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Abstract

A pointwise condition number associated to a representation of an
interpolation operator is introduced. It is proved that the Lagrange
formula is optimal with respect to this conditioning. For other rep-
resentations of the interpolation operator, an upper bound for the
conditioning is derived. A quantitative measure in terms of the Skeel
condition number is used to compare the conditioning with the La-
grange representation. The conditioning of the Newton representation
is considered for increasing nodes and for nodes in Leja order. For the
polynomial Newton formula with n+1 equidistant nodes in increasing
order, it is proved that 3n is the best uniform bound of its condition-
ing and it is attained at the last node. Numerical experiments are
included.
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1 Introduction

Several authors have made comparisons between the Lagrange and the New-
ton formula for polynomial interpolation. In [15] (see also Chapter 5 and
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Appendix of [16]), Trefethen suggests that the recommendation of some text-
books to use Newton interpolation formulae rather than Lagrange formulae
is questionable. A fact that suggests a worse behaviour of the Newton for-
mula with respect to the Lagrange formula is its dependence on the order
of the nodes. Numerical experiments indicate that for large values of the
degree most orders present numerical instability (see Section 3 of [1]). This
instability has also been confirmed in [6], in particular at one end of the in-
terval when the nodes are increasing or decreasing. According to [12], a Leja
ordering can be used to reduce such instability. In this paper we present a
quantitative measure of the instability of the Newton formula with respect
to the Lagrange formula. For this purpose, we introduce a conditioning as-
sociated to a representation of the interpolant, which provides a pointwise
measure of its stability. In the particular case of the Lagrange interpolation,
this conditioning coincides with the usual Lebesgue function. In general,
this conditioning plays for interpolation a similar role to that of the con-
ditioning introduced by Farouki and Rajan (see [4]) for the evaluation of a
function expressed in terms of a given basis. Optimal bases with respect to
the Farouki-Rajan conditioning have been studied in several papers (see [3],
[9], [11], [10], [8]). We prove in Section 2 of this paper the optimal stability
of the Lagrange representation with respect to this new conditioning.

Another common fact shared by the two conditionings previously men-
tioned is the role played by the matricial Skeel condition number. The Skeel
condition number Cond(A) of a matrix A (see Section 7.2 of [5]) is always
less than or equal to its classical condition number κ∞(A), and so it provides
more realistic bounds. In [8] it was shown that the Farouki-Rajan condition-
ing presents for the problem of function evaluations many analogies with the
Skeel condition number of a matrix. In Section 2 of this paper, we also prove
that the Skeel condition number of the inverse of the collocation matrix of a
basis provides a bound for the worsening of the conditioning with respect to
the Lagrange representation. Moreover, such a bound is attained at one of
the nodes.

Section 3 is devoted to the analysis of the stability of the Newton rep-
resentation compared with the Lagrange representation. It is shown that
the maximum conditioning of the Newton representation coincides with the
Skeel condition number of the inverse of the collocation matrix of the Newton
basis.

Section 4 considers the Newton interpolation formula with nodes follow-
ing a Leja ordering. We provide an upper bound of the ratio between the
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conditioning of the Newton representation with nodes following a Leja or-
dering and the conditioning of the Lagrange representation.

Section 5 and Section 6 show that 3n is the best uniform bound for the
conditioning of the Newton representation with n + 1 equidistant points
x0, . . . , xn in increasing order, and that it is attained at xn. This bound is
higher than the maximum value of the Lebesgue function, which is bounded
above by 2n. Finally, numerical examples in Section 7 illustrate the results.

2 Optimal stability of the Lagrange represen-

tation

The Lagrange interpolation problem on an (n+1)-dimensional subspace U of
C[a, b] for a set of distinct nodes x0, . . . , xn in [a, b] consists of finding u ∈ U
such that u(xi) = f(xi), i = 0, . . . , n, for a given function f ∈ C[a, b].

