Accepted Manuscript

Iron oxide - clay composite vectors on long-distance transport of arsenic and toxic metals in mining-affected areas

Miguel A. Gomez-Gonzalez, Mario Villalobos, Jose Francisco Marco, Javier Garcia-Guinea, Eduardo Bolea, Francisco Laborda, Fernando Garrido

Chemosphere
News to Industry

PII: S0045-6535(18)30117-6

DOI: 10.1016/j.chemosphere.2018.01.100

Reference: CHEM 20681

To appear in: ECSN

Received Date: 26 October 2017
Revised Date: 15 January 2018
Accepted Date: 22 January 2018

Please cite this article as: Gomez-Gonzalez, M.A., Villalobos, M., Marco, J.F., Garcia-Guinea, J., Bolea, E., Laborda, F., Garrido, F., Iron oxide - clay composite vectors on long-distance transport of arsenic and toxic metals in mining-affected areas, *Chemosphere* (2018), doi: 10.1016/j.chemosphere.2018.01.100.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Iron oxide - clay composite vectors on long-distance transport of arsenic
2	and toxic metals in mining-affected areas
3	
4	
5	Miguel A. Gomez-Gonzalez ^{a,1} , Mario Villalobos ^b , Jose Francisco Marco ^c , Javier
6	Garcia-Guinea ^a , Eduardo Bolea ^d , Francisco Laborda ^d , Fernando Garrido ^{a*}
7	
8	^a Museo Nacional de Ciencias Naturales (MNCN, CSIC). C/ Jose Gutierrez Abascal 2,
9	28006, Madrid, Spain.
10	^b Instituto de Geología. Universidad Nacional Autónoma de México (UNAM),
11	Coyoacán, D.F. 04510, Mexico.
12	^c Instituto de Química Física-Rocasolano (CSIC), C/ Serrano 119, 28006, Madrid,
13	Spain.
14	^d Instituto Universitario de Ciencias Ambientales (IUCA), Universidad de Zaragoza. C/
15	Pedro Cerbuna 12, 50009, Zaragoza, Spain.
16	
17	
18	Keywords: Arsenic; colloids; XAS; AF4-ICP-MS; mine residues; Fe-coatings
19 20 21	Capsule: This study indicates that nano-ferrihydrite may mobilize arsenic as mineral coatings on the surface of clay minerals. This demonstrates the role of iron coatings as arsenic scavengers and potential vector.
22	*corresponding author: fernando.garrido@mncn.csic.es
23 24	¹ current address: Department of Materials and London Centre for Nanotechnology, Imperial College London. Exhibition Road. London, SW7 2AZ, UK
25	
26	

Mine wastes from abandoned exploitations are sources of high concentrations of
hazardous metal(oid)s. Although these contaminants can be attenuated by sorbing to
secondary minerals, in this work we identified a mechanism for long-distance
dispersion of arsenic and metals through their association to mobile colloids. We
characterize the colloids and their sorbed contaminants using spectrometric and
physicochemical fractionation techniques. Mechanical action through erosion may
release and transport high concentrations of colloid-associated metal(oid)s towards
nearby stream waters, promoting their dispersion from the contamination source. Poorly
crystalline ferrihydrite acts as the principal As-sorbing mineral, but in this study we find
that this nanomineral does not mobilize As independently, rather, it is transported as
surface coatings bound to mineral particles, perhaps through electrostatic biding
interactions due to opposing surface charges at acidic to circumneutral pH values. This
association is very stable and effective in carrying along metal(oid)s in concentrations
above regulatory levels. The unlimited source of toxic elements in mine residues causes
ongoing, decades-long mobilization of toxic elements into stream waters. The
ferrihydrite-clay colloidal composites and their high mobility limit the attenuating role
that iron oxides alone show through adsorption of metal(oid)s and their immobilization
in situ. This may have important implications for the potential bioavailability of these
contaminants, as well as for the use of this water for human consumption.

1. INTRODUCTION

52	Current mines are typically designed to mitigate potential environmental impacts.
53	However, waste dumps and tailings are common leftovers from discontinued mines
54	(Courtin-Nomade et al., 2016). Abandoned mine wastes originally containing high
55	sulfide concentrations are of particular concern as they become active and harmful point
56	sources of As and other metals. Chronic exposure to low/moderate inorganic As from
57	drinking water has been associated with increased cardiovascular mortality (Medrano et
58	al., 2010). Knowledge of the mechanisms of contaminant release, mobility, and natural
59	attenuation is crucial to minimize the consequences associated with mine wastes, or to
60	devise remediation strategies.
61	Although As can be naturally attenuated in mining environments by associating to iron
62	(hydr)oxides or hydroxy-sulfates, or by precipitating as scorodite (FeAsO ₄ ·2H ₂ O)
63	(Courtin-Nomade et al., 2016) and other metal arsenates (Villalobos et al., 2010),
64	colloidal particles of these minerals may be released from mining wastes and act as As
65	carriers in surface runoff (Gomez-Gonzalez et al., 2016). Colloid-associated As may be
66	transported and reach geochemical conditions that are different from those at the source
67	(e.g., higher pH) thus promoting its release and bioavailability. Accordingly, none of
68	these natural As scavengers could be considered as completely effective trapping
69	systems in contact with flowing water because of their small particle sizes (except
70	perhaps jarosites) (Doucet et al., 2007). This association of As to mineral colloids is
71	important for the transport of this element in the environment and differs from the
72	mobility behavior of both dissolved phases and of larger As-containing particles. Co-
73	transport of contaminants by colloids has been recognized as an efficient mechanism of
74	trace metal and organic chemical mobility (Kretzschmar et al., 1999), but little attention
75	has been paid to As speciation in the actual mobile colloidal particles (Bauer and

76	Blodau, 2009) and to the As partitioning between colloids and dissolved fractions
77	(Serrano et al., 2015).
78	Asymmetric flow field-flow fractionation (AF4) has been used to separate and
79	characterize mobile colloids from natural samples (Bolea et al., 2010; Laborda et al.,
80	2011; Baalousha et al. 2011). The mild separation conditions in absence of stationary
81	phases contribute to the preservation of the original colloid size distribution and it can
82	be coupled to an ICP-MS to obtain the elemental composition of the colloidal phases
83	(Neubauer et al., 2013). Direct insight into the speciation of colloidal As and Fe can
84	additionally be gained using X-ray absorption spectroscopy (XAS), which has been
85	used to assess the As and Fe speciation in natural samples (O'Day et al., 2004: Voegelin
86	et al. 2007; Chen et al. 2009) including dispersible soil colloids (Serrano et al., 2015).
87	Recently, Gomez-Gonzalez et al. (2016) combined both techniques to demonstrate that
88	the mineral nature of the dispersible colloidal fraction obtained after leaching scorodite-
89	rich mine residues and sediments (Serrano et al., 2015) were similar to those colloids
90	released by simulated rainfall experiments performed in the field. Both scorodite and
91	Fe(III)-oxyhydroxides were identified as mineral carriers that can transport As long
92	distances from the source.
93	Although the role of Fe-oxide nanoparticles as carrier phases has received attention
94	(Bauer and Blodau, 2009; Kretzschmar et al., 1999), composite mineral colloidal
95	assemblages may have an important role in the transport of metal(loid)s in the soil-
96	water system, but they have scarcely been investigated. In this study, we determine the
97	As solid-phase speciation in the dispersible (i.e., potentially detachable and mobile,
98	<1000 nm) colloid fraction of soils along the stream that collects drainage from mine
99	residues. The mineral phases and colloidal vectors involved in the As mobilization have
100	been characterized and compared to the As-bearing phases present in the bulk

