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Integración dinámica de entornos de computación heterogéneos

para la ejecución de workflows cient́ıficos

RESUMEN

Los workflows cient́ıficos se caracterizan por estar compuestos por un elevado número de
tareas computacionalmente muy costosas. Las necesidades planteadas por este tipo de workflow
hacen necesaria la utilización de entornos de computación capaces de satisfacer estos requisitos
de computación. En este contexto, la computación Grid ha emergido como un paradigma
adecuado para la ejecución de workflows cient́ıficos gracias a la capacidad computacional y
las comunicaciones en red de estos entornos. No obstante, esta nueva “sociedad” compuesta por
Grids y workflows cient́ıficos todav́ıa mantiene abiertos un amplio abanico de retos y dificultades.

La posibilidad de ejecutar workflows programados en diferentes lenguajes sobre un mismo
entorno de computación, la integración de entornos de computación heterogéneos bajo una
misma infraestructura, y la posibilidad de ejecutar diferentes partes de un mismo workflow en
diferentes entornos de computación son algunos de los principales problemas existentes. Como
primer paso para la resolución de estos problemas, se desarrolló una infraestructura que integra
diferentes entornos de computación heterogéneos de forma transparente para el usuario y que
permite ejecutar workflows programados en diversos lenguajes ampliamente aceptados por la
comunidad cient́ıfica. De esta forma, se proporcionó una infraestructura capaz de solucionar
los retos anteriores. Un aspecto ortogonal a estos retos no considerado en la infraestructura
propuesta es el proceso de asignación de tareas a los recursos disponibles en los diferentes
entornos integrados (meta-scheduling). Este proceso es clave para la definición de soluciones
maduras y completas a los problemas expuestos.

Para avanzar en el desarrollo de la solución propuesta y mejorar la infraestructura, en
esta Tesis Fin de Máster se propone una estrategia de meta-scheduling basada en técnicas
de simulación que permite asignar dinámicamente el entorno de ejecución a utilizar en cada
una de las tareas de un workflow. Para ello, se ha integrado en la infraestructura un meta-
scheduler que, para cada tarea, selecciona el entorno de ejecución más adecuado utilizando un
algoritmo de optimización del tiempo de ejecución. La información utilizada para esta toma
de decisiones proviene de los resultados de simular la ejecución de las tareas en los entornos
de computación disponibles. Para soportar este proceso, se ha diseñado un simulador genérico,
adaptable y extensible basado en Alea. Para cada entorno de computación, una instancia de
este simulador ha sido customizada e integrada en la infraestructura. Asimismo, se ha definido
una metodoloǵıa para la creación de workloads dinámicos que permite simular las tareas en
condiciones reales de carga. El uso de estos workloads y el propio diseño de los simuladores,
capaces de capturar la complejidad inherente de los entornos de computación, han permitido
obtener un elevado grado de precisión en las simulaciones, tal y como se ha demostrado en la
validación experimental realizada. Como consecuencia, se ha conseguido mejorar el rendimiento
de los workflows ejecutados.

Finalmente, la viabilidad y beneficios de la solución propuesta se muestran mediante su
aplicación a un workflow real en el dominio de la computación cient́ıfica, el workflow de análisis
Inspiral. Para este caso de uso, la utilización de la infraestructura con la estrategia de meta-
scheduling propuesta ha permitido obtener una mejora del rendimiento de un 59% respecto a la
ejecución del workflow completo en el cluster Hermes del I3A y una mejora de un 111% respecto
a la ejecución del workflow en el Grid AraGrid.
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Índice

1 Introducción 1

1.1 Problema a resolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Estado del arte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contexto del trabajo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Organización de la memoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Una infraestructura para la integración dinámica de entornos de computación 7

2.1 Capa de programación de workflows . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Capa de ejecución de workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Capa de entornos de computación . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Breve resumen de las aportaciones de la infraestructura . . . . . . . . . . . . . . 11

3 Meta-scheduling basado en simulación 13

3.1 Proceso de asignación de tareas a entornos de computación . . . . . . . . . . . . 13
3.2 Diseño de los simuladores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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5.1 Ĺıneas futuras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliograf́ıa 31

A A Framework for the Flexible Deployment of Scientific Workflows in Grid

Environments 35

B A Simulation-Based Scheduling Strategy for Scientific Workflows 45

C Una solución SOA para ejecutar workflows cient́ıficos en entornos Grid

heterogéneos 57
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Caṕıtulo 1 | Introducción

El creciente interés de la comunidad cient́ıfica por automatizar de manera sistemática la
ejecución de sus experimentos ha supuesto el impulso definitivo a la computación cient́ıfica y,
en particular, a los workflows cient́ıficos. Este tipo de workflow presenta unas caracteŕısticas
muy particulares que condicionan su ejecución: están compuestos por actividades complejas
desde el punto de vista de los recursos computacionales necesarios para su ejecución, gestionan
grandes volúmenes de datos como entrada/salida de las tareas ejecutadas, y necesitan
gestionar adecuadamente la disponibilidad de recursos hardware y software heterogéneos. Estas
caracteŕısticas han alentado el uso de entornos de computación tipo Grid para el despliegue y
ejecución de estos workflows, con el objetivo común de obtener el máximo aprovechamiento a
colecciones de recursos heterogéneos y distribuidos geográficamente [1]. En este sentido, se ha
avanzado notablemente en la comprensión de la naturaleza intŕınseca de los workflows cient́ıficos
y en los requisitos necesarios para su correspondiente ejecución en entornos Grid. No obstante,
aún son numerosos los retos abiertos para este modelo de solución.

1.1 Problema a resolver

Algunos de los principales problemas existentes en el ámbito de workflows cient́ıficos y
entornos de computación Grid son: la posibilidad de ejecutar workflows programados en
diferentes lenguajes, la integración de entornos de computación heterogéneos bajo una misma
infraestructura, o la ejecución de partes de un mismo workflow sobre diferentes entornos de
ejecución.

Dentro de la ĺınea de investigación del autor, se pretende proporcionar una solución integrada
a los problemas anteriores. Como primer paso, se desarrolló un prototipo de infraestructura
que permite integrar diferentes entornos de computación heterogéneos y ejecutar workflows
programados independientemente del entorno de ejecución y utilizando diferentes lenguajes. Este
trabajo fue presentado por el autor de esta Tesis Fin de Máster como Proyecto Fin de Carrera
[2]. Sin embargo, la infraestructura desarrollada presenta limitaciones en la forma de asignar
trabajos a diferentes entornos de ejecución. Estas limitaciones (ver Caṕıtulo 2) provocan que el
tiempo de ejecución de los workflows pueda verse penalizado en la mayoŕıa de las ejecuciones.

En esta Tesis Fin de Máster se intenta dar solución al problema anterior mediante la definición
de técnicas avanzadas de asignación de tareas a recursos y la utilización de información dinámica
que ayude a seleccionar el entorno de ejecución más adecuado para cada tarea. Utilizando estos
mecanismos, partes de un mismo workflow podŕıan ser ejecutadas en diferentes entornos, algo
que a d́ıa de hoy no es posible con los sistemas existentes. Por tanto, este trabajo representa
la evolución natural del Proyecto de Fin de Carrera realizado previamente, proponiendo una
solución al tercero de los problemas comentados: la asignación dinámica de tareas a entornos de
computación heterogéneos. En todo caso, este trabajo no soluciona todos los problemas y retos
existentes, sino que todav́ıa existen diferentes aspectos que deben ser estudiados e incorporados
a la infraestructura (véase la sección 5.1).
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1.2 Estado del arte

Han surgido diferentes trabajos de investigación que tratan de dar respuesta a los problemas
anteriores dentro del contexto de programación de workflows, construcción de entornos de
ejecución y desarrollo de arquitecturas que den soporte tanto a la programación como a la
ejecución de workflows cient́ıficos. En esta sección, revisaremos los trabajos más relevantes
exponiendo sus contribuciones principales.

1.2.1 Programación de workflows cient́ıficos

En la actualidad existe una amplia variedad de sistemas de gestión de workflows. La
comparación detallada de estos sistemas ha puesto de manifiesto las diferencias existentes entre
las distintas aproximaciones desde el punto de vista de la programación, despliegue y ejecución de
workflows [3, 4]. Esta heterogeneidad provoca que las propuestas actuales presenten un alto grado
de acoplamiento entre los workflows cient́ıficos y los entornos Grid concretos sobre los que serán
ejecutados. En otras palabras, los workflows cient́ıficos son programados para ser ejecutados en
un Grid concreto. Este acoplamiento limita la flexibilidad de las soluciones y provoca, desde el
punto de vista del programador de workflows cient́ıficos, una serie de dificultades que requieren
ser resueltas.

Entre estas dificultades destacan las siguientes: los workflows no son directamente portables
entre diferentes entornos de ejecución; resulta costoso programar nuevos workflows reutilizando
workflows más simples programados en distintos lenguajes (esto dificulta el aprovechamiento de
iniciativas como myExperiment1, un repositorio de workflows cient́ıficos de acceso público); es
complejo programar workflows con fuertes requisitos de cómputo para que distintas partes de
su flujo puedan ser ejecutadas en diferentes entornos de ejecución; el fuerte acoplamiento entre
workflow y entorno de ejecución provoca en la mayoŕıa de los casos que los administradores
deban realizar tareas de configuración costosas previas al despliegue del experimento; y resulta
dif́ıcil integrar en estas soluciones paradigmas de computación de interés que han aparecido
recientemente y que permiten la optimización del uso de recursos en diferentes escenarios, como
por ejemplo los denominados Green/Cloud Computing.

Aunque no existe una solución completa a las limitaciones previas, determinados trabajos
abordan parcialmente alguna de ellas. Uno de los trabajos más destacados es el proyecto europeo
SHIWA2 (SHaring Interoperable Workflows for large-scale scientific simulations on Available
DCIs). Su principal objetivo es el desarrollo de un conjunto de tecnoloǵıas de interoperabilidad
que permitan compartir y reutilizar workflows entre comunidades de usuarios que habitualmente
trabajen con distintos sistemas de gestión. Para la consecución de este objetivo se desarrollan
dos ideas básicas. En primer lugar, un workflow podŕıa ser encapsulado como un servicio
que es ejecutado sobre un entorno concreto. La interfaz del servicio abstraeŕıa los detalles
concretos y facilitaŕıa su integración en otros workflows (interoperabilidad de grano grueso).
Y, en segundo lugar, la posibilidad de traducir un workflow cualquiera a una representación
común, llamada IWIR (Interoperable Workflow Intermediate Representation), y posteriormente
disponer de herramientas que sean capaces de ejecutarla en distintos sistemas de gestión [5]
(interoperabilidad de grano fino).

