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Background: Early identification of systolic dysfunction in dogs with systemic inflammatory

response syndrome (SIRS) potentially could improve the outcome and decrease mortality.

Objective: To compare 2-dimensional speckle tracking (2D-STE) with 2-dimensional (2D) and

M-mode echocardiography in the evaluation of systolic function in SIRS dogs.

Animals: Seventeen SIRS and 17 healthy dogs.

Methods: Prospective observational case-control study. Each dog underwent physical examina-

tion, conventional echocardiography, 2D-STE, and C-reactive protein measurement.

Results: Dogs with SIRS had lower 2D-STE ejection fraction (X4D-EF; 44 ± 8 versus 53 ± 8;

P = .003), endocardial global longitudinal strain (ENDO-G-Long-St; −14.6 ± 3.2 versus −18.5 ±

4.1; P = .003), and normalized left ventricular diameter in diastole (1.38 ± 0.25 versus 1.54 ± 0.17;

P = .04) and systole (0.85 ± 0.18 versus 0.97 ± 0.11; P = .03) as compared to healthy dogs. Simp-

son method of disks (SMOD) right parasternal EF (55 ± 9 versus 60 ± 6; P = .07) and end systolic

volume index (ESVI; 23 ± 10 versus 21 ± 6; P = .61), SMOD left apical EF (59 ± 9 versus 59 ± 6;

P = .87) and ESVI (20 ± 8 versus 22 ± 6; P = .25), fractional shortening (FS; 34 ± 5 versus 33 ± 4;

P = .39), M-mode EF (64 ± 7 versus 62 ± 5; P = .35), and ESVI (23 ± 11 versus 30 ± 9; P = .06)

were not significantly different between SIRS and control group, respectively.

Conclusion and Clinical Importance: Speckle tracking X4D-EF and ENDO-G-Long-St are more

sensitive than 2D and M-Mode FS, EF, and ESVI in detecting systolic impairment in dogs

with SIRS.
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1 | INTRODUCTION

Systemic inflammatory response syndrome (SIRS) is a clinical syn-

drome of infectious or noninfectious origin. Sepsis is a systemic

inflammatory response to infection.1 In canine medicine, SIRS has

been reported in many infectious diseases2–6 and also in several non-

infectious inflammatory disorders such as pancreatitis, trauma, neo-

plasia, and immune-mediated diseases.2,5–10 When SIRS occurs, an

excessive release of cytokines results in progressive endothelial dys-

function, increased microvascular permeability and activation of the

coagulation system,9,11–13 which can potentially lead to secondary

multiple organ dysfunction syndrome and death.1 Heart rate (HR),

respiratory rate (RR), body temperature, and white blood cell (WBC)

count are the clinical criteria used to diagnose SIRS in veterinary14

and human medicine.1 Myocardial dysfunction during SIRS has been

demonstrated in humans,15,16 in in vitro models17–19 and also in dogs

by the lithium dilution cardiac output method.20 Echocardiography

has been used in only a relatively small number of studies to assess

cardiac function in dogs with SIRS. The most commonly used echocar-

diographic indices of left ventricular (LV) systolic function such as

fractional shortening (FS) and ejection fraction (EF) have not proved

sufficiently sensitive to detect systolic dysfunction in dogs with SIRS21

or showed systolic impairment only in non-survivor dogs.22,23 Two-

dimensional speckle-tracking echocardiography (2D-STE) is an echo-

cardiographic technique that allows an objective and quantitative

assessment of myocardial function by analysis of the motion of

speckles created by the interaction of ultrasonic beams and the myo-

cardium during the 2-dimensional (2D) examination. Speckle-tracking

echocardiography can measure segmental, regional, and global defor-

mation parameters such as strain (St) and strain rate (StR) in longitudi-

nal, radial, and circumferential directions. Strain is the percentage of

deformation of the myocardium during the cardiac cycle; StR is

defined as the velocity at which deformation occurs. Speckle-tracking

echocardiography is angle independent and allows differentiation

between active and passive myocardial movements. Two-dimensional

STE has been used to measure LV myocardial rotation and torsion,24

radial25 and longitudinal26,27 St and StR, for both endocardial (ENDO)

and epicardial (EPI) layers28 in healthy dogs and in dogs affected by

cardiac diseases.29–31 In all studies, the method has been shown to

have good repeatability and reproducibility. Two-dimensional STE-

derived long-axis and short-axis St previously have been validated in

dogs with sonomicrometry as a reference standard.32 To the best of

our knowledge, no previous study has analyzed LV systolic function

by STE in dogs with SIRS. The main objective of our study was to

compare 2D-STE with conventional 2D and M-mode echocardiogra-

phy in the evaluation of systolic function in dogs with SIRS.