101	(i.e.<2mm) fraction of the soils. We propose a combined approach involving
102	spectrometric and fractionation techniques to gain information on the size-dependent
103	elemental composition of colloids, the nature of the colloidal carrier phase, and the
104	speciation of the associated contaminants.
105	
106	2. EXPERIMENTAL
107	2.1. Site description, sample collection and analyses
108	The experiment was conducted along a stream gorge (NW Madrid, Spain) that collects
109	water drainage from an abandoned mine in the Guadarrama mountain-range
110	(40°52'04.48" N - 3°43'48.68" O, 1475 meters altitude), where metal(oid)
111	contamination had been previously reported (Moreno-Jiménez et al., 2009). Massive
112	pyritic residues (~500 m ² of surface, 3 meter-thick, 22 g kg ⁻¹ of As) remain on the soil
113	surface and are subjected to weathering and erosion. There, 0-15 cm depth bulk samples
114	were taken from (1) the arsenic-bearing waste-pile (WP), (2) four sampling points
115	located at 28, 190, 410 and 815 m away from the WP along the gorge downstream (A-
116	B-C-D, respectively), and (3) adjacent to a semi-permanent water course (Figure S1).
117	Additional undisturbed soil cores (5-cm diameter, 15-cm depth) were collected from the
118	downstream locations (A-B-C-D) and kept under anoxic conditions. Stream water
119	samples were collected from the exit of the abandoned mine (WP) and near the
120	sampling locations. All samples were processed as described in the Supplementary
121	Material (SM) where the main physicochemical properties are presented (Tables S1,
122	S2a-b, S4). Additional observations and analyses were performed through
123	environmental scanning (ESEM) and transmission electron microscopy (TEM).
124	

125	2.2. Isolation of dispersible colloidal and dissolved fractions
126	The maximum amount (mg kg ⁻¹ soil) of potentially releasable colloids from the samples
127	was termed 'dispersible colloidal fraction' (DCF, \leq 1000 nm) (Serrano et al., 2015).
128	Two other fractions were isolated from the DCF upon ultrafiltration through 10 nm
129	pore-size membranes: (i) the solid colloidal fraction (CF, 1000-10 nm) deposited onto
130	the ultrafiltration membrane and (ii) the truly water soluble or dissolved fraction (DF,
131	<10 nm) that passed through membranes. The experimental procedure is described in
132	the SM.
133	DCF aliquots were used for AF4-ICP-MS and TEM analyses, Mössbauer spectroscopy,
134	and for colloidal mass and element quantification. Aqueous As and metal
135	concentrations in the dissolved fraction (DF) were quantified by ICP-MS and the
136	colloidal fraction (CF, 1000-10 nm) obtained upon ultrafiltration was analyzed by As
137	and Fe K-edge XAS spectroscopy (Figure S2).
138	
139	2.3. Size characterization and element quantification by AF4–ICP-MS
140	The DCFs from A-B-C-D were analyzed by AF4 (AF2000, Postnova Analytics) with a
141	coupled UV-Vis diode array detector (Shimadzu, wavelength range: 200-650 nm). The
142	AF4-UV-Vis system was coupled to an ICP-MS (ELAN DRC-e Perkin Elmer) to
1.42	
143	perform an on-line multi-element quantification. The instrumental conditions of the
143 144	perform an on-line multi-element quantification. The instrumental conditions of the AF4-UV-Vis-ICP-MS system were previously tested (Serrano et al., 2015) and are
144	
	AF4-UV-Vis-ICP-MS system were previously tested (Serrano et al., 2015) and are
144 145 146	AF4-UV-Vis-ICP-MS system were previously tested (Serrano et al., 2015) and are
144 145	AF4-UV-Vis-ICP-MS system were previously tested (Serrano et al., 2015) and are described in the SM.

150	France) (6 GeV, 100 mA, Si(111) monochromator crystals) at room temperature using a
151	13-element Ge(Li) solid-state detector. The spectra were obtained by averaging 5-7
152	replicate scans. Both soil and CFs from A to D sampling points were transported under
153	anoxic conditions and measured inside a vacuum chamber to preserve the original As
154	and Fe speciation. Reference and sample spectra were analyzed by linear combination
155	fitting (LCF) using the code Athena (Ravel and Newville, 2005). Details about the XAS
156	spectra collected, LCF analyses, and reference spectra are shown in the SM.
157	
158	2.5. Mössbauer spectroscopy analyses
159	Room temperature ⁵⁷ Fe Mössbauer data of both bulk and colloidal samples were
160	recorded in transmission mode using a conventional constant acceleration spectrometer
161	and a ⁵⁷ Co(Rh) source, analyzing ~200 mg of each sample previously powdered and
162	capsuled in polyvinyl chloride (PVC) holders which ensures an effective thickness of 5-
163	10 mg Fe cm $^{-2}$ per sample. The velocity scale was calibrated using a 6 μ m-thick α -Fe
164	foil. The isomer shifts were referred to the centroid of the spectrum of $\alpha\text{-Fe}$. The fitting
165	hyperfine parameters are summarized in Table S7.
166	
167	3. RESULTS
168	3.1. Bulk soil sample characterization
169	3.1.1. Physicochemical properties and metal(oid) concentrations
170	The WP shows high electrical conductivity (EC, 237 μ S cm ⁻¹), low pH (3.5) and total
171	organic carbon (TOC) (0.2%) in comparison with the downstream samples (A, B, C, D)
172	which presented circumneutral pH, EC in the range 19-55 $\mu S \text{ cm}^{\text{-}1}$ and TOC values
173	from 1.5-5.5% (Table S1).

174	All samples contained quartz and albite as principle minerals in the <2-mm fraction
175	(Table S2a). Their <2- μ m fractions (Table S2b) were dominated by montmorillonite
176	and jarosite in the WP, and by illite, and either kaolinite, or microcline and albite in the
177	downstream soils.
178	The As, Fe and Pb pseudo-total concentrations were highest in the WP and decreased
179	with distance from the contamination focus (Table 1). Conversely, Al, Mn and Zn
180	concentrations were lowest in the WP but they also decreased with distance starting
181	from point A downstream. This could be the result of the enhanced mineral acidic
182	dissolution at the WP and the subsequent element enrichment at the closest point (A).
183	
184	3.1.2. Element fractionation in solid phase: Sequential extraction procedure
185	Common to all samples is the absence of bioavailable, or exchangeable, As (step I)
186	(Table S4). In the WP, 74% of the total As was extracted in step IV (targeting poorly
187	crystalline Fe-oxyhydroxides). Riverbed soils showed different As solid phase
188	distribution than the WP. The fraction of As extracted from step II (strongly adsorbed
189	complexes) was similar in samples A and B (~22% of total As) but decreased at the
190	farthest distance from the WP (point D). The As extracted in step III (amorphous Fe
191	hydroxides, carbonates and volatile sulfurs) represented on average 20% of the total
192	amount in samples A and C but decreased to 9% in point D. The As fraction extracted
193	from step IV decreased downstream from 26% to 13% of the total As content.
194	Conversely, the fraction of As associated to crystalline Fe-oxyhydroxides increased
195	with distance to the WP from 8% to 33% and 25% in samples C and D, respectively.
196	The farthest sample from the WP (D) showed a significant contribution of residual
197	fraction (40%).