If the Lagrange interpolation problem has a unique solution, we can define
the Lagrange fundamental functions li ∈ U by

li(xj) = δij, i, j = 0, . . . , n,

where δij is the Kronecker symbol. The solution of the Lagrange interpolation
problem can be expressed by the Lagrange formula

∑n
i=0 f(xi)li(x). Let us

define the Lagrange interpolation operator

L[f ](x) :=
n∑

i=0

f(xi)li(x). (1)

If we define the evaluation functionals

λif := f(xi), i = 0, . . . , n,

we obtain the Lagrange representation L[f ] =
∑n

i=0 λif li.
Let us to study different representations of the interpolation operator

L[f ] =
n∑

i=0

βif vi,

where β0, . . . , βn belong to the space generated by the evaluation function-
als λ0, . . . , λn and (v0, . . . , vn) is a basis of U . We remark that the basis
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(v0, . . . , vn) is determined by the basis of functionals (β0, . . . , βn) since both
bases form a dual pair, that is,

βivj = δij, i, j = 0, . . . , n.

We shall deal with the norm of interpolation operators

||L||∞ = sup
||f ||∞=1

|L[f ]|

and the norm of functionals used for the representation

||βi||∞ = sup
||f ||∞=1

|βif |, i = 0, . . . , n.

Let us recall that the Lebesgue function λ(x) is defined as

λ(x) :=
n∑

i=0

|li(x)|.

Its maximum value is called the Lebesgue constant. We shall use the following
result (cf. Chapter 2 of [2]).

Theorem 1 The norm of the Lagrange interpolation operator is the Lebesgue
constant, that is

||L||∞ = max
x∈[a,b]

n∑
i=0

|li(x)|.

Let us define the conditioning associated to the representation
L[f ] =

∑n
i=0 βifvi by

cond(x; β) :=
n∑

i=0

||βi||∞|vi(x)|. (2)

The conditioning cond(x; β) is a pointwise measure of the stability of the
representation. In fact, if f̂ is an approximation of f then we have the bound

|L[f ](x)− L[f̂ ](x)| ≤
n∑

i=0

|βi[f − f̂ ]| |vi(x)| ≤ ||f − f̂ ||∞ cond(x; β). (3)
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Let us remark that the conditioning of the Lagrange representation corre-
sponding to the evaluation functionals λ0, . . . , λn coincides with the Lebesgue
function

cond(x;λ) =
n∑

i=0

|li(x)| = λ(x) (4)

because the norm of the evaluation functionals ||λi||∞ = 1, i = 0, . . . , n. The
following result provides the norm of a more general class of functionals.

Proposition 2 Let β : C[a, b]→ R be a functional of the form
βf =

∑n
i=0 cif(xi). Then ||β||∞ =

∑n
i=0 |ci|.

Proof: Observe that

||β||∞ = sup
||f ||∞=1

|
n∑

i=0

cif(xi)| ≤ sup
||f ||∞=1

n∑
i=0

|ci| |f(xi)| ≤
n∑

i=0

|ci|.

Taking any continuous function f such that f(xi) = sign(ci), i = 0, . . . , n,
we have the other inequality

sup
||f ||∞=1

|
n∑

i=0

cif(xi)| ≥ |
n∑

i=0

ci sign(ci)| =
n∑

i=0

|ci|.

Therefore, the bound is attained and the supremum is a maximum. �

Given a matrix A = (aij)i,j=0,...,n, we denote by |A| := (|aij|)i,j=0,...,n the
matrix whose entries are the absolute values of the corresponding entries of
A.

