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In this paper we prove a series of Rogers–Shephard type inequalities for convex bodies

when dealing with measures on the Euclidean space with either radially decreasing

densities or quasi-concave densities attaining their maximum at the origin. Functional

versions of classical Rogers–Shephard inequalities are also derived as consequences of

our approach.

1 Introduction and Main Results

We denote the length of a vector x ∈ R
n by |x|. We represent by Bn = {

x ∈ R
n : |x| ≤ 1

}
the

n-dimensional Euclidean unit ball, by S
n−1 its boundary, and σ will denote the standard

surface area measure on S
n−1. The n-dimensional volume of a measurable set M ⊂ R

n,

that is, its n-dimensional Lebesgue measure, is denoted by vol(M) or voln(M) if the

distinction of the dimension is useful (when integrating, as usual, dx will stand for

dvol(x)). With int M, bd M, and conv M we denote the interior, boundary, and convex hull

of M, respectively, and we set [x, y] for conv{x, y}, x, y ∈ R
n. The set of all i-dimensional

linear subspaces of R
n is denoted by G(n, i), and for H ∈ G(n, i), the orthogonal

projection of M onto H is denoted by PHM. Moreover, H⊥ ∈ G(n, n − i) represents the
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orthogonal complement of H. Finally, let Kn be the set of all n-dimensional convex

bodies, that is, compact convex sets with nonempty interior, in R
n. We will frequently

refer to [3], [17], and [36] for general references for convex bodies and their properties.

The Minkowski sum of two nonempty sets A, B ⊂ R
n denotes the classical vector

addition of them, A + B = {a + b : a ∈ A, b ∈ B}, and we write A − B for A + (−B).

One of the most famous relations involving the volume and the Minkowski

addition is the Brunn–Minkowski inequality (we refer to [16] for an extensive survey

of this inequality). One form of it states that if K, L ∈ Kn, then

vol(K + L)1/n ≥ vol(K)1/n + vol(L)1/n, (1)

and equality holds if and only if K and L are homothetic.

The Brunn–Minkowski inequality was generalized to different types of mea-

sures, including the case of log-concave measures [24, 31], a very powerful general-

ization to the case of Gaussian measures [9, 10, 13, 14, 37], to p-concave measures

and many other extensions (see, e.g., [8] and [11]). It is interesting to note that it was

proved by Borell [7, 8] that most of such generalizations would require a p-concavity

assumption on the underlined measure and its density (see (6) below for the precise

definition). Following those works, recently, many classical results in convex geometry

were generalized to the case of log-concave (and in some cases p-concave) functions. We

mention, among others, the Blaschke–Santaló inequality [4, 5, 15], the Bourgain–Milman,

and the reverse Brunn–Minkowski inequality [21], the general works on duality and

volume [5, 6], as well as the Grünbaum inequality [28, 29] and others [18, 26, 27, 30, 32].

In the particular case when L = −K, (1) gives

vol(K − K) ≥ 2nvol(K),

with equality if and only if K is centrally symmetric, that is, there exists a point x ∈ R
n

such that K−x = −(K−x). An upper bound for the volume of K−K is given by the Rogers–

Shephard inequality, originally proven in [34, Theorem 1]. For more details about this

inequality, we also refer the reader to [36, Section 10.1] or [3].

Theorem A (The Rogers-Shephard inequality) Let K ∈ Kn. Then

vol(K − K) ≤
(

2n

n

)
vol(K), (2)

with equality if and only if K is a simplex.
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Similarly to the Brunn–Minkowski inequality (1), it is natural to wonder about

the possibility of extending (2) for measures associated with certain densities. The

most natural candidates would be the classes of p-concave measures. Nevertheless,

it was noticed recently that a number of results in convex geometry and geometric

tomography can be generalized to a class of measures whose densities have no concavity

assumption. This includes the solution of the Busemann–Petty problem for general

measures [38], the Koldobsky slicing inequality [19, 20, 22, 23], as well as Shephard’s

problem for general measures [25].

First, we observe that one cannot expect to obtain

μ(K − K) ≤
(

2n

n

)
μ(K) (3)

without having certain control on the “position” of the body K. Indeed, it is enough to

consider the standard n-dimensional Gaussian measure γn given by

dγn(x) = 1

(2π)n/2 e
−|x|2

2 dx,

and K = x + Bn for |x| large enough. In this case it is clear that γn(K − K) = γn(2Bn) > 0,

whereas γn(K) can be arbitrarily small.

One option to get control on the right-hand side of (3) might be to exchange μ(K)

with a mean of the measures of all the translated copies of K with respect to −K. To this

end, given a measure μ on R
n, we define its translated-average μ as

μ(K) = 1

vol(K)

∫

K
μ(−y + K) dy,

for any K ∈ Kn. With this notion, our 1st main result reads as follows.

Theorem 1.1. Let K ∈ Kn. Let μ be a measure on R
n given by dμ(x) = φ(x) dx, where

φ : Rn −→ [0, ∞) is radially decreasing. Then

μ(K − K) ≤
(

2n

n

)
min {μ(K), μ(−K)} . (4)

Moreover, if φ is continuous at the origin then equality holds in (4) if and only if μ is a

constant multiple of the Lebesgue measure on K − K and K is a simplex.
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A function φ : Rn −→ [0, ∞) is said to be radially decreasing if φ(tx) ≥ φ(x) for

any t ∈ [0, 1] and any point x ∈ R
n.

A lower bound for μ(K−K) when the density function of μ is even and p-concave

(see the definition below), p ≥ −1/n, can be directly obtained from the results by Borell

and Brascamp–Lieb [8, 11]:

μ(K − K) ≥ μ(2K). (5)

Here we extend (5) to the case of measures with even and quasi-concave densities

(Theorem 2.6).

We recall that a function φ : Rn −→ [0, ∞) is p-concave, for p ∈ R ∪ {±∞}, if

φ ((1 − λ)x + λy) ≥ Mp (φ(x), φ(y), λ) (6)

for all x, y ∈ R
n and any λ ∈ (0, 1). Here Mp denotes the p-mean of two nonnegative

numbers:

Mp(a, b, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
(1 − λ)ap + λbp

)1/p if p �= 0, ±∞,

a1−λbλ if p = 0,

max{a, b} if p = ∞,

min{a, b} if p = −∞,

for ab > 0; Mp(a, b, λ) = 0, when ab = 0 and p ∈ R ∪ {±∞}. A 0-concave function is

usually called log-concave whereas a (−∞)-concave function is called quasi-concave.

Quasi-concavity is equivalent to the fact that the superlevel sets

Ct(φ) = {
x ∈ supp φ : φ(x) ≥ t‖φ‖∞

}
(7)

are convex for t ∈ [0, 1]. Here supp φ denotes the support of φ, that is, the closure of the

set
{
x ∈ R

n : φ(x) > 0
}
, and with ‖ · ‖∞ we mean

‖φ‖∞ = ess supx∈Rnφ(x) = inf
{
t ∈ R : vol

({x ∈ R
n : φ(x) > t}) = 0

}
.

We notice that if φ is p-concave, then supp φ is a closed convex set. Furthermore, if

a function φ is quasi-concave and such that maxx∈Rn φ(x) = φ(0) then it is radially

decreasing.

Although the Rogers–Shephard inequality (2) has been recently extended to the

functional setting (see, e.g., [1], [2], and [12] and the references therein), there seems to

be no direct way to derive inequality (4) from the above-mentioned functional versions
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just by considering the function χ
K

φ, where φ is the density of the given measure and χ
K

is the characteristic function of a convex body K (Remark 2.10). More precisely, in [12,

Theorems 4.3 and 4.5], Colesanti extended (2) to the more general functional inequality

∫

Rn
sup

x=x1+x2

(
f (x1)p + f (−x2)p)1/p dx ≤

(
2n

n

)∫

Rn
f (x) dx, (8)

for any p-concave integrable function, with p ∈ [−∞, 0). Here, the case p = −∞ has to

be understood as min
{
f (x1), f (−x2)

}
. In Section 2 we will also generalize (8) to general

measures (Theorem 2.9).

In [35], in addition to K−K, Rogers and Shephard considered two other centrally

symmetric convex bodies associated with K. The 1st one is

CK =
{
(x, θ) ∈ R

n+1 : x ∈ (1 − θ)K + θ(−K), θ ∈ [0, 1]
}

,

whose volume is given by

voln+1(CK) =
∫ 1

0
vol ((1 − θ)K + θ(−K)) dθ .

The 2nd one is just conv (K ∪ (−K)). The relation of the volumes of CK and

conv (K ∪ (−K)) to the volume of K was proved in [35]:

Theorem B Let K ∈ Kn be a convex body containing the origin. Then

∫ 1

0
vol
(
(1 − θ)K + θ(−K)

)
dθ ≤ 2n

n + 1
vol(K), (9)

with equality if and only if K is a simplex. Moreover,

vol
(
conv

(
K ∪ (−K)

)) ≤ 2n vol(K), (10)

with equality if and only if K is a simplex with the origin as a vertex.

Here we will show an analog of the above result in the setting of measures with

radially decreasing density:
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Theorem 1.2. Let K ∈ Kn be a convex body containing the origin and let μ be a measure

on R
n given by dμ(x) = φ(x) dx, where φ : Rn −→ [0, ∞) is radially decreasing. Then

∫ 1

0
μ
(
(1 − θ)K + θ(−K)

)
dθ ≤ 2n

n + 1
sup
y∈K

θ∈(0,1]

μ
(
(1 − θ)y − θK

)

θn (11)

and moreover, if φ is quasi-concave,

μ
(
conv

(
K ∪ (−K)

)) ≤ 2n sup
y∈K

θ∈(0,1]

μ
(
(1 − θ)y − θK

)

θn . (12)

Moreover, if φ is continuous at the origin then equality holds in (11) if and only if μ is a

constant multiple of the Lebesgue measure on conv
(
K ∪ (−K)

)
and K is a simplex, and

equality holds in (12) if and only if μ is a constant multiple of the Lebesgue measure on

conv
(
K ∪ (−K)

)
and K is a simplex with the origin as a vertex.

