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Resumen

Se presenta una introduccion a la teoria cuantica de campos en espacio-tiempos no con-
mutativos. Primero se da una justificacion a por qué ir més alla de la teoria cudntica de
campos relativista, presentando la gravedad como una teoria cuantica de campos y discu-
tiendo el origen de las divergencias ultravioletas. Después se explora el concepto de una
teoria no local a través de la no conmutatividad del espacio-tiempo. Se discute el caso de la
no conmutatividad candnica mediante el procedimiento de la cuantizaciéon de Weyl y se da
una descripcién fenomenoldgica de la teoria perturbativa para una teoria escalar mostrando
el fenémeno de la mezcla infrarrojo ultravioleta. Se discute la invariancia bajo transforma-
ciones de Poincaré de dicha teoria y se comienza a estudiar el espacio-tiempo x-Minkowski
por analogia al estudio de la invariancia del caso canénico.
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1. Introduccion

La teoria de la Relatividad General puede ser tratada como una teoria cuantica de campos.
De hecho, el lagrangiano de la teoria puede ser derivado de manera perturbativa como el tnico
compatible con la unitariedad de una teoria mediada por una particula sin masa de spin 2. La
teoria, sin embargo, no es renormalizable, lo que implica que, aun siendo consistente con los
principios de la teoria cuantica de campos, no se pueden calcular amplitudes de dispersién con
ella y, por tanto, no se pueden realizar predicciones. De este problema surge la pregunta de si es
posible formular una teoria cuantica de campos en la que no sea necesaria la renormalizacion.
Para ello, hay que comprender de dénde surgen las divergencias ultravioletas en una teoria
cuantica de campos, ya que son la causa de que sea necesario dicho procedimiento. En este
trabajo se observa que se puede ver el origen de estas divergencias en la localidad de la teoria;
el hecho de poder evaluar los campos en un punto concreto del espacio-tiempo hace que las
integrales involucradas en los calculos de las secciones de dispersién diverjan.

Con esta observacién surge la idea de explorar espacio-tiempos en los que se pierda la nocién
de localidad. Igual que sucede con el espacio de fases en el paso de la mecénica clasica a la
cuantica, la no conmutatividad es una propiedad que cumple este propdsito. En este trabajo se
estudian dos tipos de no conmutatividades para el espacio-tiempo. La primera es la del espacio-
tiempo no conmutativo candnico, que presenta el caso mas simple, pero en el que se puede llevar
a cabo la formulacién de la teoria perturbativa de los diagramas de Feynman y una discusiéon
fenomenolodgica.

La segunda no comutatividad presentada en este trabajo es xk-Minkowski, un nuevo ejemplo
de espacio-tiempo que presenta un nuevo desafio. En este espacio la formulacién de la teoria
se hace mas complicada, haciendo més dificil la discusion fenomenoldgica. Sin embargo, en este
marco se estudian aspectos como la invariancia bajo transformaciones de Poincaré y cémo se
debe generalizar el concepto de grupo de Poincaré para adaptarlo al marco de una teoria no
conmutativa, asi como las ambigiiedades de dicha generalizacién.

2. Teorias mediadas por bosones sin masa

En esta seccion vamos a construir los lagrangianos invariantes bajo transformaciones de
Lorentz méas generales posibles que describan particulas interactuantes de spin entero sin masa,
asumiendo la tnica condicién de no permitir estados de norma negativa, que denominamos
ghosts, ya que la norma de un estado se interpreta como una probabilidad. El objetivo de esta
seccién es mostrar que el lagrangiano de la Relatividad General puede ser derivado como el
unico que describe particulas interactuantes sin masa y de spin 2. Sugeriremos en esta seccién
la referencia [1].

2.1. Particulas de spin 1

Para ilustrar el procedimiento, empezamos con el caso de spin 1. Una particula de spin
1 tiene 3 estados de polarizacion, luego, para describirla, tomaremos un campo cuadrivectorial
visto como una representacion 4 = 3@ 1 del grupo de Lorentz. Hay que fijar un grado de libertad
que corresponde al de la representacién de spin 0. Denotaremos A (z) a dicho campo vectorial.

El lagrangiano describe las mismas ecuaciones en cualquier sistema de referencia inercial,
cuyas transformaciones entre sistemas vienen dadas por el grupo de Poincaré. Esto es equivalente
a decir que el lagrangiano es un escalar bajo el grupo de Poincaré. El lagrangiano més general



posible depende de los cuadrivectores (A*) y (0*); en particular, debemos buscar todos los
escalares posibles a partir de estos dos cuadrivectores. Antes de continuar, hay que remarcar
que un término de orden superior a 2 en A" se interpretard como una interaccién. Anadimos
ademads la condicion de que las derivadas no pueden superar el segundo orden, ya que, como
mostraremos méds adelante, derivadas de orden superior a dos permitirian estados de norma
negativa. Con estas restricciones obtenemos el lagrangiano

L = aA,OA" +bA,0"D, A" + %mQAHA“, (2.1)

donde a, by %mQ son constantes reales cualesquiera. Sabemos que este lagrangiano describira

en general particulas con 4 estados de polarizacion.

Para continuar, notemos que cualquier campo vectorial puede descomponerse de la forma
At (z) = AT + 'n(x), (2.2)
con un grado de libertad en la eleccién de 7(x), ya que transformando

ATE 5 ATF 4 gra(z),

n — mw—a(x), (2:3)

la descomposicién (2.2) queda invariante. El campo 7t es un campo escalar, de spin 0, que
como habiamos adelantado, no debe tener significado fisico en nuestra discusién sobre particulas
de spin 1. En este sentido, elegir un «(z) concreto es fijar el gauge sobre A7, De ahora en
adelante utilizaremos el gauge de Lorentz 8MAT” = 0. Para ello, en una descomposicién genérica
(2.2) basta elegir o cumpliendo 9, A" = —[02a. Llamaremos modo transversal a A" y modo
longitudinal a 7t en el gauge de Lorentz. Utilizando esta descomposicién podemos reescribir el
lagrangiano (2.1) como

1 1
L= aATMDATM + §m2ATMAT” — (a + b)ynPm — imQT[DT[. (2.4)

El lagrangiano anterior (2.4) es equivalente a (2.1) porque ambos dan lugar a la misma
accién.

Estudiaremos ahora la parte de la accién correspondiente al campo escalar 7t(x). El propa-
gador de esta funcién es

1 1 1 a+b
(k) = — - |- 2.

que representa dos particulas, una de las cuales presenta estados de norma negativa o ghost,
para a + b # 0, como se expone en el Apéndice B. En general, cualquier término de méas de dos
derivadas da lugar a estados de probabilidad negativa por el mismo argumento aqui expuesto.
Este hecho nos fuerza a tomar a = —b. Vemos que el modo longitudinal solo aparece en el
término de masa y es un término cinético proporcional a m?2.

En particular, si a = %,
1 Iz 1 H v, L oo M 1 uv L o H

con FM = 9rAY — 9* A . Este lagrangiano es formalmente igual al de la QED' con un término
de masa, en ausencia de interaccion.

1 e s .
Electrodindmica Cuédntica.



Para el limite sin masa tomaremos

1
T4
El modo longitudinal no aparece, luego, podemos deducir que la eleccion de cualquier modo

longitudinal dejara invariante el lagrangiano. Asi, este es invariante bajo transformaciones del
tipo

LA F'LWF/M/- (27)

AP 5 AF 4 i, (2.8)

En presencia de interaccién podria aparecer un término cinético en el modo longitudinal,
como en (2.4). No obstante, esto daria lugar a interacciones infinitamente grandes. Por ejemplo,
una interaccién podria ser

Ly = ZnOmn + . (2.9)

Podemos tomar cualquier normalizacion para 7t sin alterar el término cinético del lagrangiano,
de manera que podemos hacer 7, = v/ Z7 y reescribir

L =m0, + %ni. (2.10)
VA
Para Z — 0, este término da lugar a interacciones infinitas, luego, para evitar esta pato-
logia, debemos garantizar que el término cinético del modo longitudinal 7t(J7t no aparezca en el
lagrangiano. Para ello hay que asegurar que bajo transformaciones del tipo (2.8) el lagrangiano
total se mantiene invariante. Esto equivale a decir que A* debe acoplarse a una cuadricorriente
conservada J# con 0,J" = 0.

Construyamos ahora las interacciones con un campo escalar ¢, que viene descrito por el
lagrangiano Lg. La interaccion mds simple que podemos introducir es Lin; = J* A, donde J#
es una cuadricorriente formada a partir ¢. Asf el lagrangiano total queda

L=1Ls+ L+ Ling. (2.11)

La cuadricorriente mds simple que podemos construir es J, = —i(¢*0,¢ — ¢0,0%). Esta
interaccion no debe acoplarse al término longitudinal de ninguna manera, ya que este carece de
sentido fisco y el lagrangiano libre es invariante bajo una eleccién arbitraria de 7t. Esto equivale a
decir que la interaccién debe ser invariante bajo transformaciones (2.8), que sobre el lagrangiano
con interaccién que hemos descrito transforma

Lo = —iAF (§°0u6 — 90,0°) — i (606" — "), (219
L — L—in(¢ede* —¢*0e). ’

El término extra que ha surgido debe ser reabsorbido. Esto puede ser llevado a cabo trans-
formando el campo escalar ¢ en funcién de 7. Para hallar esta transformaciéon procedemos
perturbativamente. Hemos de tener ademds en cuenta que al transformar ¢ también cambiara
L.

Buscando una transformacién lineal en 7t, hacemos ¢ — ¢ —i7. Teniendo en cuenta el término
cinético 0,¢0"¢* de Ly,

Oup0tg™  —  0up0d"d* +im(¢le* — ¢*1e) — (me*)L(11e). (2.13)
La transformacién propuesta no deja términos lineales en 7t al transformar

Ling + Lo, = —1A" (0"0ud — $0,0") + 000" ¢". (2.14)

cin



Podemos continuar con el segundo orden de la transformacién en ¢. Los términos cuadraticos
en T que aparecen pueden cancelarse con la transformacion ¢ — ¢ — i — %712, pero ahora es
necesario anadir un término adicional al lagrangiano

L=~ TP By — A (60,0 — 00,0°) + Bu000" + AV 4,576, (2.15)

que queda invariante hasta términos cibicos. No hace falta que calculemos més érdenes si nos
damos cuenta de que este lagrangiano es exactamente invariante bajo transformaciones del tipo

p I
{A —  AF 4 O, (2.16)

¢ — e .

Este es el lagrangiano que describe la interaccién del campo electromagnético con un campo
escalar.

