la transformada de Fourier de este último, vemos que el término k⊕ q de ? se sustituye
por (k0 + q0, ki + qi − k0

κ qi), que coincide con el primer término del desarrollo en κ−1 de k ⊕ q.
Concluimos que la condición de invariancia de las relaciones de conmutación es más débil que
la exigida para obtener el producto ? desde la cuantización de Weyl.

Actuando con este producto es fácil comprobar que [x0, xi]∗κ = i
κx

i y, por construcción,
esta relación es invariante bajo las transformaciones de P twisteado. Podemos construir teoŕıas
invariantes bajo este álgebra deformada que son invariantes y cuyas coordenadas cumplen las
relaciones de conmutación de κ-Minkowski. Además, dichas teoŕıas están dotadas de un producto
estrella que tiene una forma simple,lo que permitiŕıa un estudio fenomenológico como el realizado
en el caso canónico.

Los generadores de Lorentz presentan coproductos que no pertenecen por completo a U(P),
lo cual a priori no tiene por qué ser un inconveniente a la hora de presentar una teoŕıa, pero
puede marcar una v́ıa para tratar de plantear otras teoŕıas. Existen diversos twist construidos
sobre U(igl(4)) que respetan la invariancia de la teoŕıa, siendo este un caso particular [6].

6.3. κ-Poincaré

En las secciones anteriores hemos considerado la estructura de álgebra de Hopf a ráız de
las deformaciones dadas por un twist. Al realizar un twist, se supone que las relaciones de
conmutación del álgebra de partida se deben preservar. Sin embargo, existen álgebras de Hopf
obtenidas como deformaciones de álgebras de Lie que no preservan el corchete de Lie. Un caso
particular es el llamado álgebra de κ-Poincaré, que surge como una deformación del álgebra P
[7].

Utilizaremos como generadores del álgebra Jk = 1
2ε
k
lmM

lm para las rotaciones y Nk =
M0k = −Mk0 para los boost. κ-Poincaré viene descrito por las relaciones de conmutación

[Pj , Ji] = iεijkPk, [P0, JI ] = 0, [Ji, Jj ] = iεijkJ
k, [Ji, Nj ] = iεijkN

k, [Ni, Nj ] = −iεijkNk,

[Pj , Nj ] = iδij

(
κ

2

(
1− e−2P0/κ

)
+
~P 2

2κ

)
− i1

κ
PiPj , [P0, Ni] = iPi, (6.13)

que recupera el álgebra de Poncaré para κ→∞. Los coproductos modificados son6

∆(Pk) = Pk ⊗ 1+ e−P0/κ ⊗ Pk, ∆(P0) = P0 ⊗ 1+ 1⊗ P0, ∆(Ji) = Ji ⊗ 1+ 1⊗ Ji,

∆(Ni) = Ni ⊗ 1+ e−P0/κ ⊗Ni +
1

κ
εi
jkPj ⊗ Jk. (6.14)

Como vemos, el coproducto para los momentos es el esperado en (6.5), y el coproducto
de los generadores de boost se escribe en términos de elementos del álgebra. Para ver que las

6 Para una caracterización completa con las coinversas ver [7].
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coordenadas xν cumplen las relaciones de κ-Minkowski y que la relación es invariante, basta re-
cordar que un álgebra modificada como álgebra de Hopf no modifica su acción sobre coordenadas
individuales. De esta manera

Pµ B x
ν = −iδνµ, Ni B x

j = ix0δji , Ni B x
0 = ixi. (6.15)

Para productos de dos coordenadas xµxν = m(xµ ⊗ xν), hay que utilizar el coproducto de
cada generador, como se indica en (5.4), de manera que

P0 B (x0xj − xjx0) = −i(xi − xi) = 0, Pl B (x0xj − xjx0) = −iδjl +
δjl
κ

+ iδjl =
δjl
κ
. (6.16)

