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Abstract
Wegive a formal definition of amultiplex network and using its supra-adjacencymatrix
representationwe construct themultiplex communicabilitymatrix. Thenwe prove that the
communicability function naturally induces an embedding of themultiplexes in a hyperspherical
Euclidean space.We then study (i) intra-layer, (ii) inter-layer, and (iii) inter-layer self-communic-
ability distance and angles inmultiplex networks. Using thesemultiplexmetrics we study a social
multiplex related to an office politics and themultiplex of synaptic interactions between neurons in
thewormC. elegans.We find that the average communicability angles in thesemultiplexes exhibits a
minimum for certain value of the interlayer coupling strength.We provide an explanation for this
phenomenonwhich emerges from themultiplexity of these systems and related it to other important
phenomena like the synchronizability of these systems. Finally, we define and study communicability
shortest paths in themultiplexes.We showhow the communicability shortest paths avoid themost
central nodes in themultiplexes in terms of their degree and betweenness, which is amain difference
with (topological) shortest paths.We explain this behavior in terms of a diffusivemodel inwhich the
‘information’ not only diffuses between the nodes but it is also processed internally on the entities of
the complex system. Finally, we give some new ideas on how to extend the current work and represent
complex systems as ‘multiplex hypergraphs’ and ‘multi-simplicial complexes’.

1. Introduction

A characteristic feature of complex systems is that they are composed by individual entities that interact with
each other in someway [1–4]. Capturing these connectivity patterns is not a trivial task as it depends on the type
of interaction considered and the level of detail inwhich such interactions are studied. Let us consider the
paradigmatic case of social interactions.We can consider a group of individuals which interchange information
among them. Thefirst approach consists in observingwho shares information towhomand constructing a set of
binary relations that can be easily represented by a graph G V E,= ( )where the set of nodes represents the
individuals and the set of edges their pairwise interactions.We can then extend our representation by
considering the frequency of interactions between the individuals and then creating aweighted
graph G V E, , , = ( )where E:   is a surjectivemapping assigning frequencies of interaction (weights)
to edges [5, 6]. As part of the natural evolution of the social groupwe can also observe that individuals form
groups and that now the interactions are between groupsmore than pairwise. Thus, the system should nowbe
represented as a hypergraph H V , E= ( )where the set of hyperedges E accounts for any k-ary relation between
the agents in the system [7–9]. Obviously, this hypergraph can also be directed andweightedwith the
corresponding adaptations of the representation systemused [10, 11]. In the hypergraph representationwe
consider that every group (hyperedge) act as a unit of the system and subsets of themdonot form subunits of the
global system. This is the case for instancewhere four people in one of the groups have a chat inwhich everybody
can listen to each other [12].Mathematically, this situation is represented by the fact that this set of individuals is
closed under the subset operation,meaning that all subsets (triangles and edges) inside the corresponding set
(tetrahedron) are alsomembers of the system [12–17]. In this case the conversation is not pairwise as represented
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by the graph, and is not even in the formof the hyper-edge represented by the hypergraph, but a combination of
the tetrahedrons, triangles and edges. Thus, a simplicial complex is defined by V , = S( )whereΣ is a set of
simplices, such that every face from  is also in , and the intersection of any two simplices is a face of both
simplices [12–17].

Even at this level of sophistication inwhichwe dispose of graphs, hypergraphs and simplicial complexes,
there are important aspects of complex systems not captured by these representations. Returning to the example
of social interactionswe can consider that the same group of agents are interacting by different channels, such as
face-to-face, Facebook, Twitter, etc. Away of representing this complex scenario is through the use of colored
multigraphs, particularly using the concept of properly coloredwalks [18]. This complicated representation
consists of the set of vertices, a set of edges, amapping assigning edges to pairs of nodes (to allowmultiple edges),
a set of weighted self-loops controlling the hopping between layers, a set of colors, and anothermapping
assigning colors to edges and self-loops. For instance, if a group offive people interact face-to-face and via
Twitter we need three colors, one for the face-to-face interaction, one for the Twitter interaction and another for
the self-loops connecting the two colors. This is illustrated infigure 1(a). Amore appealing pictorial
representation of this interaction scenario is by slicing the nodes into different layers, one per type of
interactions, forming amultiplex [19–21]. Instead of the self-loopswe nowhave edges connecting the nodes in
one layer to themselves in another layer, and the edges with the same color are all in the same layer. This is
represented infigure 1(b). Although both representations are equivalent, there are areas inwhich themultiplex
representation ismore convenient. Currently, there is a vast literature about the use ofmultiplexes for
representing complex systems,mainly about the characterization of their structural properties [22–24] and the
associated critical phenomena [25–30], where it has been shown for instance thatmultiplexes display a
transition from a regime inwhich the systembehaves as a set of independent networks to the one inwhich a
coordinated behavior emerges [31, 32].

