000078067 001__ 78067
000078067 005__ 20191122145058.0
000078067 0247_ $$2doi$$a10.1016/j.foodchem.2017.08.090
000078067 0248_ $$2sideral$$a101552
000078067 037__ $$aART-2018-101552
000078067 041__ $$aeng
000078067 100__ $$0(orcid)0000-0001-7931-574X$$aCarrascón, V.
000078067 245__ $$aThe kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition?
000078067 260__ $$c2018
000078067 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078067 5203_ $$aThis work seeks to understand the kinetics of O2 and SO2 consumption of air-saturated red wine as a function of its chemical composition, and to describe the chemical changes suffered during the process in relation to the kinetics. Oxygen Consumption Rates (OCRs) are faster with higher copper and epigallocatechin contents and with higher absorbance at 620 nm and slower with higher levels of gallic acid and catechin terminal units in tannins. Acetaldehyde Reactive Polyphenols (ARPs) may be key elements determining OCRs. It is confirmed that SO2 is poorly consumed in the first saturation. Phenylalanine, methionine and maybe, cysteine, seem to be consumed instead. A low SO2 consumption is favoured by low levels of SO2, by a low availability of free SO2 caused by a high anthocyanin/tannin ratio, and by a polyphenolic profile poor in epigallocatechin and rich in catechin-rich tannins. Wines consuming SO2 efficiently consume more epigallocatechin, prodelphinidins and procyanidins.
000078067 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/AGL2014-59840$$9info:eu-repo/grantAgreement/ES/MINECO/RTC-2015-3379$$9info:eu-repo/grantAgreement/ES/UZ-IBERCAJA-CAI/CB3-15
000078067 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000078067 590__ $$a5.399$$b2018
000078067 591__ $$aCHEMISTRY, APPLIED$$b5 / 71 = 0.07$$c2018$$dQ1$$eT1
000078067 591__ $$aNUTRITION & DIETETICS$$b10 / 86 = 0.116$$c2018$$dQ1$$eT1
000078067 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b7 / 135 = 0.052$$c2018$$dQ1$$eT1
000078067 592__ $$a1.768$$b2018
000078067 593__ $$aAnalytical Chemistry$$c2018$$dQ1
000078067 593__ $$aMedicine (miscellaneous)$$c2018$$dQ1
000078067 593__ $$aFood Science$$c2018$$dQ1
000078067 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078067 700__ $$aVallverdú-Queralt, A.
000078067 700__ $$aMeudec, E.
000078067 700__ $$aSommerer, N.
000078067 700__ $$aFernandez-Zurbano, P.
000078067 700__ $$0(orcid)0000-0002-4353-2483$$aFerreira, V.$$uUniversidad de Zaragoza
000078067 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000078067 773__ $$g241 (2018), 206-214$$pFood chem.$$tFOOD CHEMISTRY$$x0308-8146
000078067 8564_ $$s859406$$uhttps://zaguan.unizar.es/record/78067/files/texto_completo.pdf$$yPostprint
000078067 8564_ $$s46221$$uhttps://zaguan.unizar.es/record/78067/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078067 909CO $$ooai:zaguan.unizar.es:78067$$particulos$$pdriver
000078067 951__ $$a2019-11-22-14:47:38
000078067 980__ $$aARTICLE