Proposition 3 Let L[f ] =
∑n

i=0 βifvi be a representation of the Lagrange
interpolation operator (1) and let M := (vj(xi))i,j=0,...,n be the collocation
matrix of the basis (v0, . . . , vn). Then β0

...
βn

 = M−1

 λ0
...
λn

 and

 ||β0||∞...
||βn||∞

 = |M−1|e,

where e := (1, . . . , 1)T .
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Proof: Since f and L[f ] coincide at the nodes x0, . . . , xn we have,

λif = λiL[f ] =
n∑

j=0

λivjβjf =
n∑

j=0

vj(xi)βjf, i = 0, . . . , n,

that is, (λ0, . . . , λn)T = M(β0, . . . , βn)T . Multiplying by M−1 and applying
Proposition 2, the result follows. �

The following theorem shows that the Lagrange representation, in terms
of the evaluation functionals, has optimal conditioning. The conditioning of
any other representation is greater than the conditioning of the Lagrange
representation and the quotient can be bounded by the Skeel condition num-
ber of M−1 where M is the collocation matrix of the corresponding basis.
Let us recall that the Skeel condition number of a nonsingular matrix A is
given by

Cond(A) := || |A−1| |A| ||∞.
Note that Cond(A) ≥ 1 for any nonsingular matrix A.

Theorem 4 Let L[f ] =
∑n

i=0 βifvi be a representation of the Lagrange in-
terpolation operator (1) and let M = (vj(xi))i,j=0,...,n be the collocation matrix
of the basis (v0, . . . , vn). Then the following inequalities hold

cond(x;λ) ≤ cond(x; β) ≤ Cond(M−1) cond(x;λ).

Proof: First, we have

|L[f ](x)| ≤ ||f ||∞
n∑

i=0

||βi||∞|vi(x)| = ||f ||∞ cond(x; β). (5)

For each x ∈ [a, b], we choose a function f with ||f ||∞ = 1 such that f(xi) =
sign li(x), i = 0, . . . , n. Then, using formulae (4) and (5), we have

cond(x;λ) = λ(x) = |L[f ](x)| ≤ cond(x; β).

Let mij := vj(xi) be the (i, j) entry of the matrix M . By the Lagrange
formula vj =

∑n
i=0mijli. Then we have

cond(x; β) =
n∑

j=0

||βj||∞|vj(x)| =
n∑

j=0

n∑
i=0

||βj||∞|mij||li(x)|

≤ cond(x;λ) max
i=0,...,n

n∑
j=0

||βj||∞|mij|.
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By Proposition 3 and by the definition of Skeel condition number

max
i=0,...,n

n∑
j=0

||βj||∞|mij| = || |M |(||β0||∞, . . . , ||βn||∞)T ||∞ = || |M | |M−1|e||∞

= || |M | |M−1| ||∞ = Cond(M−1) (6)

and the result follows. �

Theorem 4 shows that the ratio between the conditioning of a represen-
tation and the conditioning of the Lagrange representation is bounded above
by Cond(M−1). The following result proves that this bound is attained at a
node.

Theorem 5 Let L[f ] =
∑n

i=0 βifvi be a representation of the Lagrange in-
terpolation operator (1) on a subspace U of C[a, b] such that 1 ∈ U . Then
λ(x) ≥ 1 for all x ∈ [a, b], and

max
x∈[a,b]

cond(x; β)

λ(x)
= max

i=0,...,n
cond(xi; β) = Cond(M−1).

Proof: First, we show that λ(x) does not vanish on [a, b]. Since L[1] = 1,
it follows that

∑n
i=0 li(x) = 1 for all x ∈ [a, b]. Then, applying the triangular

inequality, we have

1 ≤
n∑

i=0

|li(x)| = λ(x).

Since cond(xi; β) =
∑n

j=0 ||βj||∞|vj(xi)| =
∑n

j=0 ||βj||∞|mij|, i = 0, . . . , n, we
can use formula (6) to deduce

max
i=0,...,n

cond(xi; β) = max
i=0,...,n

n∑
j=0

||βj||∞|mij| = Cond(M−1).