Here we start by giving a formal definition of amultiplex network. Using a supra-adjacencymatrix
representation of these systemswe build on the communicabilitymatrix and prove that the communicability
function naturally induces an embedding of themultiplexes in a Euclidean space.We define in this way the
communicability distances and angles between pairs of nodes in themultiplexes. These geometric parameters
are split into: (i) intra-layermetrics, (ii) inter-layermetrics, and (iii) inter-layer self-metrics. In the first case, the
pair of nodes under consideration are in the same layer of themultiplex. In the second case one node is in one
layer and the other node in a different one. Finally, the inter-layer self-metrics account for themetrics between
one node and itself in two different layers. Using thesemultiplexmetrics we study two differentmultiplexes: a
multiplex obtained as the result of 16months of observation of politics on an office [33, 34] and a biological
multiplex consisting of the synaptic interactions between 279 neurons in thewormC. elegans [35, 36].We found
that the average communicability angles in themultiplexes—which characterize the quality of communication
between the nodes—change nonmonotonically with the coupling strength between the layers. Consequently,
there is a value of the coupling strength forwhich such quality of communication ismaximal, i.e.minimum
average communicability angle.We provide an explanation for this phenomenonwhich emerges from the
multiplexity of these systems and provide evidences for its implications, for instance in relation to the
synchronizability of these systems. Finally, we define and study communicability shortest paths in the
multiplexes.We show that they can be of two types: intra-layer paths, andmulti-layer paths. In all cases we show
how the communicability shortest paths avoid themost central nodes in themultiplexes in terms of their degree
and betweenness.We found a theoretical justification for this behavior in terms of a diffusivemodel in which the
‘information’not only diffuses between the nodes but it is also processed internally on the entities of the complex

Figure 1.Representation of a complex system as a colored pseudo-multigraph (a) and as amultiplex.
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system. Finally, we advance some ideas on how to extend the current work to account for other types of
representation of complex systems, such asmultiplex hypergraphs andmulti-simplicial complexes.

2. Preliminaries

Herewe start bydefining formallywhat is amultiplex.Amultiplex is the triple G S, , = ( ),where
G G, , h1 = { } is a set of simple graphs, inwhichG V E,i i i= ( )whereV v i v i, ,i n1= { ( ) ( )} is a set of nodes

and E v i v i,i p q= {( ( ) ( ))} is a set of edges, v v, , n1  = { ( ) ( )} is a set of node identities, such that the following

equivalence relation exists: v v v h1 2p p p
  
º º º( ) ( ) ( ) for everynode v ip ( ). Finally, S S S, , h h1,2 1,= -{ },

where S , ,ij
i j

n
i j

1
, ,w w= { }. The term v i v j,p

i j
p p

,w w= ( ( ) ( )) represents a weight (later known as coupling
strength) for the pair vpäVi, vpäVj for i j¹ . For instance, let V a b c d e V a b c d e, , , , , , , , ,1 2= = ¢ ¢ ¢ ¢ ¢{ } { },
E a b b c b d c d d e, , , , , , , , ,1 = {{ } { } { } ( ) { }}, E a b b c a c b c c d, , , , , , , , ,2 = ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢{{ } { } { } { } { }},  =

Charles, Joan, Peter, Clare, Ann ,{ } such that a a b b,
 
º º¢ ¢, c c d d,

 
º º¢ ¢, e e


º ¢, meaning for instance

that the nodes a and a¢ both represent Charles, possibly in two different situations, e.g. using face-to-face
contacts a, and communicating via Twitter a¢. Let S i i,w= ¢{ { }}, where i a b c d e, , , ,= { } then the
multiplex corresponds to the one illustrated in figure 1(b). Here after wewill call every graphGi in the
multiplex a layer, e.g. the layer Li, and the weightsω the interlayer coupling strength.

Away to represent the topology of themultiplex is bymeans of the supra-adjacencymatrixA, which is
defined by

C , 2.1L LLA = + ( )

where
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Here, thematricesAi are the adjacencymatrices of the individual layers of themultiplex andCij represents
the connection of the nodes in the layer Liwith themselves in the layer Li. If we consider thatCij=C for all the
pairs of layers in themultiplexwe canwrite

C C O I , 2.4LL = Ä -( ) ( )

whereC=ωI inwhichω is the strength coupling between the layers,O is an all-onesmatrix and I is the identity
matrix.

Let us nowdefine amultiplexwalk. First, let us remind that awalk v vm0  on a graph G V E,= ( ) is an
arbitrary sequence of nodes and edges v0, e1, v1,K, em, vmwhere each ei is an v v,i i1-( ) edge. The length of this
walkWm G( ) is the numberm of its edges (including repeated edges).

Let us define a jump J i j,k ( ) between layers i and j as the sequence v i v j v jp p
i j

p p
j i

p
i j

p
, , ,w w w¼( ) ( ) ( )where the

length of the sequence is the number of times the interlayer edges p
i j,w and p

j i,w are repeated. For instance,

J i j v i v j, p p
i j

p1
,w=( ) ( ) ( ) and J i j v i v j v i v j, p p

i j
p p

j i
p p

i j
p3

, , ,w w w=( ) ( ) ( ) ( ) ( ). Then, amultiplex walk is either a walk in a
single layerWm Gi( ) or a concatenation:

W G J i j W G W G J s t W G, , ,m i m m j m s m m sl l l1 2 3 2 1- -    ( ) ( ) ( ) ( ) ( ) ( )

where the length of themultiplexwalk ism1+L+ml. A closedmultiplex walk is amultiplexwalk forwhich the
initial and final nodes are the same.Notice that in counting the number of walkswe consider theweight of the
inter-layer connection. Then theweight of J i j,k ( ) is the product of theweights of all k inter-layer edges in this
jump. Amultiplex path is amultiplexwalkwith no repeated nodes. These paths can beweighted or not
depending onwhetherwe consider or not theweights of the inter-layer edges, respectively. Herewe always
consider unweighted paths.