2 | MATERIAL AND METHODS

The study was an observational case-control study carried out at the

Veterinary Teaching Hospital of the University of Sassari, Italy. The local

ethical committee approved the study protocol and all owners signed an

informed consent form before enrollment. Two groups of dogs were

selected: 1 with SIRS related to different diseases and 1 without any

disorders (healthy control group). Healthy dogs were selected from a

population of dogs presented for routine procedures, such as surgical

castration or ovariohysterectomy. At the time of admission, each dog

underwent physical examination, indirect blood pressure (BP) measure-

ment, blood collection, and echocardiographic examination. Blood

pressure was measured in lateral recumbency with a high-definition

oscillometric monitor (Memodiagnostic MD 15/90 Pro, S+B medVET,

Germany) with the cuff placed on a limb or on the tail. Blood pressure

measurement was repeated 5 times and mean values were calculated.

The following BP values were considered normal: systolic 131 ± 20 mm

Hg, diastolic 74 ± 15 mm Hg, and mean 97 ± 16 mm Hg.33 Complete

cell blood count (CBC; Lasercyte, Idexx Laboratories, Westbrook, Maine),

serum biochemistry profile (ABX Pentra 400, Horiba Medical, Japan),

and C-reactive protein (CRP) (CP2572, Randox Laboratories Limited,

Crumlin, County Antrim, United Kingdom) serum concentrations were

analyzed. The reference range of serum CRP concentration ranged from

0 to 1.07 mg/dL, according to information provided by the manufacturer

and by a previous report.34 Each echocardiographic examination was

performed by a single experienced operator (Andrea Corda) with a porta-

ble ultrasound unit (My Lab Alpha, Esaote, Florence, Italy) equipped with

a multifrequency 1-4MHz phased array transducer (SP2430). Dogs were

positioned alternately in right and left lateral recumbency on an echocar-

diographic table and examined by 2D, M-mode, Doppler, and 2D-STE

with simultaneous ECG. All echocardiographic images and loops were

stored and analyzed off-line by the same observer (Andrea Corda).

2.1 | Two-dimensional and M-mode

echocardiography

M-mode and 2D cine loops and images were acquired and measured as

recommended by the guidelines of the American Association of Echo-

cardiography.35 The M-mode images of the LV were obtained from the

right parasternal short axis view. The M-mode-derived LV end-diastolic

diameter (LVIDD) and end-systolic diameter (LVIDS) were normalized

to body weight (BW)36 according to the following formulas: LVIDD nor-

malized (LVIDDN) = LVIDD (cm) / (BW [kg])0.294 and LVIDS normalized

(LVIDSN) = LVIDS (cm) / (BW[kg])0.315. The reference ranges of the

LVIDDN and LVIDSN were 1.27-1.85 and 0.71-1.26, respectively.36

The M-mode-derived LVIDD and LVIDS were used to calculate LV

volumes,37 EF (M-mode EF), and FS. Left ventricular volumes and EF

also were calculated by the monoplane Simpson method of disks

(SMOD) from the right parasternal long-axis 4-chambers view (SMOD

right parasternal EF) and from the left apical 4-chambers view (SMOD

left apical EF) as previously described.38 Simpson and M-mode-derived

end diastolic volume (EDV) and end systolic volume (ESV) were indexed

to body surface area (BSA) to obtain the end diastolic volume index

(EDVI) and the end-systolic volume index (ESVI).38 Body surface area

was calculated from BW by the following formula39: BSA = 0.101 ×

BW (kg)2/3. Each echocardiographic measurement was repeated 3 times,

and mean values were calculated.

2.2 | Two-dimensional STE analysis

Two-dimensional speckle tracking analysis was performed off-line

by using 2 different software packages: 2D-XStrain (Esaote) and
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XStrain-4D (Esaote). At least three 2D clips, with duration of 1 car-

diac cycle each, were acquired from each of the 3 following views:

(1) left apical 4-chambers showing both atria and ventricles; (2) left api-

cal 2-chambers showing left atrium (LA) and LV; and (3) left apical

3-chambers showing LA, LV, and ascending aorta. A set of clips was

composed of 3 cine-loops, 1 of each apical view. For each cine-loop, an

end diastolic frame, in which ENDO and EPI borders were clearly iden-

tified, was chosen and processed by 2D-XStrain, which is a dedicated

border tracking software. Left ventricular ENDO and EPI borders were

delineated by 13 equidistant tracking points inserted manually under

the guidance of a semiautomatic tool for border segmentation (AHS

Aided Heart Segmentation, Esaote). Then, 2D-XStrain software auto-

matically divided the LV wall, of each apical view, in 6 segments and

tracked them, frame-by-frame, throughout the entire cardiac cycle. The

tracking quality was visually evaluated. It was considered adequate if

the tracking point movements followed the ENDO and EPI borders

throughout the entire cardiac cycle. When necessary, manual adjust-

ment of the tracking points was made. Only cardiac cycles with ade-

quate tracking quality and with no signs of arrhythmia were included.

