Modification of the electronic properties of the π-spacer of chromophores linked to calix[4]arene platform for DSSCs applications

PII: S0143-7208(18)31199-9
DOI: https://doi.org/10.1016/j.dyepig.2018.12.066
Reference: DYPI 7271

To appear in: Dyes and Pigments

Received Date: 29 May 2018
Revised Date: 30 December 2018
Accepted Date: 30 December 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Modification of the electronic properties of the \(\pi\)-spacer of chromophores linked to calix[4]arene platform for DSSCs applications

E. Coloma, J. M. Andrés-Castána, D. Barriosb, I. Duertoa, S. Francoa, J. Garína, J. Ordunaa, B. Villacampab, M. J. Blesaa,*

Address:
a Departamento de Química Orgánica, ICMA
Universidad de Zaragoza-CSIC
50009, Zaragoza (Spain)
Phone: (+34) 876 553507
E-mail: mjblesa@unizar.es

b Departamento de Física de la Materia Condensada, ICMA
Universidad de Zaragoza-CSIC
50009, Zaragoza (Spain)

Corresponding author:
Dr. María-Jesús Blesa: mjblesa@unizar.es

Authors:
Eduardo Colom: ecolomsienes@gmail.com
José María Andrés-Castán: jmandrescastan@gmail.com
Daniel Barrios: 790772@unizar.es
Isolda Duerto: isolda@unizar.es
Dr. Santiago Franco: sfranco@unizar.es
Prof. Javier Garín: jgarin@unizar.es
Dr. Jesús Orduna: jorduna@unizar.es
Dr. Belén Villacampa: bvillaca@unizar.es
Dr. María-Jesús Blesa: mjblesa@unizar.es
Modification of the electronic properties of the π-spacer of chromophores linked to calix[4]arene platform for DSSCs applications

E. Colom a, J. M. Andrés-Castán a, D. Barrios b, I. Duerto a, S. Franco a, J. Garín a, J. Orduna a, B. Villacampa b, M. J. Blesa a *

Abstract

We have developed two novel dyes based on p-tert-butyl-calix[4]arene in order to evaluate their behavior as sensitizer in photovoltaic devices. These dyes consist in a difunctionalized calix[4]arene with triphenylamine (TPA)-donor, a heteroaromatic π-conjugated spacer, thiophene and benzothiadiazole-phenyl ring, respectively and cyanoacetic acid as acceptor group. The effect of the π-spacer has been studied by UV-vis spectroscopy and Differential Pulse Voltammetry and the models compounds have been theoretically investigated. The dye bearing phenylbenzothiadiazole results in a bathochromic shifted absorption and an adequate efficiency to transfer charge from D to A. The considerable increase of the photocurrent density results in a better efficiency of the devices prepared with these novel dyes with respect to the p-tert-butyl-calix[4]arene derivatives bearing TPA dye. In particular, p-tert-butyl-calix[4]arene derivative based on phenylbenzothiadiazole has reached an efficiency value of 5.84 % which means an increase of 33 % of the efficiency over those calix[4]arene derivatives with TPA dye.

Keywords

Introduction

Solar energy, as a source of renewable energy, has several advantages with respect to traditional energy sources as it is inexhaustible; it is accessible from any geographical location and has reduced environmental impacts. From early 90’s, organic dyes have received attention with respect to their application in dye sensitized solar cells (DSSCs). [1] A great variety of Donor-π-spacer-Acceptor (D–π–A) dyes for sensitized solar cells have been studied due to their facile synthetic process, flexibility and efficiency. [2] The D–π–A structure leads to photoinduced intramolecular charge transfer from the donor to the acceptor unit, which is effective to favor the electron transfer between the dye and the TiO₂ semiconductor.

Increasing the light harvesting ability of the DSSCs is of great importance to obtain better overall power conversion efficiency. This can be achieved through increasing the molar extinction coefficient of the sensitizer, broadening the absorption region and increasing the dye loading on TiO₂ films. [3] Recently, it was found that a double D–π–A branched organic dye, with a non-conjugated alkyl linkage to connect two separate D–π–A fragments, leads to a larger adsorption amount of the D–π–A segment on the TiO₂ film compared to the single D–π–A dye. Thus the cells based on double D–π–A branched dye may exhibit higher short-circuit current density (Jsc), open-circuit voltage (Voc) and photoconversion efficiency (η). [4]

One disadvantage of organic sensitizers in DSSCs is the aggregate formation, which leads to instability of the excited state, and reduces electron injection. [5,6] Aggregation can be avoided either by using different co-adsorbents or by introducing bulky groups in the dye [7,
In this way, charge recombination processes are prevented and the stability of the system is improved. [10-11]

Therefore, we designed new dyes based on a \textit{p-}tert-\textit{butyl-calix[4]}arene scaffold to be used as DSSC sensitizers because of the versatility of the calix[4]arene, which can be readily functionalized. [12,13] Our research group has used the \textit{p-}tert-\textit{butyl-calix[4]}arene scaffold to integrate several chromophores in one single molecule, far away enough to behave as independent chromophores and so providing several light-harvesting units per molecule which favors high molar extinction coefficients. [14-16] Moreover, the \textit{p-}tert-\textit{butyl substituted calix[4]}arene derivative has bulky alkyl chains. This functionalization increases the solubility of the systems and hinders dye aggregation. In addition, these systems can be immobilized in cone conformation by the introducing of propyl or longer groups into the lower rim. [17,18] Despite of the fact that calix[4]arene derivatives possess so many applications, [19,20] the investigation of calix[4]arene-based sensitizers as a key component in DSSCs has been scarcely studied. The role of calix[4]arene as donor unit was reported by Tan \textit{et al.} [21] and two papers have been published by our research group using the \textit{p-}tert-\textit{butyl-calix[4]}arene as scaffold to orient the anchoring groups. [15,16] In our previous work [15], it was shown that the molar extinction coefficient of the two branched dye with TPA increased when it is compared with the monosubstituted calix[4]arene. However, the IPCE spectrum showed that the injection of photons above 600 nm is negligible. In the present work, the expansion of the absorption spectrum is intended, via the variation of the \textit{π}-spacer. The nature of the \textit{π}-spacer is relevant in order to tune the photophysical properties. [22] Joly \textit{et al.} published interesting results based on a thiophene and a benzothiadiazole-phenyl heterocycle as \textit{π}-spacer. [23] The use of thiophene-based \textit{π}-bridge provides chemical stability to the final dye. Moreover, the use of a dissymmetric \textit{π}-conjugated bridge (A′–\textit{π}) including a benzothiadiazole (BTZ) [23,24], an electro deficient unit (A′) localized close to the triphenylamine-thiophene part and a phenyl ring between the (A′) unit and the anchoring cyanoacrylic acid group stabilizes the dye radical cation and decreases the recombination rate. [25] To explore the impact of the electron-withdrawing ability of the auxiliary acceptor (A′) and understand the effect of BTZ, we systematically investigated the photophysical, electrochemical and photovoltaic properties of the novel dyes. The pursuit of an efficient light harvester, as well as the inhibition of both the intermolecular \textit{π–π} aggregation and the recombination processes can lead to an effective molecular design of sensitizers and to establish a relationship between the dye structure and the photovoltaic properties of these new branched dyes.
2.1 Synthesis and characterization