It is easy to prove that k
pqA( ) counts the number ofmultiplexwalks of length k between the nodes p and q in

themultiplex. Similarly, k
ppA( ) counts the number of closedmultiplexwalks of length k that start at the node p.

Then, we can account for all themultiplexwalks of every length between every pair of nodes by considering the
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following Taylor series:

I
k2

exp , 2.5
k

k2

0

G A
A A

Aå= + + + = =
=

¥


! !

( ) ( )

wherewe have penalized thewalks according to their length. That is, amultiplexwalk of length s is penalized by

s

1
.

!
The nondiagonal entries of this exponentialmatrix are known as the communicability function between the

corresponding pair of nodes [37–39]. The function uvG counts the total number of walks starting at node u and
ending at node v, weighted in decreasing order of their length by a factor

k

1

!
. That is, the communicability

function considers shorter walksmore influential than longer ones and penalize them appropriately such that
thewhole series converges. TheGuu terms of the communicability function characterize the degree of
participation of a node in all subgraphs of the network, givingmoreweight to the smaller ones. Thus, it is known
as the subgraph centrality of the corresponding node [40].

The communicabilitymatrix of amultiplex has the following block structure [41]:
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where the blocks Li
G represent the communicability between pairs of nodes in the same layer Li and L Li j

G
accounts for the communicability between a node in the layer Li and another in the layer Lj. Obviously, if the
coupling between every pair of layers is exactly equal to zerowe have that
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3.Hyperspherical embedding ofmultiplexes

Hereafter we consider that the coupling strength between the layers in themultiplex is always the same between
every pair of layers and that it is always positive.We label the eigenvalues ofA in non-increasing order:

n1 2  l l l¼ . SinceA is a real-valued, symmetricmatrix, we can decomposeA into U UTA = L , where

Λ is a diagonalmatrix containing the eigenvalues ofA andU , , n1y y=


¼


[ ] is orthogonal, where iy


is an
eigenvector associatedwithλi. Because the graphs considered here are connected,A is irreducible and from the

Perron-Frobenius theoremwe can deduce thatλ1>λ2 and that the leading eigenvector 1y


, whichwill be
sometimes referred to as the Perron vector, can be chosen such that its components u1y ( ) are positive for all
uäV. A row of thematrixU corresponding to the node i of the graph is designated here by the
vector i i,i n

T
1y yj = ¼

 [ ( ) ( )] .
Because expG A= ( ) is a positive definitematrix we can express it as a Grammatrix of the form

, 3.1TG X X= ( )

where x x, , n1X = ¼
 [ ] and

x exp 2 , 3.2u uj= L
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Thenwe can show that
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Ourmain goal now is to define ametric for themultiplex that accounts for the difference between the
number of weighted closedwalks that start at (and return to) the corresponding node u (respectively v), and the
number of weightedwalks that start at node u (respectively v) and ends at the node v (respectively u). This
difference, which is defined below as uv

2x serves as a quantification of the quality of communication channels
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between two nodes. That is, if there aremany routes that connect nodes u and v together, and there are notmany
routes that starting at the node u (respectively v) return to it, we can say thatmost of ‘information’ departing the
node u (respectively v)with destination to the node v (respectively u)will arrive at its destination. Thus, there is a
good quality of communication between these two nodes. The otherway around is very clear as if there aremany
returning routes to the nodes and very few connecting them,most of the information departing one nodewill
hardly arrive at the other. Let us nowdefine these terms formally. Based on the previous intuitionwe define the
following quantity:

2 . 3.4uv uu vv uv
2 G G Gx = + - ( )

Another way of expressing this ‘quality of communication’ is by considering the ratio of these terms instead
of their difference. That is

. 3.5uv
uv

uu vv

G

G G
g = ( )

Wecan easily show that

x x x x x x

x x

2

. 3.6
uv u u v v u v

u v

2

2

x = + -

= -

     

  
· · ·

( )

This expression clearlymeans that uv
2x is a Euclidean distance (metric) between the corresponding nodes in the

multiplex. Previously we have proved that the Euclidean space inwhich this distance is defined for a pair of
nodes in any network [42, 43] is an n-dimensional sphere [44]. That is, the communicability distance uv

2x induces

an embedding of themultiplexof size n into an n 1-( )-sphere, of radius R c b

a
2 1

4

2 2

= - -( )( ) , where

a b s1 exp 1 , exp 1
T TA A= - = -
   

( ) ( ) , c s sexpT A= -
 ( ) , and s diag exp A=

 ( ( )), and s diag G=
 ( ).

On the other hand, it is straightforward to realize that

x x

x x
cos cos , 3.7uv uv

u v

u v

1 1q g= =- -
 

  
· ( )

whichmeans that θuv is the angle between the position vectors of the nodes u and v in themultiplex embedded in
the n 1-( )-sphere.