We note that the upper bounds in Theorem 1.2 are bounded and can be restated

using ‖φ‖∞vol(K); indeed, μ
(
(1 − θ)y − θK

)
/θn is bounded from above by ‖φ‖∞vol(K).

In [35, Theorem 1], Rogers and Shephard also gave the following lower bound for

the volume of K in terms of the volumes of a projection and a maximal section of K:

Theorem C Let k ∈ {1, . . . , n − 1}, H ∈ G(n, n − k) and K ∈ Kn. Then

voln−k

(
PHK

)
max
x0∈H

volk

(
K ∩ (x0 + H⊥)) ≤

(
n

k

)
vol(K). (13)

In this paper we will show that the above result remains true for products

of measures associated with quasi-concave densities, provided that PHK ⊂ K, that

is, PHK = K ∩ H. The assumption on the projection is necessary, as pointed out in

Example 4.2. In particular, this hypothesis does not allow one to prove Theorem 1.2 by

directly following the proof of Theorem B, see [35, Theorems 2 and 3]: there, the authors

constructed a suitable higher dimensional set to which (13) was applied. This will be

not possible here.

Before stating the result, we fix the following notation: given a convex body K

and x ∈ PHK, we write K(x) = (K − x) ∩ H⊥. We will use the definition of superlevel set

Ct(φ) given by (7).

Theorem 1.3. Let k ∈ {1, . . . , n − 1} and H ∈ G(n, n − k). Given a continuous at the

origin and quasi-concave function φk : Rk −→ [0, ∞) with ‖φk‖∞ = φk(0) and a radially
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decreasing function φn−k : Rn−k −→ [0, ∞), let μn = μn−k × μk be the product measure

on R
n given by dμn−k(x) = φn−k(x) dx and dμk(y) = φk(y) dy. Let K ∈ Kn with PHK ⊂ K

and so that volk

(
Ct(φk) ∩ K(x)

)
attains its maximum at x = 0 for every t ∈ (0, 1). Then

μn−k

(
PHK

)
μk

(
K ∩ H⊥) ≤

(
n

k

)
μn(K). (14)

The above assumption on the maximal section K(0) of K can be omitted when the

density of the product measure is also quasi-concave, as shown in Theorem 4.1, which

is a straightforward consequence of the following functional version of (13).

Theorem 1.4. Let k ∈ {1, . . . , n − 1} and H ∈ G(n, n − k). Let f : R
n −→ [0, ∞) be

a bounded quasi-concave function such that volk

(
Ct(f ) ∩ (x + H⊥)

)
, x ∈ H, attains its

maximum at x = 0 for every t ∈ (0, 1), and let g : H −→ [0, ∞) be a radially decreasing

function. Then,

∫

H
g(x)PHf (x) dx

∫

H⊥
f (y) dy ≤

(
n

k

)
‖f ‖∞

∫

Rn
g(PHx)f (x) dx.

Here, the projection function PHf : H −→ [0, ∞) of f is defined by PHf (x) =
supy∈H⊥ f (x+y). In the particular case of a log-concave integrable function f , this result

has been recently obtained in [1, Theorem 1.1].

The paper is organized as follows. Section 2 is mainly devoted to the proofs

of Theorems 1.1 and 1.2 as well as the functional analogs of these results. We start

Section 3 by deriving a general result for functions with certain concavity conditions,

which will play a relevant role along the manuscript. As a consequence of this result

we prove, in particular, Theorem 1.4. Next, in Section 4, we study Rogers–Shephard type

inequalities for measures with quasi-concave densities and prove Theorem 1.3. Finally,

in Section 5, we present another Rogers–Shephard type inequality when assuming a

further concavity for the density of the involved measure.

2 Rogers–Shephard Type Inequalities for Measures with Radially Decreasing

Densities

2.1 The case of convex sets

As pointed out in the previous section, one cannot expect to obtain (3) without having

control on the translations of the set K. Moreover, certain requirements on the density of

the measure μ must be made (see also the comments after Remark 2.4 and Example 2.5).
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To this regard, in Section 4, we will show that one may consider quasi-concave densities

with maximum at the origin. In this setting, we will also obtain other Rogers–Shephard

type inequalities.

Let us now follow a different approach. First, we will prove an extension of

(2) for the more general case of radially decreasing densities, collected in Theorem 1.1.

Before showing it, we need the following auxiliary result.

Lemma 2.1. Let φ : [0, ∞) −→ [0, ∞) be a decreasing function and let n, m ∈ N. Then,

for every x ∈ (0, ∞),

∫ x

0

(
1 − t

x

)n

tm−1φ(t) dt ≥
(

n + m

n

)−1 ∫ x

0
tm−1φ(t) dt,

with equality if and only if φ is constant on (0, x).

Proof. Considering the function F : (0, ∞) −→ [0, ∞) given by

F(x) =
(

n + m

n

)−1 ∫ x

0
tm−1φ(t) dt −

∫ x

0

(
1 − t

x

)n

tm−1φ(t) dt,

we need to show that it is nonpositive.

Expanding the binomial (1 − t/x)n we may assert on one hand that F(x) → 0 as

x → 0+. On the other hand, and jointly with Lebesgue’s differentiation theorem, we get

that the derivative of F exists for almost every x ∈ (0, ∞) and further

F ′(x) =
(

n + m

n

)−1

xm−1φ(x) − n
∫ x

0

(
1 − t

x

)n−1 tm

x2 φ(t) dt.

Now, applying the change of variable u = t/x, we get

n
∫ x

0

(
1 − t

x

)n−1

tm dt = n 	(n)	(m + 1)

	(n + m + 1)
xm+1 =

(
n + m

n

)−1

xm+1,

where 	 represents the gamma function. This together with the fact that φ is decreasing

implies that F ′(x) ≤ 0, with equality if and only if φ is constant on (0, x).

Since F is absolutely continuous on every interval [a, b] ⊂ (0, ∞), because it

arises as a finite sum of products of absolutely continuous functions,

F(x) = F(a) +
∫ x

a
F ′(s) ds ≤ F(a)
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for all x > 0 and any 0 < a ≤ x. Taking into account that lima→0+ F(a) = 0 we then have

F(x) =
∫ x

0
F ′(s) ds ≤ 0,

with equality if and only if F ′ ≡ 0 almost everywhere or, equivalently, when φ is constant

on (0, x). �

Next we prove Theorem 1.1. We follow the idea of the original proof of the

Rogers–Shephard inequality [34], with the main difference of the application of

Lemma 2.1 in (18).

Proof of Theorem 1.1. Let f : Rn −→ [0, ∞) be the function given by

f (x) = vol
(
K ∩ (x + K)

)
.

Observe that supp f = K − K and f vanishes on bd(K − K). Furthermore, using the

Brunn–Minkowski inequality (1) together with the inclusion

K ∩ [(1 − λ)x + λy + K
] ⊃ (1 − λ)

[
K ∩ (x + K)

]+ λ
[
K ∩ (y + K)

]
, (15)

which holds for all λ ∈ [0, 1] and x, y ∈ K − K, we get that f is (1/n)-concave.

On the one hand, by Fubini’s theorem, we have

∫

K−K
f (x) dμ(x) =

∫

Rn

∫

Rn
χ

K
(y)χ

y−K
(x) φ(x) dy dx =

∫

K
μ(y − K) dy = vol(K) μ(−K). (16)

On the other hand, we define the function g : K − K −→ [0, ∞) given by

g(x) = f (0)

[

1 − |x|
ρ

K−K

(
x/|x|)

]n

, for every x �= 0,

and g(0) = f (0), where

ρ
L
(u) = max{ρ ≥ 0 : ρu ∈ L}, u ∈ S

n−1,

stands for the radial function of L ∈ Kn. Notice that g1/n is affine on
[
0, ρ

K−K
(u)u

]
, for

all u ∈ S
n−1, and so g(0)1/n = f (0)1/n and

g
(
ρ

K−K
(u)u

)1/n = 0 = f
(
ρ

K−K
(u)u

)1/n.
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Hence, since f 1/n is concave, it follows that f 1/n ≥ g1/n on
[
0, ρ

K−K
(u)u

]
. Therefore, using

polar coordinates, we have

∫

K−K
f (x) dμ(x) =

∫

Sn−1

∫ ρK−K (u)

0
rn−1f (ru)φ(ru) dr dσ(u)

≥ f (0)

∫

Sn−1

∫ ρK−K (u)

0

(

1 − r

ρ
K−K

(u)

)n

rn−1φ(ru) dr dσ(u).

(17)

Now, from (17) and Lemma 2.1 we obtain

∫

K−K
f (x) dμ(x) ≥ 1

(2n
n

) f (0)

∫

Sn−1

∫ ρK−K (u)

0
rn−1φ(ru) dr dσ(u) = 1

(2n
n

)vol(K)μ(K − K), (18)

which, together with (16), yields

μ(K − K) ≤
(

2n

n

)
μ(−K).

By replacing K with −K, we obtain the desired inequality.

Finally, we notice that equality holds in (4) only if there is equality in (18). This

implies, by Lemma 2.1, that φ(ru) is constant on
(
0, ρ

K−K
(u)
)

for σ -almost every u ∈ S
n−1.

Since φ is continuous at the origin, μ is a constant multiple of the Lebesgue measure

on K − K and, by Theorem A, K is a simplex. The converse immediately follows from

Theorem A. �

Remark 2.2. From the proof of the equality case in the above result (and the

corresponding one of Lemma 2.1), we notice that the assumption of continuity at the

origin for φ is necessary in order to “recover” the Lebesgue measure (up to a constant).

Indeed, one could consider a simplex K and a function φ that is constant on
(
0, ρ

K−K
(u)
)

for every u ∈ S
n−1, but not necessarily constant on K − K, and thus (4) would hold with

equality.

