
FPGA-based Accelerators for
Cryptography

Isak Edo

Kogens Lyngby 2018

DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Matematiktorvet
Building 324
2800 Kongens Lyngby, Denmark
Phone +45 45 25 30 31
compute@compute.dtu.dk
www.compute.dtu.dk

1

Summary

Cryptography involves mathematical theory and encryption meth-
ods. Cryptography algorithms are designed around computational
hardness assumptions. This leads to heavy computational intensive
algorithms. Sometimes a software approach could not be enough,
but a hardware approach could be very complex.

In this project, we present a halfway between software and hardware
approach using an FPGA. The intended outcome of the project is
the design and development of two hardware-based accelerators for
cryptography that can be dynamically loaded into the FPGA. Mul-
tiple approaches are presented during the project in order to design
and test the accelerators.

i

Preface

This thesis was prepared at the Department of Applied Mathematics
and Computer Science at the Technical University of Denmark. This
project was prepared with a fulfillment of requirements for working
in the Bachelor Thesis.

The thesis was done as exchange student from the University of
Zaragoza during the European mobility programme Erasmus Plus.
All the work have been done in DTU Compute under the supervi-
sion of Alberto Nannarelli.

Lyngby 2. June 2018

Isak Edo Vivancos

iii

Acknowledgements

First and foremost, I would like to give thanks to my supervisor Al-
berto Nannarelli for all the guidance during the work on the thesis
and give me the opportunity to do my Bachelor Thesis as an ex-
change student in the DTU Compute department.

From the University of Zaragoza, I would also like to thank Dario
Suarez for all the help provided during this academic year and giving
me the opportunity to continue developing.

Special thanks to my parents Marga and Xavi for all their assistance
and support during hard times, and finally my partner Desi for all
her help and understanding while separated during this period.

v

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1

2 Background 4

2.1 Zedboard . 4

2.2 AXI DMA . 8

2.3 Tools and Workflow . 9

3 RSA algorithm 12

3.1 Algorithm specification . 12

3.2 Limitations in hardware . 14

3.3 Montgomery’s method . 14

3.4 Montgomery’s exponentiation algorithm 15

3.5 Algorithm trace . 16

4 Blowfish algorithm 19

4.1 Algorithm specification . 19

4.2 Algorithm trace . 22

5 Hardware integration 25

5.1 Module implementation . 25

5.2 Embedded platform . 27

5.3 RSA Bare metal application . 31

vii

6 Petalinux integration 33

6.1 Installation . 33

6.2 Communication with the accelerator . 35

7 Partial reconfiguration 37

7.1 Partial reconfiguration workflow . 37

7.2 Petalinux . 43

7.3 Web Server . 44

7.4 User application . 45

8 Delay and Power 52

8.1 Delay measurements . 52

8.2 Power measurements . 57

9 Conclusion 59

A Accelerators C code 61

A.1 RSA accelerator . 61

A.2 Blowfish accelerator . 63

B Applications 67

B.1 Bare metal application C . 67

B.2 Partial reconfiguration workflow . 71

B.3 Web page . 72

B.4 User application . 75

viii

1. Introduction 1

Chapter 1

Introduction

In 1984, the Field Programmable Gate Arrays [1], FPGAs, showed up in the market by
Xilinx. It is an evolution from the programmable logic devices, abbreviated as PLD.
The FPGAs include the capacity of reconfiguration from PLD, but it also includes fea-
tures from Application-specific integrated circuits, ASIC [2]. These circuits are designed
to implement a unique task. It requires more designing time, but it reaches a better
performance in time and power than general purpose circuits.

The FPGA allows the designer to implement application-specific designs in hardware,
without creating a specific circuit for it. The architecture of the FPGA is based on logic
blocks. These logic blocks are interconnected under the necessity of the programmer.
In consequence, it is possible to create a custom design in hardware. Furthermore, it
has the advantage that can be programmed several times. Even if the outcome is the
same, there are differences between ASIC and FPGA. These differences summarised in
the following table are mainly focused on cost.

FPGA ASIC

Time to market Fast Low

Development cost Low High

Design flow Simple Complex

Unit cost High Low

Performance Medium High

Power Consumption High Low

Unit size Medium Low

Table 1: FPGA and ASIC comparison

FPGA-based Accelerators for Cryptography

1. Introduction 2

While the ASIC reaches better performance, the FPGA reduces the time and complexity
necessary to create the design. Nowadays, the FPGA is integrated into System on Chips
called all programmable SoC. These circuits are composed of a core and interconnected
logic blocks that can be configured. As a result, these devices allow creating custom
hardware in the programmable logic that can perform specific operations faster than
the core. An overview can be seen in the following figure 1, this example corresponds
to the Xilinx technology used in the project.

Figure 1: Zynq 7000 AP SoC

This is the concept of an accelerator, a specific design hosted in the programmable
logic that performs an operation that requires a high cost in the core. This dedicated
hardware can be used to provide much less latency and power consumption in specific
tasks. The problem with the programmable logic is the limitation of resources. In
consequence, it is possible to allocate a limited number of accelerators. The advantage
of the FPGAs is based on the capacity of reconfiguration. It allows the device to re-
program the implemented hardware into a different one. This feature can be used to
program different accelerators under demand creating dynamic hardware libraries.

The aim of this project is to create an embedded design capable of changing the hard-
ware configuration of the FPGA dynamically. This partial reconfiguration has to be
invisible for the user. The idea of the project is to use this reconfigurable logic to create
different accelerators depending on the task needed.

FPGA-based Accelerators for Cryptography

1. Introduction 3

Specifically, our work is focused on cryptography algorithms and evaluating their per-
formance, benefits, and possibilities. Cryptography is one of the most important topics
while working in computer security. Moreover, cryptography algorithms are designed
around computational hardness assumptions making some steps of these algorithms ex-
pensive in computational resources.

In Chapter 2 the board and the information necessary to understand the project will
be described. In Chapter 3 and Chapter 4, two different algorithms implemented as
accelerators will be presented, RSA and Blowfish respectively, while Chapter 5 will de-
scribe the embedded hardware platform designed to integrate these accelerators into
the board. The following chapter, Chapter 6, will describe how to integrate the design
into a Linux environment. In Chapter 7, the full process to perform the reconfiguration
of the hardware will be shown, followed by Chapter 8 where the delay and power mea-
surements for the design will be discussed. Finally, Chapter 9 will be focused on the
final thoughts and future improvements.

The full process and the results obtained through this process is fully summarised in
the following chapters. The order is the presented above, from the general concepts to
the specific details of the implementation in order of execution, and finishing by the
measurements and conclusions.

FPGA-based Accelerators for Cryptography

2. Background 4

Chapter 2

Background

In this chapter, we will present the board used in the thesis focusing on which features
provided by the board we have used for the project. Then, we will explain the AXI
DMA used to communicate with the accelerators and how it works with them. Finally,
the tools used in the project and workflow followed are presented.

2.1 Zedboard

The board used for the thesis is the Zedboard, a low-cost development board for the
Xilinx Zynq R©-7000 All Programmable SoC [3]. It is suitable for both hardware and
software developers to create rapid prototypes. The ZedBoard mix onboard peripherals
and expansion capabilities. It is a common project by Avnet, Xilinx, and Diligent. The
FPGA where the accelerators are built is Artix-7 provided by Xilinx. This company is
known for inventing the filed-programmable gate array (FPGAs).

The board is provided with different memories, connectivity, user inputs, video, etc. In
the project, it is not necessary to use all of them. The DDR3 RAM memory and the
SD card are required to launch the Linux on the board. The JTAG micro USB port
will be used to program the FPGA in the bare metal test, and the UART micro USB
port to connect the board. Finally, Ethernet RJ45 to provide internet connectivity to
the board. The most important technical specifications are summarised below:

FPGA-based Accelerators for Cryptography

2. Background 5

Dual ARM R© CortexTM-A9 MPCoreTM

ZYNQTM-7000 SOC XC7Z020 Up to 667 MHz operation

NEONTM Processing / FPU Engines

512 MB DDR3

Memory 256 Mb Quad-SPI Flash

4 GB SD card

10/100/1000 Ethernet

CONNECTIVITY USB OTG (Device/Host/OTG)

USB UART

HDMI output (1080p60 + audio)

VIDEO/DISPLAY VGA connector

128 x 32 OLED

24-bit stereo audio CODEC

AUDIO Stereo line in/out

Headphone

Microphone input

Xilinx XADC header

ANALOG Supports 4 analog inputs

2 Differential / 4 Single-ended

On-board USB JTAG programming port

DEBUG/PROGRAMMING ARM Debug Access Port (DAP)

12V DC input @ 3.0 A (Max)

OTHERS Length: 6.3 inches

Width: 5.3 inches

CE and RoHS certified

Table 2: Zedboard components

FPGA-based Accelerators for Cryptography

2. Background 6

The position of the components is shown in the next figure 2. The micro USB ports
that we need to connect the board to the computer are located in the top left part of
the board. While the SD card cage is located behind the board, on the right side. The
switches, LEDs, and other ports that can be seen in the picture are not used for this
project.

Figure 2: Zedboard components

This board [4] can be divided into two different parts, programmable system and pro-
grammable logic. The programmable system (PS) contains the ARM CortexTM-A9
which are capable to host a Linux environment. This PS is connected directly to
512Mbyte of DDR3 RAM memory. The programmable logic (PL) allows the program-
mer to implement custom designs on hardware, it is composed of 85k 7-series cells.
Concretely, the cryptography accelerators are implemented in this part of the board.
This PL is connected to GPIO, VGA, HDMI, etc. However, for the project, we only
need to connect to the Ethernet controller. The connections are summarised in the
figure 3 located on the next page.

FPGA-based Accelerators for Cryptography

2. Background 7

Figure 3: Zedboard connections

The programmable logic performed by the Artix-7 is composed of different components
[5]. The board counts with 53,200 look-Up tables, which is a table that determines what
the output is given an input. It includes also 220 DSP Slices [6], which are specialised
cells for digital signal processing, but they can be used to speed up many applications,
such as the cryptography algorithms implemented. Each DSP slice includes a 25 x 18
two complement multiplier (which can be bypassed), and a 48 bits accumulator. Finally,
related to memory, the PL provides 106,400 flip-flops, and 140 RAM blocks of 36Kb
each (Total of 4.9Mb). This board doesn’t own a PCIe bus.

FPGA-based Accelerators for Cryptography

2. Background 8

2.2 AXI DMA

The AXI Direct Memory Access IP [7] provides high bandwidth between memory and
AXI-Stream interfaces. There are two independent channels, Axi Stream to Memory-
Mapped (S2MM) and Memory Mapped to Axi Stream (MM2S). Both can work with
different width from 32 bits to 1,024 bits. In our application, we can use the MM2S
channel to send all the data to the accelerator in one burst, and the MM2S to get the
result back into a memory map. The theoretical throughput for each channel considering
a frequency of 100MHz and 10,000b transferred is:

MM2S Channel: 399.04Mb/s
S2MM Channel: 298.58Mb/s

An schematic overview of the AXI DMA could be the following 4:

Figure 4: AXI DMA Block overview

The registers mapped in memory can be used to configure the Axi DMA, there are
separate registers for each channel, but their functionality is equivalent. For the direct
map mode that we need in our application, we use the following. The Control register
to configure the DMA in read/write mode, and enable the interrupts after a transaction.

FPGA-based Accelerators for Cryptography

2. Background 9

The Status register to check the status of the DMA, including if it is halted due to an
error. The Destination address to specify where is located the memory mapped. Fi-
nally, the Length to specify the number of bytes in the transaction. The last one must
match the exact number of bytes, otherwise, the DMA might halt.

The DMA configures the port of the channels as AXI4-Stream [8], so it is possible
to send an unlimited length of data. It is based on a master-slave protocol. For the
DMA specific case, MM2S channel port works as a master, and S2MM port works as a
slave. This port specification is composed of the signals, TDATA, TREADY, TVALID,
TKEEP, and TLAST.

In the AXI4-Stream protocol the signal TDATA is composed by the content we want to
transmit, in blocks of the size of the channel. TVALID indicates if the data is valid, and
TREADY informs the master if the salve is ready for a transmission. TKEEP indicates
whether the content transferred by the signal TDATA is processed as part of the data
stream. Finally, the TLAST signal informs the slave that it is the end of the transition.
This TLAST signal is really important when transferring data from our accelerator to
the DMA by the S2MM channel. The signal must be set to ’1’ just before or during the
last block transmission, otherwise, the DMA will hang. A temporal diagram of how the
signals works can be seen in the picture 5 below:

Figure 5: DMA transfer using AXI4-Stream

2.3 Tools and Workflow

This project involves hardware and software design, so we need advanced tools to im-
prove the process performance. Since we are working with the Zedboard, we use the
collection of tools provided by Xilinx in the version 2017.4, including Vivado HLS, Vi-
vado, XSDK and Petalinux. Each one of this tools is focused on one different step of
the workflow.

FPGA-based Accelerators for Cryptography

2. Background 10

In the project, we follow the workflow shown in the figure 6. The main tool is Vivado
[9]. This assists the user in the process of FPGA design, implementation, and verifi-
cation. In addition to the traditional RTL-to-bitstream design flow, the environment
offers the option to create graphically the design based on Intellectual Property blocks
(IP blocks). These IPs can be instantiated, configured and connected using the graphic
environment. The designer only needs to make sure that the IPs are properly connected,
and the ports are specified properly. This is our approach followed in the project to
design the hardware.

Once we have the design done, Vivado has support to do the synthesis and implementa-
tion of the design. The synthesis consists in transform the RTL design implementation
into logic gates, while the implementation consists in place the synthesized design and
make the physical connections. Finally, we can create the bitstream to program the
FPGA.

We use Vivado HLS to implement the accelerator [10]. This tool transforms high-level
code such as C++ into register transfer level (RTL) implementation that can be syn-
thesized into the FPGA. This RTL can be packaged into a Custom IP that can be used
later on by Vivado. For that purpose, it is necessary to specify the ports in the input
and outputs of the package.