We can now construct twomatrices that tabulate all the pairs of communicability distances and angles
between all the pairs of nodes in amultiplex. Let us call thesematrices D ( ) and Z ( ), respectively. Let us
build the following vector: s diag G=

 ( ), which is themain diagonal of the communicabilitymatrix of the
multiplex. Then, we canwrite thesematrices as

D D s s1 1 2 , 3.8
T T 1 2G= = + -

    ( ) ( · · ) ( )( )

Z Z s scos 1 1 , 3.91 1 2G = = -  


  ( ) { [( · ) ( · )]} ( )( )

where% stands for the entrywise division,e for theHadamard product (entrywise product) of twomatrices or
entrywise power of a givenmatrix, and · for the inner product of two vectors. Here, s diag , expG G = =

 ( ) ( )
and 1


is an all-ones vector.

We canwrite this communicability distancematrix in terms of the different blockmatrices that conform it,
such that
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where S s s, ,L L Li i i
=

  ( ) is an n×nmatrix and s n n1,1 , 2, 2 , , , .L L L L
T

i i i i
G G G=

 ( ( ) ( ) ( )) Then, obviously we
have that the communicability distancematrix can bewritten as
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In a similar waywe can express the communicability anglesmatrix as

Z

Z Z Z

Z Z Z

Z Z Z

. 3.12

L L L L L

L L L L L

L L L L L
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The individual entries of each of these two blockmatrices define the different communicability distances and
angles given below:

• Intra-layermetrics

u L v L u u v v u v, , , 2 , , 3.13L i i L L L
2

i i i iG G Gx Î Î = + -( ) ( ) ( ) ( ) ( )

u L v L
u v

u u v v
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,
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G G
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( ) ( )
( )

• Inter-layermetrics

u L v L u u v v u v, , , 2 , , 3.15L L i j L L L L
2

i j i j i jG G Gx Î ¢ Î = + ¢ ¢ - ¢( ) ( ) ( ) ( ) ( )
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• Inter-layer self-metrics

u L u L u u u u u u, , , 2 , , 3.17L L i j L L L L
2
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Infigure 2we illustrate these geometric parameters for a simplemultiplex.

4. Applications

Herewe consider twomultiplexes, one representing a social system and the other a biological one. The social
system consists of amultiplex obtained as the result of 16months of observation of an office politics [33]. The
office is formed by 15members of an overseas branch of a large international organization. Thismultiplex is
formed by two layers, the first layer corresponds to the formal organizational chart of the employees, whereas the
second layer represents the informal association among the employees. The biologicalmultiplex consists on the
synaptic interactions between 279 neurons in thewormC. elegans [35, 36]. The three layers of thismultiplex

Figure 2.Different types of communicability distances and angles in amultiplex. (a) Intra-layer, uäLi, väLi; (b) Inter-layer, uäLi,
v L ;j¢ Î (c) Self-angle, uäLi, u Lj¢ Î . The triangles uOv uOv uOu, ,¢ ¢, define the communicability distance as the length of the
segments uv uv, ¢ and uu¢ as well as the communicability angles by uOv , uOv ¢, and uOu ¢, respectively.
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represent different types of synaptic junctions: electric (el), chemicalmonadic (ch), and polyadic (pol) [35, 36]. A
previous study has also consideredmultiplexes for the analysis of functional brain networks [45].

4.1. Communicability angles inmultiplexes
The communicability angle averaged over all pairs of nodes qá ñhas been shown to represent ameasure of
‘communication efficiency’ of graphs and networks [46]. Thismeasure is bounded, in simple networks and
multiplexes, as 0 90 q á ñ , where the lower bound indicates a large average communication efficiency
between pairs of nodes. This quantification of communication efficiency comes from the fact that the numerator
of the communicability angle pqG represents the capacity of two nodes to transfer ‘information’ between them.
On the other hand, the denominator accounts for the amount of information that departs from a given node and
returns to it after wandering around the network. That is, it is a sort of lost information as it is not properly
delivered to its destination but returned to its originator. The fact that the communicability angles are always
bounded allows us to compare it between different layers in the samemultiplex aswell as between different
multiplexes.

In thefigure 3we plot the values of themean communicability angles for the different layers of the two
multiplexes studied, i.e. Li

qá ñaswell as the average inter-layer angles, i.e. L Li j
qá ñ, as a function of the inter-layer

strengthω. In the corporate office (figure 3(a)) it is clear that the layer representing the formal communication
betweenmembers L1 displaysmore communication efficiency than the informal layer L2 when the coupling
strength is relatively small.When the coupling strength increases systematically themean communicability
angles of both layers tend to an equilibration point as a result of the decrease in efficiency on the formal layer and
a gain in efficiency in the informal one. The inter-layer communicability angle decays very quickly with the
increase of the inter-layer coupling and tends to the equilibration point determined by the two individual layers.
The situation is similar for the case of the synaptic connections in the neural systemofC. eleganswhere the layer
representing polyadic synapses ismore efficient than the layers of electric and of chemical synapses. However,
here the layers of electrical and chemical synapses display a non-monotonic behaviorwith aminimumangle at
aroundω=2 (see further details). This non-monotonic behavior is also observed for the inter-layer angles as
can be seen infigure 3(c), but here again a tendency to an equilibration between the three layers is observed. This
equilibration of themean communicability angles reflect the unique nature of themultiplex systems and it will
be discussedwithmore details later. However, wewould like to stress here that it represents a sort of averaging of
the communication efficiency taking place inmultiplexes, inwhich the isolated layersmay display very different
communication efficiencies, which are averaged in the aggregate network, i.e. when w  ¥. However, the
non-monotonic behavior of this efficiencymay represent a unique characteristic ofmultiplexes that
differentiate themqualitatively and quantitatively fromboth the isolated layers and the aggregate network.