Por otro lado, independientemente del lenguaje concreto utilizado para modelar los
workflows, deben proporcionarse mecanismos para abstraer al usuario de los detalles de bajo
nivel de interacción con los entornos de ejecución y el lenguaje de representación utilizado por
el middlewares. Esto permitiŕıa al usuario centrarse en los detalles funcionales del workflow y

1http://www.myexperiment.org/
2http://www.shiwa-workflow.eu/
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las relaciones existentes entre sus componentes [6], en lugar de en la interacción con el entorno
de ejecución. Para ello, existe una interesante iniciativa de estandarización, llamada JSDL (Job
Submission Description Language) [7], que define una representación estándar para los trabajos
que son ejecutables sobre un entorno tipo Grid. La composición de trabajos concretos establece
un workflow ; por tanto, una evolución natural de esta especificación seŕıa hacia la definición de un
lenguaje estándar de workflows. En cualquier caso, el estándar en su estado actual ha motivado
la aparición de propuestas que, aprovechando la orientación de servicios, facilitan la ejecución
de trabajos JSDL en entornos heterogéneos [8, 9]. Una interfaz de servicio para el env́ıo de estos
trabajos abstrae al programador de los detalles espećıficos del entorno de ejecución responsable.

Como último paso para la solución de los problemas comentados, la descripción de
los workflows, además de estar basada en lenguajes estándar y ser portable, reutilizable e
interoperable, debe ser completamente independiente del entorno de ejecución empleado. Esto
permitiŕıa que los workflows fueran ejecutados en entornos de ejecución heterogéneos sin que
fuese necesario realizar cambios sobre el workflow, lo cual, a su vez, facilitaŕıa la reutilización
y compartición de los workflows. Este tipo de solución ha sido explorada en portales de
computación cient́ıfica como P-GRADE [10] mediante el empleo de un lenguaje de alto nivel y la
traducción automática del mismo al lenguaje concreto usado por el middleware correspondiente.

1.2.2 Entornos de computación heterogéneos para la ejecución de workflows

cient́ıficos

El paradigma de computación Grid surgió como respuesta a las elevadas necesidades
computacionales de los experimentos cient́ıficos. Promet́ıa la puesta en funcionamiento de
grandes entornos de computación mediante la integración y colaboración de diferentes entornos
distribuidos a nivel mundial [11]. Sin embargo, a d́ıa de hoy nos encontramos muy alejados de
dicha perspectiva debido a varios problemas que dificultan enormemente la creación de nuevos
entornos de ejecución basados en la integración de entornos ya existentes.

Por un lado, la heterogeneidad de los entornos de computación Grid y la gran diversidad
de sistemas middleware (Condor [12], Globus [13], gLite [14], etc.) que gestionen los mismos,
dificultan el proceso de integración. Por otro lado, los entornos de computación existentes
pertenecen a organizaciones y dominios administrativos diferentes que imponen barreras a su
integración, colaboración y uso conjunto [15]. Estos problemas han limitado la aplicación de
las diferentes soluciones propuestas a escenarios en los que no existen barreras administrativas
y escenarios con diferentes entornos de ejecución homogéneos o, al menos, con middlewares
interoperables. La dificultad para superar los problemas anteriores, ha llevado a la búsqueda de
nuevas técnicas que permitan crear entornos de computación globales.

Con este propósito ha surgido la computación Cloud, o computación en la nube, como una
forma de ver la computación como un servicio global [16]. Dentro de esta visión global, el
Cloud se presenta como respuesta a numerosos problemas y necesidades a través de diferentes
paradigmas: IaaS (Infrastructure as a Service), PaaS (Platform as a Service) y SaaS (Software as
a Service). Para la ejecución de workflows cient́ıficos, el paradigma IaaS propone la construcción
de entornos de computación basados en la provisión bajo demanda de máquinas virtuales. La
aplicación del mismo ha llevado al desarrollo de nubes de acceso público, o nubles públicas, y
nubes de acceso privado, o nubes privadas.

Las nubes públicas, como Amazon EC23 (Amazon Elastic Cloud), corresponden a entornos
de computación en los que un proveedor de servicios Cloud ofrece una visión de recursos infinitos,
proporcionando al usuario cualquier número de recursos en forma de máquinas virtuales. De esta
forma, el usuario puede cubrir sus necesidades pagando sólo por los recursos que utiliza.

3http://aws.amazon.com/es/ec2/
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Las nubes privadas corresponden a una nueva forma más flexible de organizar entornos de
computación tipo Grid en la que los usuarios pueden ejecutar sus trabajos en máquinas virtuales
personalizadas. Asimismo, existen nubes h́ıbridas que toman como base una nube privada y
recurren al uso de nubes públicas cuando los usuarios solicitan más recursos de los disponibles.

Con este nuevo panorama, en el que ha aumentado enormemente la heterogeneidad de los
entornos de computación al convivir clusters, Grids y Clouds, se hace necesaria la definición de
nuevas herramientas que permitan integrar diversos entornos de una manera mucho más flexible
y dinámica de acuerdo a las posibilidades, necesidades y requisitos de cada usuario concreto.

Para ello, han surgido alternativas que engloban diferentes entornos proporcionando un único
punto de acceso, es el caso de los portales (P-GRADE [10], HPC-Europa [17], etc.) y el trabajo
previo desarrollado como parte de esta ĺınea de investigación [2]. Estos trabajos se basan en
el desarrollo de una capa de mediación que abstrae los detalles espećıficos de cada entorno
particular y proporciona una interfaz única para el despliegue y ejecución de workflows.

Sin embargo, estas soluciones presentan poca flexibilidad en cuanto al proceso de scheduling.
Los portales obligan al usuario a seleccionar el entorno de ejecución a priori (el scheduling
es estático y guiado por el usuario) y en nuestro trabajo previo los diferentes entornos de
computación compiten por ejecutar los trabajos sin tener en cuenta cuál es el más adecuado.
Obviamente, seŕıa deseable que el usuario sólo fuera responsable de programar su experimento y
la propia infraestructura de integración determinara el entorno de computación más apropiado
en base a los requisitos indicados y la calidad de servicio requerida por el usuario. Este tipo de
decisiones debeŕıan de ser adoptadas por meta-schedulers [3, 18].

1.2.3 Arquitecturas de integración

Existen diferentes modelos arquitecturales para la construcción de las infraestructuras
de integración anteriores. Una de las principales alternativas consiste en el desarrollo de
una estructura jerárquica dominada por un meta-broker que integra diferentes entornos de
computación y gestiona la ejecución de los trabajos enviados [18, 19]. Esta solución se basa en
la definición de estándares de interoperabilidad que lidien con la heterogeneidad de los entornos
de ejecución y permitan su integración. Por tanto, la necesidad de usar estándares hace que la
solución sea inviable, al menos a corto plazo. Además, el uso de un meta-broker añade una nueva
barrera administrativa al ser necesario determinar la organización encargada de su gestión.

Otra posibilidad es utilizar un esquema descentralizado y cooperativo en el que los diferentes
entornos de ejecución se comuniquen siguiendo un estilo P2P. Este tipo de organización se
ha usado para formar los denominados Grids globales y las federaciones de Grids [20, 21].
No obstante, esta solución se limita a que todas los entornos utilicen un mismo middleware
o a que estos sean interoperables y al establecimiento de acuerdos que eliminen las barreras
administrativas. Asimismo, pueden utilizarse modelos h́ıbridos [15], los cuáles buscan beneficiarse
de disponer de una estructura jerárquica y de una red descentralizada. En cualquier caso, este
tipo de solución arquitectural también se ha visto limitado por los problemas anteriores.

Independientemente del modelo arquitectural utilizado, la idea de integrar una componente
(meta-scheduler) que seleccione el recurso en el que ejecutar cada tarea no es nueva [22, 23].
No obstante, en el contexto de integración de entornos de computación heterogéneos, aún deben
ser abordadas distintas cuestiones. La asignación de tareas a recursos debeŕıa realizarse de
forma dinámica durante la ejecución del workflow, considerando la naturaleza evolutiva de los
entornos integrados y la propia complejidad de los experimentos cient́ıficos. Esta asignación
requiere conocer el estado de los recursos disponibles y sus prestaciones. La actualización de
esta información es compleja y costosa y, además, son necesarios mecanismos de razonamiento
complejos que sean capaces de aprovechar la misma [24].
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La utilización de técnicas de predicción ha sido muy estudiada para este aspecto [25, 26, 27].
Estas técnicas pretenden obtener, a través del análisis de logs de ejecuciones previas, una
estimación de cuál será el comportamiento de los trabajos en ejecuciones futuras. Sin embargo,
suelen focalizarse en un número limitado de parámetros (tiempo de cola, tiempo de ejecución
etc.) por lo que no son capaces de capturar toda la complejidad que entrañan los entornos Grid;
como por ejemplo, la posibilidad de que los trabajos de un usuario sean expulsados para ejecutar
trabajos de un usuario con mayor prioridad.

1.3 Objetivos

Como paso previo a este trabajo, el autor realizó como Proyecto Fin de Carrera un prototipo
de infraestructura que permit́ıa solucionar algunos de los problemas existentes en el ámbito de
ejecución de workflows cient́ıficos en entornos de computación heterogéneos [2]. En dicho trabajo
se abordó la posibilidad de ejecutar workflows programados en diferentes lenguajes utilizando
varios entornos de computación heterogéneos.