Once the bitstream is generated using Vivado, we can go through two different ap-
proaches to build the application, bare metal application or integrate the design into
a Linux environment. For the bare metal approach, we use the Xilinx Software Devel-
opment Kit (XSDK) [11] to implement the software. It is an Eclipse-based Integrated
Development Environment (IDE) for the Zynq family microprocessors. It allows us
to create a Board Support Package from the generated custom bitstream to boot the
board, and run a C application.

Also, It is possible to integrate the hardware design in a Linux environment, in Zed-
board case using Petalinux tools [12]. This group of tools provided by Xilinx allow us
to build and configure a Linux based on the Suse distribution for the board. Using this
tools we can create and add custom C applications to be used in the Linux as usual shell
programs. In our project, we will follow both approaches to test the hardware design.

The whole process followed can be found in the figure 6 located in next page. It can be
summarised as creating the custom accelerator with Vivado HLS. Then, the accelerator
is added to the hardware design in Vivado. After the synthesis and implementation, we
create the bitstream. Using the bitstream we can use the XSDK to create a bare metal
application or integrate the design into Petalinux.

FPGA-based Accelerators for Cryptography

2. Background 11

Figure 6: Project Workflow

FPGA-based Accelerators for Cryptography

3. RSA Algorithm 12

Chapter 3

RSA algorithm

In this chapter, we will present the main algorithm developed in the thesis, the RSA
algorithm. First, we will introduce the algorithm and why is computationally intense.
Then, the actual limitations to implementing this algorithm. Finally, we will show
how to implement the RSA in hardware using the Montgomery modular exponentiation
approach.

3.1 Algorithm specification

The RSA [13] (Rivest, Shamir, Adleman) is the main cryptography algorithm used
nowadays. It is an asymmetric algorithm because needs two different keys to encrypt
and decrypt the message, one public and the other private. It is based on the huge
computational cost of factorize the product of two large prime numbers. RSA includes
four different steps: key generation, key distribution, encryption, and decryption.

To generate the key first it is necessary to choose two different large prime numbers p
and q, these numbers must be secret. The prime numbers should be chosen randomly for
security purpose, and similar in length but not the same. Then, the next step consists
in calculate the product of both prime numbers called n. This number is part of the
public and the private key, the length of n is considered as the length of the key. The
following step consists in compute the Euler’s totient function of n defined as:

φ(n) = (p− 1)(q − 1).

Finally, the public exponent e is a number chosen between 1 and φ(n), while the private
exponent d must be chosen being congruent with e modulus φ(n). This can be computed
using the extended Ecluidean algorithm [14].

FPGA-based Accelerators for Cryptography

3. RSA Algorithm 13

e · d ≡ 1 mod φ(n)
d = e−1mod φ(n)

In consequence, the public key would be the pair (e,n) and the private key would be the
pair (d,n). Once both keys are generated it is possible to encrypt and decrypt messages.
Given a plain text M, the encryption is performed as the exponentiation of M by the
public exponent modulus n, being always M less than the modulus. The decryption is
performed changing the public exponent by the private exponent when performing the
exponentiation.

C = M emod n
M = Cdmod n

One example using simple numbers is the following. First we select to prime numbers
p = 29 and q = 31. So the modulus n is computed as:

n = pq = 29 · 31 = 899.

In consequence, the maximum value that could be encrypted using this modulus n is
899. And the Euler’s totient function of n is calculated as:

φ(n) = (p− 1)(q − 1) = 28 · 30 = 840

Now, the public exponent e is chosen as a number between 1 and 840, in this case e
will have the value 307. So, it is possible to compute the private exponent d using the
extended Euclidean algorithm as follows:

d = e−1mod φ(n) = 307−1mod 840 = 643

Being e and d congruent modulus φ(n):

307 · 643 = 6033 = 1 mod 840

The public key is (307,899) and the private key is (643,899). Now given a plain text
such as the letter ”I”, which is ”49” in hexadecimal according to the ASCII table and
”73” in decimal. It is possible to cipher this text using the public exponent e and return
to the original using the private exponent d :

C = 73307 mod 899 = 292
M = 292643 mod 899 = 73 = 0x49 = ”I”

FPGA-based Accelerators for Cryptography

3. RSA Algorithm 14

3.2 Limitations in hardware

The hardware accelerator is focused on the encryption and decryption steps in the RSA
algorithm. The key generator step is done only once, while the encryption and decryp-
tion are performed several times. Due to the characteristics of the RSA, the encryption
and decryption accelerator are the same.

The problem of the encryption process lies in the exponentiation [15]. It is not possible
to calculate first M e and then the modulus, the space to store that number is enormous.
For example, for a 256 bits exponent, the stored number is:

log2(M e) = e · log2(M) ≈ 2256 · 256 ≈ 1080

It is necessary to calculate the n modulus after each multiplication. We would need
to perform a remainder operation every multiplication. The cost of dividing or doing
the remainder operation by a number n is very big. Algorithms such as the binary
exponentiation [14] can reduce the number of multiplications, but can not avoid the
remainder operation.

3.3 Montgomery’s method

In 1985, P. L. Montgomery [16] proposed a method to compute a · bmodn without di-
viding by n, only by powers of 2. This algorithm is based on the representation of the
residue class module n. To explain this concept is necessary to introduce the idea of r.

Assuming that the modulus is a number of k-bits, r is defined as 2r, being defined as
2r−1 ≤ n ≤ 2r. The reduction algorithm requires that r and n are primes between them.
This is mathematically defined as their greater common divisor equal to 1, gcd(r,n) =
1. This is always true in RSA because n must be an odd number. The residue class for
a number a < n is described as:

a = a · r mod n

The Montgomery reduction exploits the property that there is one to one correspon-
dence between the numbers in the range 0 and n-1, and the residue result of the above
multiplication. It allows that given two residue integers a and b the Montgomery prod-
uct is defined as the n-residue.

R = a · b · r−1 mod n

Being r−1 the inverse of r modulo n.

r · r−1 = 1 mod n

FPGA-based Accelerators for Cryptography

3. RSA Algorithm 15

Additionally, to compute the product we need the integer n’ described by the following
equation. It can be calculated using the extended Euclidean algorithm [14].

r · r−1 − n · n′ = 1

The resulting pseudo C algorithm to perform the Montgomery product is given below.

uint monPro(uint a, uint b) {

uint t = a * b;

uint m = t * c_n % r; //Remainder by power of 2

uint u = (t + m * n) / r; //Division by power of 2

if (u >= n) return u - n;

else return u;

}

The most important feature of the Montgomery multiplication is that the division and
remainder operations are performed by r, not by n, being r a power of 2. In fact, this
algorithm can be explicitly translated as the one below.

uint monPro(uint a, uint b) {

uint t = a * b;

uint m = t * c_n & (r - 1);

uint u = (t + m * n) >> k;

if (u >= n) return u - n;

else return u;

}

Using a minus and a logical bitwise and operation instead of the remainder, and a logical
right shift instead of a division.

3.4 Montgomery’s exponentiation algorithm

Due to the necessity of precomputing some values, the Montgomery product presented
in the previous section is especially suitable for a big number of multiplications, such
as in the case of modular exponentiation. For the RSA case, the binary method [14]
must be changed using Montgomery products instead. In consequence, the number of
operations depends on the number of bits of the modulus, O(k), instead of the value of
the exponentiation, O(exp). It is important to note that the value of the exponent is
much bigger than the number of bits.

FPGA-based Accelerators for Cryptography

3. RSA Algorithm 16

First, the complement of n must be precomputed using the extended Euclidean algo-
rithm. For that, it is also necessary the number of bits k, and the number r. Then, the
computation of the residue of the message and obtain its n-residue M . Two remainders
by n are needed, but these operations are performed only once. During the inner loop,
all modular multiplications are performed using the Montgomery product.

The n-residue x of the quantity x = M e mod n is obtained after the loop execution. In
consequence, it is necessary to obtain the value of x from its n-residue by executing the
Montgomery product between x and 1. This is clear noting that:

Given: x = x · r mod n
Implies: x = x · r−1 mod n = x · 1 · r−1 mod n = monPro(x, 1)

The resulting pseudo C algorithm to perform the Montgomery exponentiation is given
below.

uint monExp(uint32_t M, uint exp, uint n) {

//Precompute n’. Extended euclidean algorithm

uint mask = r >> 1;

uint rem_m = M * r % n;

uint rem_x = M % n;

for(int i = k - 1; i >= 0; i--) {

rem_x = monPro(rem_x,rem_x); //First monPro

//If the bit is 1 in that position

if((exp & mask) != 0)

rem_x = monPro(rem_m,rem_x,n); //Second monPro

mask >>= 1;

}

return monPro(rem_x,1);

}

3.5 Algorithm trace

An example of the execution trace of this algorithm is the following. We use the public
and private keys obtained in the previous section. The public key is (307,899), the
private key is (643,899), and the message we want to cipher is the letter ”I”.

To cipher the text, first select the values for k and r.

Given n = 899:
29 ≤ 899 ≤ 210

k = 10, r = 210 = 1024

FPGA-based Accelerators for Cryptography

3. RSA Algorithm 17

Using the extended Eculidean algorithm we can obtain the values of r−1 and n’

r · r−1 − n · n′ = 1
1024 · 187 − 899 · 213 = 1

Then we calculate M , and the value of x when x is equal to 1.

M = M · r mod n = 73 · 1024 mod 899 = 135
x = r mod n = 1024 mod 899 = 125

Now we can calculate the loop for the number of bits in the key, in this case 10 times. For
each iteration, depending on the i-est bit we perform another product between M and x.
To check this trace we need the binary value of the exponent 307 which is 0b0100110011.

ei First Second

0 monPro(125,125) = 125 -

1 monPro(125,125) = 125 monPro(135,125) = 135

0 monPro(135,135) = 865 -

0 monPro(865,865) = 412 -

1 monPro(412,412) = 236 monPro(135,236) = 147

1 monPro(147,147) = 777 monPro(135,777) = 84

0 monPro(84,84) = 639 -

0 monPro(639,639) = 361 -

1 monPro(361,361) = 834 monPro(135,834) = 649

1 monPro(649,649) = 500 monPro(135,500) = 540

Table 3: RSA Encryption Montogomery

Finally we calculate the Montgomery product between x and 1 to get the value of the
cipher text.

C = monPro(x, 1) = monPro(540,1) = 292

The decryption process is symmetric as the one described above, but we need to change
the public key to the private key. The value for k, r, r−1, and n’ are the same. So
we can start computing M and x, and then the loop. To check this trace we need the
binary value of the exponent 643 which is 0b1010000011.

M = M · r mod n = 292 · 1024 mod 899 = 540
x = r mod n = 1024 mod 899 = 125

FPGA-based Accelerators for Cryptography

3. RSA Algorithm 18

ei First Second

1 monPro(125,125) = 125 monPro(540,125) = 540

0 monPro(540,540) = 355 -

1 monPro(355,355) = 289 monPro(540,289) = 781

0 monPro(781,781) = 284 -

0 monPro(284,284) = 149 -

0 monPro(149,149) = 5 -

0 monPro(5,5) = 180 -

0 monPro(180,180) = 439 -

1 monPro(439,439) = 614 monPro(540,614) = 387

1 monPro(387,387) = 256 monPro(540,256) = 135

Table 4: RSA Decryption Montogomery

Finally we calculate the Montgomery product between x and 1 to get the value of the
cipher text.

C = monPro(x, 1) = monPro(135,1) = 73 = 0x49 = ”I”

In conclusion, Montgomery’s exponentiation allows us to perform the modular expo-
nentiation dividing by a power of 2, instead of n. Moreover, the execution time depends
on the number of bits instead of the value of the exponent. This approach allows using
keys up to 4096 bits. The number of operations is significantly less.

FPGA-based Accelerators for Cryptography

4. Blowfish 19

Chapter 4

Blowfish algorithm

In this chapter, we will present the second algorithm developed in the thesis, the Blow-
fish algorithm. The aim of this algorithm is to provide a demo application for partial
reconfiguration, and an example of symmetric algorithm. We will show how to imple-
ment this algorithm in hardware.

4.1 Algorithm specification

The Blowfish [17] is a symmetric cryptography algorithm designed in 1993 by Bruce
Schneier [18]. This algorithm uses the same key for encryption and decryption, in con-
sequence, client and server must share the key. Blowfish [19] is a 64-bits block cipher
with a variable length. It is divided into two steps: key expansion and data encryption.
Even if this is a really fast algorithm, the precomputation of the key is very slow, it
requires to operate with 4 Kilobytes of text. This drawback makes AES or Twofish
more likely to be used in modern applications.

The algorithm uses two different structures to support the encryption and decryption
process, the P-Array and four S-Boxes. P-Array consists of 18 32-bits subkeys, from
P1 to P18, and four 32-bits S-Boxes with 256 entries. Both have to be initialized using
hexadecimal values of pi [20].

The key expansion step consists in XOR the P-Arrays in order byte by byte with the
secret key. If the key is not long enough, it is repeated again. Then, a 64-bits block
initialized with zeros is encrypted using the algorithm. The resulting block substitutes
P1 and P2. After that, this block is encrypted again and substitutes P3 and P4. This
process is repeated until getting new values for the whole P-Array and the four S-Boxes.

FPGA-based Accelerators for Cryptography

4. Blowfish 20

Once the key is expanded, it is possible to perform the encryption and decryption.
Both processes use the same expanded key, so it is necessary to expand it only the first
time. The encryption process consists in the application of a function F, this function
is iterated for sixteen rounds.

Each round begins by XOR the left half of the data with one P-array entry and use this
data as input for the F function. Then, the same for the right half of the data. Finally,
swap L and R. While in encryption the P-Array entries go from 0 to 18, during the
decryption the P-Array entries are used in reverse order. The next figure 7 summarise
the process:

Figure 7: Blowfish worklow

FPGA-based Accelerators for Cryptography

4. Blowfish 21

The resulting pseudo C algorithm for the encryption process is shown below. The de-
cryption is almost the same, but changing the indexes of the P-Arrays.

