000078153 001__ 78153
000078153 005__ 20220208112844.0
000078153 0247_ $$2doi$$a10.1216/JIE-2018-30-2-219
000078153 0248_ $$2sideral$$a97954
000078153 037__ $$aART-2018-97954
000078153 041__ $$aeng
000078153 100__ $$0(orcid)0000-0003-2453-7841$$aAbadías Ullod, Luciano$$uUniversidad de Zaragoza
000078153 245__ $$aRegularity properties of mild solutions for a class of Volterra equation with critical nonlinearities
000078153 260__ $$c2018
000078153 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078153 5203_ $$aWe study a class of abstract nonlinear integral equations of convolution type defined on a Banach space. We prove the existence of a unique, locally mild solution and an extension property when the nonlinear term satisfies a local Lipschitz condition. Moreover, we guarantee the existence of the global mild solution and blow up profiles for a large class of kernels and nonlinearities. If the nonlinearity has critical growth, we prove the existence of the local ¿-mild solution. Our results improve and extend recent results for special classes of kernels corresponding to nonlocal in time equations. We give an example to illustrate the application of the theorems so obtained.
000078153 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000078153 590__ $$a0.974$$b2018
000078153 591__ $$aMATHEMATICS$$b98 / 313 = 0.313$$c2018$$dQ2$$eT1
000078153 591__ $$aMATHEMATICS, APPLIED$$b149 / 254 = 0.587$$c2018$$dQ3$$eT2
000078153 592__ $$a0.384$$b2018
000078153 593__ $$aNumerical Analysis$$c2018$$dQ3
000078153 593__ $$aApplied Mathematics$$c2018$$dQ3
000078153 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000078153 700__ $$aÁlvarez, Edgardo
000078153 700__ $$aLizama, Carlos
000078153 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000078153 773__ $$g30, 2 (2018), 219-256$$pJ. integral equ. appl.$$tJOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS$$x0897-3962
000078153 8564_ $$s205641$$uhttps://zaguan.unizar.es/record/78153/files/texto_completo.pdf$$yVersión publicada
000078153 8564_ $$s46429$$uhttps://zaguan.unizar.es/record/78153/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000078153 909CO $$ooai:zaguan.unizar.es:78153$$particulos$$pdriver
000078153 951__ $$a2022-02-08-11:23:25
000078153 980__ $$aARTICLE