Sin embargo, la infraestructura presentaba limitaciones en cuanto al proceso de selección
del entorno utilizado para ejecutar cada una de las tareas de un workflow (meta-scheduling).
Este proceso pod́ıa ser guiado por el usuario o determinado por la infraestructura, usando para
ello un modelo en el que diferentes entornos de ejecución compet́ıan para ejecutar trabajos y
se seleccionaba un entorno de manera no determinista. Al no tener en cuenta ningún aspecto
referente a la idoneidad de ejecutar un tarea en cada uno de los entornos disponibles, este modelo
pod́ıa provocar una disminución del rendimiento de los workflows.

Como respuesta a la limitación anterior, en esta Tesis Fin de Máster se plantea como
objetivo principal integrar en la infraestructura mecanismos que permitan que sea la propia
infraestructura la que decida el entorno más adecuado para ejecutar una tarea en base a
información dinámica acerca del estado de los entornos disponibles. Concretamente, se plantea
la integración de una componente de meta-scheduling dentro de la infraestructura propuesta.
Esta componente debe encargarse de decidir el entorno de ejecución más adecuado en base a
criterios dinámicos, que permitan realizar un óptimo aprovechamiento de los recursos disponibles,
mejorando las prestaciones globales de los workflows.

Asimismo, se plantea la utilización de técnicas de simulación que permitan guiar las decisiones
de meta-scheduling en base al comportamiento esperado tanto de los entornos de ejecución como
de las propias tareas. Por tanto, se estudiará una alternativa que no ha sido todav́ıa explorada
en el contexto de meta-scheduling, pero que podŕıa resultar adecuada para capturar y abordar
la complejidad de los entornos Grid.

Finalmente, se pretende utilizar la infraestructura desarrollada para la ejecución de casos de
estudio en el dominio de la computación cient́ıfica. El objetivo es probar de manera experimental
la validez y viabilidad del enfoque propuesto y comprobar sus beneficios.

1.4 Contexto del trabajo

Esta Tesis Fin de Máster ha sido realizada dentro del Grupo de I+D GIDHE4 (Grupo
de Integración de Sistemas Heterogéneos y Distribuidos) del Departamento de Informática e
Ingenieŕıa de Sistemas (DIIS) de la Universidad de Zaragoza, reconocido como grupo Emergente
por el Gobierno de Aragón. Además, el trabajo está respaldado por el proyecto TIN 2010-
17905 del Ministerio de Economı́a y Competitividad, a través de la Secretaŕıa de Estado

4http://www.gidhe.es/
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de Investigación, Desarrollo e Innovación, titulado “Una aproximación a la gestión flexible y
dinámica de workflows cient́ıficos basada en Redes Objeto”.

El grupo GIDHE tiene acceso y usa regularmente distintos entornos de computación
heterogéneos: el cluster Hermes del Instituto de Investigación en Ingenieŕıa de Aragón (I3A)5

y, gracias a su participación en el proyecto internacional PIREGRID6, los Grids AraGrid y
PireGrid. También dispone de acceso al entorno de computación Cloud de Amazon (Amazon
EC2)7.

Este trabajo se enmarca dentro de una de las principales ĺıneas de investigación del grupo,
en la cual se plantea la integración de diferentes entornos de computación heterogéneos que
permitan dar soporte a la ejecución flexible de workflows cient́ıficos. Dicha ĺınea, comenzó con
el desarrollo de un prototipo de infraestructura presentado como Proyecto Fin de Carrera por
el autor de este trabajo y ha sido continuada con la realización de este Trabajo Fin de Máster.

Finalmente, las diferentes ĺıneas abiertas por los trabajos anteriores pretenden ser abordadas
durante el desarrollo de la tesis doctoral del autor, la cual tiene como objetivo desarrollar
una infraestructura que proporcione una solución completa a los diferentes problemas y retos
existentes en el ámbito de la ejecución de workflows cient́ıficos en entornos de computación
dinámicos y heterogéneos. Para la realización de la tesis doctoral, el autor dispone de una beca
de Formación y Contratación de Personal de Investigación concedida por la Diputación General
de Aragón.

1.5 Organización de la memoria

El resto de esta memoria se organiza de la siguiente forma:

• En el Caṕıtulo 2 se presenta la arquitectura en base a la cual se diseñó el prototipo de
infraestructura de integración desarrollado como trabajo previo.

• En el Caṕıtulo 3 se propone una técnica de meta-scheduling basada en simulación para la
asignación dinámica de tareas en entornos de ejecución heterogéneos.

• En el Caṕıtulo 4 se aplica la técnica de meta-scheduling propuesta a un caso de uso de un
workflow real, el workflow de análisis Inspiral.

• En el Caṕıtulo 5 se recogen las conclusiones extráıdas de este trabajo y se presentan las
ĺıneas futuras de investigación abiertas por este trabajo.

Adicionalmente, se incluyen como anexo los art́ıculos cient́ıficos en los que el autor de esta
Tesis Fin de Máster ha participado como autor:

• En el Anexo A se proporciona el art́ıculo presentado en la III International Conference
on Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING 2012) en su
formato original.

• En el Anexo B se proporciona el art́ıculo presentado en la II International Conference
on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH
2012) en su formato original.

• En el Anexo C se proporciona el art́ıculo presentado en las VIII Jornadas de Ciencia e
Ingenieŕıa de Servicios (JCIS 2012) en su formato original.

5http://i3a.unizar.es/
6http://www.piregrid.eu/
7http://aws.amazon.com/es/ec2/

6
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infraestructura para la

integración dinámica de

entornos de computación

Los problemas existentes en cuanto a la integración de entornos de computación heterogéneos
para la ejecución de workflows cient́ıficos, hacen necesaria la definición de herramientas más
flexibles y dinámicas que permitan resolver los retos planteados. Con este propósito, como trabajo
previo a esta Tesis Fin de Máster, se elaboró una infraestructura orientada a servicios que permite
dar solución a algunos de los problemas existentes [2, 28, 29]. Las principales contribuciones de
esta solución son:

• La posibilidad de ejecutar workflows programados utilizando diferentes lenguajes
ampliamente aceptados por la comunidad cient́ıfica.

• La programación de workflows de manera independiente del entorno de ejecución.

• La integración de diferentes entornos de computación heterogéneos y componentes de
gestión de forma dinámica y completamente transparente al usuario.

• La ejecución de diferentes tareas de un mismo workflow en diferentes entornos de
computación.

Sin embargo, la infraestructura también presenta limitaciones. La principal limitación tiene
que ver con el proceso de selección del entorno de computación utilizado para ejecutar cada tarea,
para el cual se usa un modelo en el que los entornos capaces de ejecutar una tarea compiten por
su ejecución. Este modelo no tiene en cuenta factores clave como la carga de las infraestructuras
y puede llevar a una mala utilización de los recursos que se traduzca en una degradación de las
prestaciones del workflow.

Para resolver esta limitación, en este trabajo se presenta una técnica de meta-scheduling que
permite solucionar el problema anterior. La misma será presentada en el Caṕıtulo 3. Mientras,
para que el lector comprenda las caracteŕısticas, virtudes y limitaciones de la infraestructura
planteada, en este caṕıtulo se van a presentar los aspectos fundamentales de la misma.

La Figura 2.1 muestra el diseño arquitectural de la infraestructura. El mismo consta de
varias capas: en la parte superior de la figura, se refleja la interacción entre el programador
y la infraestructura a través de diferentes lenguajes de descripción de workflows; en el centro
se muestra la arquitectura interna de la infraestructura; y en la parte inferior, se indican los
diferentes entornos de computación integrados junto con el middleware encargado de su gestión.
A continuación, describiremos las caracteŕısticas más relevantes de cada una de estas capas.
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Figura 2.1: Diseño arquitectural de la infraestructura propuesta para la ejecución flexible de
workflows cient́ıficos y la integración de entornos de computación heterogéneos.

2.1 Capa de programación de workflows

Desde el punto de vista de la programación de workflows, la infraestructura sigue una
orientación a servicios [29]. Este enfoque ofrece al usuario la visión de la infraestructura
como un servicio de ejecución de workflows y tareas computacionalmente costosas. Asimismo,
para permitir diferentes tipos de interacción y cubrir las necesidades de diferentes usuarios, la
infraestructura permite trabajar a dos niveles de abstracción: nivel de workflow y nivel de tarea.

El nivel de abstracción de workflow, reflejado en la parte superior izquierda de la Figura
2.1, permite solicitar la ejecución completa de un workflow, de forma que la infraestructura se
encarga de la gestión de su ciclo de vida y el usuario sólo debe describir las relaciones existentes
entre las tareas usando el lenguaje de Condor DAGMan [12].

Por su parte, el nivel de abstracción de tarea, reflejado en la parte superior derecha de
la Figura 2.1, permite ejecutar workflows programados en el lenguaje utilizado por alguno de
los diferentes sistemas de gestión de workflows existentes. De esta forma, pueden programarse
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workflows usando, por ejemplo, redes de referencia (una subclase de las Redes de Petri de Alto
Nivel) [30], Taverna [31] o Kepler [32]. En este caso, es el sistema de gestión de workflows el que
se encarga de controlar el ciclo de vida del workflow y solicitar la ejecución individual de las
tareas que componen el mismo bajo demanda.

Independientemente del nivel de abstracción empleado y el lenguaje utilizado para programar
el workflow, se utiliza el lenguaje Job Submission Description Language (JSDL) para describir
las tareas de un workflow. JSDL [7] es un lenguaje estándar propuesto por el Open Grid
Forum1 para la descripción textual de tareas, utilizando una sintaxis XML. El mismo ha
sido ampliamente utilizado en entornos de computación Grid. En nuestro caso, su utilización,
junto con el diseño desacoplado de la infraestructura, permite programar workflows de forma
completamente independiente del entorno de ejecución. De esta forma, la infraestructura es la
que selecciona internamente el entorno de computación a utilizar. En cualquier caso, se ofrece
la posibilidad de que el usuario indique expĺıcitamente la infraestructura de ejecución para no
limitar el uso de la misma y proporcionar al programador la posibilidad de decidir dónde ejecutar
cada tarea.