198	Iron was mostly extracted in steps III (32%) and IV (24%) (amorphous and weakly
199	crystalline Fe-oxyhydroxides, respectively) in the WP. The riverbed soils showed a
200	large residual Fe fraction from 23% (B) to 74% (D). Similarly, Al was mostly extracted
201	in step III, varying from 20% (WP) to 64% (C). Similar to Fe, sample D stood out for
202	the amount of Al in the residual fraction (43%), but residual Al was also high in the WP
203	(61%) (Table S4).
204	
205	3.1.3. Observations and analysis through scanning electron microscopy
206	The WP was characterized by As-Ag-bearing mineralized veins of quartz that also
207	contained silica and Fe-oxides together with primary sulfide and sulfosalts such as
208	arsenopyrite, pyrite and scorodite (Figure S3a-b). Large quartz and feldspar grains were
209	abundant in samples downstream. Arsenic was found associated to Fe-oxyhydroxides
210	showing low As/Fe concentration ratios by EDX in selected particles (Figure S3c-d-e).
211	The EDX indicated the highest As/Fe ratio in the WP sample, while downstream
212	samples presented decreasing As content with distance to the contamination focus. In
213	sample D (Figure S3f), organic microparticles with important Mn and As content were
214	detected.
215	
216	3.1.4. Speciation of Fe-mineral phases: Mössbauer spectroscopy
217	All Mössbauer spectra were dominated by an intense paramagnetic doublet whose
218	parameters can be associated to Fe(III) in octahedral oxygen coordination (Maddock,
219	1985), and by a less intense second doublet corresponding to Fe(II)-octahedral (Figure
220	S6).
221	Iron content in the WP was mainly Fe(III), 16% of whose total content corresponded to
222	goethite and 81% to a Fe(III)-illite/Fe(III)-(hydr)oxides mixture, other than goethite

223	(Table S7). From the WP downstream, the ratio Fe(II)/Fe(III) was lowest in sample A
224	(0.14), increased to 0.27 in sample B, but decreased to 0.18 in in sample D (Table 2).
225	Minor presence of hematite was detected in points C and D.
226	
227	3.1.5. As speciation of bulk soils: X-ray absorption spectroscopy
228	Linear combination fitting (LCF) analyses of As spectra, acquired in anoxic conditions,
229	indicated the adsorption of As on Fe(III)-oxyhydroxides, such as ferrihydrite and
230	goethite (Table 3, Figure 1). Also, significant contributions of scorodite (26%) and As-
231	jarosite (17%) were found in the WP.
232	
233	3.2. Characterization of the colloidal fraction of contaminated soils
234	3.2.1. Colloid-mass and metal(loid) quantification
235	All soil samples released a larger mass of colloids than the WP (Table 4b). Colloidal
236	mass in the DCF varied little from A (~9200 mg kg ⁻¹) to D (~7900 mg kg ⁻¹). The As
237	colloidal concentration of the samples decreased from ~10000 mg kg ⁻¹ in A to ~1350
238	mg kg ⁻¹ in D, similar to the WP (1434 mg kg ⁻¹). The DCF of downstream samples
239	showed larger concentrations of all metal(oid)s analyzed than the DCF obtained from
240	the WP (Table 4a). The metal(oid)s contained in the DCFs were mainly associated to
241	the (solid) CF (1000-10 nm), i.e. minor concentrations of the elements remained in the
242	DF, and thus the percentage of the element concentration found in the CF to that in the
243	DCF (CF/DCF in Table 4a) is 100% for Fe and Al, and over 80% for the rest of
244	analyzed elements in all soils. All metal(oid)s concentrations in the DCF from A-B-C-D
245	decreased with distance from the WP while their fractions in the DF were low and
246	remained constant along the river creek except for the Cu which decreased in samples C
247	and D. For example, As concentration in the DCF decreased from 9.6 mg L ⁻¹ in A near

248	the WP, to 1.3 mg L ⁻¹ in D. However, As concentrations in the DF remained close to 0.2
249	mg L ⁻¹ in all samples collected along the river banks. Overall, the ratios of element
250	concentration in DCFs to that in their corresponding bulk samples were low (2-4%) for
251	all elements except for Al (17-31%) (Table 4a)
252	
253	3.2.2. DCF size distribution and associated metal(loid)s: AF4-ICP-MS and TEM
254	The DCF size distribution and the associated As, Fe, and Al contents of downstream
255	samples were analyzed by AF4-UV-vis-ICP-MS. Low pH and high EC of WP sample
256	prevented its size-characterization due to the strong interaction with the AF4 channel
257	membrane (Gomez-Gonzalez et al., 2016).
258	The size maxima of the colloidal distributions did not change with distance along the
259	stream over the samples A to D (Table 5). Iron and As concentration maxima were
260	associated to colloid mean sizes of 260±30 nm and 257±36 nm, respectively, and
261	differed little to that of Al, 263±30 nm (Table 5, Figure 2a). These size ranges were
262	further confirmed as colloid particles 200-300 nm large were frequently observed in the
263	DCF by TEM analyses (Figure 2b). The EDX indicated the importance of Al- and Fe-
264	bearing phases in the As mobilization (Table S5).
265	
266	3.2.3. Colloidal Arsenic and Fe XAS speciation
267	The As K-edge EXAFS spectra acquired over the CF (1000-10 nm) of the samples
268	pointed to ferrihydrite $[Fe_{10}O_{14}(OH)_2]$ as the main As-bearing phase in downstream
269	samples (Table 3, Figure 1), accompanied by low contributions of goethite [α -
270	FeO(OH)] in A and B, beudantite [PbFe ₃ (OH) ₆ SO ₄ AsO ₄] in C, and jarosite in D. In the
271	WP, in addition to ferrihydrite and goethite, there was a significant contribution of
272	scorodite (≈36%).