The next theorem is obtained just by repeating the same argument given in the

proof of Theorem 1.1 but replacing −K with L.

Theorem 2.3. Let K, L ∈ Kn be such that K + L contains the origin, and let μ be a

measure on R
n given by dμ(x) = φ(x) dx, where φ : Rn −→ [0, ∞) is radially decreasing.

Then

μ(K + L)vol
(
K ∩ (−L)

) ≤
(

2n

n

)∫

K
μ(x + L)dx.
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Fig. 1. Constructing a measure for which (19) does not hold.

Remark 2.4. As a straightforward consequence of Theorem 1.1, we get the following

statement. Let K ∈ Kn and let μ be a measure on R
n given by dμ(x) = φ(x) dx, where

φ : Rn −→ [0, ∞) is radially decreasing. Then

μ(K − K) ≤
(

2n

n

)
min

{
sup
x∈Rn

μ(x + K), sup
x∈Rn

μ(x − K)

}
. (19)

The above fact trivially holds in dimension n = 1 for an arbitrary measure.

Indeed, given K = [a, b], then

μ(K−K) = μ
(
[a−b, b−a]

) = μ
(
[a, b]−a

)+μ
(
[a, b]−b

)≤ 2 min
{

sup
x∈R

μ(x + K), sup
x∈R

μ(x − K)

}
.

However, in dimension n ≥ 2 the radial decay assumption cannot be omitted, as the

following example shows.

Example 2.5. Fix 0 < ε < δ < 2. Consider the measure μ on R
2 with density

φ(x) =
{

1 if x ∈ δB2 ∪ (2B2 \ (2 − ε)B2

)

0 otherwise

(Figure 1). Then

μ(B2 − B2) > 6 sup
x∈R2

μ(x + B2). (20)

Note that (20) contradicts (19). Indeed, on the one hand,

μ(B2 − B2) = μ(2B2) = πδ2 + (
4 − (2 − ε)2)π = 4πε + π(δ2 − ε2).
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On the other hand, we note that we need at least six copies of the unit disc in

order to cover bd(2B2), which can be seen by considering a regular hexagon inscribed

in 2B2 (Figure 1). Moreover, if we would cover bd(2B2) with exactly six translated copies

of B2, then the covering discs would stay away from the origin. Thus, for ε > 0 small

enough,

sup
x∈R2

vol
(
(x + B2) ∩ (2B2 \ (2 − ε)B2

)) = 1

6
4πε + o(ε).

Taking, for example, δ = √
ε/100 we get, for ε small enough, that δ > ε and also that

4πε/6 > πδ2 and o(ε) < δ2. Thus,

6 sup
x∈R2

μ(x + B2) = 6 sup
x∈R2

vol
(
(x + B2) ∩ (2B2 \ (2 − ε)B2

)) = 4πε + o(ε) < 4πε + π(δ2 − ε2).

Moreover, since supx∈R2 μ(x + B2) > μ(B2), this example shows that the radial decay

assumption is also needed in Theorem 1.1.

Regarding a reverse inequality for Theorem 1.1 (or (19)), we have the following

result, which extends (5).

Theorem 2.6. Let K ∈ Kn. Let μ be a measure on R
n given by dμ(x) = φ(x) dx, where

φ : Rn −→ [0, ∞) is an even quasi-concave function. Then

μ(K − K) ≥ μ(2K). (21)

Equality holds in (21) only if K ∩ (supp φ)/2 is centrally symmetric. Moreover, if K is

centrally symmetric with respect to the origin, then equality holds in (21).

Proof. We write Kt = (2K) ∩ Ct(φ) for every t ∈ [0, 1]. On the one hand, by Fubini’s

theorem, we have

μ(2K) =
∫

2K
φ(x) dx = ‖φ‖∞

∫

2K

∫ φ(x)
‖φ‖∞

0
dt dx = ‖φ‖∞

∫ 1

0

∫

2K
χCt(φ)

(x) dx dt

= ‖φ‖∞
∫ 1

0
vol
(
Kt

)
dt ≤ ‖φ‖∞ 2−n

∫ 1

0
vol
(
Kt − Kt

)
dt, (22)

where in the last inequality we have used the Brunn–Minkowski inequality (cf. (1)).



On Rogers–Shephard Type Inequalities 13

On the other hand, since φ is quasi-concave and even, then Ct(φ) is convex and

centrally symmetric (with respect to the origin), and hence Kt −Kt ⊂ (2K−2K)∩2Ct(φ) =
2
(
(K − K) ∩ Ct(φ)

)
. Thus, we get

μ(2K) ≤ ‖φ‖∞ 2−n
∫ 1

0
vol
(
Kt − Kt

)
dt ≤ ‖φ‖∞

∫ 1

0
vol
(
(K − K) ∩ Ct(φ)

)
dt

= ‖φ‖∞
∫ 1

0

∫

Rn
χ

(K−K)∩Ct(φ)
(x) dx dt = μ(K − K).

For the equality case, we note that the identity μ(2K) = μ(K − K) implies that (22)

holds with equality, and thus vol
(
Kt

) = 2−nvol
(
Kt − Kt

)
for almost every t ∈ [0, 1].

Then, there exists a decreasing sequence (tm)m ⊂ [0, 1] with tm → 0 and such that

vol
(
Ktm

) = 2−nvol
(
Ktm

− Ktm

)
for all m ∈ N. Therefore, since the boundary of a convex

set has null (Lebesgue) measure, we get

vol
(
(2K) ∩ supp φ

) = vol

( ∞⋃

m=1

Ktm

)

= lim
m

vol
(
Ktm

) = lim
m

2−nvol
(
Ktm

− Ktm

)

= 2−nvol

( ∞⋃

m=1

(
Ktm

− Ktm

)
)

= 2−nvol
((

(2K) ∩ supp φ
)− (

(2K) ∩ supp φ
))

.

(23)

Since supp φ is an n-dimensional convex set containing the origin then μ(2K) = μ(K −
K) > 0, and so vol

(
(2K) ∩ supp φ

)
> 0. Therefore, (23) implies that (2K) ∩ supp φ is

centrally symmetric. The sufficient condition is evident. �

If we apply (21) to the set K + x/2 then μ(K − K) ≥ supx∈Rn μ(x + 2K) also holds.

We observe, however, that we cannot expect a general reverse inequality for (19) in the

non-even case, as the following example shows.

Example 2.7. Let θ > 0 and consider Wθ = {
r(cos t, sin t) : 0 ≤ t ≤ θ , r ≥ 0

} ⊂ R
2. Let

μθ be the measure on R
2 with density φθ (x) = χ

Wθ
(x) (Figure 2).

By letting θ → 0, we can move a set K far enough, but keeping the measure of

the shifts of K constant, while the measure of K − K will be arbitrarily small. So the

left-hand side of (19) tends to zero whereas the right-hand side is fixed.

A way to strengthen inequality (19) would be to replace μ(K−K) by supω∈Rn μ(K−
K + ω).
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Fig. 2. A construction for which μ(K − K) → 0.

Question: Given a measure μ on R
n, is it true that for every K ∈ Kn

sup
ω∈Rn

μ(K − K + ω) ≤
(

2n

n

)
min

{
sup
x∈Rn

μ(x + K), sup
x∈Rn

μ(x − K)

}
?

The following result partially solves this question, in the setting of quasi-

concave densities, by exploiting the approach carried out in the proof of Theorem 1.1.

The idea relies on the possibility of finding a point, for each translated copy of K − K,

from which the density is radially decreasing over the given translation of K − K. The

negative counterpart is the apparent necessity of including a factor jointly with the

measure of the shift of K −K. Nevertheless, we observe that the supremum on the right-

hand side can be taken over K. In Section 4, we will provide a different solution to this

issue (Theorem 4.5).

Proposition 2.8. Let K ∈ Kn and let μ be a measure on R
n given by dμ(x) = φ(x) dx,

where φ : Rn −→ [0, ∞) is a quasi-concave function whose restriction to its support is

continuous. Then, for every ω ∈ R
n,

c(ω)μ(K − K + ω) ≤
(

2n

n

)
sup
y∈K

μ(y + ω − K), (24)

where c(ω) = vol
(
K ∩ (ω′ − ω + K)

)
vol(K)−1, and ω′ ∈ K − K + ω is such that φ(ω′) =

maxx∈K−K+ω φ(x). Moreover, equality holds for some ω0 ∈ R
n if and only if μ is a

constant multiple of the Lebesgue measure on K − K + ω0, c(ω0) = 1 and K is a simplex.

Proof. Let f : Rn −→ [0, ∞) be defined as f (x) = vol
(
K ∩ (x − ω + K)

)
. As before, we

get that supp f = K − K + ω and f is (1/n)-concave (see (1) and (15)). On the one hand, by

Fubini’s theorem, we have

∫

K−K+ω

f (x) dμ(x) =
∫

Rn

∫

Rn
χ

K
(y)χ

y+ω−K
(x) φ(x) dy dx =

∫

K
μ(y + ω − K) dy. (25)
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On the other hand, from the continuity of φ on supp φ, we know that there exists a point

ω′ ∈ (K − K + ω) ∩ supp φ, which is a compact set, such that φ(ω′) = maxx∈K−K+ω φ(x).

This, together with the quasi-concavity of φ, implies that it radially decays from ω′ on

K − K + ω, that is, φ
(
ω′ + t(x − ω′)

) ≥ φ(x) for any t ∈ [0, 1] and all x ∈ K − K + ω.