The system used provided a quality control of the temporal resolution,

it did not allow elaboration of clips having a frame rate (FR) < 40 Hz,

which is adequate for HR < 100 beats per minute (bpm).40 In patients

with HR ≥ 100 bpm, to ensure an adequate temporal resolution, the

LV ENDO and EPI borders were optimally visualized by adjustment of

image depth, sector width, number of focal points, and line density so

as to have at least 22 frames acquired for each cardiac cycle. The

XStrain-4D software, by combining the results of each set of clips ana-

lyzed by 2D-XStrain, generated the LV bull's eye representation

according to the standard 17-segments model35,40 (Figure 1). The

XStrain-4D software provided segmental, regional, and global (G) peak

systolic values of longitudinal (Long) and transversal (Tran) St and StR

of both ENDO and EPI borders. The radial LV deformation observed

from the apical views was denoted “transversal” by the system. The G

values of peak systolic St and StR were calculated as the average of

the 17 segmental peak values. The XStrain-4D software, by providing

temporal compensation for HR variation and spatial alignment of the

3 apical views, produced a LV 3-dimensional (3D) reconstruction

(Figure 1) and calculated LV volumes and EF41 (X4D-EF) by the “Beutel

model” method (Tomtec, Germany).42 Three sets of clips were analyzed

for each patient and mean values were calculated. The following LV

XStrain-4D-derived parameters were statistically analyzed: (1) ENDO-

G-Long-St, (2) ENDO-G-Long-StR, (3) EPI-G-Long-St, (4) EPI-G-Long-

StR, (5) G-Tran-St, (6) G-Tran-StR, and (7) X4D-EF.

To determine intra-observer 2D-STE measurement variability, 10

echocardiograms of 10 different dogs (5 from the SIRS group and 5 from

the control group) were randomly selected and submitted to 3 repeated

measurements by the same observer (Andrea Corda) on the same clip sets.

Each clip set was measured twice in a single day and once 1 week later to

assess intra-observer within-day and between-day variability, respectively.

2.2.1 | Inclusion criteria

Dogs that fulfilled at least 2 of the 4 SIRS criteria14 were included in the

SIRS group: (1) Hypo- or hyper-thermia (≤37.8�C or ≥39.7�C), (2) tachy-

cardia (HR ≥160 bpm), (3) tachypnea (RR ≥40 breaths/min) or PCO2 ≤32

mm Hg, and (4) leukocytosis (WBC count ≥12 000 WBCs/μL) or leuko-

penia (WBC count ≤4000 WBCs/μL) or >10% band neutrophils.14

FIGURE 1 XStrain-4D main window, after spatial alignment of the 3 apical views. A, Left ventricular 3-dimensional reconstruction; B, dynamic

color coded bull's eye representation of the segmental epicardial longitudinal strain value; C, left ventricular static bull's eye representation

according to the standard 17-segments model; and D, trend over time of all the segmental epicardial longitudinal strain values (colored

continuous lines) and of the global epicardial longitudinal strain value (dotted white line)
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Systemic inflammatory response syndrome severity was classified based

on the number of SIRS criteria present at first examination.14 It was

defined as mild, moderate, or severe if dogs presented with 2, 3, or

4 abnormal parameters, respectively. The control group included healthy

dogs based on physical examination, CBC, serum biochemical profile, BP

measurement, echocardiographic examination, and serum CRP concen-

trations within the normal limits.

2.2.2 | Exclusion criteria

From the SIRS group, we excluded dogs with CRP <1.07 mg/dL,34 those

with thoracic trauma, and those with a previous diagnosis of hypothy-

roidism. From both groups, we excluded breeds of dogs most prone to

dilated cardiomyopathy (Great Dane, Saint Bernard, Irish Wolfhound,

Newfoundland, Doberman Pinscher, Neapolitan Mastiff, and Cocker

Spaniel),43,44 dogs with a previous diagnosis of cardiac disease, dogs

<1 year of age, pregnant females, dogs treated with anti-inflammatory,

anesthetic, sedative, or opioid drugs during the previous 12 hours, and

dogs previously treated with known cardiotoxic drugs (eg, doxorubicin).

From both groups, we also excluded dogs with echocardiographic evi-

dence of congenital cardiac disease, moderate to severe valvular regurgi-

tation (regurgitant jet area/left atrium area ≥30%)45 with or without

cardiac remodeling. Dogs with persistent arrhythmia and with Doppler

echocardiography-derived evidence of pulmonary hypertension, defined

as the presence of a tricuspid or pulmonic valve regurgitant jet veloc-

ity ≥2.8 or ≥2.2 m/s, respectively,46 also were excluded.

2.2.3 | Statistical methods

Statistical analyses were performed using Stata 13 (Stata Corp, College

Station, Taxes). Continuous variables were presented as mean and SD

or as median and interquartile ranges, depending on their parametric

distribution. Student's t and Mann-Whitney tests were used to assess

differences between control and SIRS groups. Proportion test was

used to compare categorical variables. Multiple linear regression analy-

sis was performed to explore the relationship between the 2D-STE

parameters, as individual dependent variables, and dog breed, age,

BW, and HR as independent variables. Statistical significance was con-

sidered when P < .05. The average percent coefficient of variation

(CV) was used to quantify the within-day and between-day intra-

observer measurement variability. Percent CV was calculated using

the following formula: CV = (SD of repeated measurements/average

of measurements) × 100.47 The degree of variability was arbitrarily

defined as follows: CV < 5%, very low variability; 5%-15%, low vari-

ability; 15%-25%, moderate variability; and >25%, high variability.48

Values with CV < 15% were considered clinically acceptable.