#define N 16

void Blowfish_Encrypt(bit32* left, bit32* right){

//From P[1] to [16]

for (uint i = 0; i < N; ++i) {

left = left ^ P_ARRAY[i];

right = f_function(left) ^ right;

// Exchange left and right

}

// Exchange left and right

right = right ^ P_ARRAY[N]; //P[17]

left = left ^ P_ARRAY[N + 1]; //P[18]

}

Each iteration the data pass through the function F, this function splits the data into
four 8-bit sub-data. Each of this 8-bit blocks is the output of one of the four S-Boxes,
which returns 32-bits each. So the outputs are added module 32 and XORed to get a
final 32-bit encrypted block. The process is summarised in the following figure 8:

Figure 8: Blowfish F function

FPGA-based Accelerators for Cryptography

4. Blowfish 22

This function F is can be defined by the pseudo c algorithm below. Being the S-Boxes
one array of two dimensions, the first one the number of boxes, and the second one the
number of entries per box.

uint f_function(bit32 input) {

//8-bit blocks

bit8 a, b, c, d;

d = (bit8)(input & 0xff); input >>= 8;

c = (bit8)(input & 0xff); input >>= 8;

b = (bit8)(input & 0xff); input >>= 8;

a = (bit8)(input & 0xff);

//Additions and XOR operations

bit8 output;

output = S_BOXES[0][a] + S_BOXES[1][b];

output = output ^ S_BOXES[2][c];

output = output + S_BOXES[3][d];

return output;

}

4.2 Algorithm trace

We provide an example of the execution of the algorithm. Since the key expansion is
too long, we will present the encryption and decryption process given a 64-bits key.
The block we will encrypt is the chain ”IsakEdo”, which translated into hexadecimal is
0x004973616b45646f.

The encryption process begin by splitting the original block in two halves, left and right
half. To follow the flow of the data the original left half will be represented in blue, and
the right half will be represented in black.

Left = 0x00497361
Right = 0x6b45646f

Once we have the two halves we iterate through the F function. The following table
summarises the output of the iterations after each iteration and permutation. Internal
calculus of the F function is avoided for simplicity. There is no permutation after the
last iteration.

FPGA-based Accelerators for Cryptography

4. Blowfish 23

Iteration P-Array entry Left Right

1 P[1] 0xdab02e0c 0x51aa701a

2 P[2] 0x7d171ef0 0xc5e41231

3 P[3] 0xa3aed8f3 0x4ba3e0f4

4 P[4] 0x2a3a8cd9 0x39663fe8

5 P[5] 0x30242773 0x38414858

6 P[6] 0xc0025588 0x8a741901

7 P[7] 0xfd6223c2 0x902cdc6e

8 P[8] 0x6746d641 0x13be0747

9 P[9] 0xc82b7dcb 0x2ffc9fa

10 P[10] 0x9876b5c3 0xf8cb4507

11 P[11] 0x646f41c4 0x726034da

12 P[12] 0x1a5a75de 0x45d0392a

13 P[13] 0x95d40ab9 0xa3f18d67

14 P[14] 0x7416ebd7 0xd0efd6bf

15 P[15] 0x66f16f3b 0xb80b9ee9

16 P[16] 0x357cde77 0x4adcded8

Table 5: Blowfish Encryption

Finally, the last values are XORed per the P-Array entry 17 and 18 respectively. It
returns the final encrypted text:

Left = 0x235892be
Right = 0x82991377

For the decryption process, we present the table of the iteration process. The left and
right used are the encrypted halves obtained through the previous process. In this case,
the P-Arrays entries are used in reverse order.

FPGA-based Accelerators for Cryptography

4. Blowfish 24

Iteration P-Array entry Left Right

1 P[18] 0x704e5346 0x357cde77

2 P[17] 0x836267f3 0xb80b9ee9

3 P[16] 0x6fecf859 0xd0efd6bf

4 P[15] 0x00ebe52c 0xa3f18d67

5 P[14] 0xcbcbcc63 0x45d0392a

6 P[13] 0xd9743de9 0x726034da

7 P[12] 0xe8e948e3 0xf8cb4507

8 P[11] 0x235e3f8b 0x2ffc9fa

9 P[10] 0xf595c3d5 0x13be0747

10 P[9] 0x64a83d84 0x902cdc6e

11 P[8] 0x686fc1be 0x8a741901

12 P[7] 0x8336019a 0x38414858

13 P[6] 0x59d82475 0x39663fe8

14 P[5] 0x5f2cf52a 0x4ba3e0f4

15 P[4] 0x671e8e1e 0xc5e41231

16 P[3] 0x51aa701a 0x74115852

Table 6: Blowfish Decryption

Finally, the last values are XORed per the P-Array entry 2 and 1 respectively. It returns
the original text:

Left = 0x00497361
Right = 0x6b45646f

FPGA-based Accelerators for Cryptography

5. Hardware integration 25

Chapter 5

Hardware integration

In this chapter we will present the hardware implementation in Vivado HLS for both
algorithms presented in the previous sections, RSA and Blowfish. Then we will explain
how to embed this custom module into a Vivado hardware design using the IP blocks
design feature. Finally, we will test the hardware using a bare metal application for the
RSA algorithm.

5.1 Module implementation

After selecting the two algorithms, we can proceed to the hardware implementation.
The implementation process is equal for both algorithms, but we will focus on the RSA
first. Before implementing the accelerator into Vivado HLS, we need to know the speci-
fications for the accelerator. We want to send all the data to the accelerator through the
DMA, and get the result back using the DMA too. Moreover, we want the accelerator
to interrupt the system when the operation is done.

As a result, two inputs ports are required. One of them to transmit the data using the
DMA, and one to control the accelerator. In the case of RSA, the control specifies the
number of blocks. Furthermore, one output port is necessary to send the result to the
DMA. This can be specified in Vivado HLS using the following notation:

//Interface

#pragma HLS INTERFACE ap_ctrl_none port=return

#pragma HLS INTERFACE ap_none port=control

#pragma HLS INTERFACE axis port=output_stream

#pragma HLS INTERFACE axis port=input_stream

#pragma HLS INTERFACE ap_none port=TLAST

FPGA-based Accelerators for Cryptography

5. Hardware integration 26

In the first statement, the return port indicates that one output port is created with the
returned value of the main function as raw data. This will produce an interrupt when set
to ’1’. The control port is read as raw data, while the input stream is configured with
the standard of Vivado AXI4-Stream used by the DMA. Finally, the output stream
is specified as Vivado AXI4-Stream, but when creating this from Vivado HLS, both
TLAST and TKEEP signals are missing. In consequence, we need to manually create
and manage TLAST. If we do not do that, the DMA will hang after the first output
transaction.

When using AXI4-Stream as input in Vivado HLS, the accelerator stays idle until a new
block of the data is received. We can use that in our favor to program the accelerator as
a finite state machine. The process is the following. The first state reads the exponent
from the input and set a flag saying that is read. Then, the second state reads the
modulus, do the precomputation, and set another flag to done. The last state encrypts
every block received from the input until reach the number of blocks specified by the
control input. After the last block, the TLAST signal and the interrupt are set to ’1’.
Finally, it resets all the flags and come back to the first state. It is necessary to send
one trash byte at the end of the data to awake the accelerator and reset everything.
This is a state machine diagram of the RSA accelerator 9.

Figure 9: RSA accelerator state diagram

The approach followed for the Blowfish is similar to the RSA, but there are some dif-
ferences. The accelerator has only two states, the first one performs the initialization of
the key if needed, and the second states performs encryption and decryption. Since the
key is not always initialized we use the control input to check if we need to do it. In the
same way, since the encryption and decryption follow different approaches we need to
use the control input to select the operation mode. For that purpose we need to steal
two bits from the control sequence, the remaining bits specify the number of blocks as
in the RSA.

FPGA-based Accelerators for Cryptography

5. Hardware integration 27

All the code for the RSA hardware implementation can be found in the appendix A.1.
While the code for the Blowfish hardware implementation can be found in the appendix
A.2

After the implementation, we can proceed to synthesis the accelerator using Vivado
HLS. It transforms the C++ code into RTL that can be used by Vivado later on. After
that, we can export the RTL of the accelerator creating our own custom IP that can be
used by Vivado. The result can be seen in the figure 10. In that figure, all the interfaces
specified previously using the #pragma directive can be seen.

Figure 10: Accelerator interface block

Once the accelerator is packaged in a custom IP, we need to specify the return port
as interrupt manually. Otherwise, Vivado won’t detect it as an interrupt source when
creating the bare metal application. This is done inside the Vivado project, after in-
stantiating the block. Both accelerators works with sizes of 64 bits. This is done due
to the lack of resources in the board when trying to increase the number of bits for the
RSA.

5.2 Embedded platform

At this point, we have both accelerators implemented in hardware and packaged into a
custom IP. Since the following process is exactly equal for both of them, we will present
the hardware design for the RSA algorithm. The next step consists in design a wrapper
for the accelerator allowing us to communicate with it. We can use the IP blocks pro-
vided by Vivado to create it. First of all, we need to add the processing system block [21].

This block works as logic connection between the programmable system and the pro-
grammable logic parts of the FPGA. It allows the programmable logic to interact with
the SoC Zynq-7000. This block can be used to enable features such as I/O Peripherals,
AXI I/O ports, PL Clock and interrupts, Multiplexed I/O (MIO), etc. An overview of
the processing system block can be seen in the following figure 11:

FPGA-based Accelerators for Cryptography

5. Hardware integration 28

Figure 11: Processing system structure

Specifically for our project, we need to enable the PL to PS interrupts to allow the
DMA and accelerator to interrupt the core. Also, a high performance AXI slave to get
the data back from the DMA. Finally,by using the MIO we add support for SD card,
Ethernet, GPIO, UART, and other peripherals.

Now we have the processing system to communicate with the PS. We can divide the
remaining design into two pieces, the accelerator wrapper, and the system blocks. The
system blocks are a set of blocks used as a support between the accelerator wrapper
and the processing system. In our case, these blocks consist of an asynchronous reset
generation, an interconnection network, and the concatenation block. The interconnec-
tion allows the processing system to send data to different slaves using the same master
port. While the concatenation block merges the three different types of interruptions
in one wire. We can see an overview of the design in the following picture 12.

FPGA-based Accelerators for Cryptography

5. Hardware integration 29

Figure 12: Global design in Vivado

In the figure above, the accelerator wrapper is defined as Sub. Thanks to the intercon-
nect block inside the sys block module, the processing system can send orders to the
accelerator and the DMA using the same port. This is performed by mapping the IP
blocks into memory, which is done by Vivado.

Figure 13: Memory mapped addresses

By writing in this directions 13, we can control the behavior of the DMA and the ac-
celerator. Even more, the DMA has different registers to program their behavior as
explained in the AXI DMA section. We can access them adding an offset to the origi-
nal address provided by Vivado. Also, we can specify the range of memory that can be
accessed by each DMA channel, in this case 512 Mbytes, which is the whole DDR3 RAM.

Inside the accelerator wrapper, we have the accelerator and the DMA. As we have
designed the accelerator to read the input data from the DMA and return the result
using the DMA too, we need to make the logical connections between them. We connect
the DMA MM2S channel into the input stream of the accelerator, and the output stream
to the DMA S2MM channel. We can see the design in the following figure 14.

FPGA-based Accelerators for Cryptography

5. Hardware integration 30

Figure 14: Accelerator wrapper design in Vivado

It is necessary to connect the manually created TLAST port to the DMA S2MM chan-
nel TLAST signal to make the DMA work properly. We also use a smartconnect IP
block to send the status of the DMA to the processor when required. By using this IP
we only need one slave port in the processing system.

Finally, it is necessary to add AXI GPIO as support to the accelerator. The memory
mapped GPIO can be used to send control data to the accelerator by writing into
memory, in the same way as the DMA. In consequence, the RSA module is internally
defined as the following two blocks 15

Figure 15: RSA design in Vivado

The rsa 0 block, is the one exported by Vivado HLS created in the previous section.
As it is shown, Vivado maintain the same ports with the same specification than the
exported package. We only need to transform the ap return signal into interrupt as
explained before to make it work.

After the hardware design is fully specified, we can proceed to synthesise the design.
Then, implement the design and write the bitstream. Using this bitstream we can
program the FPGA with our custom hardware, including the accelerator. We also
export the hardware into a .hdf file. Using this file we can create a support library to
implement a test bare metal application.

FPGA-based Accelerators for Cryptography

5. Hardware integration 31

5.3 RSA Bare metal application

Once we have the final hardware design, we can proceed to create an application to
test the hardware implemented in the FPGA. We present a C application for the RSA
algorithm. Since it is a bare metal application, first of all, we need to initialize the
system. The XSDK environment provides some libraries to initialize the system, but
for the registers of the DMA, we need to do it manually. Moreover, we need to link
each interrupt to their handler. One for the S2MM interruption, one for the MM2S
interruption, and one for the RSA interruption.