Now we define the function g : K − K + ω −→ [0, ∞) given by

g(x) = f (ω′)
[

1 − |x − ω′|
ρ

K−K+ω−ω′
(
(x − ω′)/|x − ω′|)

]n

, for every x �= ω′,

and g(ω′) = f (ω′). Since f 1/n is concave, it follows that f 1/n ≥ g1/n on
[
ω′, ω′ +

ρ
K−K+ω−ω′ (u)u

]
, and so, via the polar coordinates z = x − ω′ = ru, we get

∫

K−K+ω

f (x) dμ(x) =
∫

K−K+ω−ω′
f (ω′ + z)φ(ω′ + z) dz

=
∫

Sn−1

∫ ρ
K−K+ω−ω′ (u)

0
rn−1f (ω′ + ru)φ(ω′ + ru) dr dσ(u)

≥ f (ω′)
∫

Sn−1

∫ ρ
K−K+ω−ω′ (u)

0

[

1 − r

ρ
K−K+ω−ω′ (u)

]n

rn−1φ(ω′ + ru) dr dσ(u).

Then Lemma 2.1 yields

∫

K−K+ω

f (x) dμ(x) ≥ f (ω′)
(2n

n

)
∫

Sn−1

∫ ρ
K−K+ω−ω′ (u)

0
rn−1φ(ω′ + ru) dr dσ(u)

= 1
(2n

n

)vol
(
K ∩ (ω′ − ω + K)

)
μ(K − K + ω),

(26)

which, together with (25), gives

μ(K−K+ω)vol
(
K∩(ω′−ω+K)

) ≤
(

2n

n

)∫

K
μ(y+ω−K) dy ≤

(
2n

n

)
vol(K) sup

y∈K
μ(y+ω−K).

Finally, we notice that equality holds in (24) for some ω0 ∈ R
n only if there is equality

in (26). This implies, by Lemma 2.1, that φ(ω′ + ru) is constant on
(
0, ρ

K−K+ω0−ω′ (u)
)

for

σ -almost every u ∈ S
n−1. Since φ is continuous at ω′ ∈ supp φ, μ is a constant multiple

of the Lebesgue measure on K − K + ω0 and, by Theorem A, K is a simplex (in particular,

c(ω0) = 1). The converse immediately follows from Theorem A. �
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2.2 The functional case

In this subsection we draw a consequence of Theorem 1.1 regarding integrals of quasi-

concave functions, which extends two results of Colesanti [12, Theorems 4.3 and 4.5] and

is collected in Theorem 2.9. To this end, given a quasi-concave function f : Rn −→ [0, ∞),

we define the (−∞)-difference of f , which remains quasi-concave (cf. [12, Proposition

4.2]), by

�−∞ f (z) = sup
z=x−y

min
{
f (x), f (y)

}
.

Besides �−∞f , we also consider the (difference) functions �−∞,θ f (for some θ ∈ [0, 1])

and �̃−∞f given by
�−∞,θ f (z) = sup

z=(1−θ)x−θy
min

{
f (x), f (y)

}
,

�̃−∞f (z) = sup
z=(1−θ)x−θy

θ∈[0,1]

min
{
f (x), f (y)

}
.

These functions can be regarded as the (quasi-concave) functional counterparts of K−K,

(1− θ)K − θK and conv
(
K ∪ (−K)

)
, respectively, as it is shown via their (strict) superlevel

sets. For the sake of brevity we will write, for a function f : Rn −→ [0, ∞) and t ∈ [0, ∞),

S>t(f ) = {
x ∈ R

n : f (x) > t
}
;

analogously, S≥t(f ) = {
x ∈ R

n : f (x) ≥ t
}
. We observe that if f : R

n −→ [0, ∞) is a

quasi-concave function, then

(i) S>t

(
�−∞ f

) = S>t(f ) − S>t(f ),

(ii) S>t

(
�−∞,θ f

) = (1 − θ)S>t(f ) − θS>t(f ),

(iii) S>t

(
�̃−∞ f

) = conv
(
S>t(f ) ∪ (−S>t(f )

))
.

(27)

Indeed, (i), (ii), and (iii) are completely analogous. To see (i), let z ∈ S>t

(
�−∞f

)
. Then

there exist x,y such that z = x − y and min
{
f (x), f (y)

}
> t, which shows the inclusion

S>t

(
�−∞ f

) ⊂ S>t(f ) − S>t(f ).

For the reverse inclusion, if z ∈ S>t(f ) − S>t(f ) then there exist x, y ∈ R
n, with z = x − y,

such that f (x) > t and f (y) > t. Since min
{
f (x), f (y)

}
> t and z = x − y, we get that

�−∞f (z) > t, as desired.

Now we collect the above-mentioned consequence of (4), which may be seen as

its functional version.
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Theorem 2.9. Let f : Rn −→ [0, ∞) be an integrable quasi-concave function. Let μ be a

measure on R
n given by dμ(x) = φ(x) dx, where φ : Rn −→ [0, ∞) is radially decreasing.

Then ∫

Rn
�−∞ f (x) dμ(x) ≤

(
2n

n

)∫ ∞

0
min

{
μ
(
S≥t(f )

)
, μ
(−S≥t(f )

)}
dt. (28)

In particular, by choosing dμ(x) = dx, the Lebesgue measure, we get

∫

Rn
�−∞ f (x) dx ≤

(
2n

n

)∫

Rn
f (x) dx.

Proof. The proof follows the general ideas of those of [12, Theorems 4.3 and 4.5]. Using

Fubini’s theorem, together with (i) in (27), we may write

�−∞ f (x) =
∫ ∞

0
χ

S>t(f )−S>t(f )
(x) dt

and, consequently,

∫

Rn
�−∞ f (x) dμ(x) =

∫

Rn

∫ ∞

0
χ

S>t(f )−S>t(f )
(x) dt dμ(x) ≤

∫ ∞

0
μ
(
S≥t(f ) − S≥t(f )

)
dt. (29)

Since f is quasi-concave and integrable, the closure of the superlevel sets S≥t(f ) are

convex bodies for all 0 < t < ‖f ‖∞. Thus, we may apply (4) to S≥t(f ) (since the boundary

of a convex set has null measure) which, together with (29), allows us to obtain (28).

Now we note that, if dμ(x) = dx, then we have

min
{
vol
(
S≥t(f )

)
, vol

(−S≥t(f )
)} = vol

(
S≥t(f )

)
,

which completes the proof. �

Given a p-concave function f : Rn −→ [0, ∞), for p ∈ [−∞, 0), one can define the

p-difference of f , which remains p-concave (cf. [12, Proposition 4.2]), by

�pf (z) = sup
z=x+y

(
f (x)p + f (−y)p)1/p = sup

z=x−y

(
f (x)p + f (y)p)1/p,

where the case p = −∞ is understood as the minimum between both values.

Theorem 2.9 can be established for any p ∈ (−∞, 0). It suffices to note that if f is

p-concave then it is also quasi-concave, and then, we may apply inequality (28) for

p = −∞ together with the fact that (ap + bp)1/p ≤ min{a, b} for each a, b ≥ 0. Hence

�pf ≤ �−∞f .
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Remark 2.10. As mentioned before, Theorem 2.9 is an application of Theorem 1.1. It is

a natural and interesting question whether (4) could be directly derived from previous

functional versions as (8). Just considering χ
K

φ this is not possible because of item (i)

in (27): the integral of �−∞f does not provide (in general) the measure of K − K with

respect to the density φ.

2.3 Rogers–Shephard type inequalities for CK and conv
(
K ∪ (−K)

)
and their functional

versions

Now we prove the corresponding Rogers–Shephard type inequalities for CK and

conv
(
K ∪ (−K)

)
, as well as their equality cases.

Proof of Theorem 1.2. Let f : Rn × [0, 1] −→ [0, ∞) be the function given by

f (x, θ) = vol
((

(1 − θ)K
) ∩ (x + θK)

)
.

Note that f is (1/n)-concave by (1), and supp f = CK. On the one hand, taking the measure

μn+1 on R
n+1 given by dμn+1(x, θ) = φ(x) dx dθ , Fubini’s theorem and the change of

variable z = (1 − θ)y yield

∫

CK
f (x, θ) dμn+1(x, θ) =

∫ 1

0

∫

Rn
vol
((

(1 − θ)K
) ∩ (x + θK)

)
φ(x) dx dθ

=
∫ 1

0

∫

Rn

∫

Rn
χ

(1−θ)K
(z)χ

x+θK
(z) φ(x) dz dx dθ

=
∫ 1

0

∫

(1−θ)K

∫

Rn
χ

z−θK
(x) φ(x) dx dz dθ

=
∫ 1

0
(1 − θ)n

∫

K
μ
(
(1 − θ)y − θK

)
dy dθ

≤ vol(K)

∫ 1

0
(1 − θ)nθn dθ sup

y∈K
θ∈(0,1]

μ
(
(1 − θ)y − θK

)

θn

= 1
(2n+1

n

)
vol(K)

n + 1
sup
y∈K

θ∈(0,1]

μ
(
(1 − θ)y − θK

)

θn .

(30)

Now we define the function g : CK −→ [0, ∞) given by

g(x, θ) = f
(

0,
1

2

)
⎡

⎢
⎣1 −

∣
∣(x, θ) − (

0, 1
2

)∣∣

ρ
CK−(0, 1

2 )

((
(x, θ) − (0, 1

2 )
)
/
∣
∣(x, θ) − (0, 1

2 )
∣
∣
)

⎤

⎥
⎦

n

,
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for every (x, θ) �= (0, 1/2) and g(0, 1/2) = f (0, 1/2) = vol(K)/2n. Since f 1/n is concave,

then f 1/n ≥ g1/n on
[
(0, 1/2), (0, 1/2) + ρ

CK−(0, 1
2 )

(u)u
]
, and so, via the polar coordinates

(x, θ ′) = (x, θ) − (0, 1/2) = ru, we get

∫

CK
f (x, θ) dμn+1(x, θ) =

∫

CK−(0, 1
2 )

f
(

x, θ ′ + 1

2

)
φ(x) dx dθ ′

=
∫

Sn

∫ ρ
CK−(0, 1

2 )
(u)

0
rnf

((
0,

1

2

)
+ ru

)
φ
(
rPHu

)
dr dσ(u)

≥ f
(

0,
1

2

)∫

Sn

∫ ρ
CK−(0, 1

2 )
(u)

0

⎛

⎝1 − r

ρ
CK−(0, 1

2 )
(u)

⎞

⎠

n

rnφ
(
rPHu

)
dr dσ(u),

where H = {
(x, θ) ∈ R

n+1 : θ = 0
}
. Then, Lemma 2.1 yields

∫

CK
f (x, θ) dμn+1(x, θ) ≥ f

(
0, 1

2

)

(2n+1
n

)
∫

Sn

∫ ρ
CK−(0, 1

2 )
(u)

0
rnφ

(
rPHu

)
dr dσ(u)

= 1
(2n+1

n

)
vol(K)

2n μn+1(CK),

(31)

which, together with (30), gives (11).