Taking into account that λ(xi) = 1, i = 0, . . . , n, Theorem 4 and the previous
formula, we have

max
i=0,...,n

cond(xi; β) = max
i=0,...,n

cond(xi, β)

λ(xi)
≤ max

x∈[a,b]

cond(x, β)

λ(x)

≤ Cond(M−1) = max
i=0,...,n

cond(xi; β).

So, all the above inequalities must be equalities and the result follows. �
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3 Stability of the Newton interpolation for-

mula

Let us now consider the case where U = Pn, the space of polynomials of
degree less than or equal to n. In this case the Lagrange fundamental poly-
nomials at the nodes x0, . . . , xn are

li(x) =
∏

j∈{0,...,n}\{i}

x− xj
xi − xj

, i = 0, . . . , n.

The Newton formula provides another representation of the Lagrange
interpolation operator (1)

L[f ](x) =
n∑

i=0

dif ωi(x)

in terms of the divided difference functionals

dif := [x0, . . . , xi]f, i = 0, . . . , n, (7)

and the Newton basis (ω0, . . . , ωn), where

ω0(x) := 1, ωi(x) := (x− x0) · · · (x− xi−1), i = 1, . . . , n+ 1. (8)

Since the nodes are distinct we have

dkf =
k∑

i=0

f(xi)

ω′k+1(xi)
,

with ω′k+1(xi) =
∏

j∈{0,...,k}\{i}(xi − xj) and, by Proposition 2,

||dk||∞ =
k∑

j=0

1

|ω′k+1(xj)|
=

k∑
j=0

1∏
l∈{0,...,k}\{j} |xj − xl|

.

By definition (2) we have

cond(x; d) =
n∑

k=0

k∑
j=0

|ωk(x)|
|ω′k+1(xj)|

=
n∑

k=0

k∑
j=0

∏
l∈{0,...,k−1} |x− xl|∏

l∈{0,...,k}\{j} |xj − xl|
. (9)
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Taking into account (9) and that ωk(xi) = 0, if k > i, we have

cond(xi; d) =
i∑

k=0

||dk||∞ |ωk(xi)| =
i∑

k=0

k∑
j=0

|ωk(xi)|
|ω′k+1(xj)|

. (10)

Applying Theorem 5 to the Newton representation and taking into account
(10), we can derive the following result.

Corollary 6 Let L[f ] =
∑n

i=0 difωi be the Newton representation of the
Lagrange polynomial operator (1) at the sequence of nodes x0, . . . , xn. Then

max
x∈[a,b]

cond(x; d)

λ(x)
= max

i=0,...,n
cond(xi; d)

= max
i=0,...,n

i∑
k=0

k∑
j=0

|ωk(xi)|
|ω′k+1(xj)|

= Cond(L−1),

where L is the lower triangular matrix L = (ωj(xi))0≤j≤i≤n.

4 Leja order

In [7] Leja introduced a sequence of points for a compact set in the complex
plane satisfying remarkable properties of approximation of the Green function
with a pole at infinity. Reichel [12] showed that the conditioning of the
interpolation operator at the Leja points has subexponential growth. In his
proof he uses the Newton formula showing that it has low conditioning. He
also suggested that a Leja ordering, obtained by applying a Leja sequence to a
finite set, has a nice behaviour with respect to the roundoff error propagation
(see Section 5.3 of [5]).

Definition 1 A sequence of nodes x0, . . . , xn follows a Leja ordering if

|ωk(xk)| ≥ |ωk(xi)|, 0 ≤ k ≤ i ≤ n. (11)

A Leja order need not be unique. If we want to set the nodes in Leja order,
we need to choose xk maximizing |ωk(x)| on the set x ∈ {xk, . . . , xn}. This
fact suggests the following algorithm:

(i) First, we choose as the first node x0 any node in the set. However, in
order to maximize |x1 − x0| in the second step, we should choose one
extreme point, either the minimum or the maximum.
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(ii) In the second step, x1 is chosen such that

|x1 − x0| = max
j=1,...,n

|xj − x0|.

So x1 is the other extreme (minimum or maximum).