3 | RESULTS

Forty dogs initially were enrolled (22 in the SIRS and 18 in the control

group, respectively). Five SIRS dogs were excluded because their

CRP concentrations were <1.07 mg/dL. One dog in the control group

was excluded because of leukocytosis and serum CRP concentration

higher than the upper normal limit. A total of 34 dogs were recruited.

The SIRS group included 13 females (4 spayed) and 4 males (2 neutered),

with a mean (SD) age of 7 (3.5) years and mean (SD) weight of 22.94

(11.49) kg, 8 crossbreed, 2 German Shepherd, 2 Fonni's dog, 1 Labrador

Retriever, 1 English Setter, 1 Shih Tzu, 1 Epagneul Breton, and 1 Stafford-

shire Bull Terrier. The causes of SIRS were pyometra (n = 5), ehrlichiosis

(n = 3), enteritis (n = 1), pancreatitis (n = 1), endometritis (n = 1), leish-

maniasis (n = 1), ulcerated and metastatic mammary carcinoma (n = 1),

metastatic mast cell tumor (n = 1), splenic and hepatic hemangiosarcoma

(n = 1), systemic lupus erythematosus (n = 1), and secondary immune-

mediated thrombocytopenia (n = 1). Owner-reported clinical signs were

anorexia (n = 9), inappetence (n = 7), lethargy (n = 7), weakness (n = 5),

abdominal pain (n = 5), polyuria and polydipsia (n = 3), generalized pain

(n = 2), weight loss (n = 2), vulvar discharge (n = 2), vomiting (n = 2),

acute diarrhea (n = 1), petechiae (n = 1), and lameness (n = 1). Among

the SIRS dogs, 10 (59%) presented with 2 of the 4 SIRS criteria and 7

(41%) showed 3 of the 4 SIRS abnormal parameters, and were classified

as having mild and moderate SIRS, respectively. No dog presented with

clinical signs of severe shock such as bradycardia, hypothermia, hypoten-

sion, stupor, or coma. Median (range) duration of clinical signs before

admission was 5.7 (1-30) days. All SIRS dogs underwent medical or surgi-

cal treatment or both, improved during their hospital stay, and survived

until discharge. The control group included 7 females (3 spayed) and

10 males (4 neutered), with a mean (SD) age of 5.2 (2.47) years and mean

(SD) BW of 19.12 (11.68) kg. They consisted of 7 crossbreeds, 3 Labrador

Retrievers, 3 English Setters, 2 Staffordshire Bull Terriers, 1 Dachshund,

and 1 Beagle. All 34 dogs had normal BP results. None of the 34 patients

had received anti-inflammatory medications during the previous 2 weeks.

Two SIRS dogs were on antibiotic treatment at the time of presentation.

Four SIRS dogs showed occasional isolated ventricular premature com-

plexes during the echocardiographic examination.

Age, BW, and sex were not significantly different (P > .05) between

SIRS and control group (Table 1). Mean serum CRP and HR were signifi-

cantly higher (P < .05) in the SIRS group (Table 1). Dogs with SIRS had

mean LVIDDN and LVIDSN significantly lower (P < .05) than healthy

dogs; 4 SIRS dogs had LVIDDN and LVIDSN below the reference

limits36 (Table 2). All 34 dogs had M-mode-EF and FS results within nor-

mal limits, and mean values were not significantly different between

groups (P > .05; Table 2). The M-mode-derived EDVI and ESVI mean

values were not significantly different between the 2 groups (P > .05;

Table 2). Mean values of the SMOD right parasternal EF and SMOD

left apical EF were not significantly different between the 2 groups

(P > .05); no dog had a SMOD left apical EF < 40%, whereas only

1 dog from SIRS group had a SMOD right parasternal EF < 40%

(Table 3). The SMOD right parasternal EDVI and ESVI, SMOD left api-

cal EDVI and ESVI were not significantly different between the

2 groups (P > .05; Table 3).

TABLE 1 Differences in body weight (BW), age, sex, heart rate

(HR) and C-reactive protein (CRP) between healthy and systemic

inflammatory response syndrome (SIRS) dogs

Variable Control (n = 17) SIRS (n = 17) P value

Age (months) mean (SD) 62.5 (28.9) 85.1 (42.8) .08

BW (kg) mean (SD) 19 (12) 23 (11) .34

Sex (male), n (%) 10 (59) 4 (24) .08

HR (bpm) mean (SD) 106 (19) 128 (34) .02

CRP (mg/dL)

median (range)

0.14 (0-0.41) 9.64 (2.98-37.26) .00

4 CORDA ET AL.



Speckle-tracking echocardiography resulted in technically ade-

quate images in all dogs. Average CV for intra-observer within-day

2D-STE measurements variability ranged from 3.4% for X4D-EF to

7.6% for EPI-G-Long-St (Table 4). Average CV for intra-observer

between-day 2D-STE measurements variability ranged from 4.1% for

X4D-EF to 8.3% for G-Tran-St (Table 4).