273	The Fe k-edge EXAFS spectra showed similar Fe-clays in the colloidal fraction of all
274	samples. In the WP there were similar contributions of smectite $[Ca_{0.17}(Al, Fe, Mg)_2(Si, Mg)]$
275	$Al)_4O_{10}(OH)_2\cdot nH_2O], schwertmannite \ [Fe_8O_8(OH)_6(SO_4)\cdot nH_2O] \ and \ plumbo-jarosite$
276	[PbFe ₆ (SO ₄) ₄ (OH) ₁₂]. All A-B-C zones showed the main presence of schwertmannite in
277	the CF and minor contributions of Fe-phyllosilicates (smectite and illite [(K, H ₃ O)(Al,
278	Mg, Fe) ₂ (Si, Al) ₄ O ₁₀ [(OH) ₂ , H ₂ O]]) and (plumbo)jarosite (Table 3, Figure 1).
279	
280	4. DISCUSSION
281	4.1. Arsenic spreading and environmental impact
282	The massive sulfarsenide residues dumped on the soil surface near the creek are an
283	important source of metal(oid) contamination in the mine surroundings, especially
284	downstream. At about one kilometer downstream from the WP, As concentration is 43
285	times higher than the regional legal threshold (24 mg kg ⁻¹ , Moreno-Jimenez et al. 2009).
286	Primary As-bearing mineral assemblages, mainly pyrite-like minerals, are transformed
287	to authigenic minerals such as goethite and scorodite, the main products of low-
288	temperature meteorization of the WP, and minor fractions of jarosite, plumbojarosite,
289	and schwertmannite. Atmospheric oxidation of pyrite begins within minutes of
290	exposure, resulting in the production of Fe-oxyhydroxides and sulfate species (Chandra
291	and Gerson, 2010). The extent of oxidation is naturally controlled by access of mine
292	wastes to oxygenated water, which is enhanced by specific geographical characteristics
293	of the area such as its high topographic relief, and alternation of dry and wet climate
294	(Majzlan et al., 2014). The microbial activity may also play a significant role in As-
295	bearing mineral dissolution and As transformations in the soil-water system (Lloyd and
296	Oremland, 2006).

297	This process is confirmed by EXAFS, indicating that As is only present as As(V) in
298	both WP and downstream samples (Table 3). Fe-Mössbauer spectroscopy shows major
299	proportions of structural Fe(III) over Fe(II) indicating the high oxidation state at the
300	surface of the originally pyritic wastes (Table 2). Furthermore, As partitioning in the
301	solid phase of the WP samples shows the largest proportion of As bound to poorly
302	crystalline Fe-oxyhydroxide minerals (Fraction IV, 74%), and no As is associated to the
303	most bioavailable or soluble fraction (Table S4). Similar to Slowey et al. (2007), no
304	primary minerals were detected in the mobilizable CF in the WP and samples
305	downstream.
306	The lower As total concentration downstream (Table 1), relative to that in the WP, is the
307	result of geochemical mechanisms that constrain the As release into water. Arsenic(V)
308	association to Fe-(hydr)oxides may be found in the WP in either large particles or
309	strongly-bound colloidal aggregates with limited dispersibility. Thus, reduced amounts
310	of As travel downstream from the WP relative to the large As pool in the WP. Although
311	no reclamation has been performed in the residues and affected soils, acid release from
312	pyrite oxidation is neutralized along the creek to circumneutral values due to
313	endogenous calcite hosted in neighboring granite and the existence of hidden
314	interstratified marble banks into the gneiss series. At pH>6, ferrihydrite formation is
315	favorable (Hayes et al., 2014) and can exert a metal trapping role (Fritzsche et al., 2011)
316	attenuating As toxicity. The sequential extractions also indicate an increasing proportion
317	of As coprecipitation with crystalline Fe-oxyhydroxides in soil samples with distance
318	from the WP (Table S4) consistent with the As retention through stable inner-sphere
319	complexes.
320	However, our results show a remarkable metal(oid) pollution of the soil-water system in
321	the area. Thus, sorption onto mineral phases at the source does not prevent the release

and transport of As and other metals. One potential mechanism is the transport of colloid-size reactive particles rich in As and the subsequent downstream spreading of the element (Bauer and Blodau, 2009). Even though As concentration in the DCF represents approximately 3% of total As concentration in the samples (Table 4) this fraction might justify the contamination downstream over time taking into account that at the circumneutral pH of the running water and soil samples (Table 1), minor concentrations of As are encountered as truly dissolved. Subsequent organic acid-promoted dissolution or seasonal reductive dissolution of Fe-oxyhydroxides containing As(V) (Slowey et al., 2007) may release As in fresh water. Accordingly, both bulk and colloidal As concentrations in soils decrease with distance while As concentration in stream water tend to increase downstream.

4.2. The potential role of composite mineral vectors in As transport.

Iron oxides play a role as both attenuating phases and geochemical carriers of As and metals in soil-water systems. Both mechanisms may coexist and the extent of each one depends on the concentration and transport behavior of the carrier phase, the carrier-contaminant association, and on particle settling and deposition processes in riverine systems (Hassellöv and von der Kammer, 2008). According to EXAFS, As-colloidal mobilization from the WP can be conducted by three potential carriers: ferrihydrite (or a mixture of it with schwertmannite), scorodite and goethite (Table 3). Among them, ferrihydrite is the largest contributor due to its high affinity for As(V) under oxic conditions (Dixit and Hering, 2003) and its prompt formation and stability at neutral pH values (Hayes et al., 2014). Ferrihydrite is the first metastable Fe phase to precipitate upon pyrite oxidation. Its transformation kinetics is retarded in sulfate-rich semi-arid environments. This allows this phase to persist over decades of weathering, even at

347	lower pHs than those predicted in its stability field (Hayes et al., 2014), although other
348	phases such as schwertmannite are more stable at acid conditions. At pH<4,
349	schwertmannite is an important host mineral for As released by acid mine-drainage
350	(Acero et al., 2006), while at pH>5 sorption of As on ferrihydrite or poorly crystalline
351	Fe-oxyhydroxide predominates (Carlson et al., 2002). The nanocrystalline structure of
352	schwertmannite (Fernandez-Martinez et al., 2010) is corroborated by the fact that this
353	phase is only detected by Fe-EXAFS in the CF (Table 3). Also, the high TOC (Table
354	S1) of the samples downstream might explain its occurrence at pH>5 and the absence of
355	As bound to schwertmannite as described by Vithana et al. (2014). Moreover, nanosized
356	schwertmannite might have been transported as suspended material downstream as
357	suggested by Yu et al. (1999) who also found traces of this mineral at pH>6.
358	Scorodite is only detected in the <2 mm and colloid fractions of the WP sample.
359	Although this mineral is mobilizable through surface runoff (Gomez-Gonzalez et al.,
360	2016), at neutral pH, it dissolves incongruently forming Fe-hydroxide and arsenate
361	oxyanions (Harvey et al., 2006) and thus contributes to the accumulation of Fe-phases,
362	which subsequently may sequester soluble As. The role of goethite as potential As-
363	carrier seems secondary as compared to ferrihydrite. It was found in the WP colloid-size
364	fraction (Table 3) and reduced contributions in the closest sampling points to the wastes
365	(A and B). Ferrihydrite slowly transforms to more thermodynamically stable goethite in
366	the presence of As (Ford, 2002). This could explain the increasing contribution of As
367	bound to goethite in the total soil fraction with distance from the WP (Table 3),
368	suggesting that As-bound goethite may be found in particles larger than the DCF.
369	Nevertheless, Mössbauer spectroscopy conducted at room temperature suggests the only
370	presence of goethite in the WP. The contribution of phases such as ferrihydrite or