2.2. Particulas de spin 2

El procedimiento anterior se puede repetir con particulas de spin 2. Estas particulas tienen 5
estados de polarizacién y se pueden describir con tensores simétricos h,,, con las correspondientes
restricciones. Podemos extender la descomposicion (2.2) para un tensor de orden 2 de la siguiente
manera

T
Py = hy,, + Oy, + 0,1y, (2.17)

14

eligiendo el gauge 8”h5u = 0. El tensor simétrico tiene 10 parametros libres, luego debemos fijar
5. Podemos representar 3 estados de polarizacién en 71, como en el caso de spin 1. Este campo,
a su vez, puede descomponerse en

n=m +,m", (2.18)

con 8“712 = 0. Imponiendo las condiciones

B”hfl, =0 que fija 4 pardmetros,
8“715 =0 que fija 1 pardmetro,
quedan los 5 estados de polarizacién deseados. Escribamos ahora el lagrangiano de orden 2 mas

general posible con h,, y d,, como en el caso anterior con términos, como maximo cuadraticos,
tanto en h como en 0.

v)|(po)| (A v)(AE
L=y 0y e OL 1PN ZBJ(-“ O e, (2.19)
i J

donde Cf(” V)l(po)|(30) y B](“ V) son base de todos los posibles tensores simétricos en los indices

indicados.

Podemos reescribir este lagrangino como
1
L = ahy, O 4+ bh,”0"95h," + chDOh + d hd,0,h" + 5m2 (xhuwh™ +yh?),  (2.20)

con h = h,". Analicemos el término de masa con las descomposiciones (2.17) y (2.18):



1
Lo = Sm (g; (thWT +2 ((9um)? — ﬂMDﬂ“)) +y h2)
1
= §m2 {w (hﬁ,h’“’T + 2 (27ILD27TL - nfDn“T» +y (hT2 + 40nl + 47’[L|:]27TL):|
= 2m?(zx +y)ntOPnl 4.
(2.21)
Para evitar derivadas de orden superior a 2 elegimos z = —y. Se puede repetir el andlisis con el
término restante y elegir las constantes apropiadas para que el lagrangiano quede
= L = Lh voran,® + 2ho,0,0 — a0k + L (hh — 02
'C—Z ;UJD _5‘“ Oéy+§ uOv _ED +Zm(uy — ) (222)
En el limite sin masa,
1 w L wau o 1 w1

Como en el caso de spin 1, el modo 7 carece de sentido fisico. Debemos evitar, por tanto,
la aparicion del campo 7 en las interacciones al realizar transformaciones

hyw = by + 01, + 0,1, (2.24)

Esto se consigue con interacciones del tipo L;,; = h#*"T},,, donde T}, es un tensor simétrico que
cumple 0#T),, = 0. La interaccién mds simple que podemos introducir con un campo escalar es

L= %w, (2.25)

que bajo transformaciones (2.24) queda £1 — £+ 0,7 ¢. Como en el caso anterior, buscaremos
eliminar los términos en 7t orden a orden, hallando una transformacién de 7t y anadiendo términos

al lagrangiano; ademads en este caso nos veremos forzados a anadir términos a la transformaciéon
(2.24).

Podemos eliminar el término cuadratico en dos campos modificando el lagrangiano Lo =
L1 + ¢ y transformando ¢ — ¢ + 70, ¢; el lagrangiano transforma con Lo — Lo + %hn“(?u(b +
0, p0,, T,

Para eliminar el término %h@uﬂ“gb podemos ver ™ como un desplazamiento infinitesimal del
argumento ¢ y por tanto realizamos un desplazamiento infinitesimal sobre el argumento A,
Py = by + Oty + 0,1y, + T 0%hyy, .

Continuando la sucesion, si anadimos L3 = L9 + %h2d>, bajo transformaciones (2.8) y la
transformaciéon de h*¥ antes descrita

Lz — L3+ (170,¢)(0,7") + (0,7)(0p1")d + O(4), (2.26)

donde O(4) son términos en 4 0 mas campos, los términos lineales en 7t han desaparecido para los
productos de tres o menos campos. Como estamos realizando una transformacién infinitesimal
en 7T, los términos lineales en este factor no deben aparecer en la expansion de L;,;, mientras que
los términos cuadraticos o de orden superior son resultado de no considerar la transformacion
completa en funcion de 7.

Para el caso de spin 1 buscamos transformaciones en el lagrangiano y en el campo ¢ que
anulan los términos de orden 1 en 71, cosa que conseguimos en el paso (2.14); aqui, sin embargo,



entre los términos en 4 o mas campos sigue habiendo términos lineales en 7t (o sus derivadas) y
nos vemos obligados a considerar una transformacién

hyw = hyw + 01y + 0,71, + T 0%hyy + (0, ) haw + (0,1 ) hyyar (2.27)

Continuando con la expansion del lagrangiano, comprobamos que podemos anular los térmi-
nos lineales en 7t anadiendo infinitos términos de manera que la interaccién final se puede expresar
como [1]

1
ﬁz’m& = \/_ det <77,u1/ + Mh;w> d)a (2'28)

siendo M una constante con dimensiones de masa para hacer que h,, tenga dimensiones de
masa. No necesitamos continuar con la transformacién a segundo orden si notamos que este
lagrangiano es invariante a todo orden en 7t para transformaciones

¢ = o+,
P = (g + BaTip) (3 + 03700) [0 + 0P (2 + 7] = (2.29)

donde los cambios de coordenadas en el argumento de ¢ y h,, se entienden como la expansion
en serie de Taylor. Para h,, esta es la ley de transformacién de tensores bajo cambios generales
de coordenadas.

Como hemos modificado la transformacién de h,, hemos de modificar el lagrangiano de
la particula libre (2.23) para que sea invariante bajo la transformacién (2.29). Asi, el término
cinético es

1 1
ﬁcin = \/— det <nuy + MhMV)R |:77'uy -+ Mhuy:| s (230)

donde R es el escalar de Ricci. Si hacemos M = Mp; (la escala de Planck) hemos deducido el
lagrangiano de la relatividad general, siendo este el Uinico lagrangiano posible que permite una
interaccion mediada por una particula sin masa de spin 2 que no dé lugar a ghosts.

Una teoria de gravedad cuantica entiende la relatividad general de esta manera: la interacciéon
gravitatoria es una teoria cuantica de campos mediada por una particula sin masa de spin 2,
el gravitén. A pesar de haber obtenido de manera natural este lagrangiano como consecuencia
de los principios de la teoria cuantica de campos, existen problemas a la hora de interpretar los
resultados de esta teoria. En la seccion siguiente mostraremos el origen de estos problemas.

3. Divergencias ultravioletas en teoria cuantica de campos

El problema al tratar la gravedad como una teoria cudntica surge al tratar de renormali-
zar la teorfa. En las teorias cuanticas de campos, al calcular las amplitudes de probabilidad de
transicién entre estados, surgen cantidades infinitas que deben ser reabsorbidas para obtener
cantidades finitas y coherentes. En esta seccién se busca presentar con un ejemplo sencillo el
tratamiento de estos infinitos, conocidos como divergencias ultravioletas, mediante la renorma-
lizacién. Se expondra también el por qué de la imposibilidad de aplicar este procedimiento a la
teoria de la gravedad cudntica derivada en la seccion anterior.



3.1. Teoria ¢*

Como ejemplo tomaremos la teorfa ¢*. Esta teorfa describe un campo escalar ¢ cuya accién
es

1 2 A
Slel = [ s [Jouew0ret) - 20 o - 2 olo)’). (3.)
Se puede describir entonces por el lagrangiano
1 2 A
£ = 5 9u0(@)d"6(x) — 2 o()” — 1 o(a)". (3.2)

Al tratar esta teoria, los campos ¢(z) son operadores que crean y destruyen particulas sobre
el vacio |0). Calculamos los elementos de matriz de S que representa la amplitud de transicién
(p1,p2, s Dnytrlki, k2, -+, km, ti), donde los estados estdn etiquetados por los momentos ini-
ciales y finales. Vamos a tratar el término de interaccién como una perturbacion

Ao

[fint = _ﬂ

((E)4 — Hint =

o)t (3.3)

Gracias a la férmula LSZ (Lehmann-Symanzik-Zimmermann) podemos relacionar estas am-
plitudes con los valores esperados en el vacio de

O {6601) - 6m)o0n) -0 xp | i [ a)] 10 (3.4

donde T es el operador de ordenacién temporal. Tratar perturbativamente este problema equivale
a desarrollar la exponencial término a término. Para cada término podemos asociar un diagrama
de Feynman; por ejemplo, un diagrama en un proceso con un solo vértice y cuatro lineas externas
equivale a

1 x3
=i [ AT {9800} o). (35)

2 x4
Cada producto (0|T {¢(z1)¢(z)} |0) = D(z1—=) es un propagador de Feynman que podemos
calcular explicitamente. Esta integral es funcién de las cuatro variables z;, luego podemos realizar

la transformada de Fourier en cada una de ellas y estudiar el problema en el espacio de momentos,
quedando el diagrama

b1 k1
= —3 )\0(27[')4(54(])1 +po— k1 — kQ)D(pl)D(pQ)D(kl)b(kQ). (36)
b2 ko

Obtenemos aqui 6*(p; + p2 — k1 — k2), que representa la conservacién de momento en el
vértice. Podemos, sin embargo, considerar un proceso en el que solo estd fijado el momento



externo p de la siguiente manera

O

(OIT{6(21)0(22)(2)(x)(2)()}0) = D(r — 2)D (s — 2)Dla — x). (3.7)

Este proceso corresponde a la emision y absorcién de una particula de momento indefinido
q v la contribucién de un diagrama de este tipo a la amplitud de dispersion viene dada por

4
= —iX(2m)*D(k) x ;/ ((217;;4[)@) x D(k). (3.8)

_ —>

El valor de D(q) es explicitamente D(q) = [1272, luego la integral es f %)4 %mz, que es

una integral divergente. Si establecemos un momento maximo al que integrar obtenemos

, Ao / d'q
i = _*4q
2(2m)* J2enz ¢ 4+ md

Ao 2 2 A2 +m3

Asi, hemos regularizado la integral con un regulador o cutoff A. Vemos que la divergencia
de la integral se da cuando A — oo, es decir, cuando consideramos valores del momento arbi-
trariamente grandes. Este tipo de divergencia es lo que se denomina divergencia ultravioleta.
Considerando todos los diagramas a un loop, la autointeraccién de ¢ queda

= —I‘D = . (3.10
! q_ml_ 2 q2_m(2)_r( )

n= 0 q2—m0

De esta manera, las correcciones a un loop imponen un desplazamiento en la masa m(z] — m% +TI,
pero este desplazamiento es infinito cuando hacemos A — oo. Sin embargo, si redefinimos el
pardmetro de masa del lagrangiano m? = m% + I', no tenemos que considerar los diagramas a
un loop a la hora de calcular las amplitudes de dispersién. Con una redefinicién del pardmetro
m hemos eliminado las divergencias ultravioletas debidas a este tipo de diagrama y, aunque esta
redefinicién pierda sentido al hacer A — oo, podemos medir una m finita como la energia en
reposo de la particula descrita por este campo. Por tanto, mg seria un desplazamiento infinito del
valor experimental. Este procedimiento se puede generalizar: podemos dejar de considerar ciertos
diagramas realizando redefiniciones sobre el lagrangiano. Para ilustrar un ejemplo (aunque con
diagramas que no son divergentes méas alld del diagrama a un loop) vamos a considerar la
autointeraccién del campo.



