000078270 001__ 78270
000078270 005__ 20190709135528.0
000078270 0247_ $$2doi$$a10.1016/j.applthermaleng.2017.03.077
000078270 0248_ $$2sideral$$a98540
000078270 037__ $$aART-2017-98540
000078270 041__ $$aeng
000078270 100__ $$0(orcid)0000-0003-2854-4408$$aMaraver, D.
000078270 245__ $$aEfficiency enhancement in existing biomass organic Rankine cycle plants by means of thermoelectric systems integration
000078270 260__ $$c2017
000078270 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078270 5203_ $$aThis work investigates, from a thermodynamic point of view, the possibility of integrating thermoelectric systems (TES) in existing solid biomass-fuelled ORC CHP plants in a cost-effective way. Thus, a simple plant layout was proposed. The benefits achieved in the overall plant performance, constrained by several technical parameters of the subsystems involved, are assessed in terms of the Second Law efficiency and other characteristic parameters such as the First Law efficiency and the Primary Energy Savings Ratio. The main conclusion obtained is anticipating the fact that exists a certain optimal TES driving temperature value leading to the maximisation of the plant''s performance. According to the specific results extracted from the examples evaluated (TES integrated in Toluene and MDM ORC CHP plants), this temperature is about 245°C and 210°C, respectively, which leads to an increase in the overall Second Law efficiency of the plant up to 7–8%. Hence, it is clear that thermoelectric systems can contribute to the enhancement of the performance and to do so, there are guidelines to be considered prior to the detailed design of such systems to be integrated in existing ORC CHP plants.
000078270 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000078270 590__ $$a3.771$$b2017
000078270 591__ $$aENGINEERING, MECHANICAL$$b12 / 128 = 0.094$$c2017$$dQ1$$eT1
000078270 591__ $$aTHERMODYNAMICS$$b8 / 59 = 0.136$$c2017$$dQ1$$eT1
000078270 591__ $$aMECHANICS$$b10 / 134 = 0.075$$c2017$$dQ1$$eT1
000078270 591__ $$aENERGY & FUELS$$b31 / 97 = 0.32$$c2017$$dQ2$$eT1
000078270 592__ $$a1.505$$b2017
000078270 593__ $$aIndustrial and Manufacturing Engineering$$c2017$$dQ1
000078270 593__ $$aEnergy Engineering and Power Technology$$c2017$$dQ1
000078270 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078270 700__ $$0(orcid)0000-0003-4631-6994$$aRoyo, J.$$uUniversidad de Zaragoza
000078270 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000078270 773__ $$g119 (2017), 396-402$$pAppl. therm. eng.$$tApplied Thermal Engineering$$x1359-4311
000078270 8564_ $$s448320$$uhttps://zaguan.unizar.es/record/78270/files/texto_completo.pdf$$yPostprint
000078270 8564_ $$s62786$$uhttps://zaguan.unizar.es/record/78270/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078270 909CO $$ooai:zaguan.unizar.es:78270$$particulos$$pdriver
000078270 951__ $$a2019-07-09-12:01:03
000078270 980__ $$aARTICLE