371	lepidocrocite could not be discarded unless a significant number of Mössbauer spectra
372	were acquired at low temperature.
373	Although our results show the role of ferrihydrite as the main As-sorbing mineral in the
374	bulk samples, colloidal As concentration represents less than 3% of the total As
375	concentration in all samples. This indicates that ferrihydrite is mainly encountered as
376	coating or within bigger size aggregates, and in both cases with less reactivity and more
377	stability than in its nano-sized form, which likely limits its transformation to more
378	crystalline phases. Pure Fe-oxide minerals are positively charged under environmental
379	pH conditions and thus, are promptly deposited on the generally negatively charged
380	surface of stationary grains (e.g., clays) in soils and sediments (Hassellöv and von der
381	Kammer, 2008).
382	This points out the potential role of composite Fe-oxyhydroxides and phyllosilicate
383	mineral vectors as element carriers in riverine soil-water systems, acting as mineral
384	assemblages as described by Grosbois et al. (2011). The proposed mechanism would be
385	for As being attached to Fe-oxyhydroxide phases, which in turn use clays as an effective
386	physical transport media. Moreover, this role is performed regardless of the carrier
387	mineral particle size, although there is a slight enrichment in As bound to ferrihydrite in
388	the colloid-size fraction as compared to that of total soil fraction (>2mm). This is
389	supported by the fact that colloidal As mean peak size matches up with that of Fe and
390	Al in the AF4-fractograms (Figure 2) suggesting that both elements are linked to As.
391	Comparing the element's total concentrations and those found in the DCF and CF
392	(Table 4a), it is evident that the DCF becomes enriched in Al (20% or higher) while the
393	rest of the analyzed elements are present in minor proportions relative to their bulk total
394	concentrations. While the term, 'nanovector' (Hamon et al. 2005) describes the colloidal

395	transport of metal(oid)s in soil-water systems, it may be composed of more than one
396	type of mineral phases for metal(oid) pollution in mine affected soil-water systems.
397	
398	5. CONCLUSIONS
399	This work shows a potential mechanism of metal(loid) dispersion from mine wastes to
400	adjacent soils and stream waters via long-distance transport of colloidal material.
401	The well-known role of Fe-oxyhydroxide phases as As scavenger may be limited when
402	they precipitate as surface coatings of dispersible colloid-size mineral particles that can
403	readily be transferred along water courses from point sources of contamination to
404	adjacent non-polluted sites.
405	The study was performed on the bulk (<2 mm) soils and their dispersible colloidal
406	fractions (<1000 nm) combining sequential chemical extractions, fractionation and
407	spectrometry techniques, and showed that the dispersion occurs by isolated Fe-
408	oxyhydroxide colloids or by greater size, stable aggregates of Fe-oxyhydroxide-clay
409	mineral composite vectors. This mobilization mechanism and the physical carrier
410	mineral phases can be identified by combining XAS (to confirm As-Fe oxide binding)
411	and fractionation and elemental analysis (AF4-ICP-MS).
412	The unlimited As source provided by the accumulation of pyrite-rich mine residues
413	along with the decades-long mobilization of toxic elements into stream water (and its
414	potential transfer to subsurface water) pose important risks for human health. High
415	contents of negatively-charged clay minerals may also contribute to cationic metal-
416	bound colloid mobilization along streams.
417	
418	ACKNOWLEDGEMENTS

419	The Spanish Ministry of Economy and Competitiveness supported this study
420	(CGL2010-17434). M.A. Gomez-Gonzalez was supported by the Ph.D. Spanish FPI
421	fellowship (BES-2011-046461, EEBB-I-15-09807). XAS measurements on BM25A
422	beamline (ESRF) supported by 25-01-944 project. ICP analyses were performed at
423	Servicio General de Apoyo a Investigación-SAI, Universidad-Zaragoza. TEM analyses
424	were performed at Centro Nacional de Microscopía Electrónica (Universidad-
425	Complutense, Madrid). ESEM-EDX and DRX analyses were performed at MNCN-
426	CSIC.
427	
428	FIGURE CAPTIONS
429	1- Arsenic K-edge EXAFS spectra of (a) bulk samples and (b) colloidal fractions. Iron
430	K-edge EXAFS spectra of (c) colloidal fractions. Black lines, experimental data; red
431	lines, LCF results (Table 3 for LCF values).
432	2- (a) AF4-ICP-MS analyses of the downstream DCFs showing the distribution of
433	aluminum (black), iron (red) and arsenic (blue) associated to the colloids. (b) TEM
434	images of the DCF isolated from A, B, C and D (EDX analyses confirmed the presence
435	of As associated to Fe-oxyhydroxides in all cases (Table S5)).
436	
437	REFERENCES
438	Acero, P., Ayora, C., Torrento, C., Nieto, J.M. 2006. The behavior of trace elements
439	during schwertmannite precipitation and subsequent transformation into goethite and
440	jarosite. Geochimica et Cosmochimica Acta 70, 4130-4139
441	Baalousha, M., Stolpe, B., Lead, J.R., 2011. Flow field-flow fractionation for the
442	analysis and characterization of natural colloids and manufactured nanoparticles in
443	environmental systems: A critical review. Journal of Chromatography A 1218, 4078-
444	4103.

- Bauer, M., Blodau, C., 2009. Arsenic distribution in the dissolved, colloidal and
- particulate size fraction of experimental solutions rich in dissolved organic matter and
- ferric iron. Geochimica et Cosmochimica Acta 73, 529-542.
- Bolea, E., Laborda, F., Castillo, J.R., 2010. Metal associations to microparticles,
- nanocolloids and macromolecules in compost leachates: Size characterization by
- asymmetrical flow field-flow fractionation coupled to ICP-MS. Analytica Chimica Acta
- 451 661, 206-214.
- 452 Carlson, L., Bigham, J.M., Schwertmann, U., Kyek, A., Wagner, F., 2002. Scavenging
- of As from Acid Mine Drainage by Schwertmannite and Ferrihydrite: A Comparison
- with Synthetic Analogues. Environmental Science & Technology 36, 1712-1719.
- Chandra, A.P., Gerson, A.R., 2010. The mechanisms of pyrite oxidation and leaching:
- 456 A fundamental perspective. Surface Science Reports 65, 293-315.
- Chen, N., Jiang, D.T., Cutler, J., Kotzer, T., Jia, Y.F., Demopoulos, G.P., Rowson, J.W.,
- 458 2009. Structural characterization of poorly-crystalline scorodite, iron(III)–arsenate co-
- 459 precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine
- structure spectroscopy. Geochimica et Cosmochimica Acta 73, 3260-3276.
- Courtin-Nomade, A., Waltzing, T., Evrard, C., Soubrand, M., Lenain, J.F., Ducloux, E.,
- Ghorbel, S., Grosbois, C., Bril, H., 2016. Arsenic and lead mobility: From tailing
- materials to the aqueous compartment. Applied Geochemistry 64, 10-21.
- Dixit, S., Hering, J.G., 2003. Comparison of Arsenic(V) and Arsenic(III) Sorption onto
- 465 Iron Oxide Minerals: Implications for Arsenic Mobility. Environmental Science &
- 466 Technology 37, 4182-4189.
- Doucet, F.J., Lead, J.R., Santschi, P.H., 2007. Colloid-Trace Element Interactions in
- 468 Aquatic Systems, Environmental Colloids and Particles. John Wiley & Sons, Ltd, pp.
- 469 95-157.