(iii) In the k-th step, we select xk such that

k−1∏
i=0

|xk − xi| = max
j=k,...,n

k−1∏
i=0

|xj − xi|.

By formulae (10) and (11), we have that cond(xi; d) ≤
∑i

k=0 ||dk||∞ |ωk(xk)|
and introducing the finite difference functionals

∆(x0, . . . , xk)f = ωk(xk)dkf, k = 0, . . . , n,

we deduce the following inequality for nodes in Leja ordering

cond(xi; d) ≤
i∑

k=0

||∆(x0, . . . , xk)||∞. (12)

The following result shows an upper bound of the norm of the finite
difference functionals when the nodes follow a Leja ordering.

Theorem 7 Let x0, . . . , xn be nodes following a Leja ordering. Then

||∆(x0, . . . , xk)||∞ ≤ 2k, k = 0, . . . , n,

and
max

i=0,...,n
cond(xi; d) ≤ 2n+1 − 1.

Proof: By Proposition 3 applied to L[f ] =
∑n

k=0 ∆(x0, . . . , xk)ωk(x)/ωk(xk),
we have that  ||∆(x0)||∞

...
||∆(x0, . . . , xn)||∞

 = |L̃−1|e, (13)

where L̃ is the lower triangular matrix with unit diagonal whose entries are
l̃ij = ωj(xi)/ωj(xj) and e = (1, . . . , 1)T . Let s be a vector whose components
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satisfy ||s||∞ ≤ 1. Let c = L̃−1s and let us show by induction on k that
|ck| ≤ 2k, for all k = 0, . . . , n. For k = 0, c0 = s0 and the inequality |c0| ≤ 1
follows. Assuming that the inequality holds for k − 1, let us prove it for k.

Since the nodes follow a Leja order, we deduce that

|l̃ij| ≤ 1, j ≤ i.

Taking into account that

ck = sk +
k−1∑
j=0

l̃kjcj,

we have

|ck| ≤ |sk|+
k−1∑
j=0

|l̃kj| |cj| ≤ 1 + (1 + 2 + · · ·+ 2k−1) = 2k.

Take s = (sign(l̃
(−1)
kj ))j=0,...,n. Then, by formula (13),

||∆(x0, . . . , xk)||∞ =
k∑

j=0

|l̃(−1)kj | =
k∑

j=0

l̃
(−1)
kj sign(l̃

(−1)
kj ) ≤ 2k,

From formula (12) it follows cond(xi; d) ≤ 2i+1− 1 and the result follows.
�

Using the previous result and Theorem 5 we deduce that the ratio between
the conditioning of the Newton representation with nodes following a Leja or-
dering and the conditioning of the Lagrange representation is bounded above
by 2n+1 − 1. In Section 7, we will see that the conditioning at equidistant
nodes in a Leja ordering is much lower than the bound 2n+1 − 1.

5 Case of equidistant nodes

From now on, we shall consider equidistant nodes x0, . . . , xn in [a, b]

xi = a+ ih, i = 0, . . . , n, with h =
b− a
n

, (14)

and apply the previous results to derive the conditioning of the Newton for-
mula. In order to compare it with the conditioning of the Lagrange formula,
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we use some known facts on the Lebesgue constant Λn at equidistant nodes.
In [14] Schönhage shows the following asymptotic formula

Λn ∼
2n+1

e n log(n+ γ)
,

where γ is the Euler–Mascheroni constant. We shall use the following bound

λ(x) ≤ 2n, x ∈ [a, b], (15)

based on a private communication by Jia Rong-Qing to Carl de Boor (see
1.3.22 of [13]). In order to bound cond(x; d) associated with the Newton
representation, we need the following auxiliary result.

Lemma 8 Let xi = a + i
n
(b− a), i = 0, . . . , n, and let dk, k = 0, . . . , n and

ωk, k = 0, . . . , n+ 1, be defined by (7) and (8), respectively. Then

(i) ωk(xi) =
(

b−a
n

)k
i!