Finally, we notice that equality holds in (11) only if there is equality in (31). This

implies, by Lemma 2.1, that φ
(
rPHu

)
is constant on

(
0, ρ

CK−(0, 1
2 )

(u)

)
for σ -almost every

u ∈ S
n. Since φ is continuous at the origin, μn+1 is a constant multiple of the Lebesgue

measure on CK and hence μ is so on PH(CK) = conv
(
K ∪ (−K)

)
because μn+1 is a product

measure. Since (1 − θ)y − θK ⊂ CK for all y ∈ K and any θ ∈ [0, 1], there is equality in

(9) and therefore, by Theorem B, K is a simplex. The converse is a direct consequence of

Theorem B.

Next we prove (12). We notice that

PH

(
CK ∩ (Ct(φ) × [0, 1]

)) = conv
(
K ∪ (−K)

) ∩ Ct(φ)

and, since 0 ∈ K, then

CK ∩ (Ct(φ) × [0, 1]
) ∩ H⊥ = [0, 1].

Hence, Theorem C yields

voln+1

(
CK ∩ (Ct(φ) × [0, 1]

)) ≥ 1

n + 1
vol
(
conv

(
K ∪ (−K)

) ∩ Ct(φ)
)
,
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which, together with Fubini’s theorem, gives

μn+1(CK) = ‖φ‖∞
∫

CK

∫ 1

0
χCt(φ)

(x) dt dx dθ = ‖φ‖∞
∫ 1

0

∫

CK
χCt(φ)×[0,1]

(x, θ) dx dθ dt

= ‖φ‖∞
∫ 1

0
voln+1

(
CK ∩ (Ct(φ) × [0, 1]

))
dt

≥ ‖φ‖∞
1

n + 1

∫ 1

0
vol
(
conv

(
K ∪ (−K)

) ∩ Ct(φ)
)

dt

= ‖φ‖∞
1

n + 1

∫ 1

0

∫

conv(K∪(−K))

χCt(φ)
(x) dx dt

= ‖φ‖∞
1

n + 1

∫

conv(K∪(−K))

∫ φ(x)
‖φ‖∞

0
dt dx

= 1

n + 1

∫

conv(K∪(−K))

φ(x) dx =
μ
(
conv

(
K ∪ (−K)

))

n + 1
.

This, together with (11), shows (12). Equality in (12) implies, in particular, equality in

(11) and thus μ is a constant multiple of the Lebesgue measure on conv
(
K ∪ (−K)

)
. The

proof is now concluded from the equality case of (10). �

Remark 2.11. Taking the function f (x, θ) = vol
((

(1 − θ)K
) ∩ (x + θ(−L)

))
, and arguing

as in the proof of Theorem 1.2, an analogous result can be obtained for two arbitrary

convex bodies instead of K and −K. Thus, if K, L ∈ Kn contain the origin and μ is a

measure on R
n given by dμ(x) = φ(x) dx, where φ : Rn −→ [0, ∞) is a radially decreasing

function, then

μ
(
conv(K ∪ L)

)

n + 1
≤
∫ 1

0
μ
(
(1 − θ)K + θL

)
dθ ≤ 2n

n + 1

vol(K)

vol
(
K ∩ (−L)

) sup
y∈K

θ∈(0,1]

μ
(
(1 − θ)y + θL

)

θn .

As a consequence of Theorem 1.2, we get in Theorem 2.12 below functional

versions of both (11) and (12). Regarding another functional version of (10), in the log-

concave setting, we refer the reader to [12, Theorem 1.1]. The advantage of the inequality

we present here is that, in contrast to the above-mentioned result, inequality (10) may

be recovered just by taking f = χ
K

. We use here the same notation as for Theorem 2.9.

Theorem 2.12. Let f : Rn −→ [0, ∞) be an integrable quasi-concave function. Let μ be

a measure on R
n given by dμ(x) = φ(x) dx, where φ : Rn −→ [0, ∞) is radially decreasing.



On Rogers–Shephard Type Inequalities 21

Then

∫ 1

0

∫

Rn
�−∞,θ f (x) dμ(x) dθ ≤ 2n

n + 1

∫ ∞

0
sup

y∈S≥t(f )
θ∈(0,1]

μ
(
(1 − θ)y − θS≥t(f )

)

θn dt (32)

and

∫

Rn
�̃−∞ f (x) dμ(x) ≤ 2n

∫ ∞

0
sup

y∈S≥t(f )
θ∈(0,1]

μ
(
(1 − θ)y − θS≥t(f )

)

θn dt. (33)

In particular, by choosing dμ(x) = dx, the Lebesgue measure, we get

∫ 1

0

∫

Rn
�−∞,θ f (x) dx dθ ≤ 2n

n + 1

∫

Rn
f (x) dx

and
∫

Rn
�̃−∞f (x) dx ≤ 2n

∫

Rn
f (x) dx.

Proof. Since f is quasi-concave and integrable, the closure of the superlevel sets S≥t(f )

are convex bodies for all 0 < t < ‖f ‖∞. Thus, we may apply Theorem 1.2 to S≥t(f ) (since

the boundary of a convex set has null measure) to obtain

∫ 1

0
μ
(
(1 − θ)S>t(f ) − θS>t(f )

)
dθ ≤ 2n

n + 1
sup

y∈S≥t(f )
θ∈(0,1]

μ
(
(1 − θ)y − θS≥t(f )

)

θn

and

μ
(
conv

(
S>t(f ) ∪ (−S>t(f ))

)) ≤ 2n sup
y∈S≥t(f )
θ∈(0,1]

μ
(
(1 − θ)y − θS≥t(f )

)

θn .

Integrating on t ∈ [0, ∞), (32) and (33) now follow by applying Fubini’s theorem together

with (ii) and (iii) in (27), respectively. Finally, if dμ(x) = dx, then we have

sup
y∈S≥t(f )
θ∈(0,1]

vol
(
(1 − θ)y − θS≥t(f )

)

θn = vol
(
S≥t(f )

)
.

This concludes the proof. �
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3 A Projection-Section Inequality for Quasi-Concave Functions

We start this section by showing a general result for functions that will be exploited

throughout the rest of the paper.

Proposition 3.1. Let μ be a measure on R
n given by dμ(x) = φ(x) dx, where φ : Rn −→

[0, ∞) is quasi-concave and such that ‖φ‖∞ = φ(0). Let f : Rn −→ [0, ∞) be a p-concave

function, p > 0, with ‖f ‖∞ = f (0), and let g : Rn −→ [0, ∞) be a measurable function.

Then

∫

supp f

∫ 1

0
(1 − θp)ng

(
(1 − θp)x

)
dθ dμ(x) ≤ 1

‖f ‖∞

∫

supp f
g(x)f (x) dμ(x). (34)

Moreover, if supp f is bounded, g is non-zero on supp f and φ is continuous at the origin,

equality in (34) implies that μ is a constant multiple of the Lebesgue measure on supp f .

Proof. Since f is p-concave, then Cθ (f ) is a convex set for every θ ∈ [0, 1]. We notice

that

Cθ1
(f )

1 − θ
p
1

⊂ Cθ2
(f )

1 − θ
p
2

for 0 ≤ θ1 ≤ θ2 < 1. In particular, taking θ1 = 0, we have

supp f ⊂ 1

1 − θp Cθ (f ) for any θ ∈ [0, 1), (35)

and hence

(supp f ) ∩ Ct(φ) ⊂
(

1

1 − θp Cθ (f )

)
∩ Ct(φ) ⊂ Cθ (f ) ∩ Ct(φ)

1 − θp (36)

for all θ ∈ [0, 1) and every t ∈ [0, 1]. Therefore,

(
1 − θp)[(supp f ) ∩ Ct(φ)

] ⊂ Cθ (f ) ∩ Ct(φ),

which yields
∫ 1

0

∫ 1

0

∫

(1−θp)[(supp f )∩Ct(φ)]
g(x) dx dθ dt ≤

∫ 1

0

∫ 1

0

∫

Cθ (f )∩Ct(φ)

g(x) dx dθ dt. (37)
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Now we compute both sides of inequality (37). On the one hand, by Fubini’s theorem and

the change of variable x = (
1 − θp

)
y, we get

∫ 1

0

∫ 1

0

∫

(1−θp)[(supp f )∩Ct(φ)]
g(x) dx dθ dt =

∫ 1

0

∫ 1

0

∫

(supp f )∩Ct(φ)

g
(
(1 − θp)y

)
(1 − θp)n dy dθ dt

=
∫

supp f

∫ 1

0
(1− θp)ng

(
(1− θp)y

)∫ 1

0
χCt(φ)

(y) dt dθ dy

=
∫

supp f

∫ 1

0
(1 − θp)ng

(
(1 − θp)y

) φ(y)

‖φ‖∞
dθ dy

= 1

‖φ‖∞

∫

supp f

∫ 1

0
(1 − θp)ng

(
(1 − θp)y

)
dθ dμ(y).

