000078236 001__ 78236
000078236 005__ 20191122145056.0
000078236 0247_ $$2doi$$a10.1016/j.jssc.2017.09.029
000078236 0248_ $$2sideral$$a101847
000078236 037__ $$aART-2018-101847
000078236 041__ $$aeng
000078236 100__ $$aOttini, Riccardo
000078236 245__ $$aLocal environments and transport properties of heavily doped strontium barium niobates Sr0.5Ba0.5Nb2O6
000078236 260__ $$c2018
000078236 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078236 5203_ $$aUndoped as well as K-doped (40%), Y-doped (40%), Zr-doped (10%), and Mo-doped (12.5%) strontium barium niobate Sr0.5Ba0.5Nb2O6 (SBN50) materials have been investigated to explore the effect of heavy doping on the structural and functional properties (thermo-power, thermal and electrical conductivities) both in the as prepared (oxidized) and reduced states. For all materials, the EXAFS spectra at the Nb – K edge can be consistently analyzed with the same model of six shells around the Nb sites. Doping mostly gives a simple size effect on the structural parameters, but doping on the Nb sites weakens the Nb–O bond regardless of dopant size and charge. Shell sizes and Debye–Waller factors are almost unaffected by temperature and oxidation state, and the disorder is of static nature. The functional effects of heavy doping do not agree with a simple model of hole or electron injection by aliovalent substitutions on a large band gap semiconductor. With respect to the undoped samples, doping with Mo depresses the thermal conductivity by ~ 30%, Y doping enhances the electrical conductivity by an order of magnitude, while Zr doping increases the Seebeck coefficient by a factor of 2–3. Globally, the ZT efficiency factor of the K-, Y-, and Zr-doped samples is enhanced at least by one order of magnitude with respect to the undoped or Mo-doped materials.
000078236 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000078236 590__ $$a2.291$$b2018
000078236 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b18 / 45 = 0.4$$c2018$$dQ2$$eT2
000078236 591__ $$aCHEMISTRY, PHYSICAL$$b81 / 148 = 0.547$$c2018$$dQ3$$eT2
000078236 592__ $$a0.594$$b2018
000078236 593__ $$aCeramics and Composites$$c2018$$dQ2
000078236 593__ $$aCondensed Matter Physics$$c2018$$dQ2
000078236 593__ $$aPhysical and Theoretical Chemistry$$c2018$$dQ2
000078236 593__ $$aInorganic Chemistry$$c2018$$dQ2
000078236 593__ $$aMaterials Chemistry$$c2018$$dQ2
000078236 593__ $$aElectronic, Optical and Magnetic Materials$$c2018$$dQ2
000078236 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078236 700__ $$aTealdi, Cristina
000078236 700__ $$aTomasi, Corrado
000078236 700__ $$aTredici, Ilenia G.
000078236 700__ $$aSoffientini, Alessandro
000078236 700__ $$0(orcid)0000-0003-2962-9251$$aBurriel, Ramón$$uUniversidad de Zaragoza
000078236 700__ $$0(orcid)0000-0003-3567-7030$$aPalacios, Elías$$uUniversidad de Zaragoza
000078236 700__ $$0(orcid)0000-0002-9687-4903$$aCastro, Miguel$$uUniversidad de Zaragoza
000078236 700__ $$aAnselmi-Tamburini, Umberto
000078236 700__ $$aGhigna, Paolo
000078236 700__ $$aSpinolo, Giorgio
000078236 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000078236 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000078236 773__ $$g258 (2018), 99-107$$pJ. solid state chem.$$tJOURNAL OF SOLID STATE CHEMISTRY$$x0022-4596
000078236 8564_ $$s1000825$$uhttps://zaguan.unizar.es/record/78236/files/texto_completo.pdf$$yPostprint
000078236 8564_ $$s61093$$uhttps://zaguan.unizar.es/record/78236/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078236 909CO $$ooai:zaguan.unizar.es:78236$$particulos$$pdriver
000078236 951__ $$a2019-11-22-14:45:49
000078236 980__ $$aARTICLE