After the system is initialized, we can begin with the demo application for the RSA.
This is a simple application that shows the encryption and decryption process. The
user can choose between these two options, and see the interrupts, state of the memory
before using the accelerator, and after using it. For the encryption process, first, we
copy the two parts of the key to memory. Then, we divide the original text into blocks
of 64 bits, and copy the hexadecimal representation in memory. This is the code to
transform the exponent in text representation to their hexadecimal representation, and
copy it to memory:

for(int i = size - 4; i >= 0; i -= 4) {

memcpy(tmp,&exp[i*2],8);

u32 ul = strtoul (tmp, NULL, 16);

Xil_Out32(baseDDRmm2s + mem_offset, ul);

mem_offset += 4;

}

Size is the number of bytes for the exponent. It must be done in blocks of 32 bits, be-
cause of the limitations of the function strtoul. Once the input memory is initialized, we
can write the DMA registers of Destination address and Length for the memory mapped
to stream channel (MM2S). After writing Length register, the transaction begins. Fi-
nally, writing the same registers for the stream to memory mapped (S2MM) begins the
output transaction to get the result. The process is equivalent for the decryption, but
changing the key. The encrypted code is saved as byte representation directly instead
of text so we can use it as input for the decryption process. This is the code to enable
the DMA transitions:

int read_size = size*(n_blocks + 2) + 1;

Xil_Out32(DMA+MM2S_START_ADDRESS, baseDDRmm2s);

Xil_Out32(DMA+MM2S_LENGTH, read_size);

int write_size = size*n_blocks;

Xil_Out32(DMA+S2MM_DESTINATION_ADDRESS, baseDDRs2mm);

Xil_Out32(DMA+S2MM_LENGTH, write_size);

FPGA-based Accelerators for Cryptography

5. Hardware integration 32

All the code for the RSA bare metal application can be found in the appendix B.1, but
the initialization of the system. We omit this part of the code because might be too long
and it is an overhead that does not help to understand how the accelerator works. This
is the example of one possible output for the encryption process and decryption process:

Message: Ejemplo

Hex message 0x456A656D706C6F

Public Key 0xE52BEB9D61E0DE7

Private Key 0xCFAB57EE0038D7

Modulus 0x12A231A4A56447F5

Encrypt

MM2S: interrupt arrived (input)

RSA: interrupt arrived

S2MM: interrupt arrived (output)

Input in memory+0x0: 0xE52BEB9D61E0DE7

Input in memory+0x8: 0x1D1D96CC9FD4BEF

Input in memory+0x10: 0x456A656D706C6F

Output in memory+0x0: 0x12A231A4A56447F5

Decrypt

MM2S: interrupt arrived (input)

RSA: interrupt arrived

S2MM: interrupt arrived (output)

Input in memory+0x0: 0xCFAB57EE0038D7

Input in memory+0x8: 0x1D1D96CC9FD4BEF

Input in memory+0x10: 0x12A231A4A56447F5

Output in memory+0x0: 0x456A656D706C6F

Message: Ejemplo

FPGA-based Accelerators for Cryptography

6. Petalinux integration 33

Chapter 6

Petalinux integration

In this chapter, we will present the Petalinux tools. We will go through the full process to
install a Linux distribution in the Zedboard. Then, we will explain how to communicate
with our custom hardware using a provided C program by Xilinx called peek and poke.

6.1 Installation

After the hardware specification and bitstream is generated following the steps in the
previous chapter, we can proceed to install a Linux environment using both. First, it is
important to check if the requirements to launch a Linux in the custom hardware are
enabled in the ZYNQ processing system block. This requirements are [12]:

• Triple Time Controller

• External memory controller with at least 32 MB of memory

• Uart port

• Non-volatile memory (SD/MMC)

• Ethernet (Optional)

Even if the Ethernet option is optional we will need it to connect the board to the
internet and deploy the web server in the next chapter. The Non-volatile memory is
optional, but we want to boot from SD card, it is possible to use another type of Non-
volatile memory such as QSPI Flash.

FPGA-based Accelerators for Cryptography

6. Petalinux integration 34

It is necessary to use the Petalinux tools [22] to build and launch the Linux. To access
the tools, we must install Petalinux on our personal computer and indicate their loca-
tion. This is done by the following command:

>$ source <petalinux−instalaltion>/settings.sh

After having access to the Petalinux tools. The first step is create a project where
the Linux environment will be built. For that, Xilinx provide a command for that,
petalinux-create. It is necessary to indicate the project which includes the hardware
specification wanted on the board using the command petalinux-config. In our case, this
is the custom hardware created in the previous chapter.

>$ petalinux−create −−type project −−template=ZYNQ −name=project
>$ petalinux−config −−get−hw−description=<route>/system.hdf

In the first command, the option template indicates the type of the processor where the
Linux will run, in our case Zynq from the Zedboard. The option type indicates that it is
a project, not an app. In the second command, we specify the hardware description we
want to associate with our project. After that, we can build the Linux using petalinux-
build. Finally, using the generated binaries, we can create a bootable image using the
command petalinux-package. This is generated in the subfolder ./images/linux.

>$ petalinux−build
>$ cd images/linux
>$ petalinux−package −−boot −−format BIN −−fsbl <FSBL image>

−−fpga <FPGA bitstream> −−u−boot

The FSBL is the First Stage Bootloader. It configures the FPGA if any bitstream is
provided and loads the operating system (OS) from non-volatile memory to memory
DDR. The FPGA bitstream is the one generated in the previous step that we can use
to program the FPGA.

Once the Linux is built we need to prepare the SD card to launch it. Two different
partitions are required. The first one must be FAT32, with the boot flag enabled, and
at least 60 MBytes. The second partition, must be Linux and formatted as ext4.

>$ fdisk /dev/mmcblk0
Device Boot Start End Sectors Size Id Type
/dev/mmcblk0p1 ∗ 2048 133119 131072 64M e W95 FAT16 (LBA)
/dev/mmcblk0p2 133120 7786495 7653376 3.7G 83 Linux

FPGA-based Accelerators for Cryptography

6. Petalinux integration 35

>$ sudo mkfs.vfat −F 16 /dev/mmcblk0p1 −n BOOT
>$ sudo mkfs.ext4 /dev/mmcblk0p2 −L rootfs

Finally, we just copy the files BOOT.BIN generated using petalinux-package and im-
age.ub generated during the petalinux-build into the BOOT partition of the SD card.
Now it is possible to boot the Linux from it.

6.2 Communication with the accelerator

After the Linux is ready, we need to communicate with the programmable logic. For
that we can use the provided programs peek and poke. First of all, it is necessary to
enable them before building the Petalinux using petalinux-config -c rootfs. We can see
the interface in the next figure 16.

Figure 16: Enable the application peekpoke

These applications work as an interface to send an receive data from memory. They
deal with possible situations while reading the memory such as page fault. Using peek
we can read the content from memory, while using poke we can write values in memory.
Since the accelerator and the DMA from the previous chapter are memory mapped, we
can communicate with them.

FPGA-based Accelerators for Cryptography

6. Petalinux integration 36

An example script performing the encryption for the RSA as the previous chapter is
shown below:

#/bin/bash

poke 0x43c00000 0x1 #Value 1 to GPIO, it means 1 block of data to encrypt

poke 0x40400000 0x10003 #Init DMA channel MM2S

poke 0x40400030 0x10003 #Init DMA channel S2MM

poke 0xA000000 0xD61E0DE7 #Exponent little endian

poke 0xA000004 0xE52BEB9

poke 0xA000008 0x9FD4BEF #Modulus

poke 0xA00000C 0x1D1D96CC

poke 0xA000010 0x6D706C6F #Message: Ejemplo

poke 0xA000014 0x456A65

poke 0x40400018 0xa000000 #MM2S channel memory mapped

poke 0x40400028 0x19 #MM2s channel length

poke 0x40400048 0xa001000 #S2MM channel memory mapped

poke 0x40400058 0X8 #S2MM channel length

After executing the script, we can read the result from memory designed as output
using peek, and the output is the same than example in the previous:

>$ peek 0xa001000
0xa56447f5
>$ peek 0xa001004
0x12a231a4

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 37

Chapter 7

Partial reconfiguration

In this chapter, we will present how to change the hardware design to enable partial
reconfiguration of the accelerators going through the full process. Then, we will explain
how to perform the partial reconfiguration in Petalinux and how to install a web server
into the board. We will load a web application into the web server that will provide a
user-friendly interface to test the full design including the partial reconfiguration.

7.1 Partial reconfiguration workflow

Partial reconfiguration is the ability to modify blocks of logic while the FPGA is still
operating [23]. It is possible to save partial bitstream of one region of the FPGA that
can be loaded while the rest of the programmable logic is still operating. In our case, it
allows us to create a partial reconfigurable region. This region will host either the RSA
or the Blowfish algorithm depending on the demands of the system. The DMA, the
system blocks, and the processing system are statically configured in hardware. All the
partial reconfiguration process can be done in the layout window using the command
line. Vivado console works with Tool Command Language (TCL)

Before doing the partial reconfiguration, we need to prepare the hardware design pre-
viously presented. The static part of the design remains equal, we only need to switch
the module related to the cryptography algorithm to an empty module, called dummy
module. This reconfigurable module only defines the interface specification to make the
logical connections. Later on, we will be able to insert dynamically our accelerators into
it. A high-level representation of the partial reconfiguration performed can be found in
the next figure:

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 38

Figure 17: Partial reconfiguration overview

Once we have the new hardware design, we need to prepare the algorithm to fit into
this module. The previous module removed from the system was composed of two IPs,
AXI GPIO and the accelerator from Vivado HLS. We need to include exactly the same
to the partial design. It is important that the ports between the empty module and
the algorithm module are equal, including the name. Otherwise, we will have problems
when trying to read the algorithm into the new module. The design is equal to the one
presented 15 in the hardware integration section.

This partial design can be exported as a checkpoint. This checkpoint can be used in
the main Vivado project to be loaded into the reconfigurable module. However, before
writing the checkpoint it is necessary to synthesize the partial design using the option
-no iobuf. It avoids the default creation of buffers by Vivado when exporting a port.

Instead of running the implementation directly succeeding the synthesis, it is necessary
to do some previous tasks in the layout. First of all, the partial reconfigurable region
must be specified using a physical block. This pBlock creates a boundary in the layout
where the specified block is located. Vivado allows to assign a region graphically as in
the following figure 18:

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 39

Figure 18: Partial pBlock layout

Apart from the initialization of the pBlock, it is necessary to configure it properly in
order to perform the partial reconfiguration. The physical block needs to be specified as
reset after configuration, which reset the partial hardware after doing the reconfigura-
tion. Also, the snapping property of the pBlock must be asserted to ON, otherwise we
can have problems after loading the bitstream. This is done with the following Vivado
console commands.

set_property RESET_AFTER_RECONFIG true [get_pblocks pblock_dummy_module_0]

set_property SNAPPING_MODE ON [get_pblocks pblock_dummy_module_0]

Moreover, the created pBlock must allocate enough resources to host the accelerators
which mainly include DSPs, LUT, and registers. Vivado shows an estimation of the
needed resources after reading the checkpoint into the dummy module. We read the
RSA algorithm first using the following command:

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 40

read_checkpoint -cell design_1_i/Sub/dummy_module_0 Partial/rsa.dcp

Now Vivado shows the resources consumption for the RSA algorithm. We present a
comparison between the RSA and the Blowfish algorithm in the table below 19. We
attach both algorithms to compare the resources needed, but the Blowfish will be loaded
later on in the workflow.

Figure 19: Resources estimation

The resources for the RSA algorithm are much bigger than for the Blowfish. The reason
depends on the type of resource. For the LUT and registers, the RSA needs six times
more blocks due to the specification of the for loops. In the Blowfish the number of
iterations in the for loops are fixed for all possible inputs, but for the RSA algorithm,
the number of iterations depends on the number of bits that compose the key. This
uncertainty is translated into more resources in Vivado. On the other hand, Blowfish is
based on XORs while the RSA needs to use DSPs to perform the multiplications. Since
the area increases quadratically we cannot increase the number of bits for the RSA to
128b, because of the impossibility to draw a pBlock with enough resources.

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 41

We can proceed to place and route the design for the RSA algorithm. As a result, we
can see the layout of the board with used logic blocks painted in light blue. The painted
region inside the pBlock corresponds to the RSA algorithm. This figures 20 shows the
post-implementation layout.

Figure 20: RSA implementation layout

After the implementation, we need to do two more tasks with the RSA. We need to
write the full bitstream and create the partial bitstream using the full one. The com-
mands are the following:

write_bitstream -file Partial/bitstreams/rsa.bit

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap -loadbit "up 0

Partial/bitstreams/rsa_pblock_dummy_module_0_partial.bit"

Partial/bitstreams/rsa.bin

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 42

After that, it is time to proceed with the Blowfish algorithm, but it is important to lock
the current static logic before removing the RSA. Otherwise, the new implementation
for the second algorithm may destroy the one created by the previous one. These are
the commands:

update_design -black_box -cell design_1_i/Sub/dummy_module_0

lock_design -level routing

The first command removes the RSA algorithm from the dummy module, while the
second one locks the static part. Now we can proceed to load the Blowfish into the
reconfigurable region, place, and route the design. The commands are analogous to the
previous algorithm. The result can be seen in the next figure 21:

Figure 21: Blowfish implementation layout

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 43

The orange blocks that can be seen correspond to the locked static part, while the
light blue blocks inside the dummy module correspond to the Blowfish algorithm. After
writing the partial bitstream with the previous Tcl commands, it is possible to empty
the reconfigurable module and save the bitstream as a blank configuration without al-
gorithms. This blank bitstream can be used as initial configuration to program the
FPGA. The problem with the blank bitstream is that some pins are let floating. Before
the place and route design steps, we need to add buffers using the following command
to avoid floating pins:

update_design -buffer_ports -cell design_1_i/Sub/dummy_module_0

The full workflow Tcl script can be found in the appendix B.2. It shows explicitly all
the steps needed to perform the partial reconfiguration for both algorithms.

7.2 Petalinux

In the previous section, we had explained how to create the partial bitstream to per-
form the partial reconfiguration. In this section, we will show how to integrate their
use in Petalinux. The Linux installed on the board does not need any change to allow
this option, the Petalinux already provides a driver to partially configure the FPGA.
We only need to copy the blank bitstream and the partial bitstream into the second
partition created in the SD card in the previous section.