Podemos anadir todos los diagramas con dos patas externas a érdenes superiores; por ejem-

q q
plo, ﬁ_@_k que depende de ¢?. Sumados como en el caso a un loop dan Dj2(q) =

S S
¢*>—mg—M?(¢?)"

Notar que M?(¢?) es una funcién obtenida como la suma infinita de una serie en \g y que
como tal se puede calcular término a término en \g. Podemos interpretar el polo

g% —mg — M*(¢%)] =0 (3.11)

q2=m2

como la masa fisica que podemos medir. Para dejar de considerar los efectos de la autointeraccion,
y por tanto este tipo de diagramas, vemos que podemos redefinir

m? = m3 + M*(m?), (3.12)

dM (p?)
dp?

y en un entorno de m?, ¢ —m3 — M?(¢?) = (¢* — m?) (1 — ) +--- . Por tanto Dyp2(q) =

+ términos regulares.
(¢?-m?) (1- 252 °

1 2\ —1
Si redefinimos el campo ¢ = Z ; ¢r, cON Zy = <1 — d]‘g;g )) , tenemos un propagador para

b, DT (q) = q2_im2 + términos regulares.

Es decir, si calculamos las amplitudes de dispersién usando ¢, ya no tenemos que considerar
los diagramas de autointeraccién. De manera andloga, renormalizar la teorfa ¢* es, antes de
hacer el limite A — oo para cierto regularizador A, redefinir

1 1
¢ = Z; ¢r7 moy = Z{ém, )\0 = Z)\/\, (3.13)

con los pardmetros m y A finitos. Reescribimos el lagrangiano
1 m? A
L= 5 Zs0u6r(@)0"6n(2) = 21— 6r(2)" = Za 7y 6r(@)’

1 2 A
= 5 ubr (@) 0r(2) — - 6r(2)” = 7 orla)’
2

+% 6740, (1) () — 5217% or(x)? — 5Z2% or(x)?

= L. +0L, (3.14)

donde §Z; se conocen como contratérminos. Tras la redefinicién, los diagramas divergentes for-
man parte del lagrangiano de contratérminos 0L y, para calcular amplitudes de dispersion,
podemos tomar el lagrangiano L,, que tiene en cuenta solo campos renormalizados, evitando
incluir los diagramas que divergen para A — oo.

Renormalizar una teoria cualquiera es buscar una redefinicién de los campos y pardmetros
del lagrangiano como en (3.13), de manera que no sea necesario considerar diagramas divergentes
para obtener amplitudes de dispersion.

Si las divergencias que aparecen a cualquier orden son debidas a un nimero finito de subdia-
gramas, como en el caso de la teorfa ¢*, con un nimero finito de redefiniciones del tipo (3.13)
podemos absorber todas las divergencias de la teoria, pudiendo calcular todas la amplitudes de
dispersion hasta cualquier orden y obteniendo siempre resultados finitos. Bajo estas condiciones
se dice que la teoria es renormalizable.



3.2. Gravedad Cuantica

Podemos establecer un criterio para saber cuindo un diagrama sera divergente. Si k es el
momento de integracion, definimos el grado superficial de divergencia como

G = (potencias de k en el numerador) — (potencias de k en el denominador). (3.15)

En general, si G > 0 la integral diverge. Tomemos ahora un lagrangiano de interaccién que
tiene una constante de acoplamiento A con unidades de [masa]™. Al desarrollar la exponencial
en (3.4), obtendremos términos a todos los érdenes de A. En concreto, para un diagrama con
V vértices estamos considerando el término a orden AV y, para valores de k = A, donde A
representa valores arbitrariamente grandes, el integrando serd proporcional a A\VA®, quedando
el diagrama de dimensiones [masa]”™+¢.

Sea ¢ el campo que estamos tratando. El término cinético del lagrangiano serd, L, = m?¢?.
Como la accién es adimensional, podemos deducir que [£] = [masa]? y por tanto [¢] = [masa].
Supongamos que el diagrama que estamos considerando tiene N patas externas; dimensio-
nalmente esto es igual a considerar un término de interaccién en el lagangiano n¢~ donde
[n] = [masa]*~". Por tanto, la dimensién del diagrama debe ser [masa]*~".

Por anélisis dimensional

[masa]”™*¢ = [masa

4N, (3.16)

es decir Vm 4+ G = 4 — N. Para un acoplamiento con m < 0 podemos hacer G arbitrariamente
grande aumentando V. Esto significa que para cada orden surgen diagramas con un orden de
divergencia superior a los anteriores y, por tanto, no se puede renormalizar la teoria con un
numero finito de constantes de renormalizacién. Esto significa que no podemos absorber las
divergencias en un numero finito de parametros provenientes de medidas experimentales como
habiamos hecho con el pardmetro m para la teorfa ¢*. Esto limita nuestra capacidad de realizar
predicciones con la teoria, ya que no sabemos en general cémo calcular la amplitud de dispersion.

En la teoria de la gravedad cuantica que hemos derivado en la Subseccion 2.2, el término
cinético es (2.23), mientras el lagrangiano completo es (2.30). Podemos ver que el término del
desarrollo es proporcional a

1
M
con M una constante con dimensiones de masa. Por el argumento desarrollado en esta seccion,
la gravedad vista como una interaccién mediada por una particula de spin 2 sin masa es no
renormalizable, en el sentido de que no podemos absorber las integrales divergentes con un
nimero finito de contratérminos.

Lint <

On3, (3.17)

3.3. Localidad de las interacciones

Nos preguntamos ahora si existe la posibilidad de hacer una teoria cudntica de campos en
la que no aparezcan nunca las divergencias ultravioletas. En una teoria de este tipo, realizar
predicciones en la teoria cuantica de la gravedad no seria un problema, ya que no es necesaria
la renormalizacién para absorber las divergencias. Para continuar en esta direccién, primero
observemos de dénde surgen las divergencias. En (3.9) vimos que imponer un cutoff A al mo-
mento maximo sobre el que integrar hace que la divergencia desaparezca. Esto puede sugerir que
la teoria no es valida para valores arbitrariamente altos del momento. Si suponemos que para
ciertos valores k > A la teorfa ya no es valida, podriamos establecer un regulador natural que
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haga desaparecer las divergencias. Por otra parte, podemos relacionar esta idea con la idea de
localidad. El ejemplo de integral divergente que estamos discutiendo puede reescribirse como

d4q ~

/WD(Q). (3.18)

Este factor viene de evaluar en 2z = y el propagador D(x — y) — D(0), que reescrito de otra
manera es D(z —y) = (0| T{¢(z)p(y)} |0); es decir, el producto de dos campos evaluado en un
mismo punto del espacio no esta definido. Es esta la idea que motiva a ir mas alla de la teoria
cuantica de campos local. En las siguientes secciones trataremos de explorar la no localidad de
una teoria cudntica de campos a través de la no conmutatividad del espacio-tiempo.

4. Espacio-tiempo no conmutativo candénico

En mecanica cudntica podemos cuantizar un sistema cldsico cambiando las coordenadas
del espacio de fases z' y p/ por operadores hermiticos 2° y p/ que cumplen las relaciones de
conmutacién de Heisenbreg [.%i, ﬁj] = 2/’15; Tras esta cuantizacién, el concepto de punto en el
espacio de fases se ve sustituido por el de celda de Planck, mientras que en el limite 7z — 0 se
recupera el espacio de fases clasico.

Nos preguntamos cudl sera la fenomenologia al introducir una no conmutatividad de este
tipo en las coordenadas del espacio-tiempo sobre las que se definen los lagrangianos de la teoria
cuantica de campos. Cambiaremos ahora las coordenadas z* por operadores hermiticos # que
cumplen la relacién de conmutacién

29, 3¥] = iOM, (4.1)

Para realizar un estudio més general tomaremos D como dimensién del espacio-tiempo y
denotaremos las coordenadas con indices latinos. Asi, los operadores son 7, donde j toma D
valores, vy ©% es la matriz considerada. Estudiaremos el caso canénico, el més simple, donde ©%
es una matriz real, constante y antisimétrica de dimensién D x D [2]. Estamos sustituyendo de
esta manera la estructura de variedad del espacio-tiempo por un espacio de Hilbert de estados
de z°.

4.1. Cuantizacion de Weyl
Nos interesa saber cémo se redefine la accién en ese espacio. En el espacio conmutativo es

5= / AL (o), 0,6(x)), (4.2)

donde £ puede ser visto como una funciéon de x* que decrece lo suficientemente rapido en
el infinito. Para nuestro espacio podemos suponer que los campos considerados pertenecen al
espacio de Schwartz definido por

A= {f\f :RP — €, sup (1+ o))" 9mLL9m0 £(2)2 < o0 Wk, ny € Z+} . (4.3)

con 0; = %. A es un espacio de Banach con la norma L*> (||f||., = sup,|f(z)|) y podemos

k2
describir dichas funciones por su transformada de Fourier

(k) = / AP pe—ki £z, (4.4)
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Estableceremos una correspondencia entre las funciones de A y las funciones definidas sobre
el espacio no conmutativo, de manera que al hacer ® = 0 la correspondencia coincida con
la identidad. Este procedimiento que vamos a seguir se conoce como cuantizacién de Weyl.
Introducimos el simbolo de Weyl de una funcién a través de su transformada de Fourier

D ,
Wir = [ gl (e (45)

Si f(z) es real, f*(k) = f(—k) y W[f] es hermitico. Como ejemplo, Weikiz'] = ¢k’ gj
introducimos la definicién de transformada de Fourier (4.4) en (4.5),

D P i A
W[f] :/def(x)/ (gw)kl)e_ikiﬂelkﬂ :/dDJ:f(x)A(J:), (4.6)

D il i1 A . ,
(gw)]f:,e ihie* oiki®" Qe obtiene, asf, una correspon-

dencia explicita, a través del operador hermitico A(z) = A(xz)!, entre las funciones de A y el
espacio de funciones sobre operadores, que denotaremos W[A|.

donde se ha introducido el operador A(aﬁ) =

En el caso conmutativo, A(z) = §(Z — z), y por tanto W|[f(z)] = f(Z); es decir, en el caso
conmutativo no hemos introducido ningin cambio en la funcién.

Llegados a este punto, queremos invertir la relacién y recuperar f(z) a través de W[ f(z)].