(i−k)! , 0 ≤ k ≤ i ≤ n,

(ii) ω′k+1(xi) = (−1)k−i
(

b−a
n

)k
i!(k − i)!, 0 ≤ i ≤ k ≤ n,

(iii) ||dk||∞ = 1
k!

(
b−a
n

)−k
2k, 0 ≤ k ≤ n.

Proof: In order to prove (i), let us observe that

ωk(xi) =
k−1∏
j=0

(xi − xj) =

(
b− a
n

)k k−1∏
j=0

(i− j) =
(b− a

n

)k i!

(i− k)!
.

Now we show (ii):

ω′k+1(xi) =
∏
j 6=i

(xi − xj) =
(b− a

n

)k∏
j 6=i

(i− j) = (−1)k−i
(b− a

n

)k
i!(k − i)!.

Finally,

||dk||∞ =
k∑

j=0

1

|ω′k+1(xj)|
=
(b− a

n

)−k k∑
j=0

1

j!(k − j)!
=

1

k!

(b− a
n

)−k k∑
j=0

(
k

j

)
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and the result follows. �

From Lemma 8 (i), we deduce that the entries of the lower triangular
collocation matrix L = (ωj(xi))i,j=0,...,n are

lij = ωj(xi) =
(b− a

n

)j i!

(i− j)!
=
(b− a

n

)j
j!

(
i

j

)
, 0 ≤ j ≤ i ≤ n.

The following result provides Cond(L−1) = maxi=0,...,n cond(xi; d) for equidis-
tant nodes.

Theorem 9 Let L[f ] =
∑n

i=0 difωi be the Newton representation of the La-
grange polynomial operator (1) at the sequence of equidistant nodes xi =
a+ i

n
(b− a), i = 0, . . . , n. Then cond(xi; d) = 3i, i = 0, . . . , n, and so

max
i=0,...,n

cond(xi; d) = cond(xn; d) = 3n.

Proof: Taking into account ωk(xi) = 0 if k > i, we have

cond(xi; d) =
i∑

k=0

||dk||∞ |ωk(xi)|.

Using Lemma 8,

cond(xi; d) =
i∑

k=0

i!

(i− k)!

2k

k!
=

i∑
k=0

(
i

k

)
2k = 3i.

�

The previous result shows that the evaluation of the Newton formula for
equidistant nodes can be less stable than the evaluation of the Lagrange
formula. The Lebesgue function takes values close to 1 in a neighborhood of
each node. In contrast, cond(x; d) takes the value 3i at the node xi, giving
rise to a significant loss of stability at the nodes. Corollary 6 and Theorem 9
show that the maximum value of cond(x; d)/λ(x) is attained at the last node
xn. Therefore, for the remaining points,

cond(x; d) ≤ 3nλ(x),

and using the bound (15), we deduce the uniform bound cond(x; d) ≤ 6n.
This bound is too pessimistic. In the next section we show that cond(x; d) ≤
3n for all x ∈ [a, b].
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6 Optimal bound for the stability of the New-

ton formula for equidistant nodes

In order to bound cond(x; d) for the Newton formula at equidistant nodes
(14), we make the change of variables x = a+th, which transforms the nodes
into the first nonnegative integers 0, 1, . . . , n. We observe that

ωk(a+ th) = hkt(t− 1) · · · (t− k + 1). (16)

We can show the following result.

Lemma 10 Let i be an integer such that 1 ≤ i ≤ n and ωk given by (16).
Then, for each t ∈ [i− 1, i], we have

|ωk(a+ th)| ≤ hk
i!

(i− k)!
, if 0 ≤ k ≤ i,

|ωk(a+ th)| ≤ hk

4
i!(k − i)!, if i < k ≤ n.