Luego, [x0, xj ] = x0xj−xjx0 = i
κx

j , que es la definición (6.1). Para comprobar la invariancia,
usando además Jn B x0 = 0, hacemos

Nl B (x0xj − xjx0) = −1

κ
x0δjl = Nl B

i

κ
xi. (6.17)

Por tanto, κ-Poincaré es un álgebra que genera un grupo de simetŕıa de κ-Minkowski. El
álgebra, en esta forma, no puede provenir de un twist del álgebra U(P) por no satisfacer el
mismo álgebra de Lie. Sin embargo, es posible realizar un cambio de base no lineal tal que el
álgebra en los nuevos generadores satisface las relaciones de conmutación de Poincaré. La base
en la que hemos presentado el álgebra recibe el nombre de base bicrossproduct, mientras la base
en la que los conmutadores se reducen al álgebra de Poincaré es la base clásica, que viene dada
por el cambio

K0(P0, ~P ) = κ sinh
P0

κ
+
~P 2

2κ
, Ki(P0, ~P ) = Pie

P0
κ . (6.18)

Recuperar el álgebra de Poincaré sugiere que los efectos f́ısicos de la deformación se presen-
tarán en los coproductos y no en las relaciones de conmutación del álgebra. En esta nueva base,
cabe preguntarse si existe un twist que lleve de U(P) a κ-Poincaré, sin embargo, sabemos que
no es posible encontrar dicho twist sin los generadores de igl(4) [8].

7. Conclusiones

El caso más simple de no conmutatividad dado por el espacio-tiempo no conmutativo canóni-
co, si bien no cumple el objetivo de eliminar las divergencias ultravioletas, presenta una fenome-
noloǵıa interesante que no presenta el caso conmutativo. La mezcla Infrarojo Ultravioleta que
elimina algunos diagramas divergentes, es la más interesante. Dicha fenomenoloǵıa es consecuen-
cia del producto estrella, que está bien definido para el caso canónico. Hemos visto que dicho
producto se puede derivar de manera alternativa buscando el álgebra que preserva la invariancia
de la definición de las relaciones de conmutación.

Para el caso de κ-Minkowski, el mismo procedimiento lleva a resultados distintos para el
producto estrella derivado de ambas maneras. Se hace patente aqúı una ambigüedad a la hora
de definir el grupo de simetŕıa que preserva la invariancia y que puede llevar a fenomenoloǵıas
distintas a causa de productos estrella distintos.

Es de esperar que κ-Minkowski presente también algún efecto interesante a la hora de for-
mular una teoŕıa de campos de manera análoga a la que se ha realizado en este trabajo con el
caso no conmutativo canónico. Por tanto, se abre la posibilidad de estudiar, en futuros trabajos,
cuál es la fenomenoloǵıa de la teoŕıa formulada sobre κ-Minkowski y de qué manera el grupo de
simetŕıa considerado tiene efecto sobre la discusión fenomenológica.
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A. Notación y unidades

Se usan las unidades naturales ~ = c = 1. De esta manera podemos expresar magnitudes fun-
damentales en función de unidades de enerǵıa o de masa [longitud] = [tiempo] = [enerǵıa]−1 =
[masa]−1.

La signatura de la métrica de Minkowski es (+ − −−) y la denotamos ηµν :

ηµν = ηµν =


1
−1

−1
−1

 . (A.1)

con ı́ndices griegos µ, ν, · · · que toman los valores 0, 1, 2, 3 indicando t, x, y, z, e ı́ndices latinos
i, j, · · · , indicando solo x, y, z que toman los valores 1, 2, 3.

La derivada parcial con respecto a una variable se denota ∂
∂xµ = ∂µ.

Un cuadrivector se representa por (p0, p1, p2, p3) = (p0, ~p).