Chart 1 shows the molecular structure of Cx-2-TPA, 8 and 9. Cx-2-TPA [15] is a calix[4]arene derivative of TPA dye [26] that it is used in this paper to compare its photovoltaic properties with those of compounds 8 and 9.

Scheme 1 depicts the synthesis of compounds 4 and 5. The TPA-thiophene derivative 1 was lithiated with n-BuLi in the 5 position and substituted with tributyltin chloride. [27] Then, the intermediate stannane STN was not stable and it was used in the next step without previous purification. The reactions of the donor moiety with the corresponding π-spacers (the commercial 5-bromo-2-thiophenecarboxaldehyde and 4-bromo-7-(4-formylphenyl)-2,1,3-benzothiadiazole) [28,29] were carried out by the Stille cross coupling reaction with Pd(PPh₃)₄, which is a versatile carbon-carbon bond formation reaction [30] and therefore aldehydes 2 and 3 were prepared. Finally, the tert-butyldimethylsilyl group of compounds 2 and 3 was removed with tetrabutylammonium fluoride (TBAF) in anhydrous tetrahydrofuran (THF) at room temperature to give the desired alcohol derivatives 4 and 5.
Scheme 1. Synthesis of the compounds 4 and 5.

Aldehydes 6 and 7 were prepared by a Steglich reaction of the hydroxyl group of compounds 4 and 5, using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), with the corresponding carboxylic acid derivative of calixarene Cx-2, following the method described in the literature.
[31-33] (The detailed synthesis procedure is reported in Supporting Information). In the last synthetic step, the acceptor unit was incorporated by a Knoevenagel condensation of the formyl group with cyanoacetic acid in basic media and the dianchored dyes 8 and 9 were obtained (Scheme 2).

Scheme 2. Synthesis of the dyes 8 and 9.

2.2. Optical properties
The UV-vis absorption measurements have been carried out in solutions (10⁻⁵ M THF, (Fig. 1)) and on sensitized TiO₂ films (Fig. 2). The spectrum of 9 shows a higher energy band centered at 340 nm, which is attributed to π → π* electronic transition from the conjugated chain (BTZ). The spectral range at lower energy shows a band in the visible region (400-575 nm), which can be assigned to the intramolecular charge transfer (ICT) that occurs between the electron-withdrawing and electron-donating parts of both dyes 8 and 9, respectively. [23,34] 8 and 9 present both broad bands up to ~ 600 nm. Taking into account this broad absorption, quite high short-circuit photocurrent density (Jsc) can be expected. [35]

![Absorption spectra](image)

Fig. 1. Absorption spectra of Cx-2-TPA, 8 and 9 in THF solution (10⁻⁵ M).

Table 1 summarizes the optical properties of Cx-2-TPA, 8 and 9. The molar extinction coefficient of the new dyes increases with respect to Cx-2-TPA [15] and also with respect to other triphenylamine-based dyes. [26,35,36] The new dyes exhibit high molar extinction coefficient values, indicating that these sensitizers have good light-absorption ability (Supporting Information, Fig. S.3 - S.5).

<table>
<thead>
<tr>
<th>Dye</th>
<th>λ_abs^a (nm)</th>
<th>λ_abs^b (nm)</th>
<th>ε·^a (10⁴ M⁻¹·cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx-2-TPA</td>
<td>425</td>
<td>416</td>
<td>2.58 ± 0.16</td>
</tr>
<tr>
<td>8</td>
<td>436</td>
<td>424</td>
<td>5.03 ± 0.34</td>
</tr>
<tr>
<td>9</td>
<td>464</td>
<td>467</td>
<td>4.53 ± 0.46</td>
</tr>
</tbody>
</table>

^a In THF solution (10⁻⁵ M). ^b Absorption on TiO₂ films.

Concerning the comparison of ICT bands shown in Fig.1, it should be noted that the lengthening of the spacer in dyes 8 and 9, incorporating heterocycles, with respect to Cx-2-TPA results in a bathochromic shift and an increased molar extinction coefficient which points to a potential higher light-harvesting efficiency. Moreover, as it was expected, dye 9 with a benzothiadiazole unit shows bathochromic shifted absorption as compared with dye 8.

Absorption bands for 8 and 9 shift to lower energies (by 14 and 8 nm, respectively) when tetrahydrofuran is changed by dichloromethane as solvent (Supporting Information, Fig. S.6). This phenomenon may be attributed to the interaction of polar solvent molecules with the carboxylic acid, which decreases the electron withdrawing strength of the acceptor by coordinating with COOH group.
The UV spectra of the films prepared with the studied dyes adsorbed on TiO$_2$ are shown in Fig. 2 and Fig.S.7 (Supporting Information). When 8 and Cx-2-TPA are attached to the TiO$_2$ surface, the absorption maxima are slightly blue shifted when compared to those in THF solution. In general, the blue shifts can be ascribed to the deprotonation of the dyes and/or the formation of H-aggregates (extended head to tail stacking) [37] on the TiO$_2$ surface. It should be mentioned that the UV-vis spectra of the films of Cx-2-TPA, 8 and 9 taken after different time intervals of immersion (5 and 24 h) do not show evidence of aggregation. The broad absorption bands of 8 and 9 on TiO$_2$ are adequate for effective light absorption.