Proof: If k ≤ i, we deduce, from the fact that the function t(t− 1) · · · (t−
k+1) is a nondecreasing function on [k−1,∞), that ωk(a+ th) ≤ ωk(a+ ih).
Then

|ωk(a+ th)| ≤ hki(i− 1) · · · (i− k + 1) = hk
i!

(i− k)!
.

If k ≥ i+ 1, we have that [i− 1, i] ⊆ [0, k − 1] and

|ωk(a+ th)| = hk|t| · · · |t− i+ 2| |t− i+ 1| |t− i| |t− i− 1| · · · |t− k + 1|.

We now use the following bounds to deduce the results

|t− i+ 1| |t− i| ≤ 1

4
,

|t| |t− 1| · · · |t− i+ 2| ≤ i(i− 1) · · · 2 = i!,

|t− i− 1| · · · |t− k + 1| ≤ 2 · · · (k − i) = (k − i)!.

�

We provide a bound for cond(x; d) in the next theorem.
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Theorem 11 Let x0, . . . , xn be equidistant nodes in [a, b] given by (14). Let
i be an integer such that 1 ≤ i ≤ n. Then

cond(x; d) ≤ 3i +
1

4

n∑
k=i+1

2k

k
, x ∈ [xi−1, xi].

Proof: We have that x = a + th with t ∈ [i − 1, i] and h = (b − a)/n. By
Corollary 6, we have

cond(x; d) =
n∑

k=0

k∑
j=0

|ωk(x)|
|ω′k+1(xj)|

=
i∑

k=0

k∑
j=0

|ωk(x)|
|ω′k+1(xj)|

+
n∑

k=i+1

k∑
j=0

|ωk(x)|
|ω′k+1(xj)|

.

We apply Lemma 8 (ii) and Lemma 10 to bound both terms. For the first
term

i∑
k=0

k∑
j=0

|ωk(x)|
|ω′k+1(xj)|

≤
i∑

k=0

k∑
j=0

hki!/(i− k)!

hkj!(k − j)!

=
i∑

k=0

k∑
j=0

(
i

k

)(
k

j

)
=

i∑
k=0

(
i

k

)
2k = 3i,

and for the second one

n∑
k=i+1

k∑
j=0

|ωk(x)|
|ω′k+1(xj)|

≤ 1

4

n∑
k=i+1

k∑
j=0

hki!(k − i)!
hkj!(k − j)!

=
1

4

n∑
k=i+1

k∑
j=0

(
k
j

)(
k
i

)
=

1

4

n∑
k=i+1

2k(
k
i

) .
Since k > i ≥ 1, we can deduce that

(
k
i

)
≥ k and hence

1

4

n∑
k=i+1

2k(
k
i

) ≤ 1

4

n∑
k=i+1

2k

k

Then the result follows. �

We finish by showing that 3n is the best uniform bound for cond(x; d)
and it is attained at xn.
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Corollary 12 Let x0, . . . , xn be the equidistant nodes in [a, b] given by (14)
and x ∈ [a, b]. Then

max
x∈[a,b]

cond(x; d) = cond(xn; d) = 3n.

Proof: Let us first show that the sequence fi := 3i+2n−1−2i−1, i = 1, . . . , n,
is nondecreasing. In fact,

∆fi = fi+1 − fi = 3i+1 + 2n−1 − 2i − 3i − 2n−1 + 2i−1 = 2 · 3i − 2i−1 ≥ 0.

Then, for each x there exists an integer i, 1 ≤ i ≤ n, such that x ∈ [xi−1, xi]
and, applying Theorem 11, we have

cond(x; d) ≤ 3i +
1

4

n∑
k=i+1

2k

k
≤ 3i +

1

4

n∑
k=i+1

2k = 3i + 2n−1 − 2i−1 = fi.