Se utiliza el convenio de sumación de Einstein, que sobreentiende los sumatorios para ı́ndices
repetidos, uno como sub́ındice y otro como supeŕındice

φµγ
µ =

3∑
µ=0

φµγ
µ. (A.2)

Para subir o bajar un ı́ndice se usa la métrica de Minkowski

φµ = ηµνφ
ν . (A.3)

Para tensores simétricos en los ı́ndices α, β, γ se indica

C(αβγ)µν = C(γβα)µν = C(αγβ)µν , (A.4)

B(αβ|µν|γ) = B(γβ|µν|α) = B(αγ|µν|β). (A.5)

La contracción de campos se define como

〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)φ(x5)φ(x6)}|0〉 =

〈0|T{φ(x1)φ(x3)}|0〉〈0|T{φ(x2)φ(x4)}|0〉〈0|T{φ(x5)φ(x6)}|0〉 (A.6)

Las siglas BCH indican la fórmula de Baker–Campbell–Hausdorff.

eAeB = eA+B+ 1
2

[A,B]+ 1
12

[A,[A,B]]− 1
12

[B,[B,A]]+···. (A.7)

B. Aparición de ghost con derivadas de orden superior a 2

Los términos de más de dos derivadas en el lagrangiano dan lugar a estados de norma
negativa. Por ejemplo, la ecuación(

(b+ a)�2π +
1

2
m2�π

)
= 0, (B.1)
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da lugar a dichos estados. Para verlo, primero hemos de definir el espacio de Fock, que es el
espacio de todos los estados posibles |n〉, siendo |0〉 el vaćıo. En concreto, supondremos que todo
el espacio se puede describir como autovector del cuadrimomento y, por tanto, viene dado por la
masa y el momento de cada part́ıcula |~p,m〉, siendo Ep =

√
~p2 +m2 y siendo m un parámetro

discreto.

Utilizaremos una normalización covariante 〈~p,m|~q,m〉 = (2π)32Epδ
3(~p− ~q) de esta manera:

∑
n

|n〉 〈n| = 1 =
∑
m

∫
d3p

(2π)3
|~p,m〉 1

2Ep
〈~p,m| . (B.2)

Por otra parte, podemos expresar como función de (x − y) la siguiente amplitud de proba-
bilidad

〈0|φ(x)φ(y) |0〉 =
〈0| e−iaµpµeiaµpµφ(x)e−iaµp

µ
eiaµp

µ
φ(y)e−iaµp

µ
eiaµp

µ |0〉 =
〈0|φ(x+ a)φ(y + a) |0〉 = D(x− y).

(B.3)

Podemos calcular un propagador retardado, asumiendo y0 > x0

DR(y − x) = ϑ(y0 − x0) 〈0| [φ(y), φ(x)] |0〉 = 〈0| [φ(y), φ(x)] |0〉 , (B.4)

donde ϑ(x) es la función escalón de Heaviside. Para el primer sumando, usando (B.2),

〈0|φ(y − x)φ(0) |0〉 =∑
n

〈0|φ(y − x) |n〉 〈n|φ(0) |0〉 =

∑
m

∫
d3p

2Ep
〈0|φ(y − x) |~p,m〉 〈~p,m|φ(0) |0〉 =

∑
m

∫
d3p

2Ep
〈0| ei(y−x)µpµφ(0)e−i(y−x)µpµ |~p,m〉 〈~p,m|φ(0) |0〉 =

∑
m

∫
d3p

2Ep
〈0|φ(0) |~p,m〉 e−i(y−x)0p0

e−i(y−x)jp
j 〈~p,m|φ(0) |0〉 =

∑
m

∫
d3p

2Ep
e−i(y−x)0p0

e−i(y−x)jp
j
nm(~p),

(B.5)

donde nm(~p) = 〈0|φ(0) |~p,m〉 〈~p,m|φ(0) |0〉. Análogamente para el segundo:

〈0|φ(0)φ(y − x) |0〉 =
∑
m

∫
d3p

(2π)32Ep
ei(y−x)0p0

ei(y−x)jp
j
nm(~p).