![Fig. 2. UV-vis spectra of films (-----) prepared with dyes a) 8 and b) 9 after 5 and 24 h of immersion. The spectra of THF solution (with maxima also normalized to unity) (-----) are shown for comparison.](image)

2.3. Electrochemical properties

The electrochemical properties of Cx-2-TPA, 8 and 9 were studied by Differential Pulse Voltammetry (DPV). The voltammograms were performed using 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte, a glassy carbon working electrode, a Pt counter electrode and the Ag/AgCl reference electrode. The concentration of dye solutions was 5∙10$^{-4}$ M in THF. The voltammograms are reported in the Supporting Information (Figures S.10 and S.12). The oxidation potential of both ground and excited states of these dyes are gathered in Table 2.

<table>
<thead>
<tr>
<th>Dye</th>
<th>E_{ox} (V)</th>
<th>E_{0-0} (eV)</th>
<th>E_{ox}^{*} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx-2-TPA</td>
<td>+1.38</td>
<td>2.45</td>
<td>-1.06</td>
</tr>
<tr>
<td>8</td>
<td>+1.34</td>
<td>2.38</td>
<td>-1.04</td>
</tr>
<tr>
<td>9</td>
<td>+1.33</td>
<td>2.25</td>
<td>-0.92</td>
</tr>
</tbody>
</table>

a The oxidation potential values were converted to normal electrode (NHE) by addition of 0.199 V. b $E_{D,O}$ was estimated from the absorption spectra. c The estimated oxidation potential of excited state of the dye was calculated from $E_{ox}^{*} = E_{ox} - E_{D,O}$.

In the context of DSSCs, sensitizer dyes must satisfy several electrochemical requirements. On the one hand, the oxidation potential of the ground state of the dye, E_{ox} value, must be more positive than the redox potential of the electrolyte (in our case I_3^-/I^-, which has a value of +0.4 V [38]) to ensure that the dye is effectively regenerated after being oxidized. On the other hand, the oxidation potential of the excited state of the dye, E_{ox}^{*} value, must be more negative.
than the TiO$_2$ conduction band (−0.5 V vs NHE [39]) to favor the electron injection from the excited dye onto the TiO$_2$ electrode. [40,41] Dyes Cx-2-TPA, 8 and 9 have similar values of E_{ox} because the triphenylamine fragment is common. The values of E_{ox}^* varies depending on the π-spacer used. Due to the stronger accepting character, the E_{ox}^* potential for 9 is more positively shifted compared to 8 (≈ 0.12 V). The oxidation potential values of Cx-2-TPA, 8 and 9 (E_{ox} and E_{ox}^*) suggest that electron injection and regeneration are energetically permitted. (Supporting Information, Fig. S.13).

2.4. Theoretical calculations

In order to obtain further information on the electronic structure of the new dyes we have performed DFT calculations using acetyl derivatives Ac-8 and Ac-9 (Chart 2) as simplified models of calixarene derivatives 8 and 9. The results of the calculations have been also compared to the acetyl derivative Ac-TPA [16] used as a simpler analogous of compound Cx-2-TPA.

![Molecular models used in theoretical calculations.](chart2.png)

The optimization of ground state geometries reveals a twisted geometry along the π-conjugated spacer. The torsion angle between the phenylene and thiophene ring is 39-40° in the three studied dyes. The substitution of a thiophene ring in Ac-8 by a benzothiazole-phenyl in Ac-9 leads to an increased torsion, thus, the torsion between the two thiophene rings in acetyl derivative Ac-8 is 12° and the geometry of Ac-9 is even more twisted since the dihedral angle between thiophene and benzothiadiazole is 17° and between benzothiadiazole and the phenylene ring 37°. The optimized geometry of the first excited state of these dyes leads to a more planar geometry. This behavior was also observed in analogous triphenylamine derived dyes. [16] The Cartesian coordinates of all the calculated molecular geometries are included as supplementary material.

The most relevant calculated parameters are gathered in Table 3.

<table>
<thead>
<tr>
<th>Dye</th>
<th>E_{HOMO} (eV)</th>
<th>E_{LUMO} (eV)</th>
<th>λb (nm)</th>
<th>f</th>
<th>E_{ox}^* (V)</th>
<th>$E_{\text{0-0}}$ (eV)</th>
<th>$E_{\text{ox}}^{\text{cd}}$ [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac-TPA</td>
<td>-6.62</td>
<td>-2.15</td>
<td>425</td>
<td>1.15</td>
<td>+1.33</td>
<td>2.52</td>
<td>-1.19</td>
</tr>
<tr>
<td>Ac-8</td>
<td>-6.53</td>
<td>-2.30</td>
<td>451</td>
<td>1.55</td>
<td>+1.26</td>
<td>2.34</td>
<td>-1.08</td>
</tr>
<tr>
<td>Ac-9</td>
<td>-6.48</td>
<td>-2.42</td>
<td>453</td>
<td>1.42</td>
<td>+1.22</td>
<td>2.27</td>
<td>-1.04</td>
</tr>
</tbody>
</table>
a) Calculated using the M06-2x/6-311+G(2d,p) model chemistry and the CPCM solvation model in THF. b) Equilibrium CPCM values. c) Referenced to Normal Hydrogen Electrode (NHE). d) The oxidation potential of excited state of the dye was calculated from $E_{ox}^* = E_{ox} - E_{0-0}$. f: oscillator strength.