2.2 Capa de ejecución de workflows

Internamente, la infraestructura se diseña con una arquitectura de componentes que se
traduce en un diseño flexible en el cual las diferentes componentes se encuentran desacopladas
y pueden ser sustituidas, adaptadas o modificadas de forma dinámica y transparente para
el usuario. Concretamente, la capa de ejecución está formada por un broker de recursos y
un conjunto de componentes de gestión. El broker constituye el núcleo de la infraestructura,
encargándose de gestionar la interacción con el exterior, conocer el estado de los entornos de
ejecución y permitir la comunicación entre las diferentes componentes del sistema. Por su parte,
las componentes de gestión ofrecen diferentes funcionalidades encaminadas a la gestión del ciclo
de vida de los workflows.

El broker está formado por un repositorio de mensajes y una infraestructura de mediadores.
La comunicación entre las diferentes componentes se realiza a través de mensajes que contienen
información de diversa naturaleza y que se almacenan en el repositorio. La implementación
del repositorio de mensajes se ha inspirado en el modelo de coordinación Linda [33]. Los
mensajes se codifican como tuplas y son almacenados en un espacio de tuplas. La interfaz
del repositorio proporciona una operación de escritura de tuplas y dos operaciones de lectura
(destructiva y no destructiva) de acuerdo a la semántica de Linda. Este enfoque se traduce en que
cada componente sólo interacciona con el repositorio y no tiene que comunicarse directamente
con otras componentes. Por tanto, el uso del repositorio de mensajes permite desacoplar las
diferentes componentes de la capa de ejecución de la infraestructura ya que la comunicación
entre las mismas se realiza a través del repositorio. Como resultado, se otorga flexibilidad a la
infraestructura al permitir que se añadan, modifiquen o eliminen componentes de forma dinámica
sin que esto afecte al resto de componentes.

Por su parte, los mediadores encapsulan la heterogeneidad de un middleware determinado,
teniendo completo conocimiento de sus capacidades y caracteŕısticas. Este diseño elimina la
necesidad de que el broker tenga que estar muy acoplado con la tecnoloǵıa concreta del entorno
Grid, permitiendo incorporar diferentes entornos de computación heterogéneos de forma sencilla
y transparente para el programador de workflows. Internamente, el mediador es responsable de: i)
tener información completa del entorno Grid que encapsula; ii) interaccionar con el repositorio
de tuplas para obtener tareas a ejecutar; iii) enviar tareas al middleware para su ejecución

1http://www.ogf.org/
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y controlar la transferencia de los datos de entrada y de salida; y iv) insertar tuplas en el
repositorio de mensajes con el resultado de la ejecución de las mismas para que sea tratada por
la componente adecuada. Se ha implementado un mediador para cada uno de los middlewares
(Condor y gLite) utilizados por los entornos de computación disponibles, los cuales son, además,
dos de los middlewares más utilizados en entornos Grid.

En cuanto a las componentes de gestión, éstas ofrecen diferentes funcionalidades encaminadas
a gestionar el ciclo de vida de los workflows ejecutados. Se han desarrollado: una componente
de gestión de fallos y una componente de movimiento de datos. El procedimiento de integración
de estas componentes es similar al utilizado en los mediadores. Cada componente de gestión
interacciona con el repositorio de mensajes para retirar mensajes con la etiqueta asociada a esa
componente y procesarlos. Por lo tanto, la utilización de estas componentes puede ser debida a
la necesidad de un procesado concreto (p. ej. meta-scheduling) o como respuesta al resultado de
otra componente (p. ej. gestión de fallos), permitiendo la composición dinámica de complejas
cadenas de acción. Con la integración de estas componentes, se consigue gestionar de forma
completa el ciclo de vida de un worfklow. Pueden consultarse más detalles sobre las componentes
de movimiento de datos y gestión de fallos en [2, 28].

A modo de ejemplo, para que el lector comprenda la interacción existente entre las
componentes, mostraremos el proceso seguido para ejecutar una tarea. En primer lugar, la
descripción de la tarea se almacena en el repositorio de mensajes. Los mediadores capaces
de ejecutar dicha tarea compiten por su ejecución. Como resultado la tarea es asignada a un
entorno concreto (este proceso se detalla en el siguiente párrafo). Antes de ejecutar la tarea,
el mediador solicita el movimiento de los datos de entrada necesarios. Una vez transferidos, el
mediador env́ıa la tarea al Grid para que se ejecute. Cuando la tarea finaliza o falla, el mediador
solicita el movimiento de los datos de salida a su ubicación final, recupera el log de ejecución e
introduce dicha información en el repositorio de mensajes. Si la tarea ha finalizado correctamente
se coloca la misma en el repositorio de mensajes hasta que es recuperada por el usuario. Si por
contra, la tarea ha fallado, la componente de gestión de fallos obtiene la causa del fallo y toma
alguna decisión al respecto, como por ejemplo, reejecutar la tarea en otro entorno o notificar
al usuario del error que se ha producido. En caso de que la tarea sea reejecutada, se repite el
proceso, mientras que si se decide avisar al usuario del fallo, se actúa como si hubiera acabado
correctamente e indicando el error.

Por tanto, el proceso de scheduling de nuestra infraestructura se corresponde con el proceso
anterior, en el que los mediadores compiten por ejecutar tareas. Este proceso se construye en
base a la semántica de las operaciones de lectura definidas en el modelo Linda. Aśı, se establece
que, cuando dos o más componentes realizan una operación de lectura sobre una misma tupla,
se selecciona una de las componentes de manera no determinista, siendo ésta la que obtiene la
tupla. De esta forma, el proceso de scheduling de la infraestructura consiste en que todos los
mediadores capaces de ejecutar una tarea realizan una operación de lectura sobre la tupla que
contiene la información de la tarea, siendo el propio repositorio el que selecciona uno de los
mediadores de manera no determinista.

2.3 Capa de entornos de computación

En lo que corresponde a los entornos de computación, se han integrado: el cluster Hermes
del Instituto de Investigación en Ingenieŕıa de Aragón (I3A)2, el cual es gestionado utilizando
el middleware Condor; y dos Grids pertenecientes a la Iniciativa Grid Europea (EGI)3:

2http://i3a.unizar.es/
3http://www.egi.eu/
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AraGrid4 y PireGrid5, gestionados por el middleware gLite y administrados por el Instituto
de Biocomputación y F́ısica de Sistemas Complejos (BIFI)6.

La principal diferencia del modelo de integración propuesto, con respecto a otras soluciones
[15, 18], reside en que la misma se realiza desde una perspectiva de usuario de los entornos de
computación y no desde un punto de vista de administrador. Este enfoque permite evitar las
barreras administrativas que surgen a la hora de integrar entornos gestionados por diferentes
organizaciones ya que, en nuestro caso, esta integración es completamente transparente para el
entorno de ejecución.

A su vez, el diseño desacoplado de la solución permite aislar al usuario de los detalles de
ejecución referentes a cada entorno, siendo la infraestructura la encargada de lidiar con dicha
complejidad. La capa de mediadores desarrollada, permite afrontar las diferentes caracteŕısticas
de cada una de estos entornos y gestionar su heterogeneidad. De la misma manera, este diseño
facilita la integración de entornos de computación (puede realizarse de forma dinámica) y la
reutilización de los mediadores desarrollados para gestionar otros entornos gestionados por los
mismos middlewares (el mediador de un middleware puede ser utilizado en cualquier entorno
gestionado por dicho middleware).

2.4 Breve resumen de las aportaciones de la infraestructura

En resumen, la orientación a servicios de la infraestructura ofrece al usuario una visión de
servicio de ejecución de workflows y tareas computacionalmente costosas. De esta forma, se
posibilita la ejecución de workflows programados en diferentes lenguajes. Además, el uso de
JSDL, como lenguaje estándar de descripción de tareas, permite programar los workflows de
manera independiente del entorno de ejecución.

Internamente, la naturaleza abierta y flexible de la solución propuesta se basa en el uso de
un broker de recursos formado por un repositorio de mensajes basado en Linda y un conjunto
de mediadores. El repositorio de mensajes facilita la integración y sustitución de mediadores y
componentes de gestión de forma dinámica. Los mediadores encapsulan la heterogeneidad de los
diferentes entornos de computación utilizados, desacoplan el broker de recursos de los detalles
de los diferentes middleware de Grid, abstraen al usuario de la complejidad de los mismos y
pueden ser reutilizados en entornos gestionados por un mismo middleware. El uso conjunto
del repositorio de mensajes y los mediadores permite definir una poĺıtica de competencia que
posibilita la ejecución de las tareas de los workflows en diferentes entornos de ejecución utilizando
las operaciones ofrecidas en el modelo Linda. Finalmente, la integración de varias componentes
de gestión permite mejorar la gestión del ciclo de vida de las tareas ejecutadas ofreciendo servicios
de movimiento de datos y gestión de fallos.

4http://www.araGrid.es/
5http://www.pireGrid.eu/
6http://bifi.es/es/
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en simulación

La infraestructura descrita en el caṕıtulo anterior presenta una clara limitación en cuanto
al proceso de asignación de tareas a entornos de computación. En dicho proceso no se utiliza
información sobre el estado de los entornos de computación, si no que se utiliza un modelo
no determinista Este modelo no utiliza ningún tipo de información para decidir el entorno
concreto a utilizar. Esto puede llevar a una mala utilización de los recursos y a la disminución
de las prestaciones del workflow. Para solucionar este problema, es necesario incluir en la
infraestructura algún tipo de técnica de meta-scheduling que tenga en cuenta información
dinámica sobre el estado de los entornos de ejecución y utilice dicha información para guiar
el proceso de asignación de tareas a entornos de computación.

En este caṕıtulo, se detalla la estrategia de meta-scheduling propuesta, se muestran sus
beneficios y se detalla el proceso de asignación de tareas realizado al incorporar un meta-
scheduler. Dicha estrategia utiliza técnicas de simulación para obtener datos que permitan tomar
decisiones de meta-scheduling. Por tanto, debido a su importancia en el proceso, se detallan
los aspectos fundamentales referentes a la simulación como es el diseño de los simuladores, la
metodloǵıa de creación de los workloads y la validación de los resultados obtenidos. Finalmente,
se proporcionan algunos detalles referentes a la implementación del meta-scheduler.