(B.6)
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Aśı, el propagador retardado es

DR(y − x) =∑
m

∫
d3p

(2π)32Ep

(
e−i(y−x)µpµ − ei(y−x)µpµ

)
nm(~p) =

∑
m

∫
d3p

(2π)3

 e−i(y−x)µpµ

2Ep
nm(~p)

∣∣∣∣∣
p0=−Ep

+
e−i(y−x)µpµ

−2Ep
nm(−~p)

∣∣∣∣∣
p0=−Ep

 .

(B.7)

Y también se puede expresar [9]

DR(y − x) =

ĺım
ε→0

∑
m

∫
d4p

(2π)4

i

(p0 + iε)2 − ~p2 −m2
e−i(x−y)µpµ =

ĺım
ε→0

∑
m

∫
d4p

(2π)4
(−i)Π(p0 + ε, ~p)e−i(x−y)µpµ ,

(B.8)

con Π(kµ) el propagador de la part́ıcula. Para pasar de una integral en tres variables a una de
cuatro tenemos que utilizar el teorema de los residuos; de esta manera, comparando la integral
en tres y cuatro variables, un residuo corresponde a uno de los dos sumandos proporcionales
a nm(~p). En una teoŕıa unitaria, nm(~p) se interpreta como una norma; por tanto, no puede
ser negativa. Por lo tanto los residuos encontrados en un propagador deben asegurar esto. Un
residuo negativo debe tomar su signo de la enerǵıa del denominador y por tanto ha de tener k0

negativo para que n(~k) = |〈0|φ(0) |~p,m〉|2 > 0.

Para la ecuación (B.1) el propagador es

Ππ(k) = − 1

2(a+ b)k4 −m2k2
=

1

m2

[
1

k2
− a+ b

(a+ b)k2 − 1
2m

2

]
, (B.9)

que representa dos part́ıculas cuyos polos en k0 son k0
2 = ~k2, k0

2 = ~k2 ± m2

4(a+b) . Si calculamos
los residuos

Res(k0 = ±‖~k‖) = ± 1

2m2‖~k‖
, (B.10)

Res

(
k0 =

√
~k2 ± m2

4(a+ b)

)
= ∓ 1

2m2
√
~k2 ± m2

4(a+b)

. (B.11)

Luego, para valores de a + b 6= 0 podemos encontrar residuos negativos que corresponden a
enerǵıas positivas, lo que da lugar a ghost o estados de norma negativa. En general esto sucede
siempre que el número de derivadas es superior a 2, ya que al factorizar un propagador en la
forma final de (B.9) siempre aparecen signos alternos que obligan a encontrar residuos con signos
alternados.
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C. Estructuras algebraicas: álgebra de Lie, de Hopf y envolvente
universal

C.1. Álgebras de Hopf

C.1.1. Álgebra

Un álgebra A es un K-espacio vectorial dotado de una operación interna que viene dada por
la aplicación lineal m : A⊗A → A, se identifica m(a⊗ b) = ab cuando sea posible. A es unital
si existe un único elemento e ∈ A tal que ∀a ∈ A m(e ⊗ a) = m(a ⊗ e) = a. A es asociativa si
cumple (C.1). La aplicación unidad η : K → A cumpliendo (C.2), representa la multiplicación
por un escalar del espacio vectorial.

m ◦ (1⊗m) = m ◦ (m⊗ 1) Asociatividad , (C.1)

m ◦ (1⊗ η) = 1 = m ◦ (η ◦ 1) Unidad . (C.2)

C.1.2. Coálgebra

Una coálgebra C es un K-espacio vectorial dotado de un coproducto, que es una aplicación
lineal ∆ : C → C ⊗ C cumpliendo (C.3) y una counidad que es una aplicación lineal ε : C → K

cumpliendo (C.4).