This driver, Xilinx Device Configuration, is located under the directory /dev under
the name xdevcfg. By providing a bitstream to this driver through the standard, it is
possible to reconfigure the FPGA. Then, it provides a flag to indicate that the next
bitstream provided is a partial bitstream. The full sequence of commands in Linux to
program the FPGA with a blank bitstream, and configure the RSA algorithm in the
partial block is presented below.

echo 0 > /sys/devices/soc0/amba/f8007000.devcfg/is_partial_bitstream

cat /run/media/mmcblk0p2/blank.bit > /dev/xdevcfg

echo 1 > /sys/devices/soc0/amba/f8007000.devcfg/is_partial_bitstream

cat /run/media/mmcblk0p2/rsa.bin > /dev/xdevcfg

The flag is partial bitstream is the one used to inform the driver that the next input is a
partial bitstream. Also, the driver provides a flag called prog done which can be checked
to be sure that FPGA configuration has been done properly. In the user application,
we will perform the partial configuration through the method presented in this section.

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 44

7.3 Web Server

The final test for the accelerators will be done using a web interface. In consequence, we
need to host it into a web server. Petalinux provides a HTTP daemon which manages
the HTTP petitions to the board. This daemon needs to be enabled explicitly using the
command >$ petalinux-config -c rootfs, and surfing through the GUI until the Busybox
options 22. It is located in Filesystem packages, base, Busybox.

Figure 22: Busybox HTTP Daemon activation

Since the Petalinux is based on Suse, the default web server folder is /srv/www. All the
files inside this folder can be accessed using the HTTP protocol and a web browser. In
consequence, the future web application must be located there. Due to the temporary
file system, If we want to have access to the web server after booting without copying
the files manually every time, we need to do the following process. First, we create an
application with the name www using the following command.

>$ petalinux-create -t apps --template install -n www --enable

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 45

It is not necessary to activate the application manually as with the peekpoke due to
the option enable. The install template shows an example of how to copy files into the
Petalinux file system. This application will be used to copy the applications files to the
/srv/www folder in the temporary file system. For that, we modify the configuration
file www.bb. The appended lines are shown below.

S = "${WORKDIR}"

do_install() {

install -d ${D}/srv

cp -r ${S}/www ${D}/srv

}

FILES_${PN} += "/srv/*"}

Before building the Linux, it is necessary to add the software packages required for the
user application presented in the following subsection. These applications are bc and
xxd. The command bc is used to do calculus in hexadecimal format, while xxd can be
used to translate a hexadecimal literal string into ASCII text. The package that needs
to be enabled for the first command is the one with the same name. In contrast, the
package that hosts xxd is vim-common, the one used for the text editor also.

7.4 User application

Once we have the web server ready, and the bitstreams prepared into the SD card, we
can proceed to test the user application. The demo application provides a user-friendly
way to test the accelerators. By using a web interface, the user can change between
the different configurations, RSA, Blowfish, or empty. Then, the user can write a raw
text that is encrypted and decrypted using the configured accelerator. The result is
presented in two boxes to check if the decrypted text is equal to the original raw text,
it is possible to see the encrypted text also.

The user application needs the use of CGI scripts to communicate with the board. These
cgi scripts are executable programmes that are executed on the server side. The CGI
binaries must be installed inside a subfolder called cgi-bin with execution permission,
and using the suffix .cgi. Otherwise, the HTTP daemon cannot find them. In our case,
these CGI scripts are written in BASH shell. These scripts are used to do operations
in the board and generate the HTML of the resulting web page explicitly.

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 46

The first web page when accessing the web server using a web browser is an introduc-
tion. In this page, a simple button is presented that starts the demo application on
click. The introduction web page can be seen below 23:

Figure 23: Introduction web page

When the user clicks on the button, the server executes the initialisation script. This
script programs all the board with an empty bitstream, and loads a blank partial bit-
stream into the reconfigutable blocks. Then, it sets the initial configuration to BLANK
writing into a configuration file. This file will be used by the encryption script later on.
Finally, it generates the HTML for the main page.

The HTML is created directly using the standard output, for that it is necessary to
specify that the text provided is an HTML we page. In consequence, the first line of
all the cgi scripts when generating the next web page must be the one presented below.
After that, the following outputs from the script are treated as HTML code.

echo "Content-type: text/html"

echo ""

The web page generated is the main page of the demo application. This page provides
a user-friendly web interface to change between the different algorithms, and cipher a
text. First of all, the web page provides a paragraph explaining how it works, and a
supporting picture. The main page can be divided into two sections, algorithm selec-
tion, and encryption. The web page can be seen in the following figure 25.

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 47

Figure 24: Main web page

In the first section, the user can change between RSA, Blowfish, and empty partial con-
figuration. Besides the algorithm selection, the user can type a key for both algorithms.
For the Blowfish the key is sixteen hexadecimal bits, while for the RSA the key consist
in three strings of sixteen hexadecimal bits separated by a dash between them. The
keys must be written in the following order: public exponent, private exponent, and
modulus. If no key is provided, the server provides one.

When clicking on the button ”Select”, the server executes another CGI script to make
the changes to the board. First, the script has to read the value from the form.
The form uses the method GET, so the parameters can be read in bash using the
QUERY STRING environment variable. Using the following code, the input values are
saved in a variable with the name: var <parameter name>.

#Read QUERY_STRING

saveIFS=$IFS

IFS=’=&’

parm=($QUERY_STRING)

IFS=$saveIFS

for ((i=0; i<${#parm[@]}; i+=2))

do

declare var_${parm[i]}=${parm[i+1]}

done

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 48

#Example:

#QUERY_STRING=algorithm=2&message=1234567890abcdef

#var_algorithm -> 2

#var_message -> 1234567890abcdef

The comments below the code show an example QUERY STRING input, and the stored
values in the variables. The script has two main functions, perform the partial config-
uration with the selected algorithm by the user, and sanitize the input key.

If the key is provided by the user, the server needs to ensure that the user key will
not generate a problem. For that, first, we check if the if the length of the key is cor-
rect, and second if it is written using a literal hexadecimal string. The second check
is done using regular expressions. It is possible to check the length and the characters
in the same regular expressions, but two different checks are used in order to provide
proper feedback to the user. When there is a problem with the key, it is presented to the
user as a red message. The checks for the Blowfish can be seen in the next piece of code:

if ["$var_algorithm" -eq "2"] && ["$size" -ne "0"]; then

if ["$size" -ne "16"]; then

error="Blowfish key must be 16 digits"

else

if ! [["$var_message" =~ ^[0-9A-Fa-f]{16}]]; then

error="Blowfish key must be hexadecimal digits"

fi

fi

fi

The regular expression checks if all the characters are decimal digits, and letters from
a to f including uppercase. Also, ensures that the length of the key is exactly sixteen.
If the key is empty, or the one provided is correct, the script performs the partial re-
configuration. It writes the partial bitstream into the driver as presented before, and
update the configuration file used by the encryption with the new configuration. The
key is added to the configuration file only if the user provides one. An example for the
Blowfish is presented below:

echo "BLOWFISH" > .config

cat /run/media/mmcblk0p2/blowfish.bin > /dev/xdevcfg

msg="Blowfish algorithm selected"

if ["$size" -ne "0"]; then

echo "$var_message" >> .config

fi

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 49

If the partial reconfiguration is performed properly, a message is shown to the user.
Before generating the web page, it is important to reset the DMA after the reconfigu-
ration. If not done, the DMA will hang after the first transaction.

The second section of the main web page performs the encryption and decryption of a
given text by the user. It reads the text from the form in the same way as the previous
script and reads the configuration file to know the type of encryption performed. It is
important because the RSA has three subkeys, while the Blowfish has one unique key.
If the text is empty, or no algorithm is configured when clicking the ”Submit” button,
the boxes present a default text.

The same approach is followed to send the data to the accelerator than in the previous
chapter. Using the command poke the script writes the data into a memory mapped
region that the DMA will send to the accelerator. For that, first, it is necessary to
transform the input text into hexadecimal format. Then, the script iterates the string
dividing it into blocks that can be sent to the accelerator.

It is important to distinguish between three different cases when dividing into blocks.
The general case when there are enough data to fill a full block. When there is data to
fill only half of a block, so the other half must be set to zeroes. Finally, when there is
data to fill half of a block and part of the other half. The last case is necessary because
of the way that BASH works with substrings. At the same time, the number of blocks
must be stored in order to configure the DMA and the accelerator. Part of the code is
shown below:

hex_msg=$(echo -n "$var_message" | hexdump -v -e ’/1 "%02X "’ | tr -d ’ ’)

size=${#hex_msg}

it="$size"

while ["$it" -gt "0"]; do

...

tmp=$(($it - 8))

poke 0x$MM2S_addr 0x${hex_msg:$tmp:8}

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

tmp=$(($tmp - $N))

poke 0x$MM2S_addr 0x${hex_msg:$tmp:$N}

poke 0x$MM2S_addr 0x$value

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

it=$tmp

...

n_blocks=$(echo "obase=ibase=16;$n_blocks+1" | bc)

done

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 50

For simplicity, it is shown only in the code related to the general case when dividing the
blocks. The text transformation to hexadecimal is done using the command hexdump
configuring the output as parts of one byte. This is done to avoid problems of endian-
ness. Then, the loop iterates the hexadecimal string from the end to the beginning. It
is important because when writing a 64 bits block, the second 32 bits half of the block
must be in the lesser position. Finally, the memory offset is increased by four, because
the data is written in blocks of four bytes, 32 bits. To perform hexadecimal operations
we use the command bc. It was installed in the previous section. Finally, the number
of characters copied in the upper 32 bits half change depending on the algorithm. For
the Blowfish, we can fill the half block, but for the RSA, we preserve the first 8 bits as
zeroes to avoid problems due to the length of the key. Because of the property of the
RSA where the block must be lesser than the module.

After the data is ready, the DMA transactions are activated in the same way as the
previous chapter. The resulting encrypted text is copied from the output memory to
the input memory, printing in the web interface the encrypted text. Finally, the DMA
transactions are activated again in order to get the decrypted text in the output mem-
ory. This decrypted text is printed in the web interface too. The exampling bash code
that gets the decrypted from the output memory is shown below.

it=$(echo "ibase=16;$n_blocks*2" | bc)

tmp=$((($it - 1) * 4))

tmp=$(echo "obase=16; $tmp" | bc)

S2MM_addr=$(echo "obase=ibase=16;$S2MM_base_addr+$tmp" | bc)

while ["$it" -gt "0"]; do

output=$(peek 0x$S2MM_addr)

hex=$(echo "0x${output:2:32" | xxd -r)

decrypted="$decrypted$hex"

S2MM_addr=$(echo "obase=ibase=16;$S2MM_addr-4" | bc)

it=$(($it - 1))

done

The number of iterations is twice the number of blocks due to each block of 64 bits is
divided into two blocks of 32 bits. Since the data is previously stored in reverse order,
we need to read it back in reverse order too. Moreover, the text is saved in hexadecimal
format, so it needs to be converted to ASCII text again. For that purpose, the command
xxd installed in the previous section can be used. Using the option r, the command gets
a hexadecimal input and returns ASCII text.

Finally, a possible use for the web application is shown below. In the example, the
user provides their own RSA key and writes a text in the left text area. The encrypted
text can be seen in the box located in the middle, while the decrypted version from the
middle text can be seen in the right box.

FPGA-based Accelerators for Cryptography

7. Partial reconfiguration 51

Figure 25: Main web page test

All the HTML that composes the web pages can be seen in the appendix B.3. While the
three CGI scripts presented used to operate the FPGA can be found in the appendix
B.4

FPGA-based Accelerators for Cryptography

8. Delay and Power 52

Chapter 8

Delay and Power

In this chapter, we will present the measurements of delay and power for the RSA and
the Blowfish algorithm. Moreover, we will explain how to take these measurements
precisely using the previous bare metal and Linux application presented for the delay
and power respectively.

8.1 Delay measurements

There are different ways to measure the delay of the application. It is possible to
add an AXI Timer [24] to the hardware design in order to measure the clock in the
programmable logic. Another approach measures the time in the Linux application
using time, but it is really hard to be precise due to the overhead when calling this
command. Finally, the approach followed in this project is based on a time library
provided by Xilinx. Since in the Bare metal application there are not operative systems
that support the software, it is not possible to use the ”time.h” library in C. However,
Xilinx provides a library [25] that uses the clock in the SoC Zynq 7000, called ”xtime l”.

This library provides structures, macros, and functions to measure the time. The clock
in the SoC works with a frequency of 667MHz, and the time counter provided by the
library increment by one after two clock cycles. In consequence, the counter of ticks
can be used to calculate the number of cycles. The number of cycles can be used to
calculate the time using the macro ”COUNTS PER SECOND”, which is the ticks of
cycles in a second. An example code showing how to measure is shown below. The code
prints the number of cycles, and the measured time in microseconds:

FPGA-based Accelerators for Cryptography

8. Delay and Power 53

#include "xtime_l.h"

...

XTime tStart, tEnd;

XTime_GetTime(&tStart);

//Code to measure

XTime_GetTime(&tEnd);

printf("Output took %llu clock cycles.\n", 2*(tEnd - tStart));

printf("Output took %.2f us.\n", 1.0 * (tEnd - tStart) /

(COUNTS_PER_SECOND/1000000));

...

We can use this to measure the time of our accelerators. We want to measure the delay
since we send the data until we receive the result. As a result, we need to start the
clock when the DMA sends the data to the accelerator, and stop it when it returns the
result back. For that purpose, we can use the interruption handlers. The delay for both
accelerators can be seen in the following table. We duplicate the number of blocks sent
to the accelerator in each test. We begin from 32 bytes of data until 1024 bytes of data.

Bytes RSA Delay [us] Blowfish Delay [us]

32 140.71 367.89

64 234.61 370.78

128 423.19 376.33

256 799.78 387.50

512 1553.34 409.76

1024 3059.85 454.81

Table 7: Accelerator delay

Since we know the delay, we can calculate the number of cycles that the FPGA needs
to do the full calculus. In the Zedboard, the FPGA has a clock frequency of 100MHz.
which is translated into a clock cycle of 10ns. The resulting clocks can be seen in the
next table.