The calculated values (Table 3) are in good agreement with the experimental ones (Tables 1 and 2). The linkage of new heterocyclic rings in the π-spacer leads to slightly destabilized HOMO and stabilized LUMO energies, compared to Ac-TPA. This produces a slightly higher E_{ox}^* and lower E_{ox}, HOMO-LUMO gaps and E_{0-0}.

The lowest energy absorption is HOMO to LUMO in character with the HOMO mainly located on the donor side and the LUMO on the acceptor side of the dyes (Fig. 3). The extension of the conjugated spacer moving from Ac-TPA to Ac-8 or Ac-9 leads to increased oscillator strength values (f) accounting for higher light harvesting efficiencies.

![Ac-8. HOMO](image1.png)

![Ac-8. LUMO](image2.png)

![Ac-9. HOMO](image3.png)

![Ac-9. LUMO](image4.png)

Fig. 3. Contour plots of frontier orbitals (0.04 isosurface value).

The calculation of the spin density of oxidized Ac-8 and Ac-9 (Fig. 4) reveals that the electron has been mainly extracted from the HOMO and therefore the electron hole locates on the donor side of the dyes. The molecular torsion prevents the extension of spin density to the acceptor side linked to the TiO$_2$. As reported by Roh *et al.* this fact avoids the undesirable back electron transfer (BET). [42]
Fig. 4. Contour plots of the spin density of radical cations derived from a) Ac-8 and b) Ac-9 (0.004 isosurface value).

2.5. Photovoltaic Properties

The photovoltaic properties of the DSSC prepared with the sensitizers were studied. Based on previous studies, the starting conditions for the preparation of the devices were defined as 0.1 mM DCM solutions for dyes and an electrolyte based on the classical I$_3$/I$^-$/I$_2$ system (1-butyl-3-methylimidazolium iodide (0.53 M), LiI (0.10 M), I$_2$ (0.050 M) and tert-butylpyridine (0.52 M) in anhydrous acetonitrile).

Firstly, devices were prepared with Cx-2-TPA, 8 and 9 using 6 µm thick anodes and 5 h as immersion time (see Supporting Information for details). The results obtained upon their photovoltaic characterization are depicted in Fig. 5 and Table 4.

Fig. 5. a) Photocurrent density vs Photovoltage (left) under AM 1.5 G simulated solar light (100 mW cm$^{-2}$); b) Incident photon to converted electron efficiency (IPCE) spectra for DSSCs (6 µm thick electrodes) based on studied dyes (immersion time 5 h).

Devices prepared with new calix[4]arene derivative 9 exhibited better efficiencies than those prepared with 8 and Cx-2-TPA. Fig 5 (right) depicts the IPCE spectra, broader for the devices with derivatives 8 and 9 than for Cx-2-TPA based on DSSCs. In particular, the device prepared with dye 9 showed the broadest IPCE spectrum (Fig. 5 right). These devices are active up to 650 nm, region in which the electrons are yet quite efficiently collected. According to that the J_{sc} value of these cells prepared with 9 is higher than those prepared with 8 and Cx-2-TPA dyes. Regarding the voltage, the V_{oc} value is also slightly higher for 9 than for 8 based on DSSCs (Table 4).

Table 4. Average value of the measured photovoltaic parameters: open circuit voltage (Voc), short circuit current density (Jsc), fill factor (ff) and overall efficiency (η). Three cells of each type were prepared and characterized (Experimental conditions: 6 µm thick electrodes of Dyesol 18NR-AO (paste). 0.1 mM DCM dye solution, 5 h immersion).

<table>
<thead>
<tr>
<th>Dye</th>
<th>Dye loading mol/cm2</th>
<th>J_{sc} (mA/cm2)</th>
<th>V_{oc} (V)</th>
<th>ff (%)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx-2-TPA</td>
<td>6.1×10^{-8}</td>
<td>9.86</td>
<td>0.74</td>
<td>63</td>
<td>4.59</td>
</tr>
<tr>
<td>8</td>
<td>5.1×10^{-8}</td>
<td>10.84</td>
<td>0.65</td>
<td>63</td>
<td>4.39</td>
</tr>
<tr>
<td>9</td>
<td>4.2×10^{-8}</td>
<td>11.95</td>
<td>0.66</td>
<td>66</td>
<td>5.19</td>
</tr>
</tbody>
</table>
The higher J_{sc} values of dye 9-based devices agree with the theoretical results discussed in section 2.4. The theoretical calculations showed that the additional phenylene ring (inserted between BTZ unit and the anchoring group in 9) is twisted with respect to the π -conjugated donor and BTZ part. In addition, they revealed that upon formation of the radical cation of 9, the out-of-plane torsion of the adjacent BTZ and cyanoacrylic acid unit leads to an interruption of the π –conjugation between donor and anchoring groups that, according to Roh et al. [42], inhibits the back electron transfer which would be a good solution to improve the J_{sc} value.

Concerning the amount of dye adsorbed on TiO$_2$ film, the highest value (6.1 10^{-8} mol/cm2) has been reached by Cx-2-TPA whereas the dye loading is sensibly higher for 8 (5.1 10^{-8} mol/cm2) than for 9 (4.2 10^{-8} mol/cm2). Despite the lowest amount in the latter, the better photovoltaic performance of 9-chromophore-devices points to a promising molecular structure of this calixarene derivative with benzothiadiazole.

Looking for optimized conditions, devices using 6 µm thick electrodes and 24 h as immersion time were prepared. In spite of the longer immersion time, similar efficiency values were obtained for the three dyes. Finally, thicker electrodes were checked. The results of the photovoltaic characterization of the devices prepared with 13 µm thick electrodes and 24 h as immersion time are shown in Fig. 6 and Table 5.

![Fig. 6. a) Photocurrent density vs Photovoltage (left) under AM 1.5 G simulated solar light (100 mW cm$^{-2}$); b) Incident photon to converted electron efficiency (IPCE) spectra (right) for DSSCs (13 µm thick electrodes) based on studied dyes (immersion time 24 h).](image)

Table 5. Average value of the measured photovoltaic parameters: open circuit voltage (V_{oc}), short circuit current density (I_{sc}), fill factor (ff) and overall efficiency (η). Three cells of each type were prepared and characterized (Experimental conditions: 13 µm thick electrodes of Dyesol 18NR-AO (paste). 0.1 mM DCM dye solution, 24 h immersion).