Since fi ≤ fn = 3n, the result holds applying Theorem 9. �

Let us remark that cond(x; d) is invariant under affine transformations
T (x) = rx+ s, r 6= 0. Let

T ∗(dk) = [T (x0), . . . , T (xk)]

be the divided differences functionals at the set of transformed nodes. Then
we deduce from formula (9) that cond(x; d) = cond(T (x), T ∗(d)). Taking
T (x) = a + b− x, we can deduce analogous results for decreasing nodes. In
fact, Theorem 9 and Corollary 12 also hold and Theorem 11 transforms into

cond(x; d) ≤ 3i +
1

4

n∑
k=i+1

2k

k
, x ∈ [xi, xi−1].

Observe that, in this case, the last node is xn = a, the left end of the interval.

7 Numerical experiments

In this section we provide some numerical examples to illustrate results of
the previous sections. First, let us interprete Theorem 11 and Corollary 12
using formula (3). Due to roundoff errors, we can assume that the data come
from f̂ , a perturbation of f , such that

||f − f̂ ||∞ ≤ u||f ||∞,
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where u is the unit roundoff. Then the error in the computation of the
interpolant can be bounded above by

|L[f ](x)− L[f̂ ](x)| ≤ u cond(x; d)||f ||∞ ≤ 3nu||f ||∞,

for the Newton representation with equidistant nodes. If 3n ≤ u−1 then the
roundoff error will be less than ||f ||∞. Therefore, the Newton formula can
have roundoff errors greater than ||f ||∞ only if n ≥ 24 log(2)/ log(3) ≈ 15.14,
for single precision arithmetic (u−1 = 224), or n ≥ 53 log(2)/ log(3) ≈ 33.44,
for double precision arithmetic (u−1 = 253). The Lebesgue constant takes
values greater than the inverse of the roundoff unit if n ≥ 32, for single
precision, or n ≥ 62, for double precision. Therefore, for double precision
arithmetic and degrees between 33 and 62, the relative errors of the Lagrange
formula are less than 1 whereas the Newton formula might gives relative
errors greater than 1, especially when the point x is close to the last node
xn.

For the numerical experiments, we have considered the interpolation data

xi = −1 +
2i

n
, i = 0, . . . , n,

f(x0) = 2, f(xi) = 1, i = 1, . . . , n.

The polynomial interpolant is

p(x) = 1 +
(x1 − x) · · · (xn − x)

(1 + x1) · · · (1 + xn)
.

We have tested the Newton formula with different degrees and found that
the computations give errors close to 1 for n = 54, a much higher degree than
34, the degree predicted with the bound 3n. Figure 1 shows that the decimal
logarithm of the absolute error due to rounding in the Newton formula grows
linearly, confirming the exponential growth of the conditioning predicted by
Theorem 11. The maximum of the error is achived near xn = 1, the last
interpolation point, which agrees with the fact that the conditioning takes
its maximum at xn, as stated in Corollary 12.

We end by comparing equidistant nodes in increasing order and in a
Leja order. We illustrate graphically Theorem 11 in Figure 2, which depicts
log3 cond(x; d) at equidistant nodes in increasing order and with a Leja or-
dering and log3 λ(x) for n = 10 in the interval [0, 1]. The conditioning for
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Figure 1: Decimal logarithm of roundoff error of Newton formula for equidis-
tant points in [−1, 1] with degree n = 54.

nodes following a Leja ordering is closer to the Lebesgue constant than the
conditioning for increasing order.

Although, for an arbitrary set of n + 1 nodes in a Leja order, we have
seen in Theorem 7 that cond(x; d) is bounded above by 2n+1− 1, this bound
is very pessimistic for equidistant nodes in a Leja order. Figure 3 compares
the graphics of n log n with the maximum of the conditioning for equidistant
nodes following a Leja order. Finally, Table 1 compares maxi cond(xi; d) at
equidistant nodes with increasing order and with a Leja order.
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n Increasing Leja
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4 81 9.25
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39 4.0525× 1018 1.1567× 102

Table 1: maxi cond(xi; d) at equidistant nodes in increasing order and in a

Leja order
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