000078049 001__ 78049
000078049 005__ 20200716101523.0
000078049 0247_ $$2doi$$a10.3934/dcds.2019112
000078049 0248_ $$2sideral$$a110543
000078049 037__ $$aART-2019-110543
000078049 041__ $$aeng
000078049 100__ $$0(orcid)0000-0003-2453-7841$$aAbadias, L.$$uUniversidad de Zaragoza
000078049 245__ $$aOn well-posedness of vector-valued fractional differential-difference equations
000078049 260__ $$c2019
000078049 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078049 5203_ $$aWe develop an operator-theoretical method for the analysis on well posedness of partial differential-difference equations that can be modeled in the form (*) {Delta(alpha) u(n) = Au(n + 2) + f(n, u(n)), n is an element of N-0, 1 < alpha <= 2; u(0) = u(0); u(1) = u(1); where A is a closed linear operator defined on a Banach space X. Our ideas are inspired on the Poisson distribution as a tool to sampling fractional differential operators into fractional differences. Using our abstract approach, we are able to show existence and uniqueness of solutions for the problem (*) on a distinguished class of weighted Lebesgue spaces of sequences, under mild conditions on sequences of strongly continuous families of bounded operators generated by A, and natural restrictions on the nonlinearity f. Finally we present some original examples to illustrate our results.
000078049 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E64$$9info:eu-repo/grantAgreement/ES/MCYTS/ESP2016-79135-R$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2016-77710-P
000078049 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000078049 590__ $$a1.338$$b2019
000078049 591__ $$aMATHEMATICS$$b64 / 324 = 0.198$$c2019$$dQ1$$eT1
000078049 591__ $$aMATHEMATICS, APPLIED$$b104 / 260 = 0.4$$c2019$$dQ2$$eT2
000078049 592__ $$a1.362$$b2019
000078049 593__ $$aAnalysis$$c2019$$dQ1
000078049 593__ $$aDiscrete Mathematics and Combinatorics$$c2019$$dQ1
000078049 593__ $$aApplied Mathematics$$c2019$$dQ1
000078049 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/submittedVersion
000078049 700__ $$aLizama, C.
000078049 700__ $$0(orcid)0000-0001-9430-343X$$aMiana, P.J.$$uUniversidad de Zaragoza
000078049 700__ $$0(orcid)0000-0002-0988-2527$$aVelasco, M.P.
000078049 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000078049 773__ $$g39, 5 (2019), 2679-2708$$pDiscrete contin. dyn. syst.$$tDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS$$x1078-0947
000078049 8564_ $$s398811$$uhttps://zaguan.unizar.es/record/78049/files/texto_completo.pdf$$yPreprint
000078049 8564_ $$s77473$$uhttps://zaguan.unizar.es/record/78049/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint
000078049 909CO $$ooai:zaguan.unizar.es:78049$$particulos$$pdriver
000078049 951__ $$a2020-07-16-09:28:15
000078049 980__ $$aARTICLE