000078058 001__ 78058
000078058 005__ 20191122145055.0
000078058 0247_ $$2doi$$a10.1016/j.comgeo.2017.05.008
000078058 0248_ $$2sideral$$a101841
000078058 037__ $$aART-2018-101841
000078058 041__ $$aeng
000078058 100__ $$aFabila-Monroy, R.
000078058 245__ $$aColored ray configurations
000078058 260__ $$c2018
000078058 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078058 5203_ $$aWe study the cyclic color sequences induced at infinity by colored rays with apices being a given balanced finite bichromatic point set. We first study the case in which the rays are required to be pairwise disjoint. We derive a lower bound on the number of color sequences that can be realized from any such fixed point set and examine color sequences that can be realized regardless of the point set, exhibiting negative examples as well. We also provide a tight upper bound on the number of configurations that can be realized from a point set, and point sets for which there are asymptotically less configurations than that number. In addition, we provide algorithms to decide whether a color sequence is realizable from a given point set in a line or in general position. We address afterwards the variant of the problem where the rays are allowed to intersect. We prove that for some configurations and point sets, the number of ray crossings must be T(n2) and study then configurations that can be realized by rays that pairwise cross. We show that there are point sets for which the number of configurations that can be realized by pairwise-crossing rays is asymptotically smaller than the number of configurations realizable by pairwise-disjoint rays. We provide also point sets from which any configuration can be realized by pairwise-crossing rays and show that there is no configuration that can be realized by pairwise-crossing rays from every point set.
000078058 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2013-14131$$9info:eu-repo/grantAgreement/ES/MINECO/MTM2015-63791-R$$9info:eu-repo/grantAgreement/ES/MINECO/MTM2012-30951$$9info:eu-repo/grantAgreement/ES/MICINN/EUI-EURC-2011-4306$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 734922-CONNECT$$9info:eu-repo/grantAgreement/EC/H2020/734922/EU/Combinatorics of Networks and Computation/CONNECT$$9info:eu-repo/grantAgreement/ES/DGA/E58
000078058 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000078058 590__ $$a0.343$$b2018
000078058 591__ $$aMATHEMATICS, APPLIED$$b248 / 254 = 0.976$$c2018$$dQ4$$eT3
000078058 591__ $$aMATHEMATICS$$b293 / 313 = 0.936$$c2018$$dQ4$$eT3
000078058 592__ $$a0.492$$b2018
000078058 593__ $$aComputational Mathematics$$c2018$$dQ2
000078058 593__ $$aComputational Theory and Mathematics$$c2018$$dQ2
000078058 593__ $$aGeometry and Topology$$c2018$$dQ2
000078058 593__ $$aControl and Optimization$$c2018$$dQ2
000078058 593__ $$aComputer Science Applications$$c2018$$dQ2
000078058 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078058 700__ $$0(orcid)0000-0002-6519-1472$$aGarcía, A.$$uUniversidad de Zaragoza
000078058 700__ $$aHurtado, F.
000078058 700__ $$aJaume, R.
000078058 700__ $$aPérez-Lantero, P.
000078058 700__ $$aSaumell, M.
000078058 700__ $$aSilveira, R.I.
000078058 700__ $$0(orcid)0000-0002-9543-7170$$aTejel, J.$$uUniversidad de Zaragoza
000078058 700__ $$aUrrutia, J.
000078058 7102_ $$12007$$2265$$aUniversidad de Zaragoza$$bDpto. Métodos Estadísticos$$cÁrea Estadís. Investig. Opera.
000078058 773__ $$g68 (2018), 292-308$$pComput. geom.$$tCOMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS$$x0925-7721
000078058 8564_ $$s958769$$uhttps://zaguan.unizar.es/record/78058/files/texto_completo.pdf$$yPostprint
000078058 8564_ $$s74229$$uhttps://zaguan.unizar.es/record/78058/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078058 909CO $$ooai:zaguan.unizar.es:78058$$particulos$$pdriver
000078058 951__ $$a2019-11-22-14:45:31
000078058 980__ $$aARTICLE