- 470 Fernandez-Martinez, A., Timon, V., Roman-Ross, G., Cuello, G.J., Daniels, J.E.,
- 471 Ayora, C., 2010. The structure of schwertmannite, a nanocrystalline iron
- 472 oxyhydroxysulfate. American Mineralogist 95, 1312-1322.
- 473 Ford, R.G., 2002. Rates of Hydrous Ferric Oxide Crystallization and the Influence on
- 474 Coprecipitated Arsenate. Environmental Science & Technology 36, 2459-2463.
- 475 Fritzsche, A., Rennert, T., Totsche, K.U., 2011. Arsenic strongly associates with
- 476 ferrihydrite colloids formed in a soil effluent. Environmental Pollution 159, 1398-1405.
- 477 Gomez-Gonzalez, M.A., Voegelin, A., Garcia-Guinea, J., Bolea, E., Laborda, F.,
- 478 Garrido, F., 2016. Colloidal mobilization of arsenic from mining-affected soils by
- surface runoff. Chemosphere 144, 1123-1131.
- 480 Grosbois, C., Courtin-Nomade, A., Robin, E., Bril, H., Tamura, N., Schäfer, J., Blanc,
- 481 G., 2011. Fate of arsenic-bearing phases during the suspended transport in a gold
- 482 mining district (Isle river Basin, France). Science of The Total Environment 409, 4986-
- 483 4999.
- Hamon, R., Batley, G.E., Casey, P., 2005. Environmental nanovectors: an emerging
- science area. SETAC Globe 6, 21-22.
- Harvey, M.C., Schreiber, M.E., Rimstidt, J.D., Griffith, M.M., 2006. Scorodite
- 487 Dissolution Kinetics: Implications for Arsenic Release. Environmental Science &
- 488 Technology 40, 6709-6714.
- 489 Hassellöv, M., von der Kammer, F., 2008. Iron Oxides as Geochemical Nanovectors for
- 490 Metal Transport in Soil-River Systems. Elements 4, 401-406.
- Hayes, S.M., Root, R.A., Perdrial, N., Maier, R.M., Chorover, J., 2014. Surficial
- 492 weathering of iron sulfide mine tailings under semi-arid climate. Geochimica et
- 493 Cosmochimica Acta 141, 240-257.

- 494 Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M., 1999. Mobile
- 495 Subsurface Colloids and Their Role in Contaminant Transport, in: Donald, L.S. (Ed.),
- 496 Advances in Agronomy. Academic Press, pp. 121-193.
- 497 Laborda, F., Ruiz-Beguería, S., Bolea, E., Castillo, J.R., 2011. Study of the size-based
- 498 environmental availability of metals associated to natural organic matter by stable
- 499 isotope exchange and quadrupole inductively coupled plasma mass spectrometry
- 500 coupled to asymmetrical flow field flow fractionation. Journal of Chromatography A
- 501 1218, 4199-4205.
- Lloyd, J.R., Oremland, R.S., 2006. Microbial transformations of arsenic in the
- environment: From Soda lakes to aguifers. Elements 2, 85-90.
- Maddock, A.G., 1985. Mössbauer Spectrometry in Mineral Chemistry. Chemical
- Bonding and Spectroscopy in Mineral Chemistry In: F.J. Berry and D.J. Vaughan, eds.
- 506 Springer Netherlands, 141-208.
- 507 Majzlan, J., Drahota, P., Filippi, M., 2014. Parageneses and Crystal Chemistry of
- Arsenic Minerals. Reviews in Mineralogy and Geochemistry 79, 17-184.
- 509 Medrano, M.J., Boix, R., Pastor-Barriuso, R., Palau, M., Damián, J., Ramis, R., del
- Barrio, J.L., Navas-Acien, A., 2010. Arsenic in public water supplies and cardiovascular
- 511 mortality in Spain. Environmental Research 110, 448-454.
- Moreno-Jiménez, E., Peñalosa, J.M., Manzano, R., Carpena-Ruiz, R.O., Gamarra, R.,
- 513 Esteban, E., 2009. Heavy metals distribution in soils surrounding an abandoned mine in
- NW Madrid (Spain) and their transference to wild flora. Journal of Hazardous Materials
- 515 162, 854-859.
- Neubauer, E., von der Kammer, F., Knorr, K.H., Peiffer, S., Reichert, M., Hofmann, T.,
- 517 2013. Colloid-associated export of arsenic in stream water during stormflow events.
- 518 Chemical Geology 352, 81-91.

- 519 O'Day, P.A., Vlassopoulos, D., Root, R., Rivera, N., 2004. The influence of sulfur and
- iron on dissolved arsenic concentrations in the shallow subsurface under changing redox
- 521 conditions. Proceedings of the National Academy of Sciences of the United States of
- 522 America 101, 13703-13708.
- Plathe, K.L., von der Kammer, F., Hassellöv, M., Moore, J., Murayama, M., Hofmann,
- T., Hochella, M.F., 2010. Using FIFFF and aTEM to determine trace metalnanoparticle
- associations in riverbed sediment. Environmental Chemistry 7, 82-93.
- Ravel, B., Newville, M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis
- for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation 12,
- 528 537-541.
- 529 Serrano, S., Gomez-Gonzalez, M.A., O'Day, P.A., Laborda, F., Bolea, E., Garrido, F.,
- 530 2015. Arsenic speciation in the dispersible colloidal fraction of soils from a mine-
- impacted creek. Journal of Hazardous Materials 286, 30-40.
- Slowey, A.J., Johnson, S.B., Newville, M., Brown Jr, G.E., 2007. Speciation and colloid
- transport of arsenic from mine tailings. Applied Geochemistry 22, 1884-1898.
- Villalobos, M., García-Payne, D.G., López-Zepeda, J.L., Ceniceros-Gómez, A.E.,
- 535 Gutiérrez-Ruiz, M.E., 2010. Natural Arsenic Attenuation via Metal Arsenate
- Precipitation in Soils Contaminated with Metallurgical Wastes: I. Wet Chemical and
- Thermodynamic Evidences. Aquatic Geochemistry 16, 225-250.
- Vithana, C.L., Sullivan, L.A., Burton, E.D., Bush, R.T., 2014. Liberation of acidity and
- arsenic from schwertmannite: Effect of fulvic acid. Chemical Geology 372, 1-11.
- Voegelin, A., Weber, F.-A., Kretzschmar, R., 2007. Distribution and speciation of
- arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF element
- mapping and EXAFS spectroscopy. Geochimica et Cosmochimica Acta 71, 5804-5820.

Yu, J-Y., Heo, B., Choi, I-K., Cho, J-P., Chang. H-W., 1999. Apparent solubilities of
schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage.
Geochimica et Cosmochimica Acta, 63, 3407–3416.