On the other hand, using again Fubini’s theorem,

∫ 1

0

∫ 1

0

∫

Cθ (f )∩Ct(φ)

g(x) dx dθ dt =
∫ 1

0

∫ 1

0

∫

Rn
g(x) χCθ (f )

(x)χCt(φ)
(x) dx dθ dt

=
∫

Rn
g(x)

∫ 1

0
χCt(φ)

(x)

∫ 1

0
χCθ (f )

(x) dθ dt dx

=
∫

supp f
g(x)

f (x)

‖f ‖∞
φ(x)

‖φ‖∞
dx

= 1

‖f ‖∞‖φ‖∞

∫

supp f
g(x) f (x) dμ(x).

Thus, (34) follows from inequality (37).

Now we deal with the equality case. First, we observe that since supp f is a

bounded set and f is p-concave, then Cθ (f ) is a bounded convex set for all θ ∈ [0, 1).

Without loss of generality we may assume that φ is upper semicontinuous.

Indeed, otherwise we would work with its upper closure that is determined via the

closure of the superlevel sets of φ [33, page 14 and Theorem 1.6] and thus defines the

same measure because of Fubini’s theorem together with the facts that all the superlevel

sets of φ are convex (since it is quasi-concave) and the boundary of a convex set has null

(Lebesgue) measure. Then its superlevel sets Ct(φ) are closed (cf. [33, Theorem 1.6]) for

every t ∈ [0, 1]. In the same way, f may be assumed to be upper semicontinuous (in

fact, it is already continuous in the interior of its support because of the p-concavity).

Moreover, since the definitions of both Cθ (f ) and Ct(φ) involve the essential supremum,

these superlevel sets have positive volume for all θ < 1 and t < 1, and therefore both

Cθ (f ) and Ct(φ) are closed convex sets with nonempty interior, for any θ , t ∈ [0, 1). From
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the continuity of φ at the origin, we know that 0 ∈ int Ct(φ) for all t < 1 and then

0 ∈ Cθ (f ) ∩ int Ct(φ) because f (0) = ‖f ‖∞. Hence, and taking into account that supp f

(and thus Cθ (f ) for any θ ∈ [0, 1]) is bounded, both Cθ (f ) ∩ (1 − θp)Ct(φ) and Cθ (f ) ∩ Ct(φ)

are convex bodies for all θ , t ∈ [0, 1).

Thus, if equality holds in (34) then, in particular, there is equality in the right-

hand inclusion of (36) for almost all θ ∈ [0, 1] and almost all t ∈ [0, 1] because g > 0 on

supp f .

Let us assume that there exists x0 ∈ supp f such that φ(x0) < ‖φ‖∞. Taking

t ∈ (φ(x0)/‖φ‖∞, 1
]
, since x0 �∈ Ct(φ) then we have that

(supp f ) ∩ Ct(φ) � supp f .

Let xt ∈ bd
(
(supp f ) ∩ Ct(φ)

)\ bd(supp f ). Since both sets are convex bodies, we can

always take xt �= 0. Then for all t ∈ (
φ(x0)/‖φ‖∞, 1

]
, the continuity of f on int(supp f )

yields the existence of θt ∈ (0, 1) such that

xt ∈ Cθ (f ) ∩ Ct(φ) for all θ ∈ [0, θt).

However, since xt ∈ bd Ct(φ) and 0 ∈ int Ct(φ),

xt �∈ Cθ (f ) ∩ (1 − θp)Ct(φ).

This contradicts the equality in the right-hand inclusion of (36) for almost every θ ∈ [0, 1]

and t ∈ [0, 1].

Therefore, we may conclude that φ(x) ≥ ‖φ‖∞ for all x ∈ supp f and thus φ ≡
‖φ‖∞ almost everywhere on supp f . This implies that μ is a constant multiple of the

Lebesgue measure on supp f . �

It is an interesting question whether Proposition 3.1 can be adapted to log-

concave functions, that is, when p = 0. We notice that the above approach cannot be

followed in this case. Indeed, considering, for example, the function f : R −→ [0, ∞)

given by f (x) = e−x2
, we have that supp f = R whereas Cθ (f ) is a convex body for

all t ∈ (0, 1]. Hence, there is no chance to get an inclusion of the type (35), that is,

λ(θ) supp f ⊂ Cθ (f ) for any θ ∈ [0, 1] and some λ(θ) > 0.

In what follows we use Proposition 3.1 to prove several results, including

Theorem 1.4. Let us first introduce a helpful family of constants and notice a few facts.
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We denote by

αn
p,q =

∫ 1

0
(1 − θp)n θp q dθ =

	
(

1
p + q

)
	(1 + n)

p 	
(
1 + n + 1

p + q
) ,

for each p, q > 0. Let us assume that g is concave. Then

g
(
(1 − θp)x

) ≥ θpg(0) + (1 − θp)g(x),

and so, we get from (34) that

αn
p,1 g(0) μ(supp f ) + αn+1

p,0

∫

supp f
g(x) dμ(x) ≤ 1

‖f ‖∞

∫

supp f
g(x) f (x) dμ(x). (38)

Another possibility is assuming that g is radially decreasing. Then, from (34), we get

αn
p,0

∫

supp f
g(x) dμ(x) ≤ 1

‖f ‖∞

∫

supp f
g(x) f (x) dμ(x). (39)

We point out that αn
p,0 = αn

p,1 + αn+1
p,0 , which shows that the expression on the left-hand

side of (38) and that of (39) are in a sense “similar”, as shown by considering the constant

function g(x) = 1. Indeed, when g ≡ 1, (39) reads

αn
p,0 μ(supp f ) ≤ 1

‖f ‖∞

∫

supp f
f (x) dμ(x). (40)

Moreover, it can be proved that (40) remains true even in the more general case when

‖f ‖∞ = f (x0) for an arbitrary x0 ∈ R
n, and without the maximality assumption for φ.

Corollary 3.2. Let f : Rn −→ [0, ∞) be a p-concave function, p > 0, with ‖f ‖∞ = f (x0)

for some x0 ∈ R
n, and let μ be a measure on R

n given by dμ(x) = φ(x) dx, where φ :

R
n −→ [0, ∞) is a bounded quasi-concave function. Then

αn
p,0

φ(x0)

‖φ‖∞
μ(supp f ) ≤ 1

‖f ‖∞

∫

supp f
f (x) dμ(x). (41)

Moreover, if supp f is bounded and φ is continuous at x0, equality in (41) implies that μ

is a constant multiple of the Lebesgue measure on supp f .

Proof. The proof follows similar steps as those of Proposition 3.1 but with some key

variations. We will highlight these differences.
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We consider the function ψ : R
n −→ [0, ∞) given by ψ(x) = f (x + x0), which

satisfies ‖ψ‖∞ = ‖f ‖∞ and supp ψ = (supp f ) − x0. Then (cf. (35))

supp ψ ⊂ 1

1 − θp Cθ (ψ) for all θ ∈ [0, 1). (42)

We observe that y ∈ Cθ (ψ) if and only if f (y +x0) ≥ θ‖f ‖∞, or equivalently, when y +x0 ∈
Cθ (f ). Hence, Cθ (ψ) + x0 = Cθ (f ), and thus (42) turns into

(supp f ) − x0 ⊂ 1

1 − θp

(
Cθ (f ) − x0

)
for all θ ∈ [0, 1).

Therefore,

(
(supp f )−x0

)∩(Ct(φ)−x0

) ⊂
(

1

1 − θp

(
Cθ (f ) − x0

)
)

∩(Ct(φ)−x0

) ⊂ 1

1 − θp

([
Cθ (f )∩Ct(φ)

]−x0

)

for all θ ∈ [0, 1) and every t ∈ [0, φ(x0)/‖φ‖∞
]
, where in the last inclusion we have used

that x0 ∈ Ct(φ). Consequently, we obtain

(1 − θp)
([

(supp f ) ∩ Ct(φ)
]− x0

)
⊂ (

Cθ (f ) ∩ Ct(φ)
)− x0. (43)

Next, integrating over x ∈ R
n the constant function 1, using (43) and the change of

variable x = (1 − θp)y, we get

(1 − θp)n
∫

[(supp f )∩Ct(φ)]−x0

dy ≤
∫

[Cθ (f )∩Ct(φ)]−x0

dy,

which yields

(1 − θp)n
∫

(supp f )∩Ct(φ)

dx ≤
∫

Cθ (f )∩Ct(φ)

dx. (44)

Now, computing the left-hand side in (41), we get

αn
p,0

φ(x0)

‖φ‖∞
μ(supp f ) = αn

p,0‖φ‖∞
∫

supp f

φ(x0)

‖φ‖∞
φ(x)

‖φ‖∞
dx

≤ ‖φ‖∞
∫ 1

0
(1 − θp)n dθ

∫

supp f
min

{
φ(x)

‖φ‖∞
,
φ(x0)

‖φ‖∞

}
dx

= ‖φ‖∞
∫ 1

0

∫ φ(x0)

‖φ‖∞

0
(1 − θp)n

∫

(supp f )∩Ct(φ)

dx dt dθ .
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Applying (44) we obtain the desired inequality. Indeed from the above computation

we get

αn
p,0

φ(x0)

‖φ‖∞
μ(supp f ) ≤ ‖φ‖∞

∫ 1

0

∫ φ(x0)

‖φ‖∞

0

∫

Cθ (f )∩Ct(φ)

dx dt dθ

= ‖φ‖∞
‖f ‖∞

∫

supp f
f (x)

∫ φ(x0)

‖φ‖∞

0
χCt(φ)

(x) dt dx

≤ ‖φ‖∞
‖f ‖∞

∫

supp f
f (x)

∫ 1

0
χCt(φ)

(x) dt dx = 1

‖f ‖∞

∫

supp f
f (x) dμ(x).

For the proof of the equality case we observe, on the one hand, that if equality holds in

(41) then, in particular,

∫

supp f
f (x)

∫ 1

φ(x0)

‖φ‖∞
χCt(φ)

(x) dt dx = 0,

which yields φ(x0) = ess supx∈supp f φ(x).