Among the STE parameters analyzed, LV ENDO-G-Long-St and

X4D-EF were significantly lower (P < .05) in the SIRS dogs (Table 5).

On the contrary, LV ENDO-G-Long-StR, EPI-G-Long-St, EPI-G-Long-

StR, G-Tran-St, and G-Tran-StR did not show significant differences

(P > .05) between the 2 groups.

The multiple linear regression analysis results did not identify signifi-

cant effects (P > .05) of dog breed, age, and sex on X4D-EF, ENDO-

G-Long-St, ENDO-G-Long-StR, EPI-G-Long-St, EPI-G-Long-StR, G-Tran-St,

and G-Tran-StR (Table 6). Body weight did not have a significant effect

on the 2D-STE indices of systolic function evaluated in our study, except

for G-Tran-St, which was directly related to it (Table 6). Heart rate did

not significantly influence the 2D-STE indices of systolic function except

for EPI-G-Long-StR and G-Tran-St, which were inversely related to it.

4 | DISCUSSION

In our study, 2D-STE was compared with 2D and M-mode echocardi-

ography for the assessment of LV systolic function in dogs with SIRS.

Our results indicated that mild to moderate stages of SIRS in dogs were

associated with LV systolic impairment identified by 2D-STE ENDO-

G-Long-St and X4D-EF, but not detected by 2D- and M-mode-derived

EF, FS, and ESVI.

The 2D-STE software we used in our study (XStrain-4D)

enabled assessment of layer-specific longitudinal deformation as

well as transversal St and StR from the apical views. Within the myo-

cardial wall, sub-endocardial and sub-epicardial fibers mainly are lon-

gitudinally oriented, whereas the mid-wall fibers are circumferentially

oriented.49 Results from our investigation suggested that mild and

moderate stages of SIRS in dogs affected LV longitudinal endomyo-

cardial shortening without altering either longitudinal epimyocardial

or radial contraction. A potential explanation could be that ischemia,

induced by SIRS-associated microcirculatory alterations,12,50 coupled

with possible higher sensitivity of the sub-endocardial myocytes to

the direct negative effect of the inflammatory mediators, could affect

firstly, and more severely, the longitudinally oriented sub-endocardial

myocytes rather than the circumferential mid-wall and longitudinal

sub-epicardial fibers, leading to a decrease in endomyocardial longitu-

dinal systolic shortening. The sub-endocardial myocytes are the first

fibers affected by imbalance in oxygen delivery and coronary blood

supply51,52 because of the fact that O2 consumption, ATP utilization,

and fiber contraction are higher in the sub-endocardial layer than in

TABLE 3 Differences in Simpson method of disks-derived variables

between systemic inflammatory response syndrome (SIRS) and

control group

Variable Control (n = 17) SIRS (n = 17) P value

SMOD right parasternal EDVI

.49Mean (SD) 53 (12) 49 (17)

SMOD right parasternal ESVI

.61Mean (SD) 21 (6) 23 (10)

SMOD right parasternal EF (%)

.07Mean (SD) 60 (6) 55 (9)

N dogs with EF <40 (%) 0 (0) 1 (6)

SMOD left apical EDVI

.23Mean (SD) 55 (13) 49 (18)

SMOD left apical ESVI

.25Mean (SD) 22 (6) 20 (8)

SMOD left apical EF (%)

.87Mean (SD) 59 (6) 59 (9)

N dogs with EF <40 (%) 0 (0) 0 (0)

Abbreviations: EDVI, end diastolic volume index; EF, ejection fraction;

ESVI, end systolic volume index; SMOD, Simpson method of disks.

TABLE 4 Between-day and within-day intra-observer 2-dimensional

speckle-tracking echocardiography (2D-STE) measurements variability

Average intra-operator CV (%)

Variable Between-day (n = 10) Within-day (n = 10)

X4D-EF (%) 4.1 3.4

ENDO-G-Long-St 6.3 5.4

ENDO-G-Long-StR 4.8 5.2

EPI-G-Long-St 5.2 7.6

EPI-G-Long-StR 5.2 6.7

G-Tran-St 8.3 6.7

G-Tran-StR 8.1 7.2

Abbreviations: CV, coefficient of variation; ENDO-G-Long-St, endocardial
global longitudinal strain; ENDO-G-Long-StR, endocardial global longitu-

dinal strain rate; EPI-G-Long-St, epicardial global longitudinal strain;

EPI-G-Long-StR, epicardial global longitudinal strain rate; G-Tran-St, global

transversal strain; G-Trans-StR, global transversal strain rate; X4D-EF,
XStrain-4D-derived ejection fraction.