(1⊗∆) ◦∆ = (∆⊗ 1) ◦∆ Cosociatividad , (C.3)

(1⊗ ε) ◦∆ = 1 = (ε ◦ 1) ◦∆ Counidad . (C.4)

Estos axiomas son duales a los del álgebra asociativa, representando ambos en forma de
diagrama conmutativo, para la asociatividad:

A⊗A⊗A A⊗A

A⊗A A

1⊗m

m⊗1 m

m

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

1⊗∆

∆⊗1 ∆

∆

Asociatividad Coasociatividad

(C.5)

y para la unidad:

A×K ∼= K×A A⊗A

A A

1⊗η

1⊗η m

m

C ×K ∼= K× C C ⊗ C

C ⊗ C C

1⊗ε

ε⊗1 ∆

∆

Unidad Cunidad

(C.6)

C.1.3. Biálgebra

Una biálgebra B es un K−espacio vectorial que está dotado de una estructura de álgebra
asociativa unital y de coálgebra cumpliendo los axiomas de compatibilidad
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∆(ab) = ∆(a)∆(b), ε(ab) = ε(a)ε(b) ∀a, b ∈ B,
∆(e) = e⊗ e, ε(e) = 1 ∈ K. (C.7)

C.1.4. Álgebra de Hopf

Un álgebra de Hopf H es una biálgebra sobre un cuerpo K dotada de una coinversa, que es
una aplicación lineal S : H → H que cumple

m ◦ (S ⊗ 1) ◦∆ = m ◦ (1⊗ S) ◦∆ = 1ε. (C.8)

En forma de diagrama conmutativo:

H⊗H H⊗H

H K H

H⊗H H⊗H

S⊗1

m∆

∆

ε η

1⊗S

m

(C.9)

Esta definición junto con (C.7) implica

S(ab) = S(a)S(b) ∀a, b ∈ H,
S(e) = e. (C.10)

La acción (por la izquierda) de un álgebra de Hopf H sobre un álgebra unital y asociativa
se define como una aplicación lineal

B: H×A → A, (C.11)

y se escribe h B a siendo h ∈ H y para a ∈ A. La acción cumple las condiciones de
compatibilidad

(hg) B a = h B (g B a), h B e = ε(h)e. (C.12)

La acción es covariante si, para el coproducto ∆(h) =
∑

i h(1)
i ⊗ h(2)

i

h B (ab) =
∑
i

(Y(1)
i B a)(Y(2)

i B b). (C.13)

Es decir, preserva su estructura. En este trabajo solo se consideran acciones covariantes.

30



C.2. Álgebra de Lie

Un álgebra de lie L es un K−espacio vectorial con un producto, llamado corchete de Lie

[·, ·] : L ⊗L → L , (C.14)

que cumple los axiomas

[ag + bh, j] = a[g, j] + b[h, j], ∀a, b ∈ K, g, h, j ∈ L (Bilinealidad), (C.15)

[g, h] = −[h, g] ∀g, h ∈ L (Antisimetŕıa), (C.16)

[g, [h, j]] + [h, [j, g]] + [j, [g, h]] = 0 ∀g, h, j ∈ L (Identidad de Jacobi). (C.17)

Un álgebra finito-dimensional tiene una base de generadores. Un álgebra asociativa A con
[a, b] = ab− ba ∀a, b ∈ A es un álgebra de Lie, sin embargo, un álgebra de Lie no tiene por qué
ser un álgebra asociativa. Sin embargo, se pueden construir productos compatibles a partir del
corchete de Lie.