FPGA-based Accelerators for Cryptography

8. Delay and Power 54

Bytes RSA Clock cycles Blowfish Clock cycles

32 14071 36789

64 23461 37078

128 42319 37633

256 79978 38750

512 155334 40976

1024 305985 45481

Table 8: Accelerator delay

These clock cycles include the time that the accelerator needs to perform the full oper-
ation plus the time spent by the DMA to send the data back. In the following graph,
we can see the tendency of the delay for both algorithms 26.

Figure 26: Delay tendency accelerator [us]

FPGA-based Accelerators for Cryptography

8. Delay and Power 55

In the graph above, we can see that the RSA follows a constant slope while the Blowfish
maintains almost the same delay. The reason for the RSA is that the precomputation
has a really low impact on the delay. In consequence, the delay for the accelerator is
linear to the number of blocks that it must encrypt. However, for the Blowfish, the
main drawback of the algorithm is the initialization of the key. This graph shows that
the difference when increasing the number of blocks is low. It means that the delay is
lead by the initialization for the key.

The delay for the RSA is higher than for the Blowfish as expected, and this gap keeps
increasing with the number of bytes. This is one of the reasons why asymmetric cryp-
tography is used to perform the key exchange, but the symmetric cryptography is used
during the communication.

After timing the accelerator, we want to compare it with the execution time in the SoC.
For that, the same algorithm that the one in the accelerator is executed in the SoC.
Moreover, it is done in the bare metal application following the previous approach in
order to be as precise as possible. The results for both algorithms are the following.

Bytes RSA Delay [us] Blowfish Delay [us]

32 1133.8 23172.24

64 2140.41 23355.1

128 4194.15 23722.95

256 8299.6 24449.3

512 16514.91 25908.21

1024 32937.96 28831.16

Table 9: SoC delay

In general, the timing increases for all the sizes for both algorithms. The delay for the
RSA depends on the number of blocks, while the delay for the Blowfish is dominated
by the initialization of the key. Unlike the previous case, the Blowfish is slower than
the RSA for sizes lower than 1024 bytes. The reason is how the initialization of the
key is performed. It needs to work with four kilobytes of text which is allocated in
memory. Accessing this memory from the SoC delays the execution time. This is the
main drawback for the Blowfish, It can be seen graphically in the following graph 27.

FPGA-based Accelerators for Cryptography

8. Delay and Power 56

Figure 27: Delay tendency SoC [us]

The cost of initializing the key makes the Blowfish algorithm less likely to be used than
other symmetric algorithms. We can see the speedup of the accelerator compared to
the SoC in the following table. We use the timing values for 1024 bytes.

RSA Blowfish

Accelerator 3059.85 454.81

SoC 32937.96 28831.16

Speed-up ∼10.7 ∼63.3

Table 10: SoC delay

FPGA-based Accelerators for Cryptography

8. Delay and Power 57

The speedup for the Blowfish is approximately sixty-three times faster, because of the
initialization of the key is performed much faster in the FPGA than in the SoC which
needs to access to memory. On the other hand, the speed up for the RSA is approx-
imately 10 times faster. The improvement is not as big as in the Blowfish due to the
number of multiplication. The SoC can perform the multiplication in a functional unit
while the FPGA needs to use a big amount of DSPs. Moreover, the small size of the
key allows the processor to operate with the data directly. Even so, the accelerator is
faster than the SoC.

8.2 Power measurements

The Zedboard is provided with a 10mΩ, 1W current sense resistor in series with the
12V input power supply that can be used to measure the voltage on the board. The
shunt-register is connected in parallel with the jumper J21 located near to the audio
I/O peripherals. It is possible to measure the voltage drop across the resistors using
this header J21. Then, the power can be calculated using the following equation:

P = mV
10mΩ

12V

The input voltage can be measured using a multimeter. In our case, we have used the
34461A Digital Multimeter [26]. Using this device, it is possible to measure the voltage.
The installed firmware provides a web interface with a java application that can be used
to control the multimeter. It allows the user to start and stop the measurement, and
print the data read. Moreover, it is possible to change the number of measures per
second to adjust the precision.

We use a BASH script to measure the power on the board during the activity. First,
it copies all the data required to the input memory mapped and configures the whole
FPGA reconfiguring the partial hardware as blank. Then, it performs the partial recon-
figuration for the RSA, performs an encryption, and reconfigures the partial hardware
as blank. Finally, it performs the partial reconfiguration for the Blowfish, performs an
encryption, and reconfigures the partial hardware as blank.

The following graph 28 shows the behavior during the explained phases of the script.
After the whole reconfiguration the power consumption descends, but after the first
partial reconfiguration and encryption process, it maintains a bit higher, even if recon-
figuring again to the blank partial bitstream. This is because the usage of the DDR3
memory for the first time in the encryption process.

FPGA-based Accelerators for Cryptography

8. Delay and Power 58

Figure 28: Power measuraments for the board

The graph shows that the power consumption maintains equal independently of the par-
tial bitstream configured. It increases after the first encryption. The voltage measured
and the power calculated can be seen in the next table. The table shows the average
measurements depending on the status of the board. All the measurements are done
without the Ethernet cable connected.

STATUS v (mV) Power (W)

IDLE 2.02 2.42

PS init before first encryption 2.98 3.58

PS init after first encryption 3.04 3.65

Copying data to memory 3.08 3.70

Encryption 3.08 3.70

FPGA configuration 3.13 3.76

Partial reconfiguration 3.12 3.74

Table 11: Voltage measurements

It can be inferred from the table, that most of power consumption depends on the PS
and PL static part.

FPGA-based Accelerators for Cryptography

9. Conclusion 59

Chapter 9

Conclusion

In this thesis, we have presented a design halfway between software and hardware to im-
plement cryptography algorithms that can be dynamically reconfigured. We explained
all the steps to implement and integrate into the board one example for each type of
cryptography, asymmetric and symmetric.

Furthermore, we have explained step by step the full process. Beginning from the soft-
ware implementation of the accelerators, following the hardware design, and finishing
in the possible outcomes to test the design. The two solutions presented to test the de-
sign are the bare metal application, which can be used to debug, and the web interface
integrated in a Linux, which provides a user friendly interface.

We have demonstrated that this solution can be very interesting for communications.
It is possible to perform the key exchange using the RSA algorithm in hardware. Then,
once the key is agreed between the client and server, reconfigure to the Blowfish algo-
rithm. If the connection is lost, it is possible to reconfigure to the RSA to perform the
key exchange and recover as soon as possible.

The entire experience of this project leads to different results. First of all, the use of a
FPGA includes most of the advantages of a Application-specific integrated circuit [2],
but reducing the time and complexity related to the design and implementation of this
circuits. Moreover, the use of advanced tools such as the provided by Xilinx reduce the
knowledge needed by the programmer to implement the wanted design.

Secondly, when creating an accelerator two possible approaches can be followed, design
the specification of the hardware or use a high level synthesis tool such as Vivado HLS.
In our case, we have followed the second approach. The main advantage of this method
is the possibility to use high level code such as C, but has some drawbacks. It is not
possible to control the full process. For example, in the area problem, Vivado HLS
allows to specify the allocation of some resources, and reduce the number of instances
of a core. However, the final result can avoid these specifications.

FPGA-based Accelerators for Cryptography

9. Conclusion 60

This thesis is open to further improvements. Since this is a test application, the size of
the key for the RSA is not the ideal. Furthermore, if we want the launch application
into the actual market the first improvement is the size of the key. The problem of
doing this is the area needed for the accelerator due to the quadratic increase in the
area when increasing the number of bits. A possible solution comes from using a bigger
FPGA with more resources, or try to serialize the execution using Vivado HLS.

Moreover, the execution time can be improved in bigger sizes of the key dividing each
block into lesser words. In consequence, the encryption process can be performed in
separated words in parallel, but it requires more resources. If the domain of the appli-
cation executed is known, it is possible to reduce drastically the area needed by fixing
the number of bits in the key. This removes the uncertainty in the number of iterations.

On the other hand, nowadays the most used symmetric algorithm is the Advanced
Encryption Standard [27]. A possible improvement for the system could be adding AES
in the place of the Blowfish. This algorithm requires that the data comes in blocks of
128 bits, which may differ with the number of bits for the RSA.

FPGA-based Accelerators for Cryptography

A. Accelerators C code 61

Accelerators C code

A.1 RSA accelerator

bit64 monPro(bit128 a, bit128 b, bit64 n, bit128 r, bit8 k, bit64 c_n) {

bit128 t = a * b;

bit64 r_1 = r - 1;

bit128 tmp_m = t * c_n;

bit128 m = tmp_m & r_1;

bit128 tmp_u = m * n;

bit128 tmp_u2 = t + tmp_u;

bit128 u = tmp_u2 >> k;

if(u >= n) return u - n;

else return u;

}

bit64 modInverse(bit128 a, bit64 n) {

sbit64 n0 = n;

sbit64 y = 0, x = 1;

if(n == 1) return 0;

while(a > 1) {

sbit64 q = a / n;

sbit64 t = n;

n = a % n, a = t; t = y;

y = x - q * y; x = t;

}

if(x < 0) x+= n0;

return x;

}

bit64 highestOneBit(bit64 k) {

uint16_t count = 0;

while (k>0) {count++; k>>=1;}

return count;

}

bit rsa(uint32_t control, bit64 input_stream, bit64 * output_stream, bit *

TLAST) {

FPGA-based Accelerators for Cryptography

A. Accelerators C code 62

//Interface

#pragma HLS INTERFACE ap_ctrl_none port=return

#pragma HLS interface ap_none port=control

#pragma HLS INTERFACE axis port=output_stream

#pragma HLS INTERFACE axis port=input_stream

#pragma HLS interface ap_none port=TLAST

//Control

static bit exp_done = 0;

static bit n_done = 0;

static bit crypt_done = 0;

static uint32_t n_blocks = 0;

//Variables

static bit64 n = 0;

static bit64 exp = 0;

static uint8_t k;

static bit128 c_n;

static bit128 r;

*TLAST = 0b0;

if (control == 0x00000000) {return 0;}

else if (exp_done == 0) {

//Expontent and initialise number of blocks

exp = input_stream;

n_blocks = control;

exp_done = 1;

return 0;

} else if (n_done == 0) {

//Modulus and Precalculation

n = input_stream;

k = highestOneBit(n);

r = 1; r = r << k;

bit128 inv_r = modInverse(r,n);

bit128 tmp_c_n = inv_r * r;

c_n = (tmp_c_n - 1) / n;

n_done = 1;

return 0;

} else if (crypt_done == 0) {

//Encrypt/Decrypt

bit64 mask = r >> 1;

bit128 rem_m = input_stream * r % n;

bit128 rem_x = r % n;

int i;

for(i = k - 1; i >= 0; i--) {

rem_x = monPro(rem_x,rem_x,n,r,k,c_n);

if(exp & mask) rem_x = monPro(rem_m,rem_x,n,r,k,c_n);

mask >>= 1;

}

FPGA-based Accelerators for Cryptography

A. Accelerators C code 63

//Output

*output_stream = monPro(rem_x,1,n,r,k,c_n);

n_blocks = n_blocks - 1;

if(n_blocks == 0) {crypt_done = 1; *TLAST = 0b1; return 1;}

return 0;

} else {

//Reset

exp_done = 0;

n_done = 0;

crypt_done = 0;

n_blocks = 0;

return 0;

}

return 0;

}

A.2 Blowfish accelerator

#define N 16

bit32 P_ARRAY[16 + 2] = {..};

bit32 S_BOXES[4][256] = {..};

bit32 f_function(bit32 input) {

bit8 a, b, c, d;

bit32 output;

d = (bit8)(input & 0xff); input >>= 8;

c = (bit8)(input & 0xff); input >>= 8;

b = (bit8)(input & 0xff); input >>= 8;

a = (bit8)(input & 0xff);

output = S_BOXES[0][a] + S_BOXES[1][b];

output = output ^ S_BOXES[2][c];

output = output + S_BOXES[3][d];

return output;

}

void Blowfish_Encrypt(bit32 *left, bit32 *right){

bit32 left_tmp, right_tmp, aux;

left_tmp = *left;

right_tmp = *right;

for (bit8 i = 0; i < N; ++i) {

left_tmp = left_tmp ^ P_ARRAY[i];

right_tmp = f_function(left_tmp) ^ right_tmp;

/* Exchange left_tmp and right_tmp */

aux = left_tmp; left_tmp = right_tmp; right_tmp = aux;

}

FPGA-based Accelerators for Cryptography

A. Accelerators C code 64

/* Exchange left_tmp and right_tmp */

aux = left_tmp; left_tmp = right_tmp; right_tmp = aux;

right_tmp = right_tmp ^ P_ARRAY[N];

left_tmp = left_tmp ^ P_ARRAY[N + 1];

*left = left_tmp;

*right = right_tmp;

}

void Blowfish_Decrypt(bit32 *left, bit32 *right){

bit32 left_tmp, right_tmp, aux;

left_tmp = *left;

right_tmp = *right;

for (bit8 i = N + 1; i > 1; --i) {

left_tmp = left_tmp ^ P_ARRAY[i];

right_tmp = f_function(left_tmp) ^ right_tmp;

/* Exchange left_tmp and right_tmp */

aux = left_tmp; left_tmp = right_tmp; right_tmp = aux;

}

/* Exchange left_tmp and right_tmp */

aux = left_tmp; left_tmp = right_tmp; right_tmp = aux;

right_tmp = right_tmp ^ P_ARRAY[1];

left_tmp = left_tmp ^ P_ARRAY[0];

*left = left_tmp;

*right = right_tmp;

}

void Blowfish_Init(bit64 key) {

bit32 data;

bit64 aux = key;

for (int i = 0; i < N + 2; ++i) {

data = 0;

for (int k = 0; k < 8; ++k) {

data = (data << 4) | (aux & 0xf); aux >>= 4;

if (aux == 0) aux = key;