Para ello, buscamos una caracterizaciéon de A(z) que sea independiente de x y que nos permita
normalizar el operador. Para llegar a esta caracterizacion definiremos la derivada de un opera-

dor. 0; es un operador antihermitico que actia sobre el espacio de operadores, [(%, 27 } = (51]- y
[81', 8j] =0, luego la derivada sobre ei¥" eg [8]-, eikiil} = ikjeiki‘il.

Asi, podemos ver cémo actia la derivada sobre A(zx):

N APk i Ta ks Sy A
[Gj,A(:U)] :/(QW)DG ki [8]- ethi }:/Wzkje Rirt gihi®' — 9, A(x). (4.7)

Introduciendo esta expresién en (4.6) e integrando por partes vemos que

00111] = [ aPat,(0)A @) = Wious) (4.8)
Para un desplazamiento infinitesimal, a primer orden
Aw+e) = (1+¢0,) Aw) = (Aw) = € [0, A@)] ) = (1-68) Aw@) (1+68,),  (4.9)

luego A r+v)=c¢e vt ’A T 6”1 i. Con esta caracterizacién, vemos que el desplazamiento esté

g ) q P

dado por el operador unitario €U2 @ y que cualquier aplicacién ciclica tendra un valor constante
p P

~

sobre A(x). En particular, tomaremos una aplicacién lineal y ciclica que toma valores en C y

que llamaremos traza y se define como Tr : W[A] — C, con Tr <A(m)> =1
Tv ()/V[f]) = /dD:r:f(x). (4.10)

Esto, sin embargo, no nos permite invertir la accién de W. Pero, usando la férmula Baker-
. 1 AT sl i _i QU k. Y
Campbell-Hausdorff (BCH), podemos reescribir ¢’ ¢i*i#" = ¢72 OYkikj gilk-+k )it* " de donde se
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deduce

5 Do) _ - -
// . k d g /dDz (Kt A () =% Ok ik -ikly' (417)

Ahora, suponiendo que © es una matriz constante, invertible y antisimétrica (lo que implica
que D debe ser par) podemos realizar las integrales en k y k' y obtener

A@) Aly) = m [0z e e ey, (4.12)
Tomando la traza R R
Tr (A@) Ay)) = 6P (@ ~ y), (4.13)
de donde obtenemos que
fz) =Tr (A(I)Vv[ f]> . (4.14)

En resumen, hemos establecido una correspondencia entre A y el espacio de operadores W[A]
que viene dada por la aplicacién W y es invertible con inversa Tr (A(m) ) Es decir, tenemos

una correspondencia 1-1 entre ambos espacios.

4.2. Producto estrella

Consideremos ahora f,g € Ay estudiemos el producto W[f] W[g]. Usando (4.6) y (4.12)
obtenemos

« N 1 - i(@—1 i j
WDl = oy [[ 47442 F(0ato) [ 7= Ae)e @ 02 (a15)

luego, si invertimos la aplicacién W como en (4.14), y hacemos uso de (4.13), resulta natu-
ral definir el producto estrella de Groenewold-Moyal como (f xg) (z) = Tr (W[ 1] W[g]A(a:)) .

Podemos obtener una expresion explicita utilizando (4.11) e identificando la transformada de
Fourier de fy g

~ ~ ~ 17 AT AY ~

WIS = [ a2 A) % fa)ge)] = Wif +g)
donde se ha realizado el cambio de variable k:; — k;j + k}, teniendo en cuenta que ©% kikj =0
por ser © antisimétrica.

Por tanto, podemos reescribir el producto estrella de funciones como

f@)xgla) = BN fyg(=)]| (4.16)

Yy=z=x

Este producto es asociativo pero no conmutativo, y en el limite ©® = 0 se reduce al producto
ordinario de funciones. Para n funciones es facil ver que el producto (4.16) se extiende a

fi(@)x - % fro(z) = Hexp <;0ij8 0, > fi(@l) - fulz™) (4.17)

rl=..=x"=¢

Vamos a trabajar con acciones como (4.2), por lo que nos interesan las cantidades integrales.
Debido a (4.10) podemos recabar informacién sobre el producto estrella bajo simbolo integral.
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Gracias a la propiedad ciclica de la traza, la integral del producto estrella de funciones sera
invariante bajo permutaciones ciclicas, pero no bajo una permutacién cualquiera.

(WAL WIR]) = / 4P fi(z) %k fula): (4.18)

En particular, para los términos cuadraticos,

/ 0P f(2) % g(x) = / Pz f(x) g(x), (4.19)

es decir, los términos cuadraticos de un lagrangiano no se veran modificados por la naturaleza
no conmutativa del espacio-tiempo.

4.3. Teoria perturbativa para la teoria ¢"

Observemos los efectos de describir la teoria escalar euclidea ¢™ con simbolos de Weyl. Para
el caso n =4, la accién (3.1), en el espacio euclideo, serd sustituida por

A

80 W06l]” + T e + 2

5 W[¢]4> . (4.20)

Teniendo en cuenta que los términos cuadraticos no varian con respecto al caso conmutativo,

2

Swle] = / "z B 0,6(x)0 Plx) + =

A
- 90 + 30l xola) v o) wola)| . (421

El término que varia con respecto a la teoria conmutativa es el término de interaccion, es
decir, Tr (W[qﬁ]4) contiene la informacion relevante a estudiar. De la ecuacion (4.16) y de (4.17)

podemos observar que en el espacio de momentos el producto estrella de cuatro funciones puede
reescribirse como

A o dPk, - 4
Tr (W[¢]4> =11 / Gy (k) (2m)D 67 (Z k:a> V ke, ko, ks, ka), (4.22)

a=1 a=1

donde ‘ B
V(kla k27 k37 k4) = H 6_% kai@l]kbj- (423)

a<b

Es decir, como en la teorfa conmutativa, tenemos el término §° <Zi:1 ka>, que implica la
conservacién de momento en el vértice y, ademds, se anade un factor oscilante V' (ki, ka, k3, k4)
que esperamos que cancele las divergencias de la teoria. Podemos simplificar la notacion in-
troduciendo el producto bilineal antisimétrico X que a cada par de cuadrivectores kg, k; les

asocia

ko % Ky = kai©®Yky; = —kp ¥ kq. (4.24)
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Supongamos que tenemos ahora una interaccién de

~

orden n. Tr (W[¢]”) incluird por lo tanto un factor

de la siguiente manera

Viki,... k) = [J e 25, (4.25)

a<b

Lo que necesitamos conocer para calcular V es el or-
den ciclico con el que los momentos k; atraviesan el
vértice. Es importante que la numeracién de los k;
sea tal que k; y k;11 sean contiguos.

Gracias a la conservacion del momento en el vérti-

I, ce sabemos que " k, = 0, y podemos realizar
el cambio de variable k; = [; — ;41 identificando
Figura 4.1: Un diagrama planar lny1 =1
con tres patas por vértice.
n
V(llv o aln) = H 6_%lj><lj+1' (426)
j=1

Con este resultado podemos calcular el valor de los vértices asociados a distintos diagramas
de la teoria. Para ello, sustituiremos cada momento del vértice por dos lineas paralelas con
sentidos opuestos representando el cambio de variable k; = I; — l;41.

Diagramas planares

Cuando calculamos el factor V' asociado a un diagrama planar como en la Figura 4.1, ve-
mos que la contribuciéon a V' para los momentos internos es igual y opuesta en los dos vérti-
ces que le corresponden. Por tanto, V', que serd producto de cada factor V;, vera cancelada
la contribucién de cada linea de momento interno. De esta manera, el factor V es un fac-
tor de fase global que solo depende de los momentos externos y que viene dado por (4.23),
con k; s6lo momentos externos. Obtenemos, asi, que no hay ningin cambio en la convergen-
cia de las integrales. La teoria serda renormalizable si y solo si la teoria para ©® = 0 lo es.

Diagramas no planares

Es destacable notar que lo realmente importante a la ho-
ra de computar V es el orden en el que los momentos
entran en el vértice. Si dos lineas se cruzan sin cortarse,
cambiaran el orden en el que entrardn en sus respectivos
vértices con respecto al caso planar. Para tener en cuen-
ta este efecto, veamos cudl es la fase que induce el cruce
de dos lineas como en la Figura 4.2. Si ambas lineas se
cortasen, pero el momento de cada linea se viese inalte-
rado, la férmula (4.23) nos daria que el factor de fase es
¢~ 3 (kyXki—kj xki—kixkjth; xki) — g=ik;xki Fgte es el factor
que aparece en el diagrama planar con respecto a la fase;
luego, para un diagrama no planar lo calcularemos como
si fuese planar y afiadiremos un factor e™*% por cada
cruce. En general, podemos contar el niimero de cruces

Ki

Figura 4.2: Ejemplo de cruce sin
cortar en un diagrama no planar.
C% =1 para este ejemplo.

con una matriz C;; que cuenta el niimero de veces que la linea 7 cruza la linea j. Se cuenta positivo
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Figura 4.3: Diagramas a un loop planar y no planar. Estos diagramas solo se distinguen en la
teoria no conmutativa.

si k;j se mueve hacia la izquierda con respecto a k;. Asi, el factor de fase total sera

Vky, o hg)e 20k, (4.27)

4.4. Cdlculos a un loop para la teoria ¢*

Para un diagrama del tipo de la Figura 4.3, en la teoria conmutativa no hay distinciones
entre el caso planar y el no planar. Sin embargo, al considerar el orden en el cual entran las lineas
al vértice debemos distinguir los dos casos que se muestran en la figura. Para cada diagrama
tenemos

r® _ A / d*k (2) _ A d*k oikxp.
1 planar 3(27’(‘)4 k2+m2’ 1 noplanar 6(27’[‘)4 k‘2+m2

(4.28)

Ambos difieren en el factor de fase discutido para los diagramas no planares y en un factor
de simetria debido al cambio de p por —p. Sabemos que el diagrama planar es cuadraticamente
divergente. Podemos ver esto si reescribimos las contribuciones de cada integral en funcién de
parametros de Swinger, que consiste en sustituir

! / " da eokem?) (4.29)
— = ae .
k‘2 + m2 0
y cambiar el orden de integracién. Como son integrales gaussianas, el factor de fase puede
introducirse como un desplazamiento en k. Luego, si denotamos pog = —pH©? wq” = | pHe? wd” |,
tenemos que las integrales a calcular son ahora
A > da A > da 0
F?)lanar = 2 / Te—am27 F§27)w 1 = D) / 726_0”712_%. (430)
p 4872 Jy « panar— 9672 Jy  «

Para regularizar la primera integral, que sabemos que diverge, tenemos que multiplicar por
un factor que se anule en cero més rapido que a2 y que podamos eliminar haciendo tender un

cierto regulador A — oo. La funcién e A2a cumple estas condiciones, luego, multiplicando en el
integrando de (4.30) obtenemos

1
(2) A Cdo _am2_ 1 (2) A ®da 2 PPTAZ
Fl planar = 4872 /0 ?e o Aa, F1 noplanar — W 0 ?e o « (4'31)

Ambas integrales son formalmente iguales si consideramos en la no planar A, f2 = m.
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El comportamiento asintético de la integral con A viene dado por

(2) A (a2 (A
Pl planar 4872 <A —m’In (mz) + O(l)> )
A2
(2) _ A a2 2 eff
F1 noplanar 9672 <Aeff —m~In ( m2 ) + 0(1)> . (432)

1 1
/A% +pop ' pop’
que es una cantidad finita excepto en el limite ® — 0 o p o p — 0. Esta segunda condicién la
podemos ver como un regulador en el infrarrojo; para p o p ~ p?6? << % se recupera Agp ~ A
y, por tanto, la divergencia ultravioleta. Introducir un regulador A para el ultravioleta en los

momentos internos introduce un regulador efectivo para los momentos externos del orden ﬁ.