<table>
<thead>
<tr>
<th>Dye</th>
<th>Dye loading (mol/cm2)</th>
<th>I_{sc} (mA/cm2)</th>
<th>V_{oc} (V)</th>
<th>ff (%)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx-2-TPA</td>
<td>1.3 10^{-7}</td>
<td>9.51</td>
<td>0.70</td>
<td>66</td>
<td>4.40</td>
</tr>
<tr>
<td>8</td>
<td>1.3 10^{-7}</td>
<td>10.98</td>
<td>0.64</td>
<td>67</td>
<td>4.70</td>
</tr>
<tr>
<td>9</td>
<td>1.0 10^{-7}</td>
<td>13.52</td>
<td>0.66</td>
<td>66</td>
<td>5.84</td>
</tr>
</tbody>
</table>

Comparing Table 4 and 5, it can be observed that, when thicker electrodes are used, higher (up to 13 %) efficiencies were obtained for dye 9, especially due to an improvement of the J_{sc} values. The decrease observed on V_{oc} value, actually very low in the case of 8 and 9, can be attributed to an increase of the recombination processes when thicker electrodes are used.
Electrochemical impedance spectroscopy (EIS) is a very useful tool to study the electron transport kinetics in DSSCs device and to further understand the electron recombination in DSSCs. The EIS spectra were carried out under AM 1.5 G simulated solar light (100 mW cm\(^{-2}\)) at open circuit voltage conditions.

Fig 7. Nyquist (left) and Bode (right) plot of devices 6 µm, 5 h immersion time) prepared with dyes Cx-2-TPA, 8 and 9

The Nyquist and Bode plots of the devices prepared with Cx-2-TPA, 8 and 9 are shown in Fig. 7 and S.39. Two clear semicircles were observed in these Nyquist plots. The first semicircle, which is located in the high frequency region, is assigned to the charge transfer at the interface of counter electrode Pt and electrolyte (R\(_{ct}\)). The radius of the intermediate frequency semicircle in the Nyquist plot reflects electron transport resistance, and a smaller radius means a lower electron transport resistance. [43] According to these Figures, the electron transport resistance decreases from 8 to 9 [44] supporting that the BTZ is an adequate auxiliary electron withdrawing unit useful for improving the overall efficiency when applied to D-A-π-A organic sensitizers. Bode phase plots (Fig.7 and S.39 (right)) were used to estimate the lifetime of electrons (\(\tau\)) in the conduction band of TiO\(_2\) [45,46]. The \(\tau\) values are calculated using the equation \(\tau=1/(2\pi f)\) where \(f\) stands for the frequency at the maximum of the curve in the intermediate frequency region in the Bode plot. The order of \(\tau\) values is Cx-2-TPA > 9 > 8. These results suggest a more efficient hindering of the recombination processes on the TiO2 surface in the devices based on Cx-2-TPA and agree with their higher \(V_{oc}\) values as compared with 8 and 9- based DSSCs. (See Table 4 and 5).

In order to study the stability of the device performance, the photovoltaic parameters have been measured over time. The results gathered in Fig. 8 (devices 6 µm, 5 h immersion time) and Fig. S. 40 (devices 13 µm, 24 h immersion time). The open circuit voltage and overall efficiency of these devices remains between 98 and 100 % of their initial values, essentially stable up to 500 h after the cell assembly.
Fig 8. Detailed photovoltaic parameters of devices prepared with 6 μm thick electrodes and 5 h immersion time of dyes Cx-2-TPA, 8 and 9 measured under the irradiance of AM 1.5 G sunlight during successive full-sun visible-light soaking (1 sun 1000 W/m²).

3. Conclusions

Novel multichromophoric calix[4]arenes have been prepared and their optical, electronic and photovoltaic properties have been evaluated and compared to previously described calix[4]arene derivative difunctionalized with TPA dye.

These dyes have both broader spectra and higher molar extinction coefficients than calix[4]arene difunctionalized with TPA dye, indicating that they have promising ability of light-capturing comparing with other triphenylamine-dyes.

The devices prepared with the benzothiadiazole-phenyl derivative show a broader IPCE spectrum than the ones prepared with the thiophene dye.

The use of thicker electrodes results in higher photocurrent density values and, although the open circuit voltage values are reduced, the overall efficiency of the devices is improved.
The calix[4]arene derivative based on phenylbenzothiadiazole has reached a value of 5.84 % which means an increase of 33 % over calix[4]arene difunctionalized TPA dye.

4. Experimental

4'-(((tert-butyldimethylsilyl)oxy)methyl)-5'-(4-(diphenylamino)phenyl)-[2,2'-bithiophene]-5-carbaldehyde 2

To a solution of compound 1 (400 mg, 0.85 mmol) in anhydrous THF (30 mL) at temperature of -78 °C under argon atmosphere, a solution of n-butyllithium (1.6 M in THF) (0.68 mL, 1.08 mmol) was slowly added. It was stirred at -50 °C for 1 hour. Then a solution of tributyltin chloride (0.28 mL, 0.96 mmol) was added and stirred for 5 minutes. Then, the reaction mixture was stirred at room temperature during 2 hours.

The reaction was quenched by the addition of 30 mL of diethyl ether and the organic layer was washed with brine and dried over magnesium sulfate. After concentration under reduced pressure, the yellow residue was used without purification in the next step.

In a flask with the yellow residue dissolved in 8 mL of toluene, a solution of 5-bromothiophene-2-carboxaldehyde (0.01 mL, 0.8 mmol) was added. The mixture was degassed with argon during 15 minutes. Then Pd(PPh₃)₄ (56 mg, 0.03 mmol) was added and the mixture was heated to 100 °C of temperature for 15 hours under argon atmosphere. The reaction was quenched by the addition of 40 mL of H₂O. The mixture was extracted with toluene (2 x 60 mL). The organic layer was washed with NH₄Cl (1 x 60 mL) and H₂O (2x60 mL), was dried over magnesium sulfate and the solvent was evaporated by reduced pressure. The residue was purified by flash chromatography (hexane/dichloromethane 1:1) and the aldehyde 2 was isolated as orange solid (293 mg, 63 %).