TABLE 2 Differences in M-mode derived variables between systemic

inflammatory response syndrome (SIRS) and control group

Variable
Control
(n = 17)

SIRS
(n = 17) P value

LVIDDN

Mean (SD) 1.54 (0.17) 1.38 (0.25) .04

N dogs with LVIDDN <1.27 (%) 0 4

LVIDSN

Mean (SD) 0.97 (0.11) 0.85 (0.18) .03

N dogs with LVIDS <0.71 (%) 0 4

FS (%)

Mean (SD) 33 (4) 34 (5) .39

N dogs with FS <25 (%) 0 (0) 0 (0)

M-mode EDVI

Mean (SD) 79 (21) 63 (24) .051

M-mode ESVI

Mean (SD) 30 (9) 23 (11) .06

M-mode EF (%)

Mean (SD) 62 (5) 64 (7) .35

N dogs with EF <40 (%) 0 (0) 0 (0)

Abbreviations: EDVI, end diastolic volume index; ESVI, end systolic volume

index; EF, ejection fraction; FS, fractional shortening; LVIDDN, left ventric-

ular internal diameter at end diastole normalized to body weight; LVIDSN,
left ventricular internal diameter at end systole normalized to body weight.
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the more superficial mid-wall and sub-epicardial sarcomeres.53,54 An

alternative explanation for failure to detect a decrease in EPI-G-

Long-St in SIRS dogs, could be the fact that longitudinal EPI deforma-

tion parameters are more subject to artifacts generated by echo

dropout and respiratory movements of the thorax.28

Our results indicated that the M-mode-derived LVIDDN and

LVIDSN were significantly lower in the SIRS group. The decrease in

LV internal diameter is an indicator of volume contraction55,56 which,

in the SIRS group, could be a result of dehydration secondary to

anorexia or increased fluid loss by the urinary and gastrointestinal

routes. Because fluid deficits have the potential to confound the

echocardiographic evaluation of myocardial function,56,57 we cannot

eliminate the effect of decreased preload on LV ENDO-G-Long-St in

our SIRS dogs, even if, among the 2D-STE parameters of deformation,

global longitudinal St is considered to be less affected by load condi-

tions.29,57 Nevertheless, we speculated that decreased preload in our

SIRS dogs was not relevant because G-Tran-St and EDVI, which are

recognized to be highly influenced by decreased preload,29,56,58 were

not significantly different between the 2 groups.

Systolic impairment in SIRS dogs also was detected by 2D-STE-

derived EF (X4D-EF) which was significantly decreased compared to

healthy dogs. The XStrain-4D-derived EF has been validated using mag-

netic resonance imaging in humans,41 but not in dogs. Therefore, X4D-

EF reference ranges have not been established in this species. We

assumed that the X4D-EF, being free of geometrical assumptions,

would be more sensitive than M-mode and SMOD-derived EF in

detecting systolic impairment in dogs suffering from mild to moderate

SIRS. In our study, conventional 2D and M-mode indices of systolic

function (FS, M-mode EF, SMOD right parasternal EF, and SMOD left

apical EF) did not detect systolic dysfunction in SIRS dogs, except in

1 case in which SMOD right parasternal EF was <40%. Our results agree

with those of a previous study21 that did not identify echocardiographic

evidence of cardiac dysfunction in a population of dogs with SIRS, based

on measurements of FS and EF. On the contrary, 2 previous studies

found decreases in EF and FS in dogs suffering from SIRS secondary to

parvoviral enteritis,23 sepsis, autoimmune diseases, and cancer.22 In the

first study, FS and EF were significantly decreased only in non-surviving

TABLE 5 Differences in 2-dimensional speckle tracking-derived

variables between systemic inflammatory response syndrome (SIRS)

and control group

Variable Control (n = 17) SIRS (n = 17) P value

X4D-EF (%)

.00Mean (SD) 53 (8) 44 (8)

ENDO-G-Long-St (%)

.00Mean (SD) −18.5 (4.1) −14.6 (3.2)

ENDO-G-Long-StR (1/s)

.17Mean (SD) −1.9 (0.3) −1.7 (0.4)

EPI-G-Long-St (%)

.34Mean (SD) −16.2 (3) −15 (4.1)

EPI-G-Long-StR, (1/s)

.69Mean (SD) −1.6 (0.3) −1.7 (0.5)

G-Tran-St (%)

.27Median (range) 25.6 (12.6-41.6) 21.2 (8.1-31.9)

G-Tran-StR (1/s)

.18Mean (SD) 2.8 (0.6) 2.5 (0.4)

Abbreviations: ENDO-G-Long-St, endocardial global longitudinal strain;

ENDO-G-Long-StR, endocardial global longitudinal strain rate; EPI-G-
Long-St, epicardial global longitudinal strain; EPI-G-Long-StR, epicardial global

longitudinal strain rate; G-Tran-St, global transversal strain; G-Trans-StR, global

transversal strain rate; X4D-EF, XStrain-4D-derived ejection fraction.