El diagrama planar diverge al hacer el limite A — oo, sin embargo; Ay =

Asi, se muestra que la divergencia ultravioleta que presenta la teoria conmutativa se ha
sustituido, para el diagrama no planar, por una divergencia infrarroja en el momento p. Es
importante notar que la divergencia ultravioleta viene de la indefinicién del momento interno del
loop k, que puede tomar valores arbitrariamente grandes, mientras que la divergencia infrarroja
se debe al momento externo p. Este comportamiento recibe el nombre de mezcla infrarrojo
ultravioleta o IR-UV mixing. Este es el resultado més interesante que encontramos en la teoria
no conmutativa en un diagrama no planar.

Este comportamiento ha sido observado en un diagrama a primer orden y se pueden encontrar
méas ejemplos que muestran esta propiedad. Sin embargo, no es una caracteristica inherente a
los diagramas no planares, se pueden encontrar dentro de la teorfa ¢* ejemplos de diagramas no
planares de orden superior que presentan divergencias ultravioletas [3].

4.5. Origen de la mezcla IR-UV

En esta subseccién resumimos la discusién de la referencia [3]. Vamos a considerar D = 2
con coordenadas x e y sujetas a la relacién de conmutacién [x,y] = if y tomemos el producto
estrella de dos funciones ¢1 y ¢2, que podemos escribir

(1% o) (w,y) =
1

= 202 // d2x) A% 1 (w1, 1 )da(wa, yo)e 7 (w2 v == (w=we)],
™
(4.33)

Para calcular el valor del producto estrella vamos a considerar que la funciones tienen soporte

compacto, es decir, solo toman valores apreciables en una regién de anchuras A,, x A, fuera

21 (yp—)
de la cual son nulas. Para la integral sobre 1, tenemos que calcular [ dg, ¢1(z1,y1)e’ S s

las oscilaciones son demasiado réapidas la integral se anulara. Esto se traduce en la condicién

Am’yz’;y' > 1. (4.34)

Es decir, para un punto ys dado, la integral, como funcién de y, tomard valores no nulos

dentro de la regiéon de anchura dyo ~ Ai. Esto da una correspondencia de la funcién ¢; sobre
1

la funcién ¢9 en una regién de anchura dys, como se muestra en la Figura 4.4. Podemos repetir
el argumento para cada variable y obtendremos
0 6 0 0

A—Il, oy ~ ——, 0T~ —, 0T = —. (4.35)

0y =~ ,
AxQ Ayl
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Para el caso en el que ¢1 = ¢2 = ¢, el producto estrella es no nulo en una regién de anchura

0x ~ max <AI, Ai) , dy ~ méx (Ay, Aex) . (4.36)

I
I
- '

Es decir, si Az, Ay < V0, el producto estrella serd no nulo

en una region mucho mas grande de dimensiones Ai X Ai.
y T

‘," 6)\11 = OlA1x Podemos tener una teorfa, la teorfa ¢, que cumple
/ (O —m?) ¢(z) = 5 (¢ x ¢) (), cuya solucién podemos dar
¢l \é'(pZ perturbativamente hasta primer orden en A como
S A [
; - o) = dnla) = [ dPuGla— ) (Gox o) ), (4.37)
| oL g2
N donde G(z) es la funcién de Green de la ecuacién dife-
rencial homogénea. Como hemos visto, si ¢y toma valores
apreciables en una regiéon muy pequena A, << V8, con
_ 0 un valor caracteristico tomado de la matriz ©, ¢g x ¢g
\‘ Aix )/ toma valores distintos de cero para una regién de tamano
2 §=%>>A
- En un diagrama no planar, una particula virtual de
Figura 4.4: Si el valor de ¢ energia w >> % tendrd un tamafio w™' << /6. Sin
v ¢9 solo es no nulo en las re- embargo, la interaccién extendera sus efectos a un ta-
giones coloreadas, el produc- mafno equivalente a wf, produciendo efectos a energias
to @1 * ¢2 es no nulo en la correspondientes a este tamano (energias de i) que son
interseccion de las zonas ex- energias bajas.
tendidas que estan marcadas Por ello, imponer un regulador ultravioleta A para los mo-
con una linea discontinua. mentos internos, implica un regulador efectivo en el infra-

rTojo ﬁ para las particulas con las que se interacciona.

Como conclusién, observamos que es la no localidad del producto estrella la que nos induce
un acoplo entre el comportamiento a altas y bajas energias. La no conmutatividad del espacio-
tiempo nos induce a interacciones no locales que consiguen absorber las divergencias ultravioletas
en ciertos casos. Sin embargo, esto no es suficiente para hacer desaparecer las divergencias de la
teoria.

5. Invariancia bajo transformaciones de Poincaré del espacio-
tiempo no conmutativo candnico

La definicién de la no conmutatividad (4.1) no es invariante bajo transformaciones de Lorentz
al ser ©O*” una matriz constante. Sin embargo, podemos preservar la invariancia de esta ecuacién
si modificamos la estructura de dlgebra de Poincaré estdandar P vista como dlgebra de Hopf [4].
Primero presentaremos esta estructura algebraica y luego buscaremos la invariancia mediante
una operacién llamada twist, como veremos a continuacion.

Antes, hemos de hacer una consideracién sobre el espacio en el que actidan las transfor-
maciones de Poincaré. En la discusién precedente obteniamos un producto estrella como aquél
compatible con la identidad W[f]W|[g] = W|[f * g], que es resultado directo de las relaciones
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de conmutacién de los operadores Z,,. En dicho proceso hemos realizado una correspondencia
a través de W con las coodenadas conmutativas z,. Se deduce de este an4lisis que el producto
de funciones debe ser modificado por el producto estrella y, por tanto, podemos aplicar este
producto a las coordenadas x,, que dejan de ser conmutativas bajo este producto, y podemos
comprobar que las relaciones de conmutacion

[Ty Ty)s = Tp* Ty — Ty * Ty = 1O, (5.1)

son formalmente iguales a (4.1). El grupo de Poincaré actiia sobre estas coordenadas x, y es la
relacién (5.1) la que no se preserva bajo rotaciones y boost.

Por otra parte, para componer dos transformaciones tenemos que tener definido dentro del
algebra de Poincaré la nociéon de multiplicacion, sin embargo, partiendo solo de las relaciones de
conmutacién es posible encontrar varios productos distintos que las satisfagan.

5.1. Preliminares: ;por qué algebras de Hopf?

En esta seccion se presentard de manera informal el concepto de algebra de Hopf y de
envolvente universal de un algebra. Se nombraran conceptos matematicos sin una presentacion
rigurosa, ya que se pretende solo mostrar la idea de por qué surgen estas estructuras algebraicas
al tratar los generadores de los grupos de simetria de un espacio-tiempo no conmutativo. Para
su definicién formal consiltese el Apéndice C.

5.1.1. Algebras de Hopf

Un algebra H es un C-Espacio vectorial dotado de una operacién interna que viene dada
por la aplicacion lineal m : H ® H — H. Esta operacion habitualmente es la multiplicacién y se
denota m(a ® b) = ab. Sin embargo, se puede considerar el corchete de Lie u otras aplicaciones
bilineales. Para nuestros propésitos, consideraremos que H es unital y asociativa, que significa
que existe un elemento unidad e := 1 y que el producto es asociativo.

Buscamos un &algebra asociativa H, que actuando sobre el espacio de funciones, preserve
la relacién (5.1) como lo hace P en la teorfa usual. Tomemos ahora una funcién f = ax* del
algebra de funciones A. Como la no conmutatividad es un fenémeno que implica solo términos
cuadraticos, un elemento de H que dé cuenta de la no conmutatividad actuando sobre este
vector no ve los efectos de la no conmutatividad y actia como lo harfa P. Denotaremos & a la
accién usual del dlgebra H sobre el algebra A. Esta acciéon usualmente se denota igual que la
multiplicacién para contextos en los que no se quiere hacer hincapié en la naturaleza de algebra
de Hopf. En un algebra actuando sobre un espacio de funciones conmutativas, basta con definir
YSz# para cada Y € H, ya que si ahora consideramos un producto f = ztz" = my(z" @ V)
en el caso usual. Por ejemplo si k € P entonces k(ztz”) = (kzt)x” 4+ z#(kx"). En términos de
la notacién anterior esto se expresa para Y € H

Yo f =ma(Yoz!) @ (152Y) + (152") @ (YY) :=
ma (Y @1+10Y)>(" @a")). (5.2)
Sin embargo, si buscamos que el producto entre dos coordenadas varie para respetar la

invariancia bajo transformaciones de H, hay que sustituir el término (Y @ 1+1®Y) € H® H
por otro que cumpla nuestros propésitos. Para ello, tomamos una aplicacién, llamada coproducto

AH—HxH AY)=> Yy @Yy (5.3)
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La parte derecha es un elemento genérico de H ® H que cumple, para ser consistente con la
asociatividad, el axioma de coasociatividad (A®@1)o A = (1® A)o A. Un &lgebra de Hopf es la
estructura algebraica que hace compatible el dlgebra H con el coproducto y ademas esta dotada
con una coinversa S : H — H, que calcula el generador de la transformacién inversa. Para hacer
compatibles estas operaciones es necesario anadir la counidad € : H — C, que asegura que la
identidad no se ve deformada. De esta manera redefinimos la accién > de H sobre A como

Y > (fg) =ma(AY) > (f@9) =Y Yo' > Y >9). (5.4)

i

Gracias al axioma de coasociatividad basta conocer Y > z# y A(Y) para conocer la ac-
cién del dlgebra sobre cualquier funcién analitica. En resumen, para tener un algebra de Hopf
completa basta con dar (H,m, A, €, S) con las definiciones anteriores. Sin embargo, para ver los
efectos de dicho grupo sobre A basta con conocer A(Y) y Y > z#. En nuestra discusién, solo
consideraremos los coproductos, ya que es el objeto que tiene significado fisico sobre los campos.