We now consider the communicability angles averaged for all the layers on themultiplexes, i.e. the global
intra-layer communicability angles, as a function of the inter-layer coupling strength. As can be seen in the
figures 4(a) and (b) the global intra-layer communicability angles display a clear non-monotonic behavior. It
dramatically drops to aminimumvalue, which is observed atω≈8.8 for the corporate office and atω≈1.1 for
the neuralmultiplex ofC. elegans.The situation is very similar if we consider instead the global average angles
defined as themean intra-, inter-layer and self angles. After theseminima the communicability angles increase to
an asymptotic value which depends on themultiplex analyzed. The reasonwhy theseminima exist is the
following. Let us consider two layers Li and Ljwhich are coupledwith coupling strengthω. Let us assume that

Figure 3.Plot ofmean intra-layer communicability angles Liqá ñversus interlayer coupling for the individual layers and average inter-
layers communicability angle L Li j- for themultiplexes representing Thurmanoffice (a) and theC. elegansneuronal system (b) and (c).
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communication between the nodes ismore efficient in one layer than in the other. For instance, let us consider
that L Li j

q qá ñ > á ñ. Then, as the coupling strength increases, themost efficient layer Lj starts to increase its average
communicability angle as a consequence of the tendency of themultiplex of equilibrating the communication
efficiency between both layers. On the other hand, the layer with theworse communication efficiency starts to
improve it and as a consequence reduces its average communicability angle. The rate at which these layers tend
to equilibrate their communication efficiency appears to follow (based on our empirical observations) an
exponential law. That is, expLi

q w awá ñ ~ -( ) ( ) and B expLj
q w bwá ñ ~ - -( ) ( ). These equilibration rates

result in the curves thatwe observed infigure 3. For instance, for the corporate office L1 is the layer following
23.73 5.721 exp 0.211L1

q w wá ñ » - -( ) ( ) and L2 follows 24.89 14.44 exp 0.399L2
q w wá ñ » + -( ) ( ). It is

important to remark that the critical behavior, i.e. the existence of a critical value of the coupling strength for
which the communicability angle isminimum, occurs only if a b¹ . That is, if the rates at which one of the
layers increases its efficiency and the other decreases it, are different. In this case the global intra-layer efficiency
follows a law to equilibration of the form Bexp expL Li j

q w q w aw bwá + ñ ~ - - -( ) ( ) ( ) ( ). In this case the
critical coupling strength is

ln
. 4.1c

B


w

a b
=

-

a
b( )

( )

Thismeans that the location of theminimumdepends only on the rate at which the corresponding layers
equilibrate their communication efficiency expressed in terms of the communicability angles.Withmore layers
the situation ismore complicated forfinding the location of theminimumbut themeaning of it is exactly the
same. In order to see the implications of this nonmonotonic change of the communicability angle with the
coupling strength inmultiplexes we have studied three other important spectral parameters of networks. They
are the spectral radius of the supra-adjacencymatrixA, i.e. the largest eigenvalue ;1 Al ( ) the spectral gap

Figure 4.Plot ofmean intra-layer communicability angles, i.e.mean for all the layers, (a) and (b), and the eigen ratiosμ2/μn (c) and (d)
of themultiplexes representing the Thurmanoffice (a), (c) and theC. elegans neuronal system (b), (d) as a function of the inter-layer
coupling strength.
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;1 2A Al l-( ) ( ) the spectral eigenratio of the second smallest and the largest eigenvalues of the Laplacian
matrix of thewholemultiplex,Q=μ2/μn. Thefirst spectral parameter is very important for understanding
spreading processes such as epidemic propagation on networks due to its relation to the epidemic spreading
[47]. The second parameter is related to the good expansion properties of networks [48, 49]. That is, a large
spectral gap implies that the network is super-homogeneous in the sense that ‘what you see locally is what you get
globally’. Finally, the eigenratioQ is related to the synchronizability of a connected network, with largest values
ofQ corresponding to the largest synchronizability of the corresponding network [50]. In the twomultiplexes
studied here neither 1 Al ( ) nor 1 2 l l-( ) ( ) display any non-monotonic behavior with the change ofω. The
spectral radius increases almost linearly withω, while the spectral gap changes nonlinearly butmonotonically
withω (plots not shown). However, the eigenratioQ displays a clear nonmonotonic behavior in both
multiplexes. As can be seen infigures 4(c) and (d),Qhas amaximumat 1.5w = for the corporate office and
atω=0.8 for the neural systemofC. elegans. In the case of the corporate office theminima observed for the
communicability angle and for the eigenratio are relatively far from each other. However, the twominima in the
neural systemofC. elegans are very close to each other. The reason explainingwhywe observe this
nonmonotonic behavior for the eigenratio is the following. The communicability angle changes with the
variation in the homogeneity of the network. Understanding by homogeneity, not its degree distribution, but
the absence of structural bottlenecks ormore exactly the presence of ‘good expansion properties’, i.e. the
existence of very few nodes and/or edges whose removal disconnect the network into two parts of
approximately the same size [48, 49]. For instance, 1uv uu vvG G G  indicates that there are asmanywalks
going from u to v as the sumof those returning to u and to v. If the average of these angles is then close to zero it
indicates a great homogeneity in the network.However, if 0uv uu vvG G G  means that there are very few
walks connecting the two nodes, thus removing some of the nodes/edges in thesewalksmay disconnect the
network. In closing, when the communicability angle is close to zero ( 1uv uu vvG G G  ) formost pairs of
nodes in the network, the networkmay display good expansion properties. It has been shownpreviously that
such good expansion networks, a.k.a. entangled networks, display the best syncronizability, i.e. the highest
values of the eigenratioQ [51]. Thus, as the communicability angle, i.e. the homogeneity of the network, change
nonmonotonically with the coupling strength for themultiplexes studied (due to the reasons explained before),
also the eigenratio changes in a similar fashion.