3.1 Proceso de asignación de tareas a entornos de computación

Como se indicó en el caṕıtulo anterior, la infraestructura soporta dos mecanismos de selección
del entorno a utilizar para ejecutar una tarea. El primero consiste en que el usuario indica el
entorno de ejecución en el modelo del workflow. La utilización de este scheduling estático y guiado
por el usuario plantea dos problemas: en primer lugar, el usuario no suele tener información para
determinar cuál es el entorno más adecuado para ejecutar cada tarea, y en segundo lugar, el hecho
de que la elección sea estática (se realiza al comienzo de la ejecución del workflow) implica que
cuando se ejecuta cada tarea la situación será diferente de la inicial, y los criterios de selección
pueden haber variado. Por tanto, ésta no es una alternativa adecuada para sacar el máximo
partido a los entornos de computación integrados y asegurar los requisitos de calidad de servicio
solicitados por los usuarios.

La segunda posibilidad es que sea el propio sistema el que asuma la responsabilidad de
tomar dicha decisión. Para ello se propuso una estrategia de selección en la que los mediadores
compiten por ejecutar trabajos y se selecciona uno de ellos de forma no determinista. Esta
estrategia presenta varios inconvenientes:

• Los mediadores no consideran cuestiones de calidad de servicio (QoS) acerca de la ejecución
de los trabajos en el entorno que representan. Esto puede llevar a que una tarea se ejecute
en un entorno inadecuado, degradando el rendimiento de todo el workflow.
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• Las decisiones de scheduling son adoptadas localmente por cada mediador. Por tanto, uno
de ellos podŕıa monopolizar la ejecución de todos los trabajos llevando a una situación de
sobrecarga de uno de los entornos de computación mientras el resto permanecen vaćıos.
Esto provocaŕıa que los trabajos se vieran afectados por elevados tiempos de espera en
una situación en la que existen recursos libres.

• Los mediadores ignoran el estado actual de los recursos, la posible evolución de los
mismos y el comportamiento de los trabajos ejecutados en el entorno. De nuevo,
esto puede llevar a que se ejecuten trabajos en condiciones en las que el entorno
está sobrecargado o a la elección de un entorno inadecuado para la ejecución de un
determinado trabajo, degradando las prestaciones y realizando un mal aprovechamiento
de los recursos disponibles.

Para solventar los inconvenientes anteriores, se propone incorporar en la infraestructura una
estrategia de meta-scheduling basada en la utilización de técnicas de simulación [34]. La Figura
3.1 muestra las diferentes fases del proceso, el cual detallaremos a continuación:

1. Inicialmente, las tareas pendientes (abstractas) de ejecución, almacenadas en el repositorio
de mensajes, son recuperadas por el meta-scheduler.

2. El meta-scheduler determina los entornos capaces de ejecutar dichas tareas y solicita a los
mediadores correspondientes que simulen su ejecución.

3. Al recibir la petición de simulación, los mediadores obtienen el estado del entorno de
ejecución y construyen un workload que refleje el estado de la misma y su evolución futura
(la metodoloǵıa de construcción de los workloads se detalla en la sección 3.3).

4. Los mediadores realizan la simulación de las tareas indicadas con el workload construido
y devuelven el resultado al meta-scheduler.

5. Cuando elmeta-scheduler ha recibido el resultado de todas las simulaciones, elige el entorno
más adecuado en base a un algoritmo de optimización y almacena dicha información en la
descripción de la tarea. De esta forma, la tarea se convierte en una tarea concreta.

6. Finalmente, el meta-scheduler env́ıa la tarea al repositorio de mensajes para que sea
recuperada y ejecutada por el mediador correspondiente en el entorno seleccionado

Esta solución, basada en la utilización de un meta-scheduler que asigna trabajos a diferentes
entornos en base a la información proporcionada por simuladores, permite mejorar el rendimiento
de los workflows al tener en cuenta el estado actual y futuro de los entornos de computación
y aplicar algoritmos de optimización de los criterios deseados. Concretamente, en este caso se
utiliza un algoritmo para optimizar del tiempo de ejecución. En cualquier caso, el análisis de
diferentes algoritmos de optimización queda fuera del alcance de este trabajo.

3.2 Diseño de los simuladores

Para soportar el proceso anterior, es necesario extender los mediadores integrando un
simulador dentro de los mismos. El simulador debe ser capaz de: i) modelar diferentes entornos
de computación incluyendo la organización de los recursos, sus caracteŕısticas (procesadores,
memoria RAM, caracteŕısticas de la red) y la poĺıtica de scheduling ; ii) permitir la construcción
dinámica de workloads que contengan las tareas a simular y tareas que representen la carga de
fondo del sistema; y, finalmente iii) simular la ejecución de tareas midiendo parámetros como el
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Figura 3.1: Componente arquitectural para realizar meta-scheduling basado en simulación.

tiempo de ejecución o el tiempo de cola. Asimismo, para facilitar el desarrollo de diferentes
simuladores, el simulador debe proporcionar una interfaz común que sea independiente del
entorno a simular. Por último, siguiendo la ĺınea anterior, el diseño debe ser fácilmente adaptable
y reutilizable para construir nuevos simuladores.

Para posibilitar la ejecución de trabajos en nuestra infraestructura se han construido
simuladores para entornos gestionados por Condor y gLite. La elección de estos middlewares se
debe a que son dos de los middlewares más empleados para gestionar entornos de computación
de tipo Grid, y a que son los utilizados por los entornos integrados dentro de la infraestructura
propuesta.

Como base para los simuladores desarrollados se ha utilizado Alea [35]. Alea es un simulador
basado en eventos y construido sobre GridSim [36]. Alea extiende GridSim proporcionando
un scheduler centralizado, mejorando algunas funcionalidades y aumentando la escalabilidad y
la velocidad de la simulación. Además, Alea proporciona un entorno de experimentación fácil
de configurar y utilizar, el cual ayuda en la adaptación del simulador a nuevos entornos. La
implementación de Alea ha sido extendida como parte de este trabajo en aspectos como la
posibilidad de definir requisitos de memoria, la definición de un modelo de Grid más completo
o la definición de nuevas poĺıticas de scheduling. A continuación, abordaremos el diseño de un
simulador de Condor y su reutilización para construir un simulador de gLite.

3.2.1 Diseño del simulador de Condor usado en Hermes

Para ilustrar el diseño realizado, se va a detallar el diseño del simulador de Condor que
se usa en el cluster Hermes. Hermes es un cluster de computación alojado por el Instituto de
Investigación en Ingenieŕıa de Aragón (I3A). Está formado por una gran variedad de recursos
de computación heterogéneos y dispone de un total de 1308 procesadores y 2.56 TB de memoria
RAM.

En lo que respecta al diseñado realizado, el cual puede observarse en la Figura 3.2, como
entrada se proporciona el workload que indica las tareas a simular y un modelo del Grid sobre
el que se van a ejecutar las mismas; mientras que, como salida se indican los resultados de la
simulación de dichas tareas en el entorno indicado. Internamente, el simulador está formado
por cuatro componentes fundamentales: la componente de carga de trabajos, la componente de
carga de máquinas, el scheduler y el recolector de resultados.
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Figura 3.2: Diseño arquitectural del simulador de Condor.

El workload se representa utilizando el formato GWF (Grid Workload Format) propuesto
por el archivo de workloads de Grid [37]. Este workload es el que contiene las tareas a simular
y agrupa tanto las tareas objetivo de la simulación como otras tareas que modelan la carga de
fondo del entorno. La metodoloǵıa de construcción de los workloads se detallará más adelante.

El modelo del Grid corresponde a un fichero de texto que contiene la información de los
nodos de computación del Grid. La representación usada en este modelo, se ha extendido
para posibilitar la definición de modelos más detallados al usados por defecto en Alea. La
representación de cada nodo incluye el número de máquinas que lo forman, el número de CPUs
por máquina, la cantidad total de memoria por máquina, la arquitectura de las máquinas del
nodo, su sistema operativo y las caracteŕısticas de la red. Junto con este modelo, se incluye un
modelo de fallos que permite reflejar cambios dinámicos en el entorno durante la simulación
(cáıdas de nodos y fallos de máquinas).

La componente de carga de trabajos lee la descripción de los trabajos y se la env́ıa al
scheduler. Este módulo ha sido extendido para soportar la definición de requisitos de memoria
y el usuario y grupo, u organización virtual, correspondiente a cada trabajo.

La componente de carga de máquinas es la responsable de obtener la descripción de los
nodos del entorno de computación. Este módulo se ha extendido para ser capaz de tratar toda
la información proporcionada dentro del modelo del Grid (anteriormente sólo se permit́ıa indicar
el número de máquinas y procesadores).

El Scheduler es la componente más compleja y la única que es necesario modificar para
construir nuevos simuladores. La componente ha sido extendida para soportar la poĺıtica de
scheduling basada en prioridades de usuario que usa Condor. Esta poĺıtica funciona del siguiente
modo: cuando un trabajo llega al scheduler, el mismo es encolado en la cola de trabajos del
usuario. Esta cola se ordena por la prioridad propia de los trabajos de ese usuario y el instante
de llegada. Cuando el scheduler solicita la ejecución de un nuevo trabajo, los trabajos se ordenan
por la prioridad de su usuario, seleccionándose el trabajo con mayor prioridad de todos los
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disponibles. Entonces, se seleccionan las máquinas que tienen suficientes recursos (procesadores
y memoria) para ejecutar ese trabajo y las máquinas que podŕıan tener los recursos solicitados
si expulsasen alguno de los trabajos que están ejecutando en ese momento. Estas máquinas
son seleccionadas como candidatas potenciales para ejecutar el nuevo trabajo. Cuando se ha
completado la lista de candidatas potenciales, la misma se ordena de acuerdo a múltiples
criterios (preferencias del trabajo, preferencias de la máquina, etc.) para encontrar el recurso más
adecuado. En el caso de que no haya ningún recurso disponible el trabajo vuelve a ser encolado
en la cola del usuario y el scheduler intenta ejecutar otro trabajo. Finalmente, cuando se ha
podido seleccionar un trabajo y un recurso adecuado para su ejecución, el trabajo es enviado al
recurso actualizándose el estado del mismo. Si para posibilitar la ejecución del trabajo en dicho
recurso es necesario expulsar un trabajo, el scheduler se encarga de reencolar dicho trabajo para
que pueda ser ejecutado en otro momento.