En el caso (5.2) el coproducto es Ag. Si'Y € H es un generador cualquiera
Ag:H—=>HOIH,A(Y)=Y®1+1®Y. (5.5)

Para definir el dlgebra de Hopf completamente, tenemos que definir la counidad ¢y(Y) =0y la
coinversa Sp(Y) = —Y.2

Si H es el algebra de Poincaré P, se puede extraer un significado fisico simple de este
coproducto. El generador Y actia sobre el estado |p), donde p es su momento y conocemos la
accién de Y sobre este estado. El estado de dos particulas es |k) = |p1) ® |p2), que es el estado
producto tensorial y sobre el estado |k) actia el generador A(Y"). Este ultimo generador actia
en un espacio méas grande pero se obtiene de manera simple a partir del generador a un solo
estado. La forma particular de (5.5) dice que se actiia sobre cada estado independientemente; por
ejemplo, si Y es el generador de las rotaciones, una rotacién en el espacio producto de estados
se obtiene rotando independientemente |p1) y [p2). Esto se puede denotar también como regla
de Leibniz y modificarla equivale a modificar la suma usual de momentos o0 momentos angulares
generalizados.

5.1.2. Envolvente universal de un algebra de Lie

Otra estructura relevante es la envolvente universal de un algebra de Lie. Los generadores
de P junto con la identidad forman un algebra asociativa. Si relajamos las propiedades de P

de tal manera que las relaciones de conmutacién, llamadas corchetes de Lie, [-,-] : PR P € P
sean vistos como una operacién independiente de m?3, P estd siendo tratada como un algebra
de Lie .Z. Desde .£ podemos definir alguna multiplicacién m, de manera que ab — ba := [a, b].

El &lgebra en la que se define la multiplicacién a través del corchete de Lie es la envolvente
universal de .Z, que se denota U(.Z). La ventaja de utilizar la envolvente universal es que no
se dice nada a priori sobre la multiplicacién m; simplemente se pide que sea compatible con el
corchete de Lie.

5.2. Algebra de Poincaré twisteada

Queremos encontrar un algebra de generadores del grupo de transformaciones que preserve
las relaciones (5.1) con este producto estrella. Utilizaremos la envolvente universal del dlgebra

2En un 4lgebra de Hopf siempre se cumple eo(1) = 1y S(1) = 1.
3El corchete de Lie es una aplicacién bilineal y antisimétrica que cumple la identidad de Jacobi.
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de Poincaré U(P), ya que nos interesa que se sigan cumpliendo las relaciones de conmutacién
para el dlgebra de partida. En esta seccién veremos que existe una transformacién llamada twist,
de U(P) vista como algebra de Hopf, que define un producto estrella. Veremos que, para el caso
del espacio-tiempo canodnico, este procedimiento puede reproducir el producto estrella definido
hasta ahora. No obstante, en secciones posteriores veremos que este procedimiento no siempre
reproduce el producto estrella definido con los operadores de Weyl W.

Recordemos los elementos de P. Los generadores de las rotaciones y boost de Lorentz son
M,,,, que forman una subalgebra, y P, son los generadores de las traslaciones. Las relaciones de
conmutacién son

[M,ul,, Mag] = —1 (nuaMuﬂ — T]#QMVQ — nyaMug + nuﬁMua) , (56)
[M;un Pa] = —1 (nM(XPV - TluocPu) 5 [P/u Pu] =0. (57)

Para modificar el coproducto usual (5.5), utilizaremos el twist F, que se define como un
elemento F € U(P) @ U(P) cumpliendo

(FoD)(Aog1)F =1 F)(A¢x1)F, (5.8)

leeaF=1=(x1)F. (5.9)

Con este elemento realizamos la siguiente transformaciéon con u = m((1 ® S)(F))

{UP), m , Ao, €0, 5} — {Ur(P), m ,Arp=F Ag- }'_l,eo,uS(Y)u_l}. (5.10)

El algebra de partida U(P) actia sobre el dlgebra de funciones del espacio-tiempo con-
mutativo (A, m4). El dlgebra de Hopf deformada actia, siguiendo la prescripcién (5.4), sobre
una deformacién del algebra de funciones Ar, en la que el producto estrella que define esta
transformacién viene dado por

pxp=m[F > (pxv)]. (5.11)

El producto estrella para funciones en el espacio-tiempo candnico discutido en la Subsec-
cién 4.2 se puede considerar como candidato si conseguimos reescribir (4.16) en funcién de los
generadores de Poincaré. En este caso es posible y da el twist

Fop = exp (;GWPM ® P,,) . (5.12)

Este twist cumple, ademds, las ecuaciones (5.8) y (5.9), y es por tanto un twist valido que
respeta la invariancia de (5.1), como se muestra en [4]. Si tomamos como punto de partida este
twist definimos otro camino para definir el producto estrella que, en este caso, es equivalente.

Definiremos ahora por completo el algebra de Poincaré twisteada Pz, cuyos coproductos
podemos calcular gracias a las relaciones de conmutacién (5.6)-(5.7) y a la relacién (5.13)

_ 1 >, (AdB)"
B~ _ B B _ _
De esta manera los coproductos son
Ar(P,) = P,@o1+1® P, (5.14)
1
Ap(MY,) = MY, @1+1@M",+ Qeaﬂ 4P, @ Pg+ 05 Pa @B, . (5.15)
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Observamos que el coproducto de P, es el estandar, lo que es consistente con la discusién
de la Seccién 4, donde hemos visto que la ley de composicién de momentos no se ve modificada.
Sin embargo, el coproducto de M", se ve modificado, ya que el coproducto usual no respetaba
la invariancia de las relaciones de conmutaciéon. En este sentido, todas las teorias estudiadas en
secciones anteriores son invariantes bajo el dlgebra de Poincaré twisteada.

6. El espacio k-Minkowski

En esta seccién, exploraremos un nuevo tipo de conmutatividad. En las secciones prece-
dentes, los calculos de la férmula BCH? se simplificaban a un término gracias a la propiedad
(£, [2;,21]] = 0. Ahora plantearemos un espacio-tiempo en el que esta propiedad no se cum-
ple. El espacio k-Minkowski es un dlgebra de 4 dimensiones cuyos vectores coordenados forman
un algebra de Lie. Como en el caso precedente, vendran representados por operadores &, que
cumplen

1
T AZ' = *AZ’. 1
[0, 31] = ~4 (6.1)

El resto de conmutadores se anulan. La constante k tiene unidades de masa, que habitual-
mente se interpreta como la escala de Planck.

6.1. Cuantizacion de Weyl

Como en el caso anterior, definimos el operador W, [f] = [d*zf(z)A.(z), con A, =
/ (gi])z e~ ikue! o =ikid' ikod® [ eleccién de la onda plana e~ **i#' ¢ g debe a la simplicidad

de los célculos con la formula BCH y la distinta eleccion entre las ondas planas tiene consecuen-
cias que se discuten en la Apéndice D.

La férmula (4.10) sigue siendo vélida pero, al no cumplirse la relacién (4.14), la obtencién
del producto estrella es mas complicada. Para encontrar una expresion de dicho producto con
la férmula BCH y con las relaciones de conmutacién (6.1) obtenemos

; 1). A )
—ik Wit k(130 k()50 k(270 _Z<k( ite Z>xl (kD g+52 )20
e e e e =e e . (6.2)

Podemos ahora calcular el producto estrella como se ha definido en la Seccién 4 Wy [f)Wi[g] =

(em)* (2m)*
demos deﬁmr

0 )
—i| ki+e” g |2t . . :
f f dk4 dg* k?)g(q>€ ( q ) el(kOJFQO)xO. Definiendo (k@q) = <k0 + qo, ki + e_%}qi) po-

(f %x 9)( q* "D £ (k) g (q). (6.3)

Esta expresién es complicada, luego intentaremos extraer el producto estrella por medio del
twist. En términos de élgebras de Hopf, podemos definir los operadores P, que actian de la
siguiente manera

P, 1> e kit gthot® — . o=thid (ko p s W (2)] = W[—id,f (z)]. (6.4)

4Baker-Campbell-Hausdorff.
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Por tanto, A(P,) k) |¢) = (p ® @) |k) |q) con |k) = e iki# ¢ikoi” e donde se deduce que la
expresion del coproducto es

AP) = Rol+10R,
P
A(P) = B®1+exp<—,:>®3-. (6.5)

Como la expresion del producto estrella es complicada, la discusién fenomenolégica no se puede
hacer por analogia al caso candnico.

6.2. Invariancia de sk-Minkowski

Podemos buscar un twist, como en la Subseccién 5.2, que preserve la invariancia de (6.1),
que nos permitird identificar un producto estrella de otra manera. En este caso buscamos un
Fir € U(P) que reproduzca el coproducto obtenido en (6.5). Sin embargo, la bisqueda de dicho
twist se simplifica para un dlgebra méas grande llamada igl(4)® [5, 6]. El dlgebra esté formada
por los generadores de las traslaciones P, y los operadores L",, definidos como

L' & Wil f(2)] = Wil —ia" 0, f (). (6.6)
Por tanto los generadores del algebra igl(4) cumplen
[P., P, =0, [L*,, Py = id*;P,,
[LMV, LAT} = (MTLAI, _ 5A,,L“T) , (6.7)
y el algebra de Poincaré es una subalgebra formada por los generadores

M;u/ = nu)\LAu - nuAL)\V' (68)

Un elemento F,, € U(igl(4)) que cumple las condiciones (5.8) y (5.9) y reproduce el copro-
ducto (6.5), tomando D = L?; el operador dilatacién D € igl(4), es

P
Fr = exp <zﬁo ® D) . (6.9)

Este twist se denomina twist abeliano. De esta manera,con la ayuda de la matriz h*, =
o*, —8%,6"0 y con la expresién (QH)7, = (K7,0"q — h*07,), podemos reescribir el coproducto
de los L*, como

P P
A(LM) =LF, @14 60—~ @D + e~ BB, (1®LP). (6.10)
K

Junto con (6.5) obtenemos todos los coproductos que caracterizan al dlgebra twisteada
Ur, (igl(4)). En el Apéndice E se amplia la expresion de este coproducto y se presenta la ex-
presién de las coinversas que caracterizan por completo el dlgebra de Hopf. Al hacer el limite
Kk — 00, se recupera el coproducto estandar, lo que concuerda con la suposicién de que « es la
masa de Planck y los efectos de la no conmutatividad no aparecen a bajas energias. Para los
generadores de Lorentz (6.8) el coproducto es

P,

PI/ -0 _*0 v
A (MF,) = M*, @1 + [5{; - 53“] ® D + (e RO, _ m8@ )) (1@ M”.).
K K

(6.11)

5Acrénimo de Inhomogeneus general linear algebra.
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De esta manera obtenemos un coproducto para P que depende de D, que no es un elemento
de dicho algebra. Este twist define un producto estrella *,;, cuya expresiéon es

(70w = exp (£ 750 ) o)

(6.12)

Yy=z=

Este producto estrella *, y el obtenido en (6.3) no coinciden. En este caso buscar el producto
estrella a través del grupo de transformaciones no es equivalente al calculo directo con W. Al
calcular la transformada de Fourier de este 1ltimo, vemos que el término k @ ¢ de x se sustituye
por (ko + qo, ki + q; — %Oqi), que coincide con el primer término del desarrollo en k= de k & g.
Concluimos que la condicién de invariancia de las relaciones de conmutacién es mas débil que
la exigida para obtener el producto * desde la cuantizacién de Weyl.

