000078095 001__ 78095 000078095 005__ 20200716101513.0 000078095 0247_ $$2doi$$a10.1063/1.5055061 000078095 0248_ $$2sideral$$a110382 000078095 037__ $$aART-2019-110382 000078095 041__ $$aeng 000078095 100__ $$aPachón, L.A. 000078095 245__ $$aInfluence of non-Markovian dynamics in equilibrium uncertainty-relations 000078095 260__ $$c2019 000078095 5060_ $$aAccess copy available to the general public$$fUnrestricted 000078095 5203_ $$aContrary to the conventional wisdom that deviations from standard thermodynamics originate from the strong coupling to the bath, it is shown that in quantum mechanics, these deviations originate from the uncertainty principle and are supported by the non-Markovian character of the dynamics. Specifically, it is shown that the lower bound of the dispersion of the total energy of the system, imposed by the uncertainty principle, is dominated by the bath power spectrum; therefore, quantum mechanics inhibits the system thermal-equilibrium-state from being described by the canonical Boltzmann’s distribution. We show for a wide class of systems, systems interacting via central forces with pairwise-self-interacting environments; this general observation is in sharp contrast to the classical case, for which the thermal equilibrium distribution, irrespective of the interaction strength, is exactly characterized by the canonical Boltzmann distribution; therefore, no dependence on the bath power spectrum is present. We define an effective coupling to the environment that depends on all energy scales in the system and reservoir interaction. Sample computations in regimes predicted by this effective coupling are demonstrated. For example, for the case of strong effective coupling, deviations from standard thermodynamics are present and for the case of weak effective coupling, quantum features such as stationary entanglement are possible at high temperatures. 000078095 536__ $$9info:eu-repo/grantAgreement/ES/DGA/QMAD$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-88358-C3-1-R 000078095 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000078095 590__ $$a2.991$$b2019 000078095 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b11 / 36 = 0.306$$c2019$$dQ2$$eT1 000078095 591__ $$aCHEMISTRY, PHYSICAL$$b76 / 158 = 0.481$$c2019$$dQ2$$eT2 000078095 592__ $$a1.047$$b2019 000078095 593__ $$aMedicine (miscellaneous)$$c2019$$dQ1 000078095 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ1 000078095 593__ $$aPhysical and Theoretical Chemistry$$c2019$$dQ1 000078095 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000078095 700__ $$aTriana, J.F. 000078095 700__ $$0(orcid)0000-0003-4478-1948$$aZueco, D.$$uUniversidad de Zaragoza 000078095 700__ $$aBrumer, P. 000078095 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000078095 773__ $$g150, 3 (2019), 034105 [9 pp]$$pJ. chem. phys.$$tJournal of Chemical Physics$$x0021-9606 000078095 8564_ $$s660798$$uhttps://zaguan.unizar.es/record/78095/files/texto_completo.pdf$$yPostprint 000078095 8564_ $$s130699$$uhttps://zaguan.unizar.es/record/78095/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000078095 909CO $$ooai:zaguan.unizar.es:78095$$particulos$$pdriver 000078095 951__ $$a2020-07-16-09:20:49 000078095 980__ $$aARTICLE