}

P_ARRAY[i] = P_ARRAY[i] ^ data;

}

bit32 datal = 0, datar = 0;

for (int i = 0; i < N + 2; i += 2) {

Blowfish_Encrypt(&datal, &datar);

FPGA-based Accelerators for Cryptography

A. Accelerators C code 65

P_ARRAY[i] = datal;

P_ARRAY[i + 1] = datar;

}

for (int i = 0; i < 4; ++i) {

for (int j = 0; j < 256; j += 2) {

Blowfish_Encrypt(&datal, &datar);

S_BOXES[i][j] = datal;

S_BOXES[i][j + 1] = datar;

}

}

}

/**

* Control:

* First bit: indicates if it is necessary to initialize the key, 0 yes, 1 no

* Second bit: indicates if need to perform encryption or decryption, 0 en, 1

de

* Remainder bits: number of blocks

*/

bit blowfish(bit32 control, bit64 input_stream, bit64 * output_stream, bit *

TLAST) {

//Interface

#pragma HLS INTERFACE ap_ctrl_none port=return

#pragma HLS interface ap_none port=control

#pragma HLS INTERFACE axis port=output_stream

#pragma HLS INTERFACE axis port=input_stream

#pragma HLS interface ap_none port=TLAST

//Control

static bit init_done = 0;

static bit crypt_done = 0;

static bit32 n_blocks = 0;

static bit32 encrp_decrp = 0; //0 Encryption, else Decryption

static bit32 perform_init = 0; //Do key init, else key already initialized

//Variables

*TLAST = 0b0;

perform_init = control & 0x80000000;

if (control == 0x00000000) {return 0;}

else if (init_done == 0 && perform_init == 0) {

//Init the key

n_blocks = control & 0x3fffffff;

encrp_decrp = control & 0x40000000;

Blowfish_Init(input_stream);

init_done = 1;

FPGA-based Accelerators for Cryptography

A. Accelerators C code 66

} else if (init_done == 0 && perform_init != 0) {

//Init the control variables, but the key

n_blocks = control & 0x3fffffff;

encrp_decrp = control & 0x40000000;

init_done = 1;

} else if (crypt_done == 0) {

//Encrypt/Decrypt

bit32 left = (input_stream & 0xffffffff00000000) >> 32;

bit32 right = input_stream & 0xffffffff;

if(encrp_decrp == 0)

Blowfish_Encrypt(&left,&right);

else

Blowfish_Decrypt(&left,&right);

bit64 result = left; result <<= 32;

result |= right;

*output_stream = result;

n_blocks = n_blocks - 1;

if(n_blocks == 0) {crypt_done = 1; *TLAST = 0b1; return 1;}

return 0;

} else {

//Reset

init_done = 0;

crypt_done = 0;

encrp_decrp = 0;

perform_init = 0;

n_blocks = 0;

return 0;

}

return 0;

}

FPGA-based Accelerators for Cryptography

B. Applications 67

Applications

B.1 Bare metal application C

*Initialisation functions and auxiliary functions are avoided to simplify the reading

#define N_BYTES 8

//interrupt controller

XScuGic INTCInst;

static XScuGic_Config *IntcConfig;

static u32 baseDDRmm2s= 0xa000000;

static u32 baseDDRs2mm= 0xa001000;

// Auxiliar functions

u32 up32(u64 val) { return (val & 0xffffffff00000000) >> 32;}

u32 down32(u64 val) { return val & 0xffffffff;}

//###

//########################## Interrupt handlers ###############################

//###

void InterruptHandlerS2MM (void){

u32 tmpValue = Xil_In32 (DMA+S2MM_STATUS_REGISTER);;

tmpValue = tmpValue | 0x1000; // Reset interrupt

Xil_Out32(DMA+S2MM_STATUS_REGISTER, tmpValue);

}

void InterruptHandlerMM2S (void){

u32 tmpValue = Xil_In32 (DMA+MM2S_STATUS_REGISTER);

tmpValue = tmpValue | 0x1000; // Reset interrupt

Xil_Out32(DMA+MM2S_STATUS_REGISTER, tmpValue2);

}

void InterruptHandlerRSA (void){

XScuGic_Disable(&INTCInst, rsa_intr);

Xil_Out32(RSA, 0x00000000); // Reset interrupt

XScuGic_Enable(&INTCInst, rsa_intr);

}

FPGA-based Accelerators for Cryptography

B. Applications 68

//###

//############################# Application ###################################

//###

void decrypt(char exp[], char n[], u32 blocks[], int n_blocks, int size) {

u32 mem_offset = 0;

char tmp[8];

Xil_Out32(RSA, n_blocks);

//Exponent

for(int i = size - 4; i >= 0; i -= 4) {

memcpy(tmp,&exp[i*2],8);

u32 ul = strtoul (tmp, NULL, 16);

Xil_Out32(baseDDRmm2s + mem_offset, ul);

mem_offset += 4;

}

//Modulus

for(int i = size - 4; i >= 0; i -= 4) {

memcpy(tmp,&n[i*2],8);

u32 ul = strtoul (tmp, NULL, 16);

Xil_Out32(baseDDRmm2s + mem_offset, ul);

mem_offset += 4;

}

//Mesages

for(int j = 0; j < n_blocks*size/4; j++) {

Xil_Out32(baseDDRmm2s + mem_offset, blocks[j]);

mem_offset += 4;

}

int read_size = size*(n_blocks + 2) + 1;

Xil_Out32(DMA+MM2S_START_ADDRESS, baseDDRmm2s);

Xil_Out32(DMA+MM2S_LENGTH, read_size);

int write_size = size*n_blocks;

Xil_Out32(DMA+S2MM_DESTINATION_ADDRESS, baseDDRs2mm);

Xil_Out32(DMA+S2MM_LENGTH, write_size);

}

void encrypt(char exp[], char n[], char blocks[][N_BYTES], int n_blocks, int

size) {

u32 mem_offset = 0;

char tmp[8];

Xil_Out32(RSA, n_blocks);

FPGA-based Accelerators for Cryptography

B. Applications 69

//Exponent

for(int i = size - 4; i >= 0; i -= 4) {

memcpy(tmp,&exp[i*2],8);

u32 ul = strtoul (tmp, NULL, 16);

Xil_Out32(baseDDRmm2s + mem_offset, ul);

mem_offset += 4;

}

//Modulus

for(int i = size - 4; i >= 0; i -= 4) {

memcpy(tmp,&n[i*2],8);

u32 ul = strtoul (tmp, NULL, 16);

Xil_Out32(baseDDRmm2s + mem_offset, ul);

mem_offset += 4;

}

//Mesages

for(int j = 0; j < n_blocks; j++) {

for(int i = size - 1; i >= 0; i-=4) {

u32 ul = (u32)(blocks[j][i-3]); ul <<= 8;

ul = ul | (u32)(blocks[j][i-2]); ul <<= 8;

ul = ul | (u32)(blocks[j][i-1]); ul <<= 8;

ul = ul | (u32)(blocks[j][i]);

Xil_Out32(baseDDRmm2s + mem_offset, ul);

mem_offset += 4;

}

}

int read_size = size*(n_blocks + 2) + 1;

Xil_Out32(DMA+MM2S_START_ADDRESS, baseDDRmm2s);

Xil_Out32(DMA+MM2S_LENGTH, read_size);

int write_size = size*n_blocks;

Xil_Out32(DMA+S2MM_DESTINATION_ADDRESS, baseDDRs2mm);

Xil_Out32(DMA+S2MM_LENGTH, write_size);

}

int main() {

init_platform();

xil_printf("\r\n--- Entering main() --- \r\n");

xil_printf("Initializing system... \r\n ");

int status;

status = IntcInitFunction(XPAR_PS7_SCUGIC_0_DEVICE_ID);

if (status != XST_SUCCESS)

return XST_FAILURE;

FPGA-based Accelerators for Cryptography

B. Applications 70

//Disable cache

Xil_DCacheDisable();

initialize_system();

xil_printf("done! \n\r");

//Keys

char exp[16] = "0E52BEB9D61E0DE7";

char d[16] = "00CFAB57EE0038D7";

char n[16] = "1D1D96CC09FD4BEF";

//Max 140 characters, 20, 40

char mesg[140] = "Ejemplo";

char blocks[20][N_BYTES];

for(int i = 0; i < 20; i++)

for(int j = 0; j < N_BYTES; j++)

blocks[i][j]=’\0’;

u32 crypted[40];

u32 uncrypted[40];

xil_printf("Message: %s \n\r",mesg);

int n_blocks = message_to_blocks(mesg,blocks,strlen(mesg));

trace_hex_mesg(blocks, n_blocks);

int loop=1;

while(loop) {

int control=0;

xil_printf("## want a new cycle? 0 no, 1 encrypt, 2 decrypt \n\r");

scanf("%d", &control);

if (control==0){

loop=0;}

else if (control==1){

encrypt(exp,n,blocks,n_blocks,N_BYTES);

trace_input(n_blocks);

trace_output(n_blocks);

save_output(crypted,n_blocks);

} else {

decrypt(d,n,crypted,n_blocks,N_BYTES);

trace_input(n_blocks);

trace_output(n_blocks);

save_output(uncrypted,n_blocks);

trace_mesg(uncrypted,n_blocks*2);

}

}

xil_printf("-- Bye Bye -- \n\r");

return 0;

}

FPGA-based Accelerators for Cryptography

B. Applications 71

B.2 Partial reconfiguration workflow

#First rsa

update_design -black_box -cell design_1_i/Sub/dummy_module_0

startgroup

create_pblock pblock_dummy_module_0

resize_pblock pblock_dummy_module_0 -add {SLICE_X50Y51:SLICE_X113Y148

DSP48_X3Y22:DSP48_X4Y57 RAMB18_X3Y22:RAMB18_X5Y57

RAMB36_X3Y11:RAMB36_X5Y28}

add_cells_to_pblock pblock_dummy_module_0 [get_cells [list

design_1_i/Sub/dummy_module_0]] -clear_locs

endgroup

set_property RESET_AFTER_RECONFIG true [get_pblocks pblock_dummy_module_0]

set_property SNAPPING_MODE ON [get_pblocks pblock_dummy_module_0]

read_checkpoint -cell design_1_i/Sub/dummy_module_0 Partial/rsa.dcp

set_property HD.RECONFIGURABLE TRUE [get_cells design_1_i/Sub/dummy_module_0]

opt_design

place_design

route_design

write_bitstream -file Partial/bitstreams/rsa.bit

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap -loadbit "up 0

Partial/bitstreams/rsa_pblock_dummy_module_0_partial.bit"

Partial/bitstreams/rsa.bin

#Second blowfish

update_design -black_box -cell design_1_i/Sub/dummy_module_0

lock_design -level routing

read_checkpoint -cell design_1_i/Sub/dummy_module_0 Partial/blowfish.dcp

opt_design

place_design

route_design

write_bitstream -file Partial/bitstreams/blowfish.bit

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap -loadbit "up 0

Partial/bitstreams/blowfish_pblock_dummy_module_0_partial.bit"

Partial/bitstreams/blowfish.bin

#Finally blank block

update_design -black_box -cell design_1_i/Sub/dummy_module_0

update_design -buffer_ports -cell design_1_i/Sub/dummy_module_0

FPGA-based Accelerators for Cryptography

B. Applications 72

place_design

route_design

write_bitstream -file Partial/bitstreams/blank.bit

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap -loadbit "up 0

Partial/bitstreams/blank_pblock_dummy_module_0_partial.bit"

Partial/bitstreams/blank.bin

B.3 Web page

*Index web page

<!DOCTYPE HTML>

<html>

<head>

<title>FPGA Accelerators</title>

<meta charset="utf-8" />

<meta name="viewport" content="width=device-width, initial-scale=1" />

<link rel="stylesheet" href="assets/css/main.css" />

</head>

<body>

<!-- Header -->

<header id="header" class="alt">

</header>

<!-- Banner -->

<section id="banner">

<div class="inner">

<header>

<h1>FPGA-based Accelerators for Cryptography</h1>

</header>

<form method="post" action="./cgi-bin/init.cgi">

<div class="12u$">

<ul class="actions">

<input type="submit" value="START DEMO" />

</div>

</form>

</div>

</section>

</body>

</html>

FPGA-based Accelerators for Cryptography

B. Applications 73

*Demo application web page

<!DOCTYPE HTML>

<html>

<head>

<title>FPGA Accelerators</title>

<meta charset="utf-8" />

<meta name="viewport" content="width=device-width, initial-scale=1" />

<link rel="stylesheet" href="assets/css/main.css" />

</head>

<body>

<!-- Header -->

<header id="header" class="alt">

</header>

<!-- Main -->

<div id="main">

<!-- Section -->

<section class="wrapper style1">

<div class="inner">

<!-- 2 Columns -->

<div class="flex flex-2">

<div class="col col1">

<div class="image round fit">

</div>

</div>

<div class="col col2">

<h3>Demo Application</h3>

<p>In this demo application...</p>

<form method="post" action="./set_algorithm.cgi">

<div class="row uniform">

<div class="4u 12u$(small)">

<input type="radio" id="rsa" name="algorithm" value="1">

<label for="rsa">RSA</label>

</div>

<div class="4u 12u$(small)">

<input type="radio" id="blowfish" name="algorithm" value="2">

<label for="blowfish">Blowfish</label>

</div>

<div class="4u 12u$(small)">

<input type="radio" id="blank" name="algorithm" value="3">

<label for="blank">Blank</label>

</div>

<div class="12u$">

<textarea name="message" id="message" placeholder="Key in

hexadecimal" rows="1"></textarea>

</div>

FPGA-based Accelerators for Cryptography

B. Applications 74

<div class="12u$">

<ul class="actions">

<input type="submit" value="Select" />

</div>

</div>

</form>

</div>

</div>

<div class="flex flex-3">

<div class="col col1">

<form method="post" action="#">

<div class="row uniform">

<div class="12u$">

<textarea name="message" id="message" placeholder="Enter your

message" rows="6"></textarea>

</div>

<div class="12u$">

<ul class="actions">

<input type="submit" value="Submit" />

</div>

</div>

</form>

</div>

<div class="col col2">

<div class="box"></div>

</div>

<div class="col col3">

<div class="box"></div>

</div>

</div>

</div>

</section>

</div>

</body>

</html>

FPGA-based Accelerators for Cryptography

B. Applications 75

B.4 User application

*Initialisation script

#!/bin/bash

#Init system

echo 0 > /sys/devices/soc0/amba/f8007000.devcfg/is_partial_bitstream

cat /run/media/mmcblk0p2/blank.bit > /dev/xdevcfg

echo 1 > /sys/devices/soc0/amba/f8007000.devcfg/is_partial_bitstream

cat /run/media/mmcblk0p2/blank.bin > /dev/xdevcfg

echo "BLANK" > .config

#Generate web page

...