Table 1 – Elemental concentrations of soil/sediment and stream waters

C-21/ 124	Al	Mn	Fe	Cu	Zn	As	Pb	A = /TE = b
Soil/sediment				mg kg ^{-1 a}				- As/Fe ^b
WP	1550	364	$6.9x10^4$	369	365	$2.2x10^4$	3213	0.23
A	4120	957	$3.4x10^4$	1886	1525	3313	448	0.07
B	2930	838	$2.3x10^4$	1383	1172	2278	354	0.07
C	2440	668	$2.1x10^4$	360	1331	816	172	0.03
D	2140	467	1.9×10^4	281	1167	1041	182	0.04

Stream	TT C	EC	Mn	Fe	As	Pb
waters	pH ^c	$\mu S cm^{-1}$		μg	L^{-1} d	
WP	3.92	237	204±8.8	250±31	32±1.7	14±0.3
A	6.88	49.7	7.1 ± 0.8	60±10	67 ± 6.1	0.52 ± 0.06
В	7.01	46.0	2.8 ± 0.1	90±17	92±11	0.88 ± 0.03
C	6.90	47.8	1.7 ± 0.2	69 ± 8.9	108 ± 10	0.75 ± 0.03
D	7.23	47.3	1.8 ± 0.4	56 ± 4.8	87±2.2	0.24 ± 0.01

^aPseudo-total concentrations of soils were measured by ICP-OES after aqua-regia addition and microwave-assisted digestion. Standard deviations of the ICP-OES determinations for each analyzed element are: Al = \pm 13.1 mg kg⁻¹, Mn = \pm 1.2 mg kg⁻¹, Fe = \pm 7.2 mg kg⁻¹, Cu = \pm 0.7 mg kg⁻¹, Zn = \pm 1.0 mg kg⁻¹, As = \pm 0.3 mg kg⁻¹, Pb = \pm 2.4 mg kg⁻¹
b Arsenic/Iron molar ratio

Table 2 – Relative areas of the different components identified in the Mössbauer spectra

Sample	Fe(III) doublet	Fe(II) doublet	Fe(III) hematite	Fe(III) goethite	Fe(II)/ Fe(III) a
			%		- ()
WP	81	3		16	0.03
A	88	12			0.14
B	79	21			0.27
C	64	17	19		0.20
D	63	15	22		0.18

^a Fe(II)/Fe(III) molar ratio after fitting the areas of the Mössbauer spectra

^cpH and electrical conductivity (EC) of stream samples were also analyzed

d Pseudo-total concentrations of stream waters were measured by ICP-MS after aqua-regia addition and microwaveassisted digestion. Standard deviations (n=3) are presented in the table

Table 3 – Linear combination fit results for As and Fe K-edge EXAFS spectra of soil/sediments and CF samples

Soil/sediment - As EXAFS ^a									
Comple	As-FH ^b	Scorodite	As-Jar ^c	As-Goe d	Total	R	$\operatorname{red} \chi^{2f}$		
Sample			%			factor ^e	rea x		
WP	56.0	26.2	16.9		99.1	0.010	0.171		
A	97.3			1.6	98.9	0.014	0.330		
B	70.5			23.1	93.6	0.021	0.487		
C	85.8			11.0	96.8	0.021	0.489		
D	70.7			22.1	92.8	0.052	1.08		

CF - As EXAFS a

Comple	As-FH ^b	Scor.	As-Goe ^d	Beudan.	As-Jar ^c	Total	R	$\operatorname{red} \gamma^{2f}$
Sample			%			(%)	factor ^e	reu x
WP	50.8	35.9	15.1			101.8	0.017	0.438
\boldsymbol{A}	97.1		6.3			103.4	0.017	0.456
B	92.3		7.8			100.1	0.022	0.552
C	90.1			13.4		103.5	0.091	2.53
D	96.3				4.2	100.5	0.041	1.02

CF -Fe EXAFS ^g

Commis	Smectite	Schwert.	Pb-Jaros.	Illite	Jarosite	Total	R	red χ^{2f}
Sample			%			(%) factor ^e r	rea χ	
WP	36.2	34.2	33.9			104.3	0.008	0.100
\boldsymbol{A}		57.0		26.4	16.3	110.0	0.020	0.194
B	15.6	62.9	16.0			94.5	0.006	0.058
\boldsymbol{C}		58.0		26.9	20.9	105.8	0.008	0.090

^aLinear combination fit (LCF) was applied over the k-range: 2-10.5 Å⁻¹ on the As-EXAFS spectra

b Arsenic(V) sorbed to ferrihydrite
c Arsenic(V) sorbed to jarosite
d Arsenic(V) sorbed to goethite

^e Normalized sum of the squared residuals of the fit $[R = \sum (data-fit)^2/\sum data^2)]$ ^f Goodness-of-fit was assessed by the χ^2 statistic [= (F factor)/(no. of points - no. of variables)] ^g Linear combination fit (LCF) was applied over the k-range: 2-7 Å⁻¹ on the Fe-EXAFS spectra

Table 4 – (a) Pseudo-total element concentrations of DCF and DF. (b) Colloidal mass of each DCF and their corresponding As and Fe concentrations per mass of colloid.

	Sample	As	Al	Fe	Cu	Zn	Pb	
a	Sumpre	$mg L^{I a}$						
WP	DCF	0.23±0.05	0.73±0.06	1.13±0.22	0.22±0.01	0.39±0.04	0.04 ± 0.01	
	DF	0.03 ± 0.01	0.64 ± 0.08	0.74 ± 0.29	0.23 ± 0.02	0.39 ± 0.04	0.01 ± 0.01	
	CF^{b}	0.20	0.09	0.39	- ^c	- ^c	0.03	
	CF/DCF ^d	87%	12%	34%	0%	0%	75%	
	DCF/bulk ^e	0.01%	0.5%	0.02%	0.6%	1%	0.01%	
A	DCF	9.58 ± 0.16	84 ± 0.19	81 ± 0.54	3.85 ± 0.12	3.68 ± 0.11	1.59 ± 0.38	
	DF	0.21 ± 0.03	0.05 ± 0.04	0.03 ± 0.03	0.21 ± 0.04	0.12 ± 0.02	0.01 ± 0.01	
	CF	9.37	~ 84	~ 81	3.64	3.56	1.58	
	CF/DCF	98%	100%	100%	95%	97%	99%	
	DCF/bulk	3%	20%	2%	2%	2%	4%	
В	DCF	7.54 ± 0.19	68 ± 0.21	55 ± 0.60	4.80 ± 0.17	4.12 ± 0.24	1.44 ± 0.35	
	DF	0.20 ± 0.06	0.08 ± 0.07	0.03 ± 0.03	0.23 ± 0.05	0.18 ± 0.01	0.01 ± 0.01	
	CF	7.34	~ 68	~ 55	4.57	3.94	1.43	
	CF/DCF	97%	100%	100%	95%	96%	99%	
	DCF/bulk	3%	23%	2%	3%	4%	4%	
\mathbf{C}	DCF	2.31 ± 0.18	76 ± 0.27	47 ± 0.46	0.87 ± 0.08	4.40 ± 0.19	0.60 ± 0.37	
	DF	0.22 ± 0.07	0.05 ± 0.02	0.03 ± 0.03	0.06 ± 0.01	0.35 ± 0.03	0.01 ± 0.01	
	CF	2.09	~ 76	~ 47	0.81	4.05	0.59	
	CF/DCF	90%	100%	100%	93%	92%	98%	
	DCF/bulk	3%	31%	2%	2%	3%	3%	
D	DCF	1.29 ± 0.21	37 ± 0.15	24 ± 0.31	0.46 ± 0.16	1.92 ± 0.07	0.32 ± 0.21	
	DF	0.23 ± 0.07	0.06 ± 0.05	0.03 ± 0.03	0.04 ± 0.01	0.18 ± 0.02	0.01 ± 0.01	
	CF	1.06	~ 37	~ 24	0.42	1.74	0.31	
	CF/DCF	82%	100%	100%	91%	91%	97%	
	DCF/bulk	1%	17%	1%	2%	2%	2%	
	Sample	Colloids		As	Fe		L	

