000078213 001__ 78213
000078213 005__ 20190709135636.0
000078213 0247_ $$2doi$$a10.1115/1.4035983
000078213 0248_ $$2sideral$$a99556
000078213 037__ $$aART-2017-99556
000078213 041__ $$aeng
000078213 100__ $$0(orcid)0000-0001-7514-3717$$aNicolas, M.
000078213 245__ $$aInfluence of a commercial antithrombotic filter on the caval blood flow during neutra and valsalva maneuver
000078213 260__ $$c2017
000078213 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078213 5203_ $$aAnticoagulants are the treatment of choice for pulmonary embolism. When these fail or are contraindicated, vena cava filters are effective devices for preventing clots from the legs from migrating to the lung. Many uncertainties exist when a filter is inserted, especially during physiological activity such as normal breathing and the Valsalva maneuver. These activities are often connected with filter migration and vena cava damage due to the various related vein geometrical configurations. In this work, we analyzed the response of the vena cava during normal breathing and Valsalva maneuver, for a healthy vena cava and after insertion of a commercial Günther-Tulip® filter. Validated computational fluid dynamics (CFD) and patient specific data are used for analyzing blood flow inside the vena cava during these maneuvers. While during normal breathing, the vena cava flow can be considered almost stationary with a very low pressure gradient, during Valsalva the extravascular pressure compresses the vena cava resulting in a drastic reduction of the vein section, a global flow decrease through the cava but increasing the velocity magnitude. This change in the section is altered by the presence of the filter which forces the section of the vena cava before the renal veins to keep open. The effect of the presence of the filter is investigated during these maneuvers showing changes in wall shear stress and velocity patterns.
000078213 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B21-GITMI$$9info:eu-repo/grantAgreement/ES/ISCIII/PI08-1424$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2010-20746-C03-01$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2013-44391-P$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2016-76630-C2-1-R
000078213 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000078213 590__ $$a0.412$$b2017
000078213 591__ $$aENGINEERING, BIOMEDICAL$$b77 / 78 = 0.987$$c2017$$dQ4$$eT3
000078213 592__ $$a0.223$$b2017
000078213 593__ $$aMedicine (miscellaneous)$$c2017$$dQ3
000078213 593__ $$aBiomedical Engineering$$c2017$$dQ3
000078213 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/submittedVersion
000078213 700__ $$aLucea, B.
000078213 700__ $$0(orcid)0000-0003-0296-1617$$aLaborda García, Alicia$$uUniversidad de Zaragoza
000078213 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, E.$$uUniversidad de Zaragoza
000078213 700__ $$0(orcid)0000-0002-5618-7519$$aGregorio, M.A. de$$uUniversidad de Zaragoza
000078213 700__ $$0(orcid)0000-0002-8375-0354$$aMartinez, M.A.$$uUniversidad de Zaragoza
000078213 700__ $$0(orcid)0000-0002-0116-2736$$aMalve, M.
000078213 7102_ $$11010$$2770$$aUniversidad de Zaragoza$$bDpto. Pediatría Radiol.Med.Fís$$cÁrea Radiol. y Medicina Física
000078213 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000078213 7102_ $$11009$$2617$$aUniversidad de Zaragoza$$bDpto. Patología Animal$$cÁrea Medicina y Cirugía Animal
000078213 773__ $$g11, 3 (2017), 031002 [11 pp.]$$pJOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME$$tJOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME$$x1932-6181
000078213 8564_ $$s443962$$uhttps://zaguan.unizar.es/record/78213/files/texto_completo.pdf$$yPreprint
000078213 8564_ $$s53407$$uhttps://zaguan.unizar.es/record/78213/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint
000078213 909CO $$ooai:zaguan.unizar.es:78213$$particulos$$pdriver
000078213 951__ $$a2019-07-09-12:36:04
000078213 980__ $$aARTICLE