000078003 001__ 78003
000078003 005__ 20211008114731.0
000078003 0247_ $$2doi$$a10.1088/0960-1317/26/8/084010
000078003 0248_ $$2sideral$$a93317
000078003 037__ $$aART-2016-93317
000078003 041__ $$aeng
000078003 100__ $$0(orcid)0000-0001-5063-2987$$aAlmazán, F.$$uUniversidad de Zaragoza
000078003 245__ $$aZeolite based microconcentrators for volatile organic compounds sensing at trace-level: fabrication and performance
000078003 260__ $$c2016
000078003 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078003 5203_ $$aA novel 6-step microfabrication process is proposed in this work to prepare microfluidic devices with integrated zeolite layers. In particular, microfabricated preconcentrators designed for volatile organic compounds (VOC) sensing applications are fully described. The main novelty of this work is the integration of the pure siliceous MFI type zeolite (silicalite-1) polycrystalline layer, i.e. 4.0¿¿±¿¿0.5 µm thick, as active phase, within the microfabrication process just before the anodic bonding step. Following this new procedure, Si microdevices with an excellent distribution of the adsorbent material, integrated resistive heaters and Pyrex caps have been obtained. Firstly, the microconcentrator performance has been assessed by means of the normal hexane breakthrough curves as a function of sampling and desorption flowrates, temperature and micropreconcentrator design. In a step further, the best preconcentrator device has been tested in combination with downstream Si based microcantilevers deployed as VOC detectors. Thus, a preliminar evaluation of the improvement on detection sensitivity by silicalite-1 based microconcentrators is presented.
000078003 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2013-49068-C2-1-R$$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2013-49068-C2-2-R
000078003 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000078003 590__ $$a1.794$$b2016
000078003 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b122 / 260 = 0.469$$c2016$$dQ2$$eT2
000078003 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b24 / 58 = 0.414$$c2016$$dQ2$$eT2
000078003 591__ $$aPHYSICS, APPLIED$$b67 / 147 = 0.456$$c2016$$dQ2$$eT2
000078003 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b59 / 87 = 0.678$$c2016$$dQ3$$eT3
000078003 592__ $$a0.63$$b2016
000078003 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1
000078003 593__ $$aNanoscience and Nanotechnology$$c2016$$dQ2
000078003 593__ $$aMechanics of Materials$$c2016$$dQ2
000078003 593__ $$aElectronic, Optical and Magnetic Materials$$c2016$$dQ2
000078003 593__ $$aMechanical Engineering$$c2016$$dQ2
000078003 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078003 700__ $$0(orcid)0000-0002-8448-7543$$aPellejero, I.
000078003 700__ $$aMorales, A.
000078003 700__ $$0(orcid)0000-0002-4931-1358$$aUrbiztondo, M.A.$$uUniversidad de Zaragoza
000078003 700__ $$0(orcid)0000-0002-7742-9329$$aSesé, J.$$uUniversidad de Zaragoza
000078003 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M.P.$$uUniversidad de Zaragoza
000078003 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaría, J.$$uUniversidad de Zaragoza
000078003 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000078003 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000078003 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000078003 773__ $$g26, 8 (2016), 084010 [12 pp]$$pJ. micromechanics microengineering$$tJOURNAL OF MICROMECHANICS AND MICROENGINEERING$$x0960-1317
000078003 8564_ $$s760076$$uhttps://zaguan.unizar.es/record/78003/files/texto_completo.pdf$$yPostprint
000078003 8564_ $$s77531$$uhttps://zaguan.unizar.es/record/78003/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078003 909CO $$ooai:zaguan.unizar.es:78003$$particulos$$pdriver
000078003 951__ $$a2021-10-08-11:37:20
000078003 980__ $$aARTICLE