On the other hand, we may replace ‖φ‖∞ by ess supx∈supp f φ(x) in the above

argument to get also

αn
p,0

φ(x0)

ess supx∈supp f φ(x)
μ(supp f ) ≤ 1

‖f ‖∞

∫

supp f
f (x) dμ(x),

and since

αn
p,0

φ(x0)

‖φ‖∞
μ(supp f ) ≤ αn

p,0
φ(x0)

ess supx∈supp f φ(x)
μ(supp f ) = αn

p,0 μ(supp f ),

equality in (41) implies that φ(x0) = ‖φ‖∞.

Finally, due to the fact that φ(x0) = ‖φ‖∞, the rest of the proof of the equality

case is entirely analogous to the one in Proposition 3.1, and we do not repeat it here. �

As an application of Proposition 3.1, and the above-mentioned consequences of

it, we show Theorem 1.4.

Proof of Theorem 1.4. For all t ∈ [0, 1], the function ϕt : PHCt(f ) −→ [0, ∞) given by

ϕt(x) = volk

(
Ct(f ) ∩ (x + H⊥)

)
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is (1/k)-concave, because of the Brunn–Minkowski inequality (1), and supp ϕt = PHCt(f ).

By hypothesis we have ‖ϕt‖∞ = ϕt(0). Then, by applying (39) to ϕt, we get

αn−k
1/k,0

∫

PHCt(f )

g(x) dx ≤ 1

‖ϕt‖∞

∫

H
g(x) ϕt(x) dx (45)

and hence, integrating each side of inequality (45) over t ∈ [0, 1] and noticing that αn−k
1/k,0 =

(n
k

)−1, it follows that

∫ 1

0

∫

PHCt(f )

g(x) dx
∫

H⊥
χCt(f )

(y)dy dt ≤
(

n

k

)∫ 1

0

∫

H
g(x)

∫

x+H⊥
χCt(f )

(y)dy dx dt. (46)

On the one hand, by Fubini’s theorem and noticing that

PHCt(f ) ⊃ PH

({
x ∈ R

n : f (x) > t‖f ‖∞
}) = {

x ∈ H : PHf (x) > t‖f ‖∞
}
,

we obtain

∫ 1

0

∫

H
g(x)χ

PHCt(f )
(x) dx

∫

H⊥
χCt(f )

(y) dy dt =
∫

H

∫

H⊥
g(x)

∫ 1

0
χ

PHCt(f )
(x)χCt(f )

(y) dt dy dx

≥
∫

H

∫

H⊥
g(x) min

{
PHf (x)

‖f ‖∞
,

f (y)

‖f ‖∞

}
dy dx

≥
∫

H

∫

H⊥
g(x)

PHf (x)

‖f ‖∞
f (y)

‖f ‖∞
dy dx

=
∫

H
g(x)

PHf (x)

‖f ‖∞
dx
∫

H⊥
f (y)

‖f ‖∞
dy.

(47)

On the other hand, Fubini’s theorem yields

∫ 1

0

∫

H
g(x)

∫

x+H⊥
χCt(f )

(y)dy dx dt =
∫

H
g(x)

∫

x+H⊥

∫ 1

0
χCt(f )

(y)dt dy dx

=
∫

H

∫

x+H⊥
g(x)

f (y)

‖f ‖∞
dy dx =

∫

Rn
g(PHz)

f (z)

‖f ‖∞
dz.

(48)

Therefore, from (46), (47), and (48) we obtain

∫

H
g(x)PHf (x) dx

∫

H⊥
f (y) dy ≤

(
n

k

)
‖f ‖∞

∫

Rn
g(PHx)f (x) dx.

This concludes the proof. �
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With the above approach, but using (40) instead of (39), we notice that the

maximality assumption at the origin can be relaxed to get the following result, which

has been recently obtained in the setting of a log-concave integrable function in [1,

Theorem 1.1].

Corollary 3.3. Let k ∈ {1, . . . , n − 1} and H ∈ G(n, n − k). Let f : R
n −→ [0, ∞) be a

quasi-concave function such that

sup
x∈H

volk

(
Ct(f ) ∩ (x + H⊥))

is attained for all t ∈ (0, 1). Then

∫

H
PHf (x) dx max

x0∈H

∫

x0+H⊥
f (y) dy ≤

(
n

k

)
‖f ‖∞

∫

Rn
f (x) dx. (49)

We point out that, in the case of an integrable function f whose restriction to

its support is continuous, the above assumption on the volume of the sections of Ct(f )

trivially holds, since Ct(f ) is compact for every t ∈ (0, 1). Notice also that, when dealing

with certain classes of functions with a more restrictive concavity (such as log-concave

ones), continuity on the interior of their support is already guaranteed.

4 Rogers–Shephard Type Inequalities for Measures with Quasi-Concave Densities

As a direct application of Corollary 3.3 we obtain the following result.

Theorem 4.1. Let k ∈ {1, . . . , n−1} and H ∈ G(n, n−k). Let φi : Ri −→ [0, ∞), i = n−k, k,

be functions with ‖φi‖∞ = φi(0), and such that the function φ : Rn −→ [0, ∞) given by

φ(x, y) = φn−k(x)φk(y), x ∈ R
n−k, y ∈ R

k, is quasi-concave. Let μn = μn−k × μk be

the product measure on R
n given by dμn−k(x) = φn−k(x) dx and dμk(y) = φk(y) dy. Let

K ∈ Kn with PHK ⊂ K and so that vol
(
Ct(φ) ∩ K ∩ (x + H⊥)

)
attains its maximum for all

t ∈ (0, 1). Then

μn−k

(
PHK

)
max
x0∈H

[
φn−k(x0)

‖φn−k‖∞
μk

(
K ∩ (x0 + H⊥)

)
]

≤
(

n

k

)
μn(K). (50)
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Proof. It is a straightforward consequence of (49) applied to the function f : Rn −→
[0, ∞) given by f (x, y) = φn−k(x)φk(y)χ

K
(x, y). Indeed, since PHK ⊂ K then

PHf (x) = sup
y∈H⊥

φn−k(x)φk(y)χ
K
(x, y) = φn−k(x)φk(0)χ

PH K
(x)

and ‖f ‖∞ = φn−k(0)φk(0). �

We point out that the assumption PHK ⊂ K is needed in order to conclude the

above Rogers–Shephard type inequality (as well as Theorem 1.3).

Example 4.2. Let μ1 be the measure on R given by dμ1(x) = e−x2
dx and let μ2 =

μ1 × μ1, that is, dμ2(x) = e−|x|2 dx. Let H = {
(x, y) ∈ R

2 : y = 0
}

and, for a given

0 < α < π/2, let Kα be the centrally symmetric parallelogram Kα = conv
{
(1, tan α ±

1), (−1, − tan α ± 1)
}
.

On the one hand, Kα(0) = [
(0, 1), (0, −1)

]
is the “maximal” section of Kα (with

respect to μ1) and PHKα = [
(−1, 0), (1, 0)

]
. On the other hand, since Kα is contained in the

infinite strip Sα determined by the straight lines y = (tan α)x ± 1, and μ2 is rotationally

invariant, we have that

μ2(Kα) ≤ μ2(Sα) = √
2π μ1(Iα),

where Iα denotes the line segment centered at the origin and with length the width of

Sα.

Hence, μ1(Iα), and so μ2(Kα), can be made arbitrarily small when α → π/2.

However, the term μ1

(
PHKα

)
μ1

(
Kα(0)

) = μ1

(
[(−1, 0), (1, 0)]

)2 is a fixed positive constant.

This shows the necessity of assuming PHK ⊂ K in order to derive both (50) and (14).

In order to avoid the assumption PHK ⊂ K, one may exchange the orthogonal

projection by the corresponding maximal section. To this end, first we fix some notation:

given a measure μ in R
n with density φ, we will denote by μi, i = 1, . . . , n − 1, the

marginal of μ in the corresponding i-dimensional affine subspace, that is, for given

M ⊂ z + H with H ∈ G(n, i) and z ∈ H⊥,

μi(M) =
∫

H
χ

M
(x, z)φ(x, z) dx.
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Taking the function f : Rn −→ [0, ∞) given by f (x, y) = φ(x, y)χ
K
(x, y), x ∈ H, y ∈ H⊥,

since

PHf (x) = sup
y∈H⊥

φ(x, y)χ
K
(x, y) ≥ φ(x, y)χ

K
(x, y) = f (x, y),

we get the following result, as direct consequence of (49).

Corollary 4.3. Let k ∈ {1, . . . , n − 1} and H ∈ G(n, n − k). Let μ be a measure on R
n

given by dμ(x) = φ(x) dx, where φ : R
n −→ [0, ∞) is a quasi-concave function with

‖φ‖∞ = φ(0). Let K ∈ Kn be such that there exists the maximum of vol
(
Ct(φ)∩K∩(x+H⊥)

)

for all t ∈ (0, 1). Then

max
y∈H

μn−k

(
K ∩ (y + H)

)
max
x0∈H

μk

(
K ∩ (x0 + H⊥)

) ≤
(

n

k

)
‖φ‖∞μ(K). (51)

We notice that, from (50),

μn−k

(
PHK

)
μk

(
K ∩ H⊥) ≤

(
n

k

)
μn(K) (52)

holds provided that the density of μn, φ(x, y) = φn−k(x)φk(y), is quasi-concave. Although

the latter implies that both φn−k and φk are quasi-concave, the converse is, in general,

not true. In the following we exploit the approach followed in the previous section in

order to derive (52) for the more general case of measures μn−k and μk, with radially

decreasing and quasi-concave densities, respectively, and their product μn = μn−k ×μk,

provided that the maximality assumption

max
x∈PHK

volk

(
Ct(φk) ∩ K(x)

) = volk

(
Ct(φk) ∩ K(0)

)

holds. Again, we need to assume the condition PHK ⊂ K.