Finalmente, el recolector de resultados es la componente encargada de almacenar los
resultados de la simulación y proporcionarlos como salida. Cuando un trabajo es enviado a un
recurso, es expulsado o una máquina falla, el recolector de resultados almacena dicha información.
Asimismo, cuando un trabajo finaliza su ejecución correctamente, el recolector almacena la
información relativa al mismo en el fichero de salida de la simulación. Para cada trabajo, se
indica el tiempo de llegada, el tiempo que ha permanecido el mismo en la cola, el tiempo de
ejecución, el recurso en el que se ha ejecutado y el número de expulsiones que ha sufrido.

3.2.2 Diseño del simulador de gLite usado en AraGrid

La Figura 3.3 muestra la arquitectura del simulador de gLite utilizado en AraGrid. AraGrid es
un Grid regional gestionado por el Instituto de Biocomputación y F́ısica de Sistemas Complejos
(BIFI). Está formado por cuatro sites que se encuentran geográficamente distribuidos en
diferentes facultades (dos sites en Zaragoza, uno en Huesca y otro en Teruel). En total, el Grid
dispone de 1728 procesadores y 4 TB de memoria RAM repartidos de forma homogénea entre
los diferentes sites. Gracias a la extensibilidad y facilidad de uso del simulador desarrollado, se
ha podido reaprovechar el simulador de Condor para la elaboración del simulador de gLite. De
esta forma, la construcción de este nuevo simulador ha sido rápida y sencilla. En consecuencia,
el diseño del simulador de gLite es análogo al del simulador de Condor presentado anteriormente
(Figura 3.2).

Si comparamos los diseños arquitecturales de ambos simuladores (Figuras 3.2 y 3.3), se
puede ver como sólo ha sido necesario modificar el scheduler ya que gLite utiliza un poĺıtica de
scheduling jerárquica, diferente de la de Condor. En dicha poĺıtica, los trabajos enviados son
gestionados por un scheduler global que env́ıa los mismos a alguno de los schedulers locales
dependiendo de los requisitos del trabajo, su ranking, la ocupación de los sites que forman el
Grid y los recursos a los que puede acceder la organización virtual del usuario que env́ıa el
trabajo. Por su parte, los schedulers locales de los diferentes sites utilizan una poĺıtica FCFS
[38] (First Come First Serve) para ejecutar los trabajos dentro de los recursos del site.

3.3 Metodoloǵıa para la creación de workloads

La creación de los workloads utilizados para reflejar el estado de cada entorno y su evolución
es un aspecto clave en el proceso de simulación. Su elaboración se realiza mediante el análisis de
información histórica de un largo peŕıodo de tiempo (en nuestro caso se han utilizado logs de 1
año) y considerando sólo los momentos representativos; por ejemplo, las horas de carga pico de
los d́ıas laborables en los meses de mayor utilización del entorno de ejecución [39]. Se asume que
cuantos más datos se tengan en cuenta, más realista y representativo será el workload generado.
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Figura 3.3: Diseño arquitectural del simulador de gLite con detalle de uno de los schedulers
locales.

Una vez extráıdos los datos relevantes se utilizan técnicas de regresión y ajuste de curvas para
construir modelos probabilistas que modelen diferentes aspectos como el tiempo de ejecución, el
tiempo de cola o los recursos utilizados.

La importancia de utilizar un workload apropiado ha sido identificada en varios trabajos
[40, 41]. Los trabajos anteriores proponen la generación de un único workload que considere
únicamente momentos de carga extrema o carga media del entorno de computación. Entonces,
el workload obtenido se utiliza para customizar la configuración del entorno y obtener una mejora
de sus prestaciones en la situación elegida (extrema o media) [39].

Sin embargo, con fines de simulación, estas aproximaciones no son válidas ya que debe
considerarse el estado real de los recursos. Si se utiliza un workload medio o extremo como entrada
del simulador, los resultados de la simulación no se ajustarán al comportamiento obtenido en
la ejecución real de las tareas al no realizarse la misma en condiciones de carga reales. En
consecuencia, como la información proporcionada por los simuladores se utiliza para tomar
decisiones de meta-scheduling, el uso de un workload no representativo puede llevar a tomar
malas decisiones de meta-scheduling que degraden las prestaciones del workflow en lugar de
mejorar las mismas.

Nuestra propuesta consiste en construir varios workloads que representen diferentes
situaciones representativas y que dependan de la carga de los recursos (carga baja, carga media
y carga alta), la fecha (d́ıas laborables y festivos) y el momento del d́ıa (mañana, tarde y noche).
De esta forma, cuando se va a realizar una simulación se obtiene el estado actual del entorno de
ejecución y se selecciona el workload más adecuado. Además, a la información del workload se
le añade la información de los trabajos que se encuentran actualmente en ejecución y encolados
obteniendo un workload que representa el estado actual del entorno y su evolución.

De forma detallada, el proceso que se lleva a cabo cuando el meta-scheduler solicita que se
simule la ejecución de una tarea es el siguiente:

18
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1. Cuando un mediador recibe una petición de simulación, construye un workload que describe
las tareas que se deben simular.

2. A continuación, el mediador consigue información sobre el estado del entorno de
computación y los trabajos que se encuentran en ejecución actualmente o están encolados.

3. Con la información del estado de los recursos, se adapta el modelo predefinido del Grid a
la situación actual, incluyendo los fallos existentes en los recursos.

4. Con la información de los trabajos que se están ejecutando o están en la cola y teniendo
en cuenta la fecha actual, se selecciona el workload más adecuado a la situación actual.

5. Al workload anterior se le añade la información de las tareas que se están ejecutando
actualmente y las que se encuentran encoladas. Con esto se obtiene un workload que
representa el estado actual y la evolución futura del entorno.

6. Cuando se han creado los dos workloads (el workload con las tareas a ejecutar y el workload
con el estado del entorno de ejecución), se combinan los mismos para crear un único
workload que sirve como entrada del simulador.

7. Se realiza la simulación utilizando el workload anterior.

8. Cuando la simulación acaba, el mediador obtiene los resultados y filtra los mismos para
proporcionar únicamente al meta-scheduler los resultados referentes a las tareas objetivo
de la simulación.

La implementación de este proceso se encapsula dentro del mediador. Éste se encarga de
obtener información acerca del estado del entorno de ejecución y realizar diferentes procesados
de la información obtenida para adaptar el modelo del entorno de computación a la situación
actual y construir el workload de entrada. Para facilitar la realización de las simulaciones, los
simuladores ofrecen una interfaz común independiente de los detalles concretos del simulador y
un formato común para la descripción de los datos de entrada y salida.

3.4 Validación de los simuladores

El objetivo de los simuladores desarrollados es utilizar los mismos como herramienta
de decisión en el proceso de meta-scheduling. Por tanto, la validación de los resultados
proporcionados por los mismos es fundamental para verificar la viabilidad y utilidad de la
solución [42]. Para ello, se ha comparado la utilización de los recursos, la duración de los trabajos
y los tiempos de cola en el entorno real y en el entorno simulado.

La Figura 3.4 muestra una comparación de la utilización media del cluster Hermes
(gestionado por Condor), extráıda de los logs de ejecución del último año, y la utilización
obtenida de la simulación de esos mismos trabajos. La comparación se presenta en un ciclo
diario, con el eje horizontal indicando la hora del d́ıa y el vertical mostrando el porcentaje de
utilización de recursos. Como se puede observar, los resultados del entorno simulado son muy
similares a los obtenidos en el escenario real. Ambas gráficas muestran la misma tendencia,
siendo los resultados de la simulación ligeramente inferiores. En términos del error incurrido en
la simulación, en media el error es del 15.09% con una desviación t́ıpica del 8.03%.

Para validar el indicador de rendimiento de los trabajos se exploran las métricas de tiempo de
ejecución y tiempo de cola. La Figura 3.5 muestra la comparación de ambos parámetros mediante
las correspondientes funciones de probabilidad acumulada. En ambos casos, se muestra el eje
horizontal en escala logaŕıtmica para dotar a las gráficas de una mayor claridad. La Figura 3.5-a

19



Sergio Hernández de Mesa

Figura 3.4: Comparación de la utilización del cluster Hermes entre el entorno real y el escenario
simulado.

muestra la comparación entre el tiempo de ejecución en ambos entornos el cual es muy similar en
ambos casos. En contraposición, si nos fijamos en la Figura 3.5-b, la distribución de los tiempos
de cola experimentados en el entorno real y en el entorno simulado es diferente. Esto se debe a
que el simulador es capaz de ejecutar trabajos sin ningún tipo de retardo, mientras que Condor
se ve afectado por numerosos retardos como las notificaciones entre los diferentes componentes
distribuidos, la duración del ciclo de scheduling o la actualización y propagación del estado. Para
corregir este error y reducir su influencia en los resultados, se pueden emplear dos técnicas: la
primera consiste en añadir un retardo sintético al tiempo de ejecución obtenido como resultado
y la segunda consiste en añadir dicho retardo a la ejecución de los trabajos dentro del simulador.
En cualquier caso, se está estudiando la manera más efectiva de incorporar estos aspectos al
simulador (véase la Sección 5.1).

En el caso del simulador de gLite, se ha realizado el mismo tipo de análisis que el realizado
para el simulador de Condor. Para ello se ha utilizado como entorno de prueba AraGrid. En este
caso, la comparación en términos de utilización de los recursos depara resultados ligeramente
mejores ya que la poĺıtica de scheduling de gLite entraña menos complejidad y es más fácil de
replicar. Concretamente, el error en el que se incurre en este caso es tan sólo del 1.19% con una
desviación t́ıpica del 0.85%. Respecto al indicador de rendimiento de los trabajos, como era de
esperar, se observa el mismo comportamiento que en Hermes. La distribución de los tiempos de
ejecución es prácticamente la misma en ambos escenarios, mientras que la distribución de los
tiempos de cola es diferente en el escenario simulado y el entorno real debido a que el simulador
sólo es capaz de reflejar el tiempo que pasa un trabajo en cola debido a que no hay recursos
disponibles.
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a)                                                                                                                   b)

Figura 3.5: Comparación del rendimiento de los trabajos para el cluster Hermes en el entorno
real y el escenario simulado en términos de: a) Tiempo de ejecución, b) Tiempo de cola.