4.2. Shortest communicability paths inmultiplexes
In this part of theworkwe study how information can travel in amultiplex if it were using the communicability
paths instead of the (topological) shortest paths between nodes. Let us start by definingwhat we understand by
the communicability shortest path between two nodes. Let us consider amultiplexwith supra-adjacency
matrixA inwhich for every pair of connected nodes u and v, we assign the corresponding communicability
distance ξuv. That is, we create a communicability-distance-weightedmultiplexwhoseweighted supra-
adjacencymatrix is

W D D , 4.2A A= =◦ ◦ ( )

whereD is the communicability distancematrix. Then, the shortest communicability path connecting two
nodes in themultiplex is theminimumweighted shortest path connecting both nodes inW. Here, the length
of aweighted communicability path is the sumof theweights (communicability distances) of all the edges in the
path.Notice that the (topological) shortest path between the corresponding two nodes is theminimum shortest
path connecting both nodes inA instead of inW.

We now compare the communicability shortest pathswith the (topological) shortest paths for some pairs of
nodes in the corporate office studied by Thurman [33]. First, we select two pairs of individuals trying to
communicate in the formal layer of the biplex. For instance, whenMinna andKaty interchange information
using the shortest path connecting them in the formal communication organization of the office they have to
pass their information to Pete, who is themost central individual in the office. However, according to the
communicability distance, it is ‘shorter’ for this information to arrive to its destination if Katty passes the
information toAmy in the informal layer of communication, andAmypasses the information toMinna in the
formal structure of the office. The representation of this shortest communicability path in the biplex is given in
figure 5(a)when the coupling between the two layers is relatively small. Of course, in the real-life we cannot split
ourselves into the ‘formal’ and the ‘informal’ layers of communication in an office.What this communicability
shortest path betweenAmy andMinna indicates is the following. It is easier forMinna to chat informally with
her friend Amy and give her certain information. Then, Amy can ‘formally’ communicate this information to
Minna, who has then not received the information by the ‘formal channel’ established in the office for
transmitting information, e.g. via Pete or the President.We can see the same situation for another pair of agents
in the office:Minna and Emma. In this case,Minna and Emma are not connected in the formal layer but they are
in the informal one. Thus, it is easier for them to share such information informally than communicating
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through the formal channels existing in the office (see figure 5(b)). This ‘distortion’ of the formal routes of
communication in an office can have important consequences for its well-functioning. It is known that in this
overseas office of a corporation studied by Thurman [33] therewas a conflict inwhich a coalition of attackers
formed byAnn, Katy, Amy, Pete, Tina and Lisa attackedMinna and Emma. As reported by Thurman in his study
[33]: ‘Within the network a large number of rumors circulated rapidly among Pete, Ann, Amy, Katy, Tina, and Lisa.’
This is exactly what we observewith the use of the communicability shortest paths. The communication
betweenmembers of the office and the two victimsmainly takes place through the informal layer, which is
mainly controlled byAnn, Katy, Amy, Pete, Tina and Lisa. Therefore, they have the chances ofmanipulating the
information to affect the two victims. Infigures 5(c) and (d)we observe that when the coupling strength between
the two layers is sufficiently large the communicationmainly take place through the shortest path. Thismeans
that in an aggregate networkwe are not able to ‘see’ the subtleties of the communication in this office thatmay
explain some of its dynamics and problems taken place in it.

When the communication is intended solely at the informal level between two individuals, the shortest
communicability path ismaintained inside the informal layer as can be seen infigure 6. Themain difference
between these paths and the topological ones is that the first ones avoid the nodeswith the largest centrality in
the corresponding layer (see further analysis).