*Select algorithm script

#!/bin/bash

#Read QUERY_STRING

saveIFS=$IFS

IFS=’=&’

parm=($QUERY_STRING)

IFS=$saveIFS

for ((i=0; i<${#parm[@]}; i+=2))

do

declare var_${parm[i]}=${parm[i+1]}

done

#Check errors

error=""

msg=""

size=${#var_message}

if ["$var_algorithm" -eq "1"] && ["$size" -ne "0"]; then

if ["$size" -ne "50"]; then

error="RSA key must be three 16 digits dash separated"

else

if ! [["$var_message" =~

^[0-9A-Fa-f]{16}\-[0-9A-Fa-f]{16}\-[0-9A-Fa-f]{16}]]; then

error="RSA key must be hexadecimal digits"

fi

fi

fi

FPGA-based Accelerators for Cryptography

B. Applications 76

if ["$var_algorithm" -eq "2"] && ["$size" -ne "0"]; then

if ["$size" -ne "16"]; then

error="Blowfish key must be 16 digits"

else

if ! [["$var_message" =~ ^[0-9A-Fa-f]{16}]]; then

error="Blowfish key must be hexadecimal digits"

fi

fi

fi

#Check algorithm

if ["$error" = ""]; then

if ["$var_algorithm" -eq "1"]; then

echo "RSA" > .config

cat /run/media/mmcblk0p2/rsa.bin > /dev/xdevcfg

msg="RSA algorithm selected"

if ["$size" -ne "0"]; then

echo "$var_message" >> .config

fi

elif ["$var_algorithm" -eq "2"]; then

echo "BLOWFISH" > .config

cat /run/media/mmcblk0p2/blowfish.bin > /dev/xdevcfg

msg="Blowfish algorithm selected"

if ["$size" -ne "0"]; then

echo "$var_message" >> .config

fi

elif ["$var_algorithm" -eq "3"]; then

echo "BLANK" > .config

cat /run/media/mmcblk0p2/blank.bin > /dev/xdevcfg

msg="No algorithm selected"

fi

fi

#Reset DMA

poke 0x40400000 0x4

poke 0x40400030 0x4

poke 0x40400000 0x10003

poke 0x40400030 0x10003

#Generate web page

..

FPGA-based Accelerators for Cryptography

B. Applications 77

*Encryption script

#!/bin/bash

#Read QUERY_STRING

saveIFS=$IFS

IFS=’=&’

parm=($QUERY_STRING)

IFS=$saveIFS

for ((i=0; i<${#parm[@]}; i+=2))

do

declare var_${parm[i]}=${parm[i+1]}

done

#Check configuration

var_algorithm=$(cat .config | head -n 1)

n_lines=$(cat .config | wc -l)

if [$n_lines -eq "2"]; then

key=$(cat .config | tail -n 1)

else

key=$(echo "NULL")

fi

#Encrypt

encrypted=""

decrypted=""

MM2S_addr="A000000"

S2MM_addr="A001000"

MM2S_base_addr="A000000"

S2MM_base_addr="A001000"

n_blocks=0

var_message=$(echo "$var_message" | tr ’+’ ’ ’)

if ["$var_algorithm" = "RSA"]; then

N=6

N2=14

Overhead=11 #Exponent + Modulus + trash byte

if ["$key" = "NULL"]; then

poke 0x$MM2S_addr 0xD61E0DE7

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0xE52BEB9

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0x9FD4BEF

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0x1D1D96CC

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

FPGA-based Accelerators for Cryptography

B. Applications 78

else

poke 0x$MM2S_addr 0x${key:8:8}

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0x${key:0:8}

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0x${key:42:8}

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0x${key:34:8}

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

fi

elif ["$var_algorithm" = "BLOWFISH"]; then

N=8

N2=16

if ["$key" = "NULL"]; then

poke 0x$MM2S_addr 0xD61E0DE7

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0xE52BEB9

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

else

poke 0x$MM2S_addr 0x${key:8:8}

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0x${key:0:8}

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

fi

elif ["$var_algorithm" = "BLANK"]; then

encrypted="No algorithm selected"

decrypted="No algorithm selected"

fi

if ["$var_message" = ""]; then

encrypted="Empty text"

decrypted="Empty text"

elif ["$var_algorithm" = "RSA"] || ["$var_algorithm" = "BLOWFISH"]; then

#Encryption

hex_msg=$(echo -n "$var_message" | hexdump -v -e ’/1 "%02X "’ | tr -d ’ ’)

size=${#hex_msg}

it="$size"

while ["$it" -gt "0"]; do

if ["$it" -lt "8"]; then

value=$(echo ${hex_msg:0:$it})

poke 0x$MM2S_addr 0x$value

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0x0

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

it=-1

FPGA-based Accelerators for Cryptography

B. Applications 79

elif ["$it" -lt "$N2"]; then

tmp=$(($tmp - $N))

value=$(echo ${hex_msg:$tmp:$N})

poke 0x$MM2S_addr 0x$value

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

value=$(echo ${hex_msg:0:$tmp})

poke 0x$MM2S_addr 0x$value

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

it=-1

else

tmp=$(($it - 8))

value=$(echo ${hex_msg:$tmp:8})

poke 0x$MM2S_addr 0x$value

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

tmp=$(($tmp - $N))

value=$(echo ${hex_msg:$tmp:$N})

poke 0x$MM2S_addr 0x$value

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

it=$tmp

fi

n_blocks=$(echo "obase=ibase=16;$n_blocks+1" | bc)

done

poke 0x43c00000 0x$n_blocks

otpt_counter=$(echo "obase=ibase=16;$n_blocks*8" | bc)

if ["$var_algorithm" = "RSA"]; then

inpt_counter=$(echo "obase=ibase=16;$otpt_counter+11" | bc)

else

inpt_counter=$(echo "obase=ibase=16;$otpt_counter+9" | bc)

fi

poke 0x40400018 0x$MM2S_base_addr

poke 0x40400028 0x$inpt_counter

poke 0x40400048 0x$S2MM_base_addr

poke 0x40400058 0x$otpt_counter

it=0

end=$(echo "ibase=16;$n_blocks*2" | bc)

if ["$var_algorithm" = "RSA"]; then

gpio_decrypt=$n_blocks

MM2S_addr=$MM2S_base_addr

if ["$key" = "NULL"]; then

poke 0x$MM2S_addr 0xEE0038D7

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0xCFAB57

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

FPGA-based Accelerators for Cryptography

B. Applications 80

else

poke 0x$MM2S_addr 0x${key:25:8}

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

poke 0x$MM2S_addr 0x${key:17:8}

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

fi

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+8" | bc)

else

gpio_decrypt=$((0xC0000000 | 0x$n_blocks))

gpio_decrypt=$(echo "obase=16; $gpio_decrypt" | bc)

MM2S_addr=$(echo "obase=ibase=16;$MM2S_base_addr+8" | bc)

fi

while ["$it" -lt "$end"]; do

output=$(peek 0x$S2MM_addr)

poke 0x$MM2S_addr $output

hex="${output:2:32}"

hex=$(echo "0x$hex" | xxd -r)

encrypted="$encrypted$hex"

S2MM_addr=$(echo "obase=ibase=16;$S2MM_addr+4" | bc)

MM2S_addr=$(echo "obase=ibase=16;$MM2S_addr+4" | bc)

it=$(($it + 1))

done

#Decrypt

poke 0x43c00000 0x$gpio_decrypt

poke 0x40400018 0x$MM2S_base_addr

poke 0x40400028 0x$inpt_counter

poke 0x40400048 0x$S2MM_base_addr

poke 0x40400058 0x$otpt_counter

it=$end

tmp=$((($end - 1) * 4))

tmp=$(echo "obase=16; $tmp" | bc)

S2MM_addr=$(echo "obase=ibase=16;$S2MM_base_addr+$tmp" | bc)

while ["$it" -gt "0"]; do

output=$(peek 0x$S2MM_addr)

hex="${output:2:32}"

hex=$(echo "0x$hex" | xxd -r)

decrypted="$decrypted$hex"

S2MM_addr=$(echo "obase=ibase=16;$S2MM_addr-4" | bc)

it=$(($it - 1))

done

fi

#Generate web page

...

FPGA-based Accelerators for Cryptography

Bibliography 81

References

[1] Field-programmable gate array Wikipedia https://es.wikipedia.org/wiki/

Field-programmable_gate_array

[2] Application-specific integrated circuit Wikipedia https://en.wikipedia.org/

wiki/Application-specific_integrated_circuit

[3] Zedboard Xilinx Products https://www.xilinx.com/products/

boards-and-kits/1-elhabt.html

[4] ZedBoard Getting Started Guide. Version 7.0 2017 AVNET

[5] Zynq-7000 All Programmable SoC Data Sheet: Overview DS190, June, 2017

[6] 7 Series DSP48E1 Slice User Guide UG479 v1.10, March, 2018

[7] AXI DMA v7.1 logiCORE IP Product Guide PG021 2016

[8] AXI4-Stream Infrastructure IP Suite v2.2 LogicCORE IP Product Guide PG085

[9] Vivado Design Suite User Guide: Design Flows Overview UG892 v2017.4

[10] Vivado Design Suite User Guide: High-Level Synthesis UG902 v2017.1

[11] Vivado Design Suite User Guide: Embedded Processor Hardware Design UG898
v2018.1

[12] Petalinux Tools Documentation: Reference guide UG1144 v2017.1

[13] RSA Article, Wikipedia https://en.wikipedia.org/wiki/RSA_

(cryptosystem).

[14] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms,
volume 2. Reading, MA: Addison-Wesley, Second edition, 1981.

[15] RSA Hardware implementation, RSA security //ftp://ftp.rsasecurity.com/

pub/pdfs/tr201.pdf.

[16] P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519-521, April 1985.

[17] Blowfish Article, Wikipedia https://en.wikipedia.org/wiki/Blowfish_

(cipher)

[18] Bruce Schneier security blog https://www.schneier.com/academic/blowfish/

FPGA-based Accelerators for Cryptography

https://es.wikipedia.org/wiki/Field-programmable_gate_array
https://es.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://www.xilinx.com/products/boards-and-kits/1-elhabt.html
https://www.xilinx.com/products/boards-and-kits/1-elhabt.html
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
//ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
//ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://www.schneier.com/academic/blowfish/

Bibliography 82

[19] Blowfish specification cryptowiki http://cryptowiki.net/index.php?title=

Cryptographic_algorithm_Blowfish

[20] Hexadecimal values of pi https://www.schneier.com/code/constants.txt

[21] Processing System 7 v5.5 LogiCORE IP Product Guide PG082 2017

[22] Petalinux Tools Documentation: Workflow Tutorial UG1156 v2017.1

[23] Vivado Design Suite User Guide: Partial Reconfiguration UG909 v2018

[24] AXI Timer 2.0 Logic CORE IP Product guide PG079 2016

[25] 0xStubs Measuring time Xilinx https://0xstubs.org/

measuring-time-in-a-bare-metal-zynq-application/

[26] Keysight Technologies 34461A Digital Multimeter https://www.keysight.com/

en/pdx-2891615-pn-34461A/digital-multimeter-6-digit-truevolt-dmm

[27] Advanced Encryption Standard Wikipedia https://es.wikipedia.org/wiki/

Advanced_Encryption_Standard

FPGA-based Accelerators for Cryptography

http://cryptowiki.net/index.php?title=Cryptographic_algorithm_Blowfish
http://cryptowiki.net/index.php?title=Cryptographic_algorithm_Blowfish
https://www.schneier.com/code/constants.txt
https://0xstubs.org/measuring-time-in-a-bare-metal-zynq-application/
https://0xstubs.org/measuring-time-in-a-bare-metal-zynq-application/
https://www.keysight.com/en/pdx-2891615-pn-34461A/digital-multimeter-6-digit-truevolt-dmm
https://www.keysight.com/en/pdx-2891615-pn-34461A/digital-multimeter-6-digit-truevolt-dmm
https://es.wikipedia.org/wiki/Advanced_Encryption_Standard
https://es.wikipedia.org/wiki/Advanced_Encryption_Standard

	Summary
	Preface
	Acknowledgements
	Introduction
	Background
	Zedboard
	AXI DMA
	Tools and Workflow

	RSA algorithm
	Algorithm specification
	Limitations in hardware
	Montgomery's method
	Montgomery's exponentiation algorithm
	Algorithm trace

	Blowfish algorithm
	Algorithm specification
	Algorithm trace

	Hardware integration
	Module implementation
	Embedded platform
	RSA Bare metal application

	Petalinux integration
	Installation
	Communication with the accelerator

	Partial reconfiguration
	Partial reconfiguration workflow
	Petalinux
	Web Server
	User application

	Delay and Power
	Delay measurements
	Power measurements

	Conclusion
	Accelerators C code
	RSA accelerator
	Blowfish accelerator

	Applications
	Bare metal application C
	Partial reconfiguration workflow
	Web page
	User application