C.2.1. Envolvente universal de un álgebra de Lie

Si partimos del corchete de Lie, se pueden definir varios productos que cumplen a · b− b ·a :=
[a, b]. La envolvente universal de L , que se denota U(L ) es el álgebra que, salvo isomorfismo,
contiene a todas las álgebras unitarias aśı construidas. Sea el álgebra tensorial de V , con V un
K-espacio vectorial

⊗
(V ) ≡

∞⊕
p=0

⊗pV, (C.18)

con ⊗0V = K. Para un álgebra de Lie finito-dimensional
⊗

(V ) es isomorfa al álgebra de
polinomios formales sobre los generadores Xi dados por P (Xi) =

∑
k=0 Πi1···ikXi1 · · ·Xik con

Πi1···ik ∈ K. Por tanto podemos identificar ∀a, b ∈ L , ab− ba con a⊗ b− b⊗ a.

El álgebra U(L ) se construye identificando con cero el elemento a⊗ b− b⊗ a− [a, b] y todos
sus múltiplos, es decir

U(L ) ≡
⊗

(L )/ 〈a⊗ b− b⊗ a− [a, b]〉 , (C.19)

donde, por definición, el ideal bilateral es

〈a⊗ b− b⊗ a− [a, b]〉 ={
(a⊗ b− b⊗ a− [a, b])⊗ g, g ⊗ (a⊗ b− b⊗ a− [a, b]) ∀g ∈

⊗
(L )

}
. (C.20)

De esta manera U(L ) es única salvo isomorfismos. Para mayor discusión consultar [10].

D. Unicidad del producto estrella y del twist

En el contexto del espacio-tiempo no conmutativo canónico, se ha considerado la definición
de onda plana como eikµx̂

µ
, sin embargo, podemos considerar cualquier otra definición que sea
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producto de exponenciales. Nos restringiremos al caso en 4 dimensiones. Por ejemplo, conside-
ramos la onda plana eik0x0

e−ikj x̂
j

y el operador Ŵ se ve sustituido por

Ŵl[f ] =

∫
d4k

(2π)4
f̃(k)eik0x0

e−ikj x̂
j
, ∆l(x) =

∫
d4k

(2π)4
e−ikµx

µ
eik0x0

e−ikj x̂
j
. (D.1)

Operando obtenemos

∆̂l(x) ∆̂l(y) =

∫∫
d4k

(2π)4

d4k′

(2π)4
ei(k+k′)0x̂0

e−i(k+k′)ix̂ie−
i
2

Θµνkµk′νe−ikµx
µ−ik′νyνe

i
2

Θ0ν [k0k′ν+kνk′0],

(D.2)

que es formalmente igual a (4.11) sustituyendo la matriz Θµν → Θµν − Θ0i[δµ0 δ
ν
i + δµi δ

ν
0 ]. Esta

matriz no es antisimétrica, por lo que aparecen factores adicionales en (4.16), haciendo que el
producto estrella ?l cambie a

f(x) ?l g(x) = e
i
2

Θµν∂yµ∂
z
ν e−

i
2

Θ0ν[∂y0∂zν+∂yν∂
z
0−2∂y0∂

y
ν ]f(y)g(z)

∣∣∣
y=z=x

. (D.3)

Es decir una elección de onda plana distinta lleva a un producto estrella distinto luego podemos
definir la misma teoŕıa con diversos productos. Deducimos que ? no es único. Como un twist
define un producto estrella, podemos deducir que tampoco el twist es único. Si encontramos
otro producto estrella que en términos de operadores cumpla las condiciones de consistencia,
obtendremos otro twist que describe la misma teoŕıa.

E. Coproductos de los generadores de igl(4) tras el twist abe-
liano

El twist presentado en la Subsección 6.2 para el álgebra igl(4) lleva a los coproductos de los
generadores Lµν que se expone a continuación. Con las ecuaciones (5.13) y (5.10) vemos que

basta calcular Ade
i
κ
P0⊗D (Lµν ⊗ 1+ 1⊗ Lµν).Término a término

Ade
i
κ
P0⊗D (Lµν ⊗ 1) = Lµν ⊗ 1+ δµ0

Pν
κ
⊗D. (E.1)

Para Ade
i
κ
P0⊗D (1⊗ Lµν) reescribiendo, con la ayuda de la matriz hµν = δµν − δ0