TABLE 6 Effect of dog breed, age, sex, body weight (BW), and heart

rate (HR) 2-dimensional speckle tracking variables

X4D-EF (%) Beta (95% CI) P value

Breed 0.8 (−6.75, 8.36) .83

Age (months) −0.01 (−0.11, 0.08) .80

Sex (male) 2.93 (−4.06, 9.91) .40

BW (kg) 0.15 (−0.17, 0.47) .34

HR (bpm) −0.1 (−0.22, 0.02) .11

ENDO-G-Long-St (%) Beta (95% CI) P value

Breed −0.63 (−3.79, 2.53) .69

Age (months) 0.02 (−0.02, 0.06) .26

Sex (male) −0.96 (−3.87, 1.96) .51

BW (kg) −0.03 (−0.17, 0.1) .63

HR (bpm) 0.05 (−0.003, 0.10) .06

ENDO-G-Long-StR (1/s) Beta (95% CI) P value

Breed −0.05 (−0.37, 0.27) .76

Age (months) 0.002 (−0.002, 0.01) .39

Sex (male) −0.06 (−0.36, 0.24) .70

BW (kg) 0.002 (−0.01, 0.02) .74

HR (bpm) −0.003 (−0.01, 0.003) .31

EPI-G-Long-St (%) Beta (95% CI) P value

Breed 1.01 (−2.06, 4.08) .51

Age (months) 0.01 (−0.03, 0.05) .49

Sex (male) −0.4 (−3.24, 2.44) .77

BW (kg) −0.03 (−0.16, 0.1) .59

HR (bpm) 0.02 (−0.03, 0.07) .34

EPI-G-Long-StR (1/s) Beta (95% CI) P value

Breed 0.05 (−0.26, 0.35) .75

Age (months) 0.002 (−0.002, 0.01) .38

Sex (male) −0.01 (−0.29, 0.27) .96

BW (kg) 0.01 (−0.01, 0.02) .36

HR (bpm) −0.01 (−0.01, −0.0008) .02

G-Tran-StR (1/s) Beta (95% CI) P value

Breed 0.38 (−0.02, 0.78) .06

Age (months) −0.001 (−0.01, 0.004) .70

Sex (male) 0.32 (−0.06, 0.69) .09

BW (kg) 0.01 (−0.01, 0.02) .43

HR (bpm) 0.003 (−0.003, 0.01) .33

G-Tran-St (%) Beta (95% CI) P value

Breed 3.37 (−2.37, 9.11) .24

Age (months) −0.02 (−0.09, 0.05) .56

Sex (male) 0.97 (−4.34, 6.28) .71

BW (kg) 0.39 (0.14, 0.63) .00

HR (bpm) −0.10 (−0.19, −0.004) .04

Abbreviations: 95% CI, 95% confidence interval of beta; Beta, coefficient

of regression; ENDO-G-Long-St, endocardial global longitudinal strain;
ENDO-G-Long-StR, endocardial global longitudinal strain rate; EPI-G-Long-St,

epicardial global longitudinal strain; EPI-G-Long-StR, epicardial global longitudi-

nal strain rate; G-Tran-St, global transversal strain; G-Trans-StR, global transver-

sal strain rate; X4D-EF, XStrain-4D-derived ejection fraction.
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dogs affected by parvoviral enteritis compared with surviving and

healthy dogs.23 In the second study, 75% of ill dogs with FS < 26% died

or were euthanized within 15 days of admission to the hospital. The

reason our results differed could be a consequence of lesser severity of

underlying disease in our SIRS dogs. In fact, in our study, all of the dogs

improved during the hospital stay and survived until discharge. Based

on these considerations, we assumed that decreased FS and EF in dogs

with SIRS represent a late stage of systolic impairment which occurs

after the myocardium has expended its substantial functional reserve.

Two-dimensional and M-mode-derived FS and EF have some technical

limitations that prevent them from detecting mild decreases in systolic

function. Fractional shortening only measures LV radial contraction,

without considering longitudinal and torsional deformation. The M-

mode EF is inaccurate because it relies on geometric assumptions that

do not apply in several cardiac diseases,35 and SMOD-derived EF has

poor sensitivity in detecting subclinical LV dysfunction in humans59,60

and dogs.61

End systolic volume index is considered a valuable index of sys-

tolic function in dogs.62 To the best of our knowledge, no study has

evaluated ESVI in SIRS dogs. In our study, the ESVI values derived

from M-mode, SMOD left apical 4Ch, and SMOD right parasternal

4Ch were not significantly different between the 2 groups, probably

because SIRS dogs had mild systolic dysfunction that was not detect-

able by ESVI measurement.

