000078268 001__ 78268
000078268 005__ 20210121114538.0
000078268 0247_ $$2doi$$a10.1002/ejic.201500303
000078268 0248_ $$2sideral$$a89937
000078268 037__ $$aART-2015-89937
000078268 041__ $$aeng
000078268 100__ $$aSanz, Beatriz
000078268 245__ $$aLong-term stability and reproducibility of magnetic colloids are key issues for steady values of specific power absorption over time
000078268 260__ $$c2015
000078268 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078268 5203_ $$aVirtually all clinical applications of magnetic nanoparticles (MNPs) require the formulation of biocompatible, water-based magnetic colloids. For magnetic hyperthermia, the requirements also include a high colloidal stability against precipitation and agglomeration of the constituent MNPs to maintain the heating efficiency of the ferrofluid in the long term. Agglomeration can change the heating efficiency by forming MNP clusters that modify the magnetic dipolar interactions between particles. Additionally, precipitation of the MNPs (i.e., the heating sources within the liquid) can change the measured heating rates of a colloid by altering the heat flow dynamics as the particles plunge to the precipitate. The specific power absorption (SPA) of single-domain MNPs depends critically on the average particle size and size distribution width and therefore first-rate reproducibility of different batches with respect to these parameters is also needed. We have studied the evolution of the SPA of highly reproducible and stable water-based colloids composed of polymer-coated Fe3O4 magnetic nanoparticles. By measuring the specific power absorption (SPA) values for 1 year as a function of field amplitude and frequency (H = 24 kA/m; 260 = f = 830 kHz), we have demonstrated that the SPA values of these samples can be reproduced in successive synthetic batches and stable for several months due to the in situ polymer coating that provides colloidal stability and keeps dipolar interactions negligible.
000078268 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2010-19326$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2013-42551$$9info:eu-repo/grantAgreement/ES/MINECO/PRI-PIBAR-2011-1384
000078268 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000078268 590__ $$a2.686$$b2015
000078268 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b12 / 46 = 0.261$$c2015$$dQ2$$eT1
000078268 592__ $$a0.983$$b2015
000078268 593__ $$aInorganic Chemistry$$c2015$$dQ1
000078268 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078268 700__ $$0(orcid)0000-0001-9359-0019$$aCalatayud, M. Pilar
000078268 700__ $$aCassinelli, Nicolás
000078268 700__ $$aIbarra, M. Ricardo
000078268 700__ $$aGoya, Gerardo F.
000078268 773__ $$g27 (2015), 4524-4531$$pEur. j. inorg. chem.$$tEuropean Journal of Inorganic Chemistry$$x1434-1948
000078268 8564_ $$s571023$$uhttps://zaguan.unizar.es/record/78268/files/texto_completo.pdf$$yPostprint
000078268 8564_ $$s116978$$uhttps://zaguan.unizar.es/record/78268/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078268 909CO $$ooai:zaguan.unizar.es:78268$$particulos$$pdriver
000078268 951__ $$a2021-01-21-11:14:39
000078268 980__ $$aARTICLE