000078001 001__ 78001
000078001 005__ 20211216131131.0
000078001 0247_ $$2doi$$a10.1109/ICSENS.2014.6985276
000078001 0248_ $$2sideral$$a93316
000078001 037__ $$aART-2014-93316
000078001 041__ $$aeng
000078001 100__ $$0(orcid)0000-0001-9897-6527$$aPina, M.P.$$uUniversidad de Zaragoza
000078001 245__ $$aExplosives detection by array of Si µ-cantilevers coated with titanosilicate type nanoporous materials
000078001 260__ $$c2014
000078001 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078001 5203_ $$aAn array comprising 4 Si microcantilevers coated with nanoporous ETS-10 crystals sub-micrometric in size has been deployed as a multisensing platform for 2-nitrotoluene (an explosive related molecule) recognition. For such purposes, the adsorption properties of synthetic microporous ETS-10 titanosilicate type materials have been tailored by means of the Si/Ti ratio, and surface grafting with organic groups (amine, imidazol). Our general strategy for vapor detection of explosives involves the combination of Si based nanoporous solids as sensing materials and resonating Si cantilevers provided with self-heating elements as tiny microbalances (mass sensitivity factors ~18 Hz/ng). Particularly for this work, ETS-10 type titanosilicates with promoted basic properties (Si/Ti=4, -NH2 anchored on the external surface) exhibit the higher affinity towards nitroaromatic derivatives as electron defficient molecules. A high remarkable hydrophilic character is shown by titanosilicates modified by covalent linkage with imidazole based organosilane (above 17% wt. water uptake at room temperature). Accounting from such versatile sorption behavior, the family of nanoporous ETS-10 crystals has been deployed by microdropping technique over the 8 Si-microcantilevers chip. By means of a portable lowpower electronic interface capable of the simultaneous excitation and measurement of 4 sensor output signals, such multisensing platform has been successfully applied for 2-nitrotoluene detection at trace level.
000078001 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2010-19276
000078001 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000078001 655_4 $$ainfo:eu-repo/semantics/conferenceObject$$vinfo:eu-repo/semantics/acceptedVersion
000078001 700__ $$0(orcid)0000-0001-5063-2987$$aAlmazán, F.
000078001 700__ $$0(orcid)0000-0001-5973-4330$$aEguizábal, A.
000078001 700__ $$0(orcid)0000-0002-8448-7543$$aPellejero, I.
000078001 700__ $$0(orcid)0000-0002-4931-1358$$aUrbiztondo, M.$$uUniversidad de Zaragoza
000078001 700__ $$0(orcid)0000-0002-7742-9329$$aSesé, J.$$uUniversidad de Zaragoza
000078001 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaría, J.$$uUniversidad de Zaragoza
000078001 700__ $$aGarcía-Romeo, D.$$uUniversidad de Zaragoza
000078001 700__ $$0(orcid)0000-0003-2361-1077$$aCalvo, B.$$uUniversidad de Zaragoza
000078001 700__ $$0(orcid)0000-0002-5380-3013$$aMedrano, N.$$uUniversidad de Zaragoza
000078001 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000078001 7102_ $$15008$$2X$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cProy. investigación JBA
000078001 7102_ $$15008$$2250$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Electrónica
000078001 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000078001 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000078001 773__ $$g2014, 6985276 (2014), 1407-1410$$pProc. IEEE Sens. ...$$tProceedings of IEEE Sensors ...$$x1930-0395
000078001 8564_ $$s297496$$uhttps://zaguan.unizar.es/record/78001/files/texto_completo.pdf$$yPostprint
000078001 8564_ $$s129530$$uhttps://zaguan.unizar.es/record/78001/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078001 909CO $$ooai:zaguan.unizar.es:78001$$particulos$$pdriver
000078001 951__ $$a2021-12-16-13:01:18
000078001 980__ $$aARTICLE