We now consider themultiplex representing the neural systemofC. eleganswhich consists of three layers
specifying the kind of synaptic interaction (electric, chemical or polyadic) between the neurons. Our goal here is

Figure 5. Shortest path (red segments) and shortest communicability path (blue segments) based on communicability distance
between two pairs (Minna–Katy and Emma–Bill) ofmembers of the office in the formal layer withweak coupling between layers,
ω=0.5 (a) and (b), andwith relatively large inter-layer couplingω=3.5 (c) and (d).
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not to give a detailed account of all the communicability shortest paths connecting different pairs of neurons.
Insteadwe aim at stressing some of themain differences between the communicability shortest paths and the
topological ones for a few pairs of neurons. First, we select a pair of neurons forwhich there is a shortest path
formed by electric synapses only. It is the pathAIMLel-SIBDRel-RIBRel-SMDDRel-VD01el. Instead, the
communicability shortest path consists of a combination of electrical and chemical synapses:
{AIMLel-AIMLch}-AIALch-RMGLch-SAADRch-OLLLch-{SMDDRch-SMDDRel}-VD01el.While the shortest
topological path involves five different neurons, the shortest communicability one involves seven.Notice that
we grouped in curly brackets those neuronswhich are essentially the same but having two different types of
synapses. Themain difference between these two paths is the centrality of the neurons involved in them. For
instance, while the shortest topological path involves neuronswith degrees: 3-5-19-6-10, the neurons in the
shortest communicability have degrees: 3-6-13-10-11-9-9-6-10, where the highest degree is always given
in bold.

We proceedwith a topological shortest path connecting two neurons inwhich all synapses are of chemical
nature: AIALch-ADLLch-AVBLch-PVCRch. The alternative shortest communicability path involves again a
combination of electrical and chemical synapses: AIALch-HSNLch-{AVJLch-AVJLel}-{PVCRel-PVCRch}. Here
both paths involve exactly the same number of neurons.However, the shortest topological path involves a very
central neuron, which has degree 33, while the shortest communicability one does not involve any neuronwith
degree larger than 13. The two degree sequences are: 13-8-33-30 for the topological shortest path and 13-10-10-
8-13-30 for the communicability one.

Finally, we illustrate the differences between the topological shortest path: ADARpol-AVBLpol-VC04pol,
which involves only three neurons all with polyadic synapses and the shortest communicability path:
{ADARpol-ADARel}-ASHRel-{RICRel-RICRch}-URBLch-VC05ch-{VC04ch-VC04pol}, which involves 6
neurons and the three layers of themultiplex. In the shortest topological path there is a neuronwith very high
degree: 20-41-5, while in the communicability one all intermediate neurons are of low degree: 20-7-8-4-8-7-11-
7-5. Infigure 7we illustrate the three pairs of pathsmentioned before.

The differences in the centralities of the nodes in each type of path aremore significant if we consider the
betweenness centrality. In this case for the shortest pathAIMLel  VD01el the betweenness of intermediary
neurons are: 393.3-5 088.3-563.2, while for the shortest communicability path they are: 471.4-1 721.1-1 501.0-
1 365.9-643.1-683.7-563.2. That is, the neuronRIBRel, which is in the shortest topological path, has almost three
timesmore betweenness than themost central neuron in the communicability path, AIALch. In the shortest path
connecting AIALch  PVCRch the betweenness of the intermediate neurons are: 782.3-9 437.4, while for the
shortest communicability path they are: 2 119.2-981.1-582.6-2 308.2. That is, themost central neuron in the
shortest path, AVBLch, has four timesmore betweenness than themost central one in the communicability path,
AVBLch. Finally, in the pathADARpol VC04pol we have for the shortest path that the only intermediate
neuron has betweenness equal to 7 569.3, while for the communicability pathwe have: 395.2-618.1-239.4-

Figure 6. Shortest path (red segments) and shortest communicability paths (blue segments) based on communicability distance
between two pairs (Tina–Andy and Peg–Katy) ofmembers of the office in the informal layer with strong coupling between layers,
ω=3.5.

11

New J. Phys. 21 (2019) 015004 EEstrada



768.6-1 011.2-1 955.2-582.5. Thismeans that themost central neuron in the shortest path, AVBLpol, is almost
four timesmore central than themost central one in the communicability path, VC05ch.

Finally, if we consider the subgraph centrality of the nodes in each of the pathswe observe that themost
central neuron (RIBRel) in the shortest pathAIMLel  VD01el is 1.7 timesmore central than that in the shortest
communicability path (RMGLch). In the pathAIALch  PVCRch themost central neuron (AVBLch) in the
shortest path is 3.6 timesmore central than themost central in the communicability path (PVCRel). In the path
ADARpol  VC04pol themost central neuron in the shortest path (AVBLpol) is 5600 timesmore central than the
most central one in the communicability path (ADARel).

The clear conclusion from the last experiments concerning the centrality of the nodes in the shortest
communicability paths in comparisonwith those in the shortest topological paths is the following. The nodes in
the shortest communicability paths are significantly less central than the nodes in the shortest topological paths.
In otherwords, the shortest communicability paths avoid to trespass the hubs of the network, understanding by
hubs themost central nodes not only in terms of their degrees. A plausible explanation for this behavior is given
in the next subsection of this work.