Actuando con este producto es facil comprobar que [2°,z%]., = <z’ y, por construccion,

esta relacion es invariante bajo las transformaciones de P twisteado. Podemos construir teorias
invariantes bajo este dlgebra deformada que son invariantes y cuyas coordenadas cumplen las
relaciones de conmutacion de xk-Minkowski. Ademaés, dichas teorias estdn dotadas de un producto
estrella que tiene una forma simple,lo que permitiria un estudio fenomenolégico como el realizado
en el caso candnico.

Los generadores de Lorentz presentan coproductos que no pertenecen por completo a U(P),
lo cual a priori no tiene por qué ser un inconveniente a la hora de presentar una teoria, pero
puede marcar una via para tratar de plantear otras teorias. Existen diversos twist construidos
sobre U(igl(4)) que respetan la invariancia de la teoria, siendo este un caso particular [6].

6.3. k-Poincaré

En las secciones anteriores hemos considerado la estructura de algebra de Hopf a raiz de
las deformaciones dadas por un twist. Al realizar un twist, se supone que las relaciones de
conmutacién del dlgebra de partida se deben preservar. Sin embargo, existen algebras de Hopf
obtenidas como deformaciones de algebras de Lie que no preservan el corchete de Lie. Un caso
particular es el llamado algebra de k-Poincaré, que surge como una deformacién del algebra P
[7].

Utilizaremos como generadores del dlgebra J* = %eklmM Im para las rotaciones y NF =
MO = —M* para los boost. k-Poincaré viene descrito por las relaciones de conmutacion

[P}, J;) = i€ijxPr, [Po,J1] =0, [Ji,J;] =ieijud®, [Ji, Nj] = ie;jeN®,  [N;, Nj] = —ie;juN*,
. K Cope) | P2 1 .
[Pj,Nj] = Z(sz'j (2 <1 —e 2P/ ) + 2/{) - ZEBPj7 [Po,Ni] =1P;, (613)

que recupera el dlgebra de Poncaré para k — oco. Los coproductos modificados son®

AP)=Prol+e P ap, AR)=Re1+10PFP, A(J)=Jo1+18J,
1 .
AN) =N; @1 +e /g N, + /%P . (6.14)
K

Como vemos, el coproducto para los momentos es el esperado en (6.5), y el coproducto
de los generadores de boost se escribe en términos de elementos del algebra. Para ver que las

6 Para una caracterizacién completa con las coinversas ver [7].
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coordenadas z,, cumplen las relaciones de k-Minkowski y que la relacién es invariante, basta re-
cordar que un algebra modificada como dlgebra de Hopf no modifica su accién sobre coordenadas
individuales. De esta manera

Py’ =—id, N;j>al =i, N;pa®=ia'. (6.15)

Para productos de dos coordenadas zz¥ = m(z* ® xV), hay que utilizar el coproducto de
cada generador, como se indica en (5.4), de manera que
- o o e e
Py (2°27 —272%) = —i(a' —2") =0, P> (2" —2792%) = —is] + L +i6) = L. (6.16)
K K

0 0_

Luego, [2°, 7] = 2027 — 27z ﬁxj , que es la definicién (6.1). Para comprobar la invariancia,
usando ademas J,, > ¥ = 0, hacemos

. . 1 o
Ny > (297 — 2720) = fgxoél] =N, > %xl. (6.17)

Por tanto, x-Poincaré es un algebra que genera un grupo de simetria de xk-Minkowski. El
algebra, en esta forma, no puede provenir de un twist del algebra U(P) por no satisfacer el
mismo &lgebra de Lie. Sin embargo, es posible realizar un cambio de base no lineal tal que el
algebra en los nuevos generadores satisface las relaciones de conmutacién de Poincaré. La base
en la que hemos presentado el dlgebra recibe el nombre de base bicrossproduct, mientras la base
en la que los conmutadores se reducen al dlgebra de Poincaré es la base clasica, que viene dada
por el cambio

52

., P, P _

P
Ko(Py, P) = rsinh = + 5 KilPo. P) = Pe™. (6.18)
K K

Recuperar el dlgebra de Poincaré sugiere que los efectos fisicos de la deformacién se presen-
taran en los coproductos y no en las relaciones de conmutacion del dlgebra. En esta nueva base,
cabe preguntarse si existe un twist que lleve de U(P) a k-Poincaré, sin embargo, sabemos que
no es posible encontrar dicho twist sin los generadores de igl(4) [8].

7. Conclusiones

El caso mas simple de no conmutatividad dado por el espacio-tiempo no conmutativo canéni-
co, si bien no cumple el objetivo de eliminar las divergencias ultravioletas, presenta una fenome-
nologia interesante que no presenta el caso conmutativo. La mezcla Infrarojo Ultravioleta que
elimina algunos diagramas divergentes, es la mas interesante. Dicha fenomenologia es consecuen-
cia del producto estrella, que estd bien definido para el caso candénico. Hemos visto que dicho
producto se puede derivar de manera alternativa buscando el dlgebra que preserva la invariancia
de la definicién de las relaciones de conmutacién.

Para el caso de k-Minkowski, el mismo procedimiento lleva a resultados distintos para el
producto estrella derivado de ambas maneras. Se hace patente aqui una ambigiiedad a la hora
de definir el grupo de simetria que preserva la invariancia y que puede llevar a fenomenologias
distintas a causa de productos estrella distintos.

Es de esperar que k-Minkowski presente también algin efecto interesante a la hora de for-
mular una teoria de campos de manera analoga a la que se ha realizado en este trabajo con el
caso no conmutativo candnico. Por tanto, se abre la posibilidad de estudiar, en futuros trabajos,
cudl es la fenomenologia de la teoria formulada sobre k-Minkowski y de qué manera el grupo de
simetria considerado tiene efecto sobre la discusién fenomenolégica.
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A. Notacion y unidades

Se usan las unidades naturales i = ¢ = 1. De esta manera podemos expresar magnitudes fun-

damentales en funcién de unidades de energia o de masa [longitud] = [tiempo] = [energia] ! =
[masa]~!.
La signatura de la métrica de Minkowski es (+ — — —) y la denotamos n#:
1
v -1
-1

con indices griegos u,v,--- que toman los valores 0,1, 2,3 indicando t,z,y, 2z, e indices latinos
1,7, -+, indicando solo x,y, z que toman los valores 1,2, 3.

La derivada parcial con respecto a una variable se denota 8% = 0,.
Un cuadrivector se representa por (po, p1,p2,p3) = (po, D).

Se utiliza el convenio de sumacién de Einstein, que sobreentiende los sumatorios para indices
repetidos, uno como subindice y otro como superindice

3
%7" = Z (b;f}/u- (A.2)

pu=0

Para subir o bajar un indice se usa la métrica de Minkowski

Op = Nuw @’ (A.3)

Para tensores simétricos en los indices «, 3, se indica
clebm — ctbauw — clevBu (A.4)
BleBlurly) — gpOyBluvle) _ glayluv|B) (A.5)

La contraccién de campos se define como

(O {6 (1)2) (s (2 b(5) b (rs) }0) =
(0T {6(x1)8(3)}0) (O T {6 (x2)d(24)} [0) (O T {é(ws)d(x)}0)  (A6)

Las siglas BCH indican la férmula de Baker—-Campbell-Hausdorff.

eAeB — pATB+3[A Bl 15[A[A Bl 15[B,[B,A]+ (A7)

B. Aparicién de ghost con derivadas de orden superior a 2

Los términos de més de dos derivadas en el lagrangiano dan lugar a estados de norma
negativa. Por ejemplo, la ecuacién

<(b + @) + ;m2ﬂﬂ> 0, (B.1)
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da lugar a dichos estados. Para verlo, primero hemos de definir el espacio de Fock, que es el
espacio de todos los estados posibles |n), siendo |0) el vacio. En concreto, supondremos que todo
el espacio se puede describir como autovector del cuadrimomento y, por tanto, viene dado por la
masa y el momento de cada particula |p, m), siendo E, = \/p? + m? y siendo m un pardmetro
discreto.

Utilizaremos una normalizacién covariante (9, m|q,m) = (2m)32E,63(p — ¢) de esta manera:

3
Sl =1= 3 [ G m) g (B2)

Por otra parte, podemos expresar como funcién de (z — y) la siguiente amplitud de proba-
bilidad

(0l p(x)e(y) [0) =

<0‘ e—taupt giaupt Qs(x)e—iaup” etaupt qs(y)e—iaup” etaupt |0> —

Olo(x +a)p(y +a)|0) = D(x—y).

(B.3)
Podemos calcular un propagador retardado, asumiendo yg > xg
Dr(y —2) = 9(yo — x0) (0 [¢(y), ¢(x)]|0) = (O] [¢(y), ¢(x)]|0) , (B4)
donde ¥(z) es la funcién escalén de Heaviside. Para el primer sumando, usando (B.2),
(0l ¢(y — 2)(0) [0) =
> (0l ¢(y — =) n) (n] $(0) |0) =
d3
S [ 5z, 016ty =) 5m) 5ml 60)10) =
Z/ (0] "= G (0)e = W=DuP" |3 m) (5, m| $(0) |0) =
D / (01 6(0) |7 m) e 00 =102 (5 ] (0) [0) =
Z/ e~ ily—2)op” ,—i(y—x);p’ N (D),
(B.5)
donde n,,(p) = (0] ¢(0) |7, m) (7, m| $(0) |0). Andlogamente para el segundo:
(0] p(0)p(y — z) |0) = Z/ 7 32E i(y—=)op’ gily—z);p7 ), ().
(B.6)
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Asi, el propagador retardado es
Dr(y —z) =
d®p : 4
_ 9P (i)t _ z(y—mm#) _
;/ s, ‘ P

e i(y—x)up" e~ y—z)upt
2 / og, Mm@+ (D)
po=—Ep po=—FEp
(B.7)
Y también se puede expresar [9]
Dr(y -
i —i(z—y)up* —
lg%z/ (P + i€)? ﬁQ—mQG
’ d p . —i(z— y)uP“
i3 / Mo + e
(B.8)

con II(k,) el propagador de la particula. Para pasar de una integral en tres variables a una de
cuatro tenemos que utilizar el teorema de los residuos; de esta manera, comparando la integral
en tres y cuatro variables, un residuo corresponde a uno de los dos sumandos proporcionales
a Ny, (p). En una teorfa unitaria, n,,(p) se interpreta como una norma; por tanto, no puede
ser negativa. Por lo tanto los residuos encontrados en un propagador deben asegurar esto. Un
residuo negativo debe tomar su signo de la energia del denominador y por tanto ha de tener kg
negativo para que n(k) = |(0] $(0) |, m)|* > 0.