Molecular weight (g/mol): 581.86. IR (KBr, cm⁻¹) 1665 (C=O), 1595 (C=C). ¹H-NMR (300 MHz, 298 K, CD₂Cl₂) δ (ppm): 0.12 (s, 6H), 0.95 (s, 9H), 4.73 (s, 2H), 7.09-7.18 (m, 9H), 7.30-7.36 (m, 4H), 7.39-7.42 (m, 2H), 7.46 (s, 1H), 7.72 (d, J=7.7 Hz, 1H), 9.88 (s, 1H). ¹³C-NMR (75 MHz, 298 K, CD₂Cl₂) δ (ppm): -4.9, 26.3, 30.4, 60.0, 123.3, 124.2, 124.6, 125.6, 127.2, 129.4, 130.0, 130.3, 133.8, 138.1, 139.2, 142.2, 142.4, 147.6, 148.0, 148.7, 183.0. HRMS (ESI⁺) m/z: calculated for [C₃₄H₃₅O₂NS₂Si]⁺ 581.1873. Found: 581.1880 [M⁺].

4-(7-(4-(((tert-butyldimethylsilyl)oxy)methyl)-5-(4-(diphenylamino)phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)benzaldehyde 3

To a solution of compound 1 (337 g, 0.72 mmol) in anhydrous THF (25 mL) at temperature of -78 °C under argon atmosphere, a solution of n-butyllithium (1.6 M in THF) (0.58 mL, 0.93 mmol) was slowly added. It was stirred at -50 °C for 1 hour. Then a solution of tributyltin chloride (0.24 mL, 0.86 mmol) was added and stirred for 5 minutes. After that, the reaction mixture was stirred at room temperature during 2 hours.

The mixture of reaction was quenched by the addition of 25 mL of diethyl ether and the organic layer was washed with brine and dried over magnesium sulfate. After concentration under reduced pressure, the yellow residue was used without purification in the next step.

In a flask with the yellow residue dissolved in 8 mL of toluene, a solution of 4-(7-bromobenzo[c][1,2,5]thiadiazol-4-yl)benzaldehyde (230 mg, 0.72 mmol) was added. The mixture was degassed with argon during 15 minutes. Then Pd(PPh₃)₄ (47 mg, 0.025 mmol) was
added and the mixture was heated to 100 °C of temperature for 15 hours under argon atmosphere. The reaction was quenched by the addition of 30 mL of H₂O. The mixture was extracted with toluene (2x60 mL). The organic layer was washed with NH₄Cl (1x60 mL) and H₂O (2x60 mL), was dried over magnesium sulfate and the solvent was evaporated by reduced pressure.

The residue was purified by flash chromatography (hexane/dichloromethane 1:1) and the aldehyde 3 was isolated as a red solid (342 mg, 67 %).

Molecular weight (g/mol): 709.99. **Melting point (°C) at 760 mm Hg:** 85-87. IR (KBr, cm⁻¹): 1694 (C=O), 1583 (C=C). ¹H-NMR (300 MHz, 298 K, CDCl₃) δ (ppm): 0.15 (s, 6H), 0.95 (s, 9H), 4.81 (s, 2H), 7.04-7.19 (m, 8H), 7.27-7.34 (m, 4H), 7.45 (d, J=8.7 Hz, 2H), 7.81 (d, J=7.5 Hz, 1H), 7.95 (d, J=7.5 Hz, 1H), 8.05 (d, J=8.4 Hz, 2H). ¹³C-NMR (75 MHz, 298 K, CDCl₃) δ (ppm): -4.9, 26.1, 29.8, 59.9, 123.1, 123.5, 124.9, 127.8, 129.1, 129.5, 129.8, 130.1, 130.9, 131.1, 135.9, 136.4, 138.3, 142.4, 147.2, 147.9, 153.8, 192.2. HRMS (ESI⁺) m/z: Calculated for [C₄₂H₃₉O₂N₃NaS₂Si]⁺: 732.2145. Found: 732.2152 [M+Na]⁺.

5'-(4-(diphenylamino)phenyl)-4'-(hydroxymethyl)-[2,2'-bithiophene]-5-carbaldehyde 4

To a solution of compound 2 (300 mg, 0.51 mmol) in THF (15 mL) at temperature of 0°C under Argon, a solution of tetrabutylammonium fluoride (1 M THF) (1.02 mL, 1.02 mmol) was slowly added and was stirred for 2 hours. The resulting solution was quenched by the addition of 50 mL of NH₄Cl saturated solution (aq). The aqueous phase was extracted with ethyl acetate solution and the organic phase was dried over dry MgSO₄ and the solvent was evaporated by reduced pressure. The residue was purified by flash chromatography using hexane/ethyl acetate from (6:4) to yield a yellow solid (195 mg, 82 %).

Molecular weight (g/mol): 467.60. **Melting point (°C) at 760 mm Hg:** 174-176. IR (KBr, cm⁻¹): 3429 (O-H), 1630 (C=O), 1583 (C=C). ¹H-NMR (300 MHz, 298 K, CDCl₃) δ (ppm): 4.67 (s, 2H), 5.33(s, 1H), 7.04-7.16 (m, 8H), 7.34-7.26 (m, 5H), 7.38 (d, J= 8.7 Hz, 2H), 7.46 (s, 1H), 7.69 (d, J=3.9 Hz, 1H), 9.81 (s, 1H). ¹³C-NMR (75 MHz, 298 K, CDCl₃) δ (ppm): 58.7, 122.5, 123.6, 124.0, 125.0, 126.1, 128.5, 129.4, 129.6, 133.5, 137.5, 138.0, 141.6, 142.7, 146.7, 147.2, 182.4. HRMS (ESI⁺) m/z: Calculated for [C₂₈H₂₂O₂NS₂]⁺: 468.1086. Found: 468.1061 [M+H]⁺.

