000078252 001__ 78252
000078252 005__ 20201130083155.0
000078252 0247_ $$2doi$$a10.1016/j.energy.2017.11.069
000078252 0248_ $$2sideral$$a103497
000078252 037__ $$aART-2018-103497
000078252 041__ $$aeng
000078252 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, M.$$uUniversidad de Zaragoza
000078252 245__ $$aEnergy storage in Spain: Forecasting electricity excess and assessment of power-to-gas potential up to 2050
000078252 260__ $$c2018
000078252 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078252 5203_ $$aInnovative technologies and strategies to decarbonize electricity generation, transport, and heat supply sector are key factors to achieve the global climate targets set by international organizations. One of these strategies implies a significant increase of the share of renewable electricity in the energy mix. Given the intermittent behaviour of renewable energy sources (RES), a detailed assessment of future energy scenarios is required to estimate the potential surplus in electricity production. To facilitate the penetration of renewable energy sources up to significant shares, massive long-term electricity storage technologies must be considered. Among these technologies, power-to-gas (PtG) systems may foster the fossil fuels switch by providing storage of surplus renewable electricity in the form of hydrogen or synthetic natural gas. Thus, this energy carrier could be reconverted to electrical power to cover peak demand periods. In this work, a study of the prospective Spanish scenario is presented and the potential of PtG technology is assessed in terms of expected renewable surplus. We found that the annual electricity surplus for 2050 might vary between 1.4 TWh and 13.5 TWh, and the required PtG capacity would be in the range 7.0–19.5 GW, depending on the renewable production pattern and the increment of demand.
000078252 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FSE$$9info:eu-repo/grantAgreement/ES/MEC/CAS16-00065
000078252 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000078252 590__ $$a5.537$$b2018
000078252 591__ $$aTHERMODYNAMICS$$b3 / 60 = 0.05$$c2018$$dQ1$$eT1
000078252 591__ $$aENERGY & FUELS$$b15 / 103 = 0.146$$c2018$$dQ1$$eT1
000078252 592__ $$a2.048$$b2018
000078252 593__ $$aBuilding and Construction$$c2018$$dQ1
000078252 593__ $$aCivil and Structural Engineering$$c2018$$dQ1
000078252 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ1
000078252 593__ $$aPollution$$c2018$$dQ1
000078252 593__ $$aIndustrial and Manufacturing Engineering$$c2018$$dQ1
000078252 593__ $$aMechanical Engineering$$c2018$$dQ1
000078252 593__ $$aEnergy (miscellaneous)$$c2018$$dQ1
000078252 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078252 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, P.$$uUniversidad de Zaragoza
000078252 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000078252 773__ $$g143 (2018), 900-910$$pEnergy$$tEnergy$$x0360-5442
000078252 8564_ $$s1597980$$uhttps://zaguan.unizar.es/record/78252/files/texto_completo.pdf$$yPostprint
000078252 8564_ $$s40654$$uhttps://zaguan.unizar.es/record/78252/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078252 909CO $$ooai:zaguan.unizar.es:78252$$particulos$$pdriver
000078252 951__ $$a2020-11-30-07:57:29
000078252 980__ $$aARTICLE