Para la ecuacién (B.1) el propagador es

(k) — 1 11 a+b
T 2a+ bkt —m2k2 T m? K2 (a+b)k2—Lim2 |’

(B.9)

que representa dos particulas cuyos polos en kg son ky? = Ez’ ko? = k2 + - G calculamos

4(a+b) "
los residuos
Res(ko = +|F]) = +— (B.10)
es(ky = = +———, )
’ 2m?| £
. m?2 1
R ko= 4k 4+ — = B.11
4(a+b)

Luego, para valores de a + b # 0 podemos encontrar residuos negativos que corresponden a
energias positivas, lo que da lugar a ghost o estados de norma negativa. En general esto sucede
siempre que el nimero de derivadas es superior a 2, ya que al factorizar un propagador en la
forma final de (B.9) siempre aparecen signos alternos que obligan a encontrar residuos con signos
alternados.
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C. Estructuras algebraicas: algebra de Lie, de Hopf y envolvente
universal

C.1. Algebras de Hopf
C.1.1. Algebra

Un algebra A es un K-espacio vectorial dotado de una operacién interna que viene dada por
la aplicacién lineal m : A ® A — A, se identifica m(a ® b) = ab cuando sea posible. A es unital
si existe un unico elemento e € A tal que Va € A m(e® a) = m(a ® e) = a. A es asociativa si
cumple (C.1). La aplicacién unidad n : I{ — A cumpliendo (C.2), representa la multiplicacién
por un escalar del espacio vectorial.

mo(L®m)=mo(m®1) Asociatividad , (C.1)
mo(l®n)=~1=mo(nol) Unidad . (C.2)

C.1.2. Coalgebra

Una coalgebra C es un K-espacio vectorial dotado de un coproducto, que es una aplicacion
lineal A : C — C ® C cumpliendo (C.3) y una counidad que es una aplicacién lineal € : C — K
cumpliendo (C.4).

(I®A)ocA=(A®1)ocA Cosociatividad , (C.3)
(I®e)oA=1=(ecol)o A Counidad .

Estos axiomas son duales a los del dlgebra asociativa, representando ambos en forma de
diagrama conmutativo, para la asociatividad:

A AR A L™ Ao A Ccocecd® coc

mml l’” A‘MT TA (C.5)

Asociatividad Coasociatividad

y para la unidad:

AXxKYKx A2 Ao A CxK=ExC 2 cac

ton) [ cot] [ (C.6)

A——ribr—— A CwC —— C
Unidad Cunidad

C.1.3. Bialgebra

Una bidlgebra B es un K—espacio vectorial que estd dotado de una estructura de édlgebra
asociativa unital y de codlgebra cumpliendo los axiomas de compatibilidad
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A(ab) = A(a)A(d), €(ab) = e(a)e(b) Va,b e B,
Ale) =e®e, ele)=1€ K. (C.7)

C.1.4. Algebra de Hopf

Un algebra de Hopf H es una bidlgebra sobre un cuerpo K dotada de una coinversa, que es
una aplicacién lineal S : H — H que cumple

mo(S®@L)oA=mo(1®S)oA=1e (C.8)
En forma de diagrama conmutativo:

HoH —%L e H

e
N

7—[®’HT>’H®H

H

€ s K Y \> H (Cg)

Esta definicién junto con (C.7) implica

S(e) =e. (C.10)

La accién (por la izquierda) de un dlgebra de Hopf H sobre un algebra unital y asociativa
se define como una aplicacién lineal

>:Hx A= A, (C.11)

y se escribe h > a siendo h € H y para a € A. La acciéon cumple las condiciones de
compatibilidad

(hg) >a=hr (g>a), h>e=c¢e(h)e. (C.12)

La accién es covariante si, para el coproducto A(h) =), h(l)i ® h(2)i

h> (ab) =Y (Yo' > a)(Y)' D). (C.13)

i

Es decir, preserva su estructura. En este trabajo solo se consideran acciones covariantes.
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C.2. Algebra de Lie

Un algebra de lie .Z es un K—espacio vectorial con un producto, llamado corchete de Lie

[,]: X% — 2, (C.14)
que cumple los axiomas
lag + bh, j] = alg, j] + blh,j], Va,b €K, g,h,j€. ¥ (Bilinealidad), (C.15)
lg,h] = —[h,g] Vg,heZ (Antisimetria), (C.16)
(g, R, 7]] + [, [J,9]) + [4, 19, h]] =0 Vg,h,je€& (Identidad de Jacobi). (C.17)

Un éalgebra finito-dimensional tiene una base de generadores. Un algebra asociativa A con
[a,b] = ab — ba Va,b € A es un algebra de Lie, sin embargo, un dlgebra de Lie no tiene por qué
ser un algebra asociativa. Sin embargo, se pueden construir productos compatibles a partir del
corchete de Lie.

C.2.1. Envolvente universal de un algebra de Lie

Si partimos del corchete de Lie, se pueden definir varios productos que cumplen a-b—b-a :=
[a, b]. La envolvente universal de .Z, que se denota U(.Z) es el dlgebra que, salvo isomorfismo,
contiene a todas las dlgebras unitarias asi construidas. Sea el algebra tensorial de V', con V un
K-espacio vectorial

o0

Q) =P ey, (C.18)

p=0

con @'V = K. Para un algebra de Lie finito-dimensional &(V) es isomorfa al algebra de
polinomios formales sobre los generadores X dados por P(X') = >, _ "% X, --- X, con
[T ¢ K. Por tanto podemos identificar Va,b € .Z, ab — ba con a @ b — b ® a.

ik
El algebra U(.Z) se construye identificando con cero el elemento a ® b —b® a — [a, b] y todos

sus multiplos, es decir

UL)= QL) (a@b—boa—[a,b]), (C.19)

donde, por definicién, el ideal bilateral es

(a®b—-b®a—|a,b]) =
{(a®b—b®a—[a,b])®g,g®<a®b—b®a—[a,b]) vge(g)(z)}. (C.20)

De esta manera U(.Z) es tnica salvo isomorfismos. Para mayor discusién consultar [10].

D. Unicidad del producto estrella y del twzst

En el contexto del espacio-tiempo no conmutativo canénico, se ha considerado la definicién
)
; Ly . . . e e
de onda plana como e+ sin embargo, podemos considerar cualquier otra definicién que sea
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producto de exponenciales. Nos restringiremos al caso en 4 dimensiones. Por ejemplo, conside-

0 ik & A s
ramos la onda plana e?*0%" e~%;%’ y ] operador W se ve sustituido por

A _ d'k - ikox® —ik;&l A _ d*k —ikyzt Jikox® —ik;id
Wl[f] - ( ) f( ) € ) l(x) - (27’()46 € € : (Dl)
Operando obtenemos
Az( // d'k d4k/ (k+k’)0i0€7i(k+k’)ifcief% OMV k!, efikua:“fik,’,y”e%@““[kok’ﬁkl,k’o],

(D.2)

que es formalmente igual a (4.11) sustituyendo la matriz ©* — O — QY[s56Y + §K'54]. Esta
matriz no es antisimétrica, por lo que aparecen factores adicionales en (4.16), haciendo que el
producto estrella x; cambie a

F(@) % g(x) = e2®" 0005 =3O RO —20800] (1)) () . (D.3)

Y=2=T

Es decir una eleccién de onda plana distinta lleva a un producto estrella distinto luego podemos
definir la misma teoria con diversos productos. Deducimos que * no es tnico. Como un twist
define un producto estrella, podemos deducir que tampoco el twist es tinico. Si encontramos
otro producto estrella que en términos de operadores cumpla las condiciones de consistencia,
obtendremos otro twist que describe la misma teoria.

E. Coproductos de los generadores de igl(4) tras el twist abe-
liano

El twist presentado en la Subseccién 6.2 para el dlgebra igl(4) lleva a los coproductos de los

generadores L¥, que se expone a continuacién. Con las ecuaciones (5.13) y (5.10) vemos que

basta calcular Adewx0®P (LF, @1+ 1 ® L*,). Término a término

i P,
AdexT®P (IF, @1)=1F, @1 + 60—~ ® D. (E.1)
K

Para Adex o@D (1 ® L*,) reescribiendo, con la ayuda de la matriz h*, = §*, — 69,6 , el
conmutador

(D, LM, = i(8", LF; — 8", L%,) = i(h7, "o — W87, )L = i(Q,)Y L%, (E.2)

Podemos ver (,)7, = (1®@h—h@1)" " = #H08°,07, — 8798, 6%, v por tanto

o0 1 . .
Z [ P0®D[ PO®D7'"[%PO®D7]]-®LHV]”'H:

|
nOn
— 1 P " n el —i Y a
Zyﬂ(_ﬁ) ® (Q,)ILS = O s (1o L), (E.3)
n=0

donde Q" se entiende como (1 ® h — h ® 1)". Podemos escribir el coproducto como
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P P
A(LF,)) =L @1+ 0L @D +e »n @ (10 Lr,). (E.4)
K

Para calcular explicitamente dicha expresion, reescribiendo ny, = § 8% v como h% = h pode-
mos demostrar las relaciones

(%), = (@),(Q%), = [(@eh-he1)?))\, =
M®h+h@1—-20ahn" " =ne@h+han]”
= 0H00%56P, + 8790, 0F 5 — 20H06°56P0°,, (E.5)
B o o 3 ﬂ
(QS)“V¢ = (QMV),YQ(Q ’Y)po'(Q P)ﬁd) - [(]1 ® h—h ® ]1)5]“0_ o) -
Meh—hei)*, ", = (@), (E.6)
Con lo que

e~ RR@)T, _q ® 1 — sinh <PO> ® ()7, + [cosh <PO> — 1] ® (Qz)lw . (E.7)

K K vp

De donde se deduce, anadiendo los coproductos de (6.5), que los coproductos obtenidos con
este twist son:

P
Av(P)=R®@1+1®F, A(P)=P®l+te = P,
A =If@l+1eLy, A (Lh)=Ifet+er oL,

" P
AH(L2)2L2®]1+6‘7°®L2+?’“®D,

P,
AK(L8)2L8®]I+]I®L8+?O®D. (E.8)

Las coinversas son

Se(P)) = —Py,  Sn(P) = —Peer,

p P
Se(LP) = —Li  So(LE) =—Lbe ™. S.(L8) = —L§+ D=,
P, P P,
Se (L)) = —e = LY + ?kDGTO. (E.9)
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