3.5 Meta-scheduler

Como se ha comentado a lo largo de este caṕıtulo, la integración de un meta-scheduler en la
capa de ejecución de la infraestructura, permite mejorar el proceso de scheduling no determinista
aplicado anteriormente. Ahora, los mediadores se limitan a obtener tareas que tienen como
destino el entorno que representan (ya no compiten por tareas abstractas), dejando que el meta-
scheduler obtenga las tareas abstractas y las transforme en tareas concretas asignándoles un
entorno de ejecución concreto.

La transformación de las tareas de abstractas a concretas llevada a cabo por el meta-scheduler
suele realizarse en base a algún tipo de algoritmo de optimización que considere aspectos como el
rendimiento, el coste o la fiabilidad de la ejecución [43]. Asimismo, este proceso suele apoyarse en
algún tipo de técnica que proporcione indicadores para los parámetros anteriores [25, 26, 27]. En
este caso concreto, se ha decidido utilizar un algoritmo de optimización del tiempo de ejecución
utilizando como indicadores los resultados obtenidos al simular la ejecución de una tarea en
diferentes entornos de computación.

Por tanto, cuando el meta-scheduler obtiene una tarea abstracta, solicita a los mediadores
que simulen su ejecución en el entorno que representan y espera los resultados. Cuando se
reciben los resultados, se selecciona como entorno de ejecución aquel en el que se ha obtenido
un menor tiempo de ejecución en la simulación. Por su puesto, esta interacción e intercambio de
información se realiza a través del repositorio de mensajes.

No obstante, el meta-scheduler se ha diseñado para que pueda modificarse el algoritmo de
selección de la infraestructura de forma sencilla y que el cambio sea transparente para el resto
de la infraestructura. De esta forma, se facilita la utilización de diferentes algoritmos, siendo el
estudio del algoritmo de meta-scheduling más adecuado uno de los trabajos futuros propuestos
(veáse la sección 5.1).
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Para probar la viabilidad y utilidad delmeta-scheduler, se va a ejecutar un workflow cient́ıfico
real en diferentes condiciones de carga. Para determinar la mejora obtenida, se va a comparar
el tiempo de ejecución obtenido al usar la infraestructura respecto a la ejecución aislada del
workflow en Hermes y AraGrid.

De esta forma, en este caṕıtulo se va a ejecutar el workflow cient́ıfico de análisis Inspiral
[44] con la solución propuesta. En primer lugar, se presentará una descripción de alto nivel
del workflow y su correspondiente implementación en Taverna. A continuación, se muestran los
detalles referentes al entorno de experimentación y la configuración del experimento. Finalmente,
se muestran y analizan los resultados obtenidos al ejecutar el workflow con la infraestructura
propuesta comparando los mismos con los resultados que se habŕıan obtenido al ejecutar el
experimento sin dicha infraestructura.

4.1 Workflow de análisis Inspiral

El workflow de análisis Inspiral es un workflow cient́ıfico que analiza e intenta detectar
ondas gravitacionales producidas por varios eventos en el universo utilizando datos obtenidos de
la coalescencia de sistemas binarios compactos como estrellas binarias de neutrones y agujeros
negros [44]. La Figura 4.1 muestra la estructura del workflow (Figura 4.1-a) y su implementación
en Taverna (Figura 4.1-b). Como puede observarse, la relación entre cada una de las tareas que
forman una fase en el diseño de alto nivel y la implementación correspondiente del workflow en
Taverna es inmediata, siendo muy sencilla la composición del experimento. Internamente, cada
una de las cajas que representan las tareas en Taverna encapsula varias operaciones sencillas que
generan la información de la tarea, ordenan su ejecución utilizando la infraestructura y obtienen
los resultados de la tarea.

El experimento consta de diferentes fases, cuya descripción detallada puede consultarse en
[34, 44], que realizan el procesamiento de grandes conjuntos de mediciones generadas por un
conjunto de sensores y detectores. Los trabajos Inspiral son los más complejos en términos
computacionales y los que más recursos demandan. El resto de tareas aplican diferentes
operaciones de filtrado, chequeo y transformación de los datos de entrada de cara a reconocer y
validar las ondas gravitacionales proporcionadas por la tarea Inspiral.

4.2 Preparación del experimento

Como entornos de ejecución para la realización del experimento se han utilizado Hermes y
AraGrid y se ha procedido a ejecutar el workflow Inspiral en dichos entornos de computación
con la infraestructura y sin ella. Concretamente, se ha ejecutado el workflow durante un d́ıa
entero (24 horas) y se ha repetido el experimento durante varios d́ıas para obtener resultados
representativos.
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Figura 4.1: Workflow cient́ıfico de análisis LIGO Inspiral: a) Descripción de alto nivel, b)
Implementación en Taverna.

En lo que respecta a la configuración del experimento, no es necesario ningún tipo
de configuración especial ya que la misma es generada automáticamente por las diferentes
componentes de la infraestructura. Este diseño simplifica la utilización de la infraestructura,
haciendo que el proceso de meta-scheduling basado en simulación sea completamente
transparente para el usuario.

4.3 Análisis de resultados

Como se ha comentado anteriormente, el workflow Inspiral puede ser ejecutado tanto en
Hermes como en AraGrid. Sin embargo, como se puede observar en la Figura 4.2, ambos entornos
muestran una tendencia a tener diferentes niveles de carga a lo largo del d́ıa, lo que provoca que,
dependiendo de la carga que presenten, sea más adecuado enviar los trabajos a un entorno o a
otro. Concretamente, en los diferentes experimentos realizados, se ha observado que resulta más
oportuno enviar los trabajos a Hermes por la mañana y durante la noche, mientras que por la
tarde es más apropiado enviar los trabajos a AraGrid.

Evidentemente, la carga del sistema no es el único criterio a considerar ya que el rendimiento
de un entorno Grid depende de muchos factores y su análisis es complejo. La utilización de
un simulador como herramienta de decisión permite lidiar con esta complejidad y mejorar el
rendimiento obtenido en la ejecución del workflow como se muestra en la Figura 4.3. Dicha
figura muestra el tiempo de ejecución total de cada etapa del workflow Inspiral ejecutado de
forma completa en cada entorno (la barra izquierda corresponde a Hermes mientras que la barra
derecha corresponde a AraGrid) y ejecutado utilizando la infraestructura con la poĺıtica de
meta-scheduling propuesta (barra central de la figura).

Los resultados muestran que la utilización de la infraestructura de integración desarrollada
junto con la poĺıtica de meta-scheduling propuesta permite obtener una mejora del rendimiento
en todas las tareas del workflow. Concretamente, se obtiene una mejora del 59% respecto a la
ejecución del workflow en Hermes y un 111% respecto a la ejecución del mismo en AraGrid.
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Figura 4.2: Carga media de los entornos de computación durante los experimentos realizados.

Figura 4.3: Resultados experimentales para cada una de las etapas del workflow Inspiral.

Respecto a la sobrecarga que introduce la simulación en términos de tiempo de ejecución,
el proceso de simulación de Hermes es más complejo y tarda entre 3 y 4 minutos para una
bolsa de 10000 tareas, mientras que para AraGrid lleva en torno a 1 minuto. Además, el tiempo
de simulación es insignificante en comparación con el tiempo de ejecución de cada etapa y las
transferencias de datos entre entornos usan enlaces de alta velocidad lo que implica que el tiempo
de ejecución disminuya a pesar de la sobrecarga introducida.
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Por tanto, queda claro que la utilización de la infraestructura permite realizar un mejor
aprovechamiento de los recursos, lo que lleva a una mejora de las prestaciones de los workflows
ejecutados. Esta mejora se observa independientemente del tipo de tarea a ejecutar, ya que la
información proporcionada por los simuladores permite inferir el entorno en el que los trabajos
se ejecutarán más rápido al pasar menos tiempo encolados y verse menos afectados por las
expulsiones.
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Caṕıtulo 5 | Conclusiones y trabajo

futuro

El trabajo realizado de forma previa a la elaboración de esta Tesis Fin de Máster se ha
encaminado a resolver diferentes problemas en el ámbito de ejecución de workflows cient́ıficos
en entornos de computación dinámicos [2, 28, 34, 29]. Por su parte, este Trabajo Fin de Máster
ha permitido avanzar en el desarrollo de la solución propuesta. Concretamente, ha permitido
mejorar el proceso de selección del entorno más adecuado para ejecutar cada tarea. En cualquier
caso, todav́ıa quedan diferentes retos abiertos en este campo, los cuales serán abordados durante
el desarrollo de la tesis doctoral del autor.

En este caṕıtulo, se pretende dar una visión general de algunas de las posibles ĺıneas
de trabajo futuro abiertas. Estas ĺıneas incluyen la mejora de diferentes aspectos de la
infraestructura y la integración en la misma de nuevas caracteŕısticas que añadan distintas
funcionalidades. Finalmente, se presentan las conclusiones obtenidas en esta Tesis Fin de Máster.

5.1 Ĺıneas futuras

En primer lugar, uno de los aspectos a mejorar en la infraestructura presentada es la gestión
de los fallos que se producen al ejecutar trabajos en entornos de computación tipo Grid. Éstos
pueden deberse a diferentes causas como errores en la programación del workflow, fallos propios
de la aplicación que se ejecuta o fallos debidos al propio entorno de ejecución. Para lidiar con
estos fallos, se ha incluido una componente de gestión de fallos que trata los mismos de forma
general. Sin embargo, seŕıa deseable incluir un modelo de gestión de fallos que permita realizar
un tratamiento más personalizado de los mismos a diferentes niveles. Una posible solución seŕıa
utilizar un sistema de gestión de fallos jerárquico. De esta forma, los propios mediadores debeŕıan
ser capaces de tratar fallos relacionados con su entorno de ejecución. Por su parte, la componente
de gestión de fallos genérica se encargaŕıa de los fallos que no pueden ser tratados por los
mediadores y ofreceŕıa poĺıticas de más alto nivel para la reejecución de trabajos en otros entornos
o la utilización de workflows sustitutos [45]. Por tanto, la utilización de un sistema jerárquico de
fallos permitiŕıa realizar un mejor tratamiento de los fallos ya que los mediadores pueden tener
más información que la componente de gestión del fallo concreto que se ha producido y reducir
la sobrecarga del broker en el caso de que los fallos puedan ser tratados por el mediador.