Unexpectedly, none of the 2D-STE-derived StR parameters (ENDO-

G-Long-StR, EPI-G-Long-StR, and G-Tran-StR) were significantly dif-

ferent between SIRS and healthy dogs. Because StR is a timing

measurement, a possible reason for this result might be the technology

itself because 2D-STE might not reach the temporal resolution needed

to resolve all relevant events at a proper grade of precision, particularly

in SIRS dogs, which had significantly higher HR than did healthy dogs.

Results of the comparative analysis between the SIRS and healthy

dogs showed that age, BW, and sex were not significantly different,

whereas, as expected, HR was significantly higher in dogs with SIRS.

The effect of dog breed, age, sex, BW, and HR on 2D-STE deforma-

tion parameters was not significant in the majority of cases except for

HR on G-Tran-St and EPI-G-Long-StR and for BW on G-Tran-St and

G-Tran-StR. Heart rate is known to be an important modulator of car-

diac function that influences several echocardiographic variables.63,64

The effect of HR on 2D-STE indices of systolic function previously

has been evaluated in healthy anesthetized dogs.65 Results of that

study showed that 2D-STE longitudinal and radial St and StR were

not changed with increasing HR. On the contrary, in our study, HR

was inversely related with G-Tran-St and with EPI-G-Long-StR. In

agreement with our results, the decrease in 2D-STE radial St, related

to an increase in HR, previously was found in a porcine model.66 The

shortened time of ventricular filling and the consequent decrease in

venous return, secondary to increased HR, could explain this result.

The effect of HR on layer-specific EPI and ENDO G-Long-StR previ-

ously has been evaluated in healthy dogs,28 a study that did not find a

significant effect of HR on longitudinal StR parameters. On the con-

trary, we found a significant inverse effect of HR on EPI-G-Long-StR.

The inverse relationship between HR and the negative value of EPI-

G-Long-StR means that when HR increases the absolute value of EPI-

G-Long-StR increases. This result should be interpreted cautiously,

first, because the epicardial deformation could be subject to motion

artifacts28 and second because EPI-G-Long-StR, being a timing mea-

surement, could be strongly conditioned by temporal resolution.

The regression analysis we performed also identified a significant

direct effect of BW on G-Tran-St and StR. On the contrary, other

reports did not report significant correlation between BW and radial

St and StR25 or found a negative correlation between radial function

and BW.67 These differences could be because of small sample size

and the non-equal distribution of BW among the animals included in

our study. Our population of dogs was not adequate for determining

whether BW affected myocardial deformation, and the assessment of

this effect was beyond the scope of our study.

Intra-observer within-day and between-day variability of the

2D-STE-derived indices of systolic function were considered clinically

acceptable, and CV ranged from 3.4% to 8.3%. We were unable to find

previously reported variability data for XStrain-4D in dogs, but our data

suggest that these echocardiographic measurements are repeatable

when performed by a single experienced operator.

Our study had several limitations, the most important being small

sample size, which may have affected statistical power and limited

inferences. Because of the small number of patients in disease catego-

ries, we did not perform further statistical analysis regarding the effect

of disease category on STE variables. Another important limitation of

our study was the lack of serial 2D-STE examinations in the SIRS

group, which would be useful to assess LV systolic function after clini-

cal improvement and restored loading conditions. Indeed, decreased

preload, although considered not relevant in our SIRS group, could

have had an effect on STE variables.29 Furthermore, we did not inves-

tigate the effect of duration of clinical signs before admission, which

could influence myocardial function. Another important limitation was

the lack of evaluation of radial and circumferential St and StR from

short-axis images, which could have added important information

about systolic function during SIRS. Moreover, the STE software used

in our study (XStrain-4D) has not been validated in dogs and, as a con-

sequence, no reference ranges have been established in this species.

Again, the X4D-EF was not obtained by real-time 3D speckle-tracking

software, but was derived from the LV 3D reconstruction obtained by

fusing together three 2D left apical views acquired in different cardiac

cycles. As a consequence, although the software provided temporal

compensation for the HR variation, it could be subject to errors caused

by HR variability. The 2D-STE technology itself has several limitations.

The accuracy of measurements is dependent on the quality of the 2D

video clips being analyzed to accurately track the ENDO and EPI bor-

ders. The accuracy of STE also is dependent on the temporal resolu-

tion. Low FR results in unstable speckle patterns, whereas high FR

decreases image resolution. Finally, there still are many technical dif-

ferences among vendors, particularly on post-processing algorithms.35

Our study showed that some 2D-STE indices of systolic function

such as ENDO-G-Long-St and X4D-EF can detect systolic impairment

not identified by conventional echocardiography in dogs with mild to

moderate SIRS. The early identification and treatment of systolic dys-

function in dogs with SIRS potentially could improve outcome and

decrease the mortality rate.68,69 Therefore, it is important to promote the

use of noninvasive methods to assess cardiac function in SIRS patients.

Based on our results, we believe that 2D-STE may play a pivotal role in
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assessing myocardial function in dogs with SIRS. However, additional

studies are needed to support more extensive use of STE to assist in the

diagnosis and management of SIRS-related myocardial dysfunction.
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