4-(7-(5-(4-(diphenylamino)phenyl)-4-(hydroxymethyl)thiophene-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)benzaldehyde 5

To a solution of compound 3 (325 mg, 0.46 mmol) in dry THF (15 mL) at temperature of 0°C under Argon, a solution of tetrabutylammonium fluoride (1 M THF) (0.96 mL, 0.96 mmol) was slowly added and was stirred for 2 hours. The resulting solution was quenched by the addition of 50 mL of NH₄Cl saturated solution (aq). The aqueous phase was extracted with ethyl acetate solution and the organic phase was dried over dry MgSO₄ and the solvent was evaporated by reduced pressure. The residue was purified by flash chromatography using hexane/ethyl acetate from (6:4) to yield a red solid (158 mg, 58 %).

Molecular weight (g/mol): 595.73. **Melting point (°C) at 760 mm Hg:** 203-205. IR (KBr, cm⁻¹): 3448 (O-H), 1670 (C=O), 1583 (C=C). ¹H-NMR (300 MHz, 298 K, CDCl₃) δ (ppm): 4.75 (s, 2H), 7.04-7.20 (m, 8H), 7.26-7.35 (m, 4H), 7.47 (d, J=8.7 Hz, 2H), 7.79 (d, J=7.8 Hz, 1H), 7.94 (d, J=7.8 Hz, 1H), 8.00 (d, J=8.3 Hz, 2H), 8.15 (d, J=8.3 Hz, 2H), 8.24 (s, 1H), 10.07 (s, 1H). ¹³C-NMR (75 MHz, 298 K, CDCl₃) δ (ppm): 59.4, 123.3, 124.0, 125.4, 127.3, 127.6, 129.4, 129.9, 130.2,
131.2, 131.3, 136.3, 137.1, 138.3, 143.4, 143.5, 147.9, 148.5, 154.2, 192.3. **HRMS** (ESI+): Calculated for [C_{36}H_{25}O_{2}N_{3}NaS_{2}]^{+}: 618.1280. Found: 618.1296 [M+Na]^{+}.

Calix[4]arene derivative of (4) compound 6

To a solution of calixarene diacid Cx-2 (110 mg, 0.12 mmol), 4-dimethylaminopyridine (DMAP) (13 mg, 0.109 mmol) and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) (134.2 mg, 0.68 mmol) were successively added. This mixture was maintained at temperature of 0 °C during 30 min. Alcohol 4 (130 mg, 0.24 mmol) was added. The reaction mixture was then stirred at room temperature for 3 days. Then it was washed and dried over magnesium sulfate and the solvent was evaporated by reduced pressure. The residue was purified by flash chromatography using hexane/ethyl acetate from (8:2) to yield a yellow solid (130 mg, 59 %).

Molecular weight (g/mol): 1832.48. **Melting point (°C) at 760 mm Hg:** 109-111. **IR** (KBr, cm\(^{-1}\)) 1740 (C=O), 1664 (C=O) \(^1\)H-NMR (300 MHz, 298 K, CD\(_2\)Cl\(_2\)) δ (ppm): 0.97 (t, \(J=7.5\) Hz, 6H), 1.09 (s, 18H), 1.11 (s, 18H), 1.77-1.87 (m, 4H), 1.96-2.08 (m, 8H), 2.49 (t, \(J=7.5\) Hz, 4H), 3.10 (d, \(J=12.6\) Hz, 4H), 3.78 (t, \(J=7.5\) Hz, 4H), 3.87 (d, \(J=12.6\) Hz, 4H), 4.38 (d, \(J=7.5\) Hz, 4H), 5.11 (s, 4H), 6.80 (s, 4H), 6.81 (s, 4H), 7.07-7.16 (m, 16H), 7.26 (d, \(J=4.0\) Hz, 2H), 7.28-7.37 (m, 12H), 7.43 (s, 2H), 7.68 (d, \(J=4.0\) Hz, 2H), 9.85 (s, 2H). \(^{13}\)C-NMR (75 MHz, 298 K, CD\(_2\)Cl\(_2\)) δ (ppm): 10.7, 22.2, 23.9, 30.2, 31.5, 31.7, 34.2, 34.7, 60.3, 75.2, 77.5, 122.8, 124.2, 124.7, 125.5, 125.6, 126.1, 129.4, 129.9, 130.2, 133.3, 134.1, 134.3, 134.3, 137.8, 142.3, 144.7, 144.8, 145.0, 146.9, 147.7, 148.9, 154.0, 154.2, 173.5, 182.8. **MS** (MALDI+) \(m/z\): 1831 [M]+

Calix[4]arene derivative of (5) compound 7

To a solution of calixarene diacid Cx-2 (110 mg, 0.13 mmol), 4-dimethylaminopyridine (DMAP) (13 mg, 0.109 mmol) and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) (160.8 mg, 0.81 mmol) were successively added. This mixture was maintained at 0°C during 30 min. Alcohol 5 (150 mg, 0.26 mmol) was added. The reaction mixture was then stirred at room temperature for 5 days. The organic layer was washed and dried over magnesium sulfate and the solvent was evaporated by reduced pressure. The residue was purified by flash chromatography using hexane/ethyl acetate from (8:2) to yield a yellow solid (150 mg, 55 %).