Otro punto delicado de la infraestructura de integración planteada es el broker de
coordinación que gestiona los trabajos a ejecutar en los entornos disponibles. Dependiendo
del número de workflows cient́ıficos que estén siendo ejecutados y su complejidad, este broker
podŕıa estar sujeto a situaciones de sobrecarga e, incluso, a potenciales fallos. En ambos casos,
las consecuencias seŕıan cŕıticas desde el punto de vista de la solución de integración que se
propone. Una posible solución seŕıa el uso, durante estas situaciones, del servicio de colas Amazon
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SQS1 (Amazon Simple Queue Service), como alternativa más flexible al uso de Linda. Otra
posibilidad seŕıa utilizar un sistema de coordinación distribuido que incrementase la escalabilidad
y tolerancia a fallos de la infraestructura [46].

También se pretende mejorar la poĺıtica de meta-scheduling basada en simulación propuesta
en este trabajo. Dicha mejora pretende aumentar la precisión de la simulación contemplando
aspectos como el movimiento de datos entre diferentes entornos.

Asimismo, se plantea mejorar el proceso de generación de workloads. Generalmente, la
construcción de workloads se realiza de forma manual debido a su elevada complejidad y a
la dificultad para decidir el modelo estad́ıstico que mejor se ajusta a los datos. Sin embargo,
seŕıa deseable utilizar algún tipo de técnica que permita generar workloads de forma automática
sin que el usuario tenga que intervenir en el proceso [47]. Esto permitiŕıa refinar los workloads
en base a los nuevos datos obtenidos en cada ejecución y liberar al administrador de dicha tarea.

Para mejorar el proceso de asignación de tareas a infraestructuras, además de mejorar la
precisión de los simuladores, se pretende mejorar el propio meta-scheduler. Para ello, se plantea
explorar y comparar algoritmos de meta-scheduling que usen diferentes modelos y técnicas
algoŕıtmicas como modelos económicos [48], algoritmos genéticos [49] o algoritmos basados en
inteligencia animal [50, 51]. El objetivo de esta comparación es determinar bajo que condiciones
los algoritmos ofrecen un mayor rendimiento y permiten optimizar la solución propuesta.

Un aspecto muy importante ligado a los algoritmos de meta-scheduling es la definición de
parámetros de calidad de servicio (QoS) y acuerdos de nivel de servicio (SLAs) [52]. En este
punto, se plantea la utilización de algoritmos de negociación de contratos para cumplir los
parámetros de calidad de servicio solicitados por el usuario [53]. También se pretende dar soporte
a requisitos de calidad de servicio que no estén únicamente basados en métricas de rendimiento,
si no también en otros aspectos menos habituales, pero que también son demandados por la
comunidad de workflows cient́ıficos [54], es el caso de requisitos de coste o requisitos de tolerancia
a fallos.

Otro aspecto clave en el ámbito de los workflows cient́ıficos es el denominado provenance [55],
la recolección de datos que permitan reproducir los experimentos, compartir dichos experimentos
y reutilizar las técnicas, herramientas y metodoloǵıas empleadas. En este punto, se plantea el
registro de toda la información referente al proceso de ejecución de los workflows y la utilización
de estándares (XES2, OPM [56]) para almacenar dicha información y permitir la generación
automática de workflows que faciliten las cuestiones anteriores.

De cara a dotar al framework de un mayor número de recursos computacionales, se plantea
integrar entornos de computación basados en Cloud que permitan obtener recursos bajo demanda
y ayuden a satisfacer la calidad de servicio requerida por el usuario. En esa misma ĺınea, se
pretende desarrollar nuevos mediadores que permitan integrar nuevos entornos de computación
incluyendo Grids gestionados por diferentes middlewares (ARC [57], UNICORE [58], etc.),
entornos de computación voluntaria y ef́ımera a través de sus respectivos middlewares (p. ej.
BOINC [59]) o clusters de computación basados en la utilización de tarjetas gráficas.

Finalmente, se pretende aplicar la infraestructura desarrollada a la resolución de problemas
computacionalmente costosos ya sea dentro del ámbito académico o empresarial. Para ello, se
pretenden establecer acuerdos de colaboración con otros grupos de investigación y con empresas
y la realización de estancias en centros de investigación de referencia internacional.

1http://aws.amazon.com/es/sqs/
2http://www.xes-standard.org/
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5.2 Conclusiones

En este trabajo se ha presentado una estrategia de meta-scheduling basada en el uso de
técnicas de simulación. Además, se ha integrado un meta-scheduler que implementa dicha
estrategia en una infraestructura que permite ejecutar workflows cient́ıficos, programados en
diferentes lenguajes, en varios entornos de computación heterogéneos. Esta solución ha permitido
abordar uno de los principales retos existentes en el ámbito de la ejecución de workflows
cient́ıficos: la posibilidad de ejecutar diferentes partes de un mismo workflow en diferentes
entornos de computación, obteniendo una mejora en el rendimiento global del workflow.
Finalmente, por medio de un caso de uso real en el ámbito de la computación cient́ıfica se
ha validado experimentalmente la viabilidad de la solución y sus beneficios.

Para guiar el proceso de meta-scheduling se han utilizado técnicas de simulación, algo que
no hab́ıa sido todav́ıa explorado para este propósito. Esta solución, ha permitido tener en
cuenta diferentes parámetros importantes para la toma de decisiones como la carga actual y
esperada de los entornos de ejecución o la poĺıtica de scheduling utilizada en cada uno de ellos.
El desarrollo de un simulador genérico, el cual ha sido diseñado para ser fácilmente reproducible
y adaptable, ha permitido desarrollar simuladores para diferentes entornos de computación de
forma sencilla. Asimismo, el desarrollo de una metodoloǵıa para la construcción dinámica de
worklodas ha permitido simular las tareas en condiciones de carga reales, mejorando la precisión
de los resultados obtenidos en las simulaciones. Por tanto, la solución propuesta se ha mostrado
como una estrategia válida y efectiva al ser capaz de abordar la complejidad inherente de los
diferentes entornos de computación proporcionando resultados muy parecidos a los obtenidos
en el entorno real. Este aspecto ha sido comprobado mediante la validación experimental de la
técnica.

Este trabajo ha establecido las bases para un modelo de scheduling dinámico, transparente
para el usuario y que trata de aprovechar todos los recursos disponibles para mejorar el
rendimiento de los workflows. En cualquier caso, no se trata de un trabajo cerrado o finalizado,
sino que se han abierto nuevas posibilidades y ĺıneas de trabajo futuro. La utilización de diferentes
algoritmos de meta-scheduling que no sólo optimicen el tiempo de ejecución, si no que permitan
satisfacer varios tipos de requisitos de calidad de servicio y el establecimiento de acuerdos de
nivel de servicio que garanticen al usuario un nivel mı́nimo de servicio son algunos de los aspectos
que podŕıan incluirse en la solución presentada.

Finalmente, el trabajo de investigación ha dado lugar a tres publicaciones cient́ıficas,
con revisión por pares, en dos congresos internacionales: el III International Conference
on Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING 2012) y el
II International Conference on Simulation and Modeling Methodologies, Technologies and
Applications (SIMULTECH 2012); y un congreso nacional: las VIII Jornadas de Ciencia e
Ingenieŕıa de Servicios (JCIS 2012), todos ellos de referencia en los diferentes campos abordados
(computación Grid, simulación y servicios de computación, respectivamente).
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de Servicios (JCIS 2012), 2012.

[30] O. Kummer, “Introduction to petri nets and reference nets,” Sozionik Aktuell, vol. 1, pp. 1–9, 2001.

[31] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn, “Taverna: a tool
for building and running workflows of services.” Nucleic acids research, vol. 34, no. Web Server issue,
pp. W729–732, 2006.
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[35] H. R. Dalibor Klusácek, “Alea 2 – job scheduling simulator,” in Proceedings of the 3rd International
ICST Conference on Simulation Tools and Techniques (SIMUTools 2010). ICST, 2010.

[36] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, “A toolkit for modelling and simulating
data grids: an extension to gridsim.” Concurrency and Computation: Practice and Experience,
vol. 20, no. 13, pp. 1591–1609, 2008.

[37] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. H. Epema, “The grid workloads
archive,” Future Generation Computer Systems, vol. 24, no. 7, pp. 672 – 686, 2008.

[38] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, “Evaluation of job-scheduling
strategies for grid computing,” in Proceedings of the First IEEE/ACM International Workshop on
Grid Computing, ser. GRID ’00. Springer-Verlag, 2000, pp. 191–202.

[39] D. Feitelson, “Workload modeling for performance evaluation,” in Performance Evaluation of
Complex Systems: Techniques and Tools. Berlin / Heidelberg: Springer, 2002, pp. 114–141.

[40] E. Medernach, “Workload analysis of a cluster in a grid environment,” in Job Scheduling Strategies
for Parallel Processing, ser. Lecture Notes in Computer Science, D. Feitelson, E. Frachtenberg,
L. Rudolph, and U. Schwiegelshohn, Eds. Berlin, Heidelberg: Springer Berlin / Heidelberg, 2005,
vol. 3834, ch. 2, pp. 36–61.

[41] H. Li, D. Groep, and L. Wolters, “Workload characteristics of a multi-cluster supercomputer.”
Springer Verlag, 2004, pp. 176–193.

[42] R. G. Sargent, “Verification and validation of simulation models,” in Proceedings of the 2010 Winter
Simulation Conference – WSC 2010, 2010, pp. 166–183.

[43] F. Dong and S. G. Akl, “Scheduling algorithms for grid computing : State of the art and open
problems,” Components, vol. 202, no. 4, pp. 1–55, 2006.

[44] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for e-Science: Scientific
Workflows for Grids. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[45] S. Hwang and C. Kesselman, “A flexible framework for fault tolerance in the grid,” Journal of Grid
Computing, vol. 1, pp. 251–272, 2003.
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