b	Sample	Colloids	As	Fe	Δ s / Fe h
		mg kg ^{-1f}	mg kg co	loid ^{-1 g}	
	WP	1395 ± 313	1434	2796	0.15
	\boldsymbol{A}	9206 ± 367	10178	87987	0.09
	B	7744 ± 639	9478	71021	0.10
	C	7989 ± 496	2616	58830	0.04
	D	7869 ± 488	1347	30498	0.04

^aPseudo-total concentrations ± standard deviations (n = 3) of the ICP-OES determinations after aqua-regia addition and microwave-assisted digestion (Soil:Ultrapure water relationship = 4g/40 mL)

^b The concentration of the colloidal fraction (CF, 1000-10 nm) is calculated as the difference between the dispersible colloidal fraction (DCF, < 1000 nm) and the dissolved fraction (DF, < 10 nm)

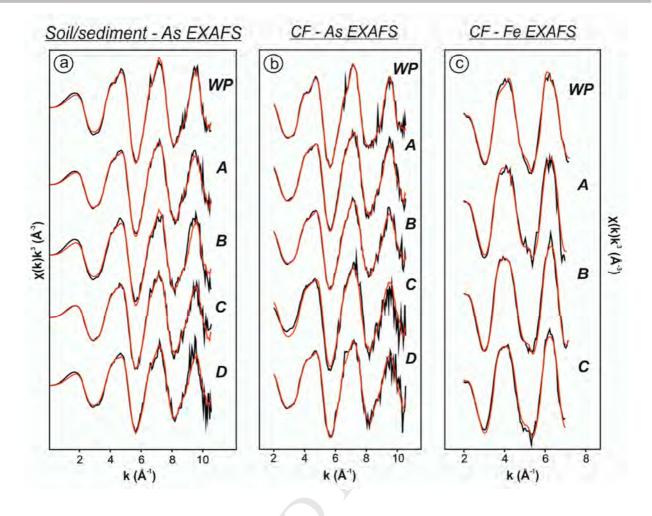
^c Most or all of the metal(loid) is present only in the DF

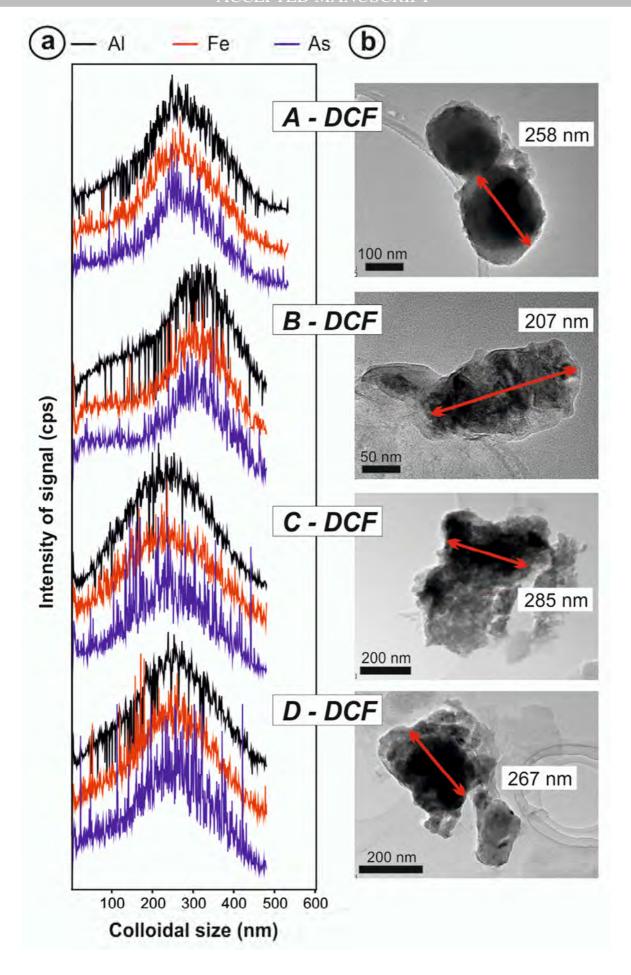
^d Relative contribution of the element concentration in the colloidal fraction (CF) to that in the dispersible colloidal fraction (DCF)

^eRelative contribution of the element concentration in the dispersible colloidal fraction (DCF) to that in the bulk concentration, after transforming the DCF concentration to mg kg⁻¹ f Colloidal mass calculated following the procedure described by Plathe *et al.* (2010), \pm standard deviations (n = 3)

g Arsenic and iron concentrations in the colloidal fraction (CF, Table 9b) per kilogram of colloid

^h Arsenic and iron molar ratio in the colloidal fraction


Table 5 – Maximum of colloidal sizes and recoveries of the DCF determined by AF4 ^a


			AF4-I 0	CP-MS		
Sample	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		As		Fe	
	nm ^b	% ^c	nm ^b	% ^c	nm ^b	% ^c
A	264	71.9	257	67.8	254	68.2
B	306	48.7	307	53.8	305	40.4
C	234	56.3	221	55.5	238	43.6
D	251	45.7	245	52.0	246	41.3

^a The data shown are the average values of three replicates

^bMaximum of size of the distribution found by AF4

^c Recoveries (in percentage) obtained for the DCF analyzed

Iron oxide - clay composite vectors on long-distance transport of arsenic and toxic metals in mining-affected areas

Miguel Angel Gomez-Gonzalez^a, Mario Villalobos^b, Jose Francisco Marco^c, Javier Garcia-Guinea^a, Eduardo Bolea^d, Francisco Laborda^d, Fernando Garrido^a

HIGHLIGHTS

- Long-distance dispersion of arsenic through mobile colloids is demonstrated
- Ferrihydrite found as thin coatings on clay minerals acts as arsenic sorbing phase
- This association carries other metals in concentrations above regulatory levels
- This association limits the role of iron oxides to attenuate arsenic pollution

^a Museo Nacional de Ciencias Naturales (MNCN, CSIC). C/Jose Gutierrez Abascal 2, 28006, Madrid, Spain.

^b Instituto de Geología. Universidad Nacional Autónoma de México (UNAM), Coyoacán, D.F. 04510, Mexico.

^c Instituto de Química Física-Rocasolano (CSIC), C/ Serrano 119, 28006, Madrid, Spain.

Instituto Universitario de Ciencias Ambientales (IUCA), Universidad de Zaragoza. C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.