4.3.Diffusive communicability paths
In a diffusive process on amultiplex, the variation of the concentration in time c t

 ( ) is determined by the
diffusion equation

c t

t
c t , 4.3

¶
¶

= -
 ( ) ( ) ( )

with the initial condition c c0 0=
 ( ) . In the previous equation  is themultiplex Laplacian, obtained from a

diagonalmatrix of nodes degrees and the supra-adjacencymatrixA, i.e. A = - , andwe have set the
diffusion coefficient to one. The degree of a node i is taken here as the number of connections the node i has in its
corresponding layer of themultiplex plus the sumof the coupling strengths of this node to itself in all the other
layers of themultiplex. The solution of (4.3) is given by c t t c t t cexp exp0 0A = - = - +

  ( ) ( ) ( ) .What this
equation is telling us about the physical process taking place on themultiplex? This equation is describing a
process inwhich the particles diffusing between the nodes of themultiplex take time only to ‘decide’ towhich
nearest neighbor node theywill hop in the next time step. That is, the probability that the particle hops from
node u in layer i to node v in the same layer (markedwithmagenta arrows infigure 8(a)) is p u v,L L k

1

i i u
=

w+
( ) ,

where ku is the number of connections of the node u in the layer i andω is as before. On the other hand, the
probability that the particle hops fromnode u in layer i to node u in the layer j (markedwith a red arrow in
figure 8(a)) is p u u,L L ki j u

= w
w+

( ) . Obviously, p u v, 0L Li j
=( ) for i j¹ and u v¹ . These probabilities, as well

as equation (4.3), indicate that the diffusive particle does not take any time ‘inside the nodes’. That is, the
diffusive particle enters the node and abandon it as soon as it ‘decides’ towhich other node to hop. This is of
course a very unrealistic situation, whichmeans that the nodes do not process information once it enters into
them. In thismodel, nodes are there for nothing!

Let us consider now amore realistic situation inwhich every node ‘processes’ the diffusive particle entering
into it. That is, the diffusive particle enters the node and spend some time in it as a consequence of certain
chemical, biological or any other kind of processing. In general, this generates a ‘waiting time’ as known in the
case of randomwalkers studies. For the sake of simplicity let us consider that such internal process is represented
by a ‘self-coupling’ of a node to itself, which is translated in the network-theoretic language by aweighted self-

Figure 7. Shortest path (red segments) and shortest communicability paths (blue segments) based on communicability distance
between three pairs of neurons in theC. elegans neuronal system. Every pair of neurons are located in the same layer: electronic (a),
chemical (b) and polyadic (c). The interlayer coupling isω=0.5 in all cases.
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loop (see figure 8(b)). This diffusive process is controlled by

c t

t
I c t , 4.4Ag

¶
¶

= - + -
 ( ) ( ) ( ) ( )

where I is the corresponding identitymatrix and γ is the self-coupling of a nodewith itself. The self-coupling of a
nodewith itself is a sort of resistance of the node to give the diffusive particle to a nearest neighbor. Let us assume
that γ=αkmax withα?1 for all nodes u in themultiplex, where kmax is themaximumdegree of a node in the
multiplex. That is, we are assuming that the processing of information inside a node is a process that requires
significantlymore time than the selection of the node towhich such informationwill hop in the next time step.
Now,we canwrite the diffusion equation of thewholemultiplex as

c t

t
I c t . 4.5Ag

¶
¶

= - -
 ( ) ( ) ( ) ( )

After the previous transformation, the solution of the diffusion equation is given by

c t t I c

t I t c

t t c

exp ,

exp exp ,

, exp , 4.6

0

0

0

A

A

A

g
g

a g

= - -
= -
=

 




( ) ( ( ( )))
( ) ( )

( ) ( ) ( )

where t ,a g( ) is a constant for a given t and γ. For t=1we obviously have that c t c1 0G= ~
 ( ) , whereG is the

communicabilitymatrix. Thus, the shortest communicability paths found previously in this work represent the
‘diffusion paths’ for diffusive particles that not only hop between the nodes of themultiplex but also are
‘processed’ inside the nodes.

5. Future outlook

The communicability function of networks has found a plethora of interesting and useful applications in a large
variety offields. The geometry emerging from this communicability function has also started tofind applications
in different areas. These concepts have been extended beyond networks [42–44, 46] to account for information
diffusion processes also in simplicial complexes [17]. Herewe have extended the notion of communicability
geometry tomultiplexes.We have shown that this topological representation of complex systems inwhich nodes
are sliced in different layers also ‘lives’ in a communicability Euclidean hyperspherical space.We have also
advanced a formal definition of a simplemultiplex as the triple S, ,  = ( ), where  is a set of simple
graphs, is the set of node identities and S a set of interlayer weighted connections of the nodes. It is
straightforward to realize that directed andweightedmultiplexes are easily realizable from this definition by
changing the set of simple graphs  by a set of directed andweighted graphs ¢. However, this representation
allow also the extension ofmultiplexity to hypergraphs and simplicial complexes.

That is, if we define as a set of hypergraphs instead of a set of simple graphs, then S, ,M  = ( )
represents amultiplex hypernetwork as illustrated infigure 9(a). In a similar way, if  is a set of simplicial
complexes instead of a set of simple graphs, then S, , = ( )M is amulti-simplicial complex as the one
illustrated infigure 9(b). Future efforts should bemade to study these types of representation of complex

Figure 8. Illustration of the diffusion process in amultiplexwhere the information is not processed at the nodes (a) andwhen the
information is processed at them (b). The processing of information is represented here by aweighted self-loop over each of the nodes.
Here all the self-loopweights are the same but it is not necessarily always the case. Themagenta arrows represent the ways of going out
from anode in a given layer to another node in the same layer. The red arrow represent theway ofmoving fromone node to itself in a
different layer (see text for explanations).
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systems, their communicability function and geometry to seewhether they bring new insights about the
functioning of the systems they represent.We hope the current work open such new doors for the study of these
systems.
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