νδ
µ

0 , el
conmutador

[D,Lµν ] = i(δiνL
µ
i − δµiLiν) = i(hγνδ

µ
α − hµαδγν)Lαγ = i(Ωµ

ν)γαL
α
γ . (E.2)

Podemos ver (Ωµ
ν)γα = (1⊗ h− h⊗ 1)µα

γ
ν = δµ0δ

0
αδ

γ
ν − δγ0δ

0
νδ
µ
α y por tanto

∞∑
n=0

1

n!
[
i

κ
P0 ⊗D, [

i

κ
P0 ⊗D, · · · [︸ ︷︷ ︸
n

i

κ
P0 ⊗D,1⊗ Lµν ] · · · ]] =

∞∑
n=0

1

n!

(
−P0

κ

)n
⊗ (Ωnµ

ν)γαL
α
γ = e−

P0
κ
⊗(Ω)µν

γ
α (1⊗ Lαγ) , (E.3)

donde Ωn se entiende como (1⊗ h− h⊗ 1)n. Podemos escribir el coproducto como
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∆(Lµν) = Lµν ⊗ 1+ δµ0
Pν
κ
⊗D + e−

P0
κ
⊗(Ωµν)γρ (1⊗ Lργ) . (E.4)

Para calcular expĺıcitamente dicha expresión, reescribiendo nµν = δµ0 δ
0
ν y como h2 = h pode-

mos demostrar las relaciones

(
Ω2
)µγ
να

= (Ωµ
ν)γα(Ωα

γ)ρσ = [(1⊗ h− h⊗ 1)2]
µ
σ

ρ

ν =

[1⊗ h+ h⊗ 1− 2h⊗ h]µσ
ρ
ν = [n⊗ h+ h⊗ n]µσ

ρ
ν

= δµ0δ
0
σδ
ρ
ν + δρ0δ

0
νδ
µ
σ − 2δµ0δ

0
σδ
ρ

0δ
0
ν , (E.5)

(
Ω3
)µβ
ν φ

= (Ωµ
ν)γα(Ωα

γ)ρσ(Ωσ
ρ)
β
φ = [(1⊗ h− h⊗ 1)3]

µ
σ

β

φ =

(1⊗ h− h⊗ 1)µσ
β
φ = (Ωµ

ν)βφ. (E.6)

Con lo que

e−
P0
κ
⊗(Ωµν)γρ = 1⊗ 1− sinh

(
P0

κ

)
⊗ (Ωµ

ν)γρ +

[
cosh

(
P0

κ

)
− 1

]
⊗
(
Ω2
)µγ
νρ
. (E.7)

De donde se deduce, añadiendo los coproductos de (6.5), que los coproductos obtenidos con
este twist son:

∆κ (P0) = P0 ⊗ 1+ 1⊗ P0, ∆κ (Pk) = Pk ⊗ 1+ e−
P0
κ ⊗ Pk,

∆κ (Lmk ) = Lmk ⊗ 1+ 1⊗ Lmk , ∆κ

(
Lk0

)
= Lk0 ⊗ 1+ e

P0
κ ⊗ Lk0,

∆κ

(
L0
k

)
= L0

k ⊗ 1+ e−
P0
κ ⊗ L0

k +
Pk
κ
⊗D,

∆κ

(
L0

0

)
= L0

0 ⊗ 1+ 1⊗ L0
0 +

P0

κ
⊗D. (E.8)

Las coinversas son

Sκ (P0) = −P0, Sκ (Pk) = −Pke
P0
κ ,

Sκ (Lmk ) = −Lmk , Sκ

(
Lk0

)
= −Lk0e−

P0
κ , Sκ

(
L0

0

)
= −L0

0 +D
P0

κ
,

Sκ
(
L0
k

)
= −e

P0
κ L0

k +
Pk
κ
De

P0
κ . (E.9)
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