Molecular weight (g/mol): 2088.7. **Melting point (°C) at 760 mm Hg:** 124-126. **IR** (KBr, cm\(^{-1}\)) 1741 (C=O), 1691 (C=O) \(^1\)H-NMR (300 MHz, 298 K, CD\(_2\)Cl\(_2\)) δ (ppm): 0.93 (t, \(J=7.5\) Hz, 6H), 1.03 (s, 18H), 1.10 (s, 18H), 1.74-1.86 (m, 4H), 1.90-1.98 (m, 4H), 2.04-2.10 (m, 4H), 2.50 (t, \(J=7.8\) Hz, 4H), 3.07 (d, \(J=12.6\) Hz, 4H), 3.71 (t, \(J=7.6\) Hz, 4H), 3.88 (t, \(J=7.7\) Hz, 4H), 4.34 (d, \(J=12.6\) Hz, 4H), 5.16 (s, 4H), 6.72 (s, 4H), 6.82 (s, 4H), 7.04-7.15 (m, 16H), 7.25-7.32 (m, 8H), 7.36-7.42 (m, 4H), 7.72 (d, \(J=7.5\) Hz, 2H), 7.85 (d, \(J=7.5\) Hz, 2H), 7.97 (d, \(J=8.4\) Hz, 4H), 8.11 (d, \(J=8.4\) Hz, 4H), 8.15 (s, 2H), 10.06 (s, 2H). \(^{13}\)C-NMR (75 MHz, 298 K, CD\(_2\)Cl\(_2\)) δ (ppm): 10.6, 22.1, 23.8, 30.2, 31.3, 31.6, 34.1, 34.1, 34.7, 60.5, 75.1, 77.4, 122.9, 124.0, 125.2, 125.3, 125.4, 125.5, 126.6, 127.2, 129.2, 130.1, 132.8, 134.5, 136.2, 137.7, 143.3, 144.6, 147.7, 148.6, 152.8, 153.9, 154.0, 154.1, 173.5, 192.0. **MS** (MALDI+) \(m/z\): 2087 [M]+

Dye 8

To a solution of dialdehyde 6 (110 mg, 0.060 mmol) and 2-cyanoacetic acid (45 mg, 0.525 mmol) in chloroform (10 mL) piperidine (3.16 mL; 32 mmol) was added. The mixture was heated at temperature of 65 °C for 5 days under argon atmosphere and prevented for light, then it was cooled down to room temperature. After concentration under reduced pressure, the resulting solid was dissolved with CH\(_2\)Cl\(_2\), acidified with HCl 0.1 M, and was washed with...
water. The solution was dried and the solvent was removed under reduced pressure. The resulting solid was washed with cold MeOH and a black solid was obtained (45 mg, 38%).

Molecular weight (g/mol): 1966.6. **Melting point (°C) at 760 mm Hg:** 173-175. **IR (KBr, cm⁻¹):** 3438 (O-H), 2222 (C≡N), 1732 (C=O), 1584 (C=C). **¹H-NMR:** (500 MHz, 353 K, DMF-d₇) δ (ppm): 0.97 (t, J = 7.4 Hz, 6H), 1.11 (s, 18H), 1.12 (s, 18H), 1.78-1.88 (m, 4H), 1.90-2.02 (m, 4H), 2.04-2.12 (m, 4H), 2.47-2.55 (m, 4H), 3.15 (d, J = 12.4 Hz, 4H), 3.76-3.84 (m, 4H), 3.83-3.91 (m, 4H), 4.39 (d, J = 12.4 Hz, 4H), 5.16 (s, 4H), 6.80-6.95 (m, 8H), 7.03-7.21 (m, 16H), 7.28-7.53 (m, 16H), 7.55-7.70 (m, 2H), 7.80-7.90 (m, 2H), 8.35-8.50 (m, 2H). **MS (MALDI⁺) m/z:** 1988 [M+Na⁺].

Dye 9

To a solution of dialdehyde 7 (150 mg, 0.072 mmol) and 2-cyanoacetic acid (45mg, 0.525 mmol) in chloroform (10 mL) piperidine (2.35 mL; 23.7 mmol) was added. The mixture was heated at temperature of 65° C for 5 days under argon atmosphere and prevented for light, then it was cooled down to room temperature. It was acidified with HCl 0.1 M, and was washed with water. The solution was dried and the solvent was removed under reduced pressure. The resulting solid was dissolved with CH₂Cl₂ and cold MeOH was added, then a black solid was obtained (95 mg, 59%).

Molecular weight (g/mol): 2222.8. **Melting point (°C) at 760 mm Hg:** 195-197. **IR (KBr, cm⁻¹):** 3430 (O-H), 2214 (C≡N), 1733 (C=O), 1592 (C=C). **¹H-NMR:** (500 MHz, 353 K, DMF-d₇) δ (ppm): 0.96 (bt, 6H), 1.03 (bs, 18H), 1.16 (bs, 18H), 1.80-1.88 (m, 4H), 1.89-1.99 (m, 4H), 2.02-2.19 (m, 4H), 2.61 (bt, 4H), 3.14 (m, 4H), 3.71 (bt, 4H), 3.90 (bt, 4H), 4.38 (m, 4H), 5.21 (bs, 4H), 6.79 (bs, 4H), 6.95 (bs, 4H), 7.06-7.19 (m, 16H), 7.34-7.40 (m, 8H), 7.46-7.54 (m, 4H), 7.95-8.02 (m, 4H), 8.05-8.10 (m, 4H), 8.12-8.21 (m, 4H), 8.22-8.30 (m, 4H), 8.32-8.50 (m, 2H). **MS (MALDI⁺) m/z:** 2221 [M⁺].

Acknowledgements

We gratefully acknowledge the financial support from the Spanish Ministry of Science and Innovation-MICINN-FEDER (Project CTQ2014–52331-R) and Gobierno de Aragón-Fondo Social Europeo (E14_17R). The “ICMA-Pi2 program” is gratefully acknowledged for the fellowship (EC). ID and DB acknowledge for the financial support of DGA fellowship and PhD studentship Santander-2018 programs, respectively. Moreover, anonymous referees are gratefully acknowledged for helpful suggestions.
References

HIGHLIGHTS

The effectiveness of the use of p-tert-butylcalix[4]arene scaffold in avoiding aggregation has been confirmed.

The devices prepared with the new dyes showing red shifted and enhanced absorption spectra result in a better photovoltaic performance with respect to calix[4]arene derivatives bearing TPA dye.

The inclusion of benzothiadiazole as an auxiliary electronwithdrawing unit improves the photocurrent density and the overall efficiency.