Proof of Theorem 1.3. By an appropriate choice of the coordinate axes, we may assume

that H = {xn−k+1 = · · · = xn = 0}. For every t ∈ [0, 1], and x ∈ PHK, we consider the set

Cx,t =
(
{0} × Ct(φk)

)
∩ K(x)

and the function ϕt : PHK −→ [0, ∞) given by

ϕt(x) = volk

(
Cx,t

)
.
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Since PHK ⊂ K and φk is continuous at the origin (which implies that 0 ∈ int Ct(φk) for

all t < 1), we may assure that, for every t < 1, ϕt(x) > 0 for any x in the (relative) interior

of PHK and hence supp ϕt = PHK. Moreover, ϕt is (1/k)-concave by (1) and, by hypothesis,

we have ‖ϕt‖∞ = ϕt(0).

Then, applying (39), with p = 1/k, to the function g : PHK −→ [0, ∞) given by

g(x, 0) = φn−k(x), x ∈ R
n−k, we get

∫

PHK
φn−k(x) dx ≤

(
n

k

)
1

‖ϕt‖∞

∫

PHK
φn−k(x) ϕt(x) dx, (53)

and hence, integrating (53) over t ∈ [0, 1], we obtain

∫ 1

0

∫

PHK
φn−k(x) dx

∫

Rk
χC0,t

(y) dy dt ≤
(

n

k

)∫ 1

0

∫

PHK
φn−k(x)

∫

Rk
χCx,t

(y) dy dx dt.

Therefore, by Fubini’s theorem we have

μn−k

(
PHK

)
μk

(
K ∩ H⊥) = ‖φk‖∞

∫

PHK
φn−k(x) dx

∫

K(0)

∫ 1

0
χCt(φk)

(y) dt dy

= ‖φk‖∞
∫ 1

0

∫

PHK
φn−k(x) dx

∫

Rk
χC0,t

(y) dy dt

≤
(

n

k

)
‖φk‖∞

∫ 1

0

∫

PHK
φn−k(x)

∫

Rk
χCx,t

(y) dy dx dt

=
(

n

k

)
‖φk‖∞

∫

PHK
φn−k(x)

∫

K(x)

∫ 1

0
χCt(φk)

(y) dt dy dx

=
(

n

k

)∫

PHK
φn−k(x)μk

(
K(x)

)
dx =

(
n

k

)
μn(K).

This concludes the proof. �

Next we show an extension of the above Rogers–Shephard type inequalities

involving maximal sections of convex bodies (cf. (51)) in the spirit of [1, Lemma 4.1].

Corollary 4.4. Let i, j ∈ {2, . . . , n − 1}, i + j ≥ n + 1, and let E ∈ G(n, i), H ∈ G(n, j) be

such that E⊥ ⊂ H. Let φ : Rn −→ [0, ∞) be a (−1/n)-concave function and let μ be the

measure on R
n given by dμ(x) = φ(x) dx. Then, for every K ∈ Kn, if F = E ∩ H,

sup
x∈E⊥

μi

(
K ∩ (x + E)

)
sup
y∈H⊥

μj

(
K ∩ (y + H)

) ≤
(

n − k

n − i

)
sup
x∈Rn

μk

(
K ∩ (x + F)

)
μ(K). (54)
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Proof. Let f : F⊥ −→ [0, ∞) be the function given by

f (x, y) =
∫

Rk
φ(x, y, z)χ

K
(x, y, z) dz.

The Borell–Brascamp–Lieb inequality (see, e.g., [16, Theorem 10.1]) implies that f is

quasi-concave and, in particular, Ct(f ) is a convex body. Then, we may apply Corollary

3.3 to obtain

∫

E⊥
sup
y∈H⊥

∫

Rk
φ(x, y, z)χ

K
(x, y, z) dz dx sup

x∈E⊥

∫

H⊥

∫

Rk
φ(x, y, z)χ

K
(x, y, z) dz dy

≤
(

n − k

n − i

)
sup

(x,y)∈F⊥

∫

Rk
φ(x, y, z)χ

K
(x, y, z) dz

∫

F⊥

∫

Rk
φ(x, y, z)χ

K
(x, y, z) dz dx dy

and thus, in particular, for every y0 ∈ H⊥ we have

∫

E⊥

∫

Rk
φ(x, y0, z)χ

K
(x, y0, z) dz dx sup

x∈E⊥

∫

H⊥

∫

Rk
φ(x, y, z)χ

K
(x, y, z) dz dy

≤
(

n − k

n − i

)
sup

(x,y)∈F⊥
μk

(
K ∩ ((x, y) + F

))
μ(K).

Hence, for every y0 ∈ H⊥, we get

μj

(
K ∩ (y0 + H)

)
sup
x∈E⊥

μi

(
K ∩ (x + E)

) ≤
(

n − k

n − i

)
sup
x∈Rn

μk

(
K ∩ (x + F)

)
μ(K),

which implies (54). �

Next we show how one may exploit the approach we are following in this

section to obtain an analogous result to Proposition 2.8, in the setting of quasi-concave

densities which are not necessarily continuous. Notice that whereas the right-hand side

in (55) is smaller than the right-hand side in (24), the constants c(ω) and φ(ω)/‖φ‖∞ are

not comparable in general.

Theorem 4.5. Let K ∈ Kn and let μ be a measure on R
n given by dμ(x) = φ(x) dx, where

φ : Rn −→ [0, ∞) is a bounded quasi-concave function. Then, for every ω ∈ R
n,

φ(ω)

‖φ‖∞
μ(K − K + ω) ≤

(
2n

n

)
min

{

sup
y∈K

μ(y + ω − K), sup
y∈K

μ(−y + ω + K)

}

. (55)
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Moreover, if φ is continuous at ω0, for some ω0 ∈ R
n, then equality holds in (55) (for

such ω0) if and only if μ is a constant multiple of the Lebesgue measure on K − K + ω0,

φ(ω0) = ‖φ‖∞ and K is a simplex.

Proof. Let ω ∈ R
n and consider the function fω : K − K + ω −→ [0, ∞) given by

fω(x) = vol
(
K ∩ (x − ω + K)

)
.

Notice that, fω is (1/n)-concave by (1), supp fω = K − K + ω and, moreover, that ‖fω‖∞ =
fω(ω) = vol(K). Then, using (41), we get

φ(ω)

‖φ‖∞
μ(K − K + ω) ≤

(
2n

n

)
1

vol(K)

∫

Rn
vol
(
K ∩ (x − ω + K)

)
dμ(x)

=
(

2n

n

)
1

vol(K)

∫

Rn
φ(x)

∫

Rn
χ

K
(y)χ

y+ω−K
(x) dy dx

=
(

2n

n

)
1

vol(K)

∫

K
μ(y + ω − K) dy ≤

(
2n

n

)
sup
y∈K

μ(y + ω − K).

Therefore, exchanging the roles of K and −K, (55) infers.

Finally, if equality holds in (55) for some ω0 ∈ R
n then, by Corollary 3.2, μ is a

constant multiple of the Lebesgue measure on K − K + ω0 and φ(ω0) = ‖φ‖∞. Now, from

the equality case of Theorem A, K must be a simplex. The converse is immediate from

Theorem A. �

We conclude this section by noticing that, from the proof of the previous result,

one may also obtain (4) in the slightly less general setting of quasi-concave densities

with maximum at the origin. We include it here for the sake of completeness.

Corollary 4.6. Let K ∈ Kn and let μ be the measure on R
n given by dμ(x) = φ(x) dx,

where φ : Rn −→ [0, ∞) is a quasi-concave function with ‖φ‖∞ = φ(0). Then

μ(K − K) ≤
(

2n

n

)
min

{
μ(K), μ(−K)

}
.

Moreover, if φ is continuous at the origin then equality holds if and only if μ is a constant

multiple of the Lebesgue measure on K − K and K is a simplex.
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5 A Remark for Measures with p-Concave Densities, p > 0

As we have shown in Example 4.2, the assumption PHK ⊂ K on Theorems 1.3 and 4.1 is

necessary. However, when dealing with measures associated with p-concave densities,

p > 0, an inequality in the spirit of (13) can be obtained for an arbitrary K ∈ Kn, by

setting a binomial coefficient according to the concavity nature of the density. This is

the content of the following result.

Theorem 5.1. Let k ∈ {1, . . . , n − 1}, r ∈ N and H ∈ G(n, n − k). Given a (1/r)-concave

function φk : Rk −→ [0, ∞) and a radially decreasing function φn−k : Rn−k −→ [0, ∞),

let μn = μn−k × μk be the product measure on R
n given by dμn−k(x) = φn−k(x) dx and

dμk(y) = φk(y) dy. Let K ∈ Kn be such that maxx∈H μk

(
K ∩ (x + H⊥)) = μk

(
K ∩ H⊥).

Then

μn−k

(
PHK

)
μk

(
K ∩ H⊥) ≤

(
n + r

n − k

)
μn(K).

Proof. Consider the function f : H −→ R given by

f (x) = μk

(
K ∩ (x + H⊥)) ,

which satisfies supp f = PHK.

Now, the Borell–Brascamp–Lieb inequality [16, Theorem 10.1] implies that μk is

(1/(k + r))-concave which, together with the convexity of K, yields that f is (1/(k + r))-

concave. Furthermore, by assumption we have that ‖f ‖∞ = f (0). Thus, using (39) for

g = φn−k, we obtain

αn−k
1/(k+r),0

∫

PHK
φn−k(x) dx ≤ 1

μk

(
K ∩ H⊥)

∫

PHK
μk

(
K ∩ (x + H⊥)) φn−k(x)dx

and hence

μn−k

(
PHK

)
μk

(
K ∩ H⊥) ≤

(
n + r

n − k

)
μn(K),

as desired. �

The latter result can be stated for any positive real number r, just replacing
(n+r
n−k

)

by the suitable constant.

We notice that the above inequality includes (13) as a special case, since the

constant density (of the Lebesgue measure) is ∞-concave, and thus r = 0.
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