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Anexo A | A Framework for the

Flexible Deployment of

Scientific Workflows in

Grid Environments

En este Anexo se muestra el art́ıculo titulado “A Framework for the Flexible Deployment
of Scientific Workflows in Grid Environments” el cual ha sido aceptado para su publicación
en la III International Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD
COMPUTING 2012) que se celebrará en Niza (Francia), del 22 al 27 de Julio de 2012.

El art́ıculo se presenta manteniendo el formato con el que aparecerá en el congreso
mencionado.
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Abstract—Scientific workflows are generally programmed and
configured to be executed by a specific grid-based system.
The integration of heterogeneous grid computing platformsin
order to build more powerful infrastructures and the flexibl e
deployment and execution of workflows over them are still two
open challenges. Solutions based on meta-scheduling have been
proposed, but more flexible and decentralized alternativesshould
be considered. In this paper an alternative framework based
on the use of a tuple-based coordination system and a set of
mediation components is proposed. This framework provides
users with scalability and extensibility mechanisms, being suitable
for a wide variety of scenarios. As a use case, the First Provenance
Challenge has been implemented using two different workflow
technologies executed over the framework, Nets-within-Nets and
Taverna, and transparently deployed on two different computing
insfrastructures.

Keywords – middleware for integration, scientific workflow
deployment, grid-based systems.

I. I NTRODUCTION

Grid computing emerged as a paradigm for the development
of computing infrastructures able to share heterogeneous and
geographically distributed resources [1]. Due to their compu-
tational and networking capabilities, this type of infrastructure
has turned into execution environments suitable for scientific
workflows. Scientific workflows are a type of workflow char-
acterized for being composed by a large number of activities
whose execution requires a high computation intensity and
complex data management.

Currently, many efforts are being carried out in the field of
scientific computing to execute their experiments taking full
advantage of grid technologies. Two important open challenges
in this area are the integration of heterogeneous grid comput-
ing platforms in order to build more powerful infrastructures
and the flexible deployment and execution of workflows over
them. Some authors have proposed solutions based on the use
of meta-schedulings without considering dynamic behaviours
or workloads. However, in order to tackle with the nature of
grids, it is required to consider more flexible and decentralized
alternatives.

In this paper, a framework able to tackle the previous
challenges is proposed. As shown in [2], [3], the use of a
broker based on the Linda coordination model [4] and a set of
mediators facilitates the flexible integration of heterogeneous
grid computing environments, addressing the challenge of
creating more powerful infrastructures. These components

encapsulate and handle specific features of various com-
puting environments integrated into our framework, being
programmers unaware of this heterogeneity. As a result, the
tasks that compose a workflow can be executed in a flexible
way using different computing environments. Unlike current
proposals the framework is not based on the use of a meta-
scheduler to perform global scheduling decisions, but each
computing environment competes to execute jobs according
to the availability of its own grid resources. In order to
implement this alternative scheduling model, each one of these
computing environments is represented in the broker by a
specific mediator able to achieve suitable scheduling decisions.
Hybrid computing environments could be easily integrated
implementing new mediators. On the other hand, scientific
workflows can be programmed independently of the execution
environment in which they will be executed. The Net-within-
Nets paradigm [5] and the Renew tool [6] have been used for
programming this type of workflows. This is also compatible
with other existing workflow programming languages. Indeed,
Taverna workflows can be programmed using the framework
services or translated to our programming language and then
executed.

The remainder of the paper is organized as follows. Section
II introduces some related work. In Section III, the architec-
ture of the framework is presented. The role of the Linda-
based broker, its implementation details and task dispatching
mechanisms are described in Section IV. The flexible integra-
tion of heterogenous grid middlewares and grid management
components with the broker is then detailed in Section V.
The features and new capabilities are shown by means of an
example that implements the First Provenance Challenge in
Section VI. Finally, conclusions are depicted in Section VII.

II. RELATED WORK

A considerable progress has been made in the understand-
ing of the particular nature of scientific workflows and the
implementation of grid-based systems for their specification,
scheduling, and execution. A detailed survey of existing grid
workflow systems is presented in [7], [8]. The comparison of
several systems shows relevant differences in the buildingand
execution of workflows that causes experiments programmed
by scientists and engineers to be strongly coupled to the
underlying grid-based execution system. This coupling forces
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grid administrators to perform relevant configuration and inte-
gration efforts in most of the scientific workflow deployments.
Therefore, some interesting challenges are still open: the
ability to program scientific workflows independently of the
execution environment, the portability of scientific workflows
from one execution environment to another, or the integration
of heterogeneous execution environments to create more pow-
erful computation infrastructures, for instance. Consequently,
research efforts should concentrate on the definition of new
high-level programming constructs independent of specific
grid technologies and also on the provision of execution
infrastructures able to interface multiple providers. This type
of infrastructure should integrate software adaptation layers for
translating generic management operations to provider-specific
APIs. Additionally, new strategies of resource brokering and
scheduling should be integrated into these execution environ-
ments to facilitate the utilization of multiple-domain resources
and the allocation and binding of workflow activities to them.

Let us briefly resume some of the current proposals for
provisioning flexible and extensible execution infrastructures.
On the one hand, different grid-based systems built on ameta-
schedulerhave been proposed [9], [10], [11]. A meta-scheduler
is a middleware component that provides advanced schedul-
ing capabilities on a grid consisting of different computing
platforms. The software architecture of all these solutions is
very similar and is composed of the following components:
a resource monitoring system to collect information from
integrated computing platforms, a meta-scheduler to distribute
jobs among grid resources using different scheduling policies
[12] and, finally, a set of adaptation components to achieve
mediation between middleware components and computing
platforms. On the other hand, architectures based on the
integration of meta-schedulers have been adapted for taking
advantage of Cloud technologies [13], [14], [11]. Result-
ing computing environments comprise of virtualized services
usage-based payment models in order to achieve more efficient
and flexible solutions, where the supported functionality will
be no longer fixed or locked to underlying infrastructure.

III. A N OPEN FRAMEWORK FOR PROGRAMMING AND

EXECUTING SCIENTIFIC WORKFLOWS

In short, the main goals of our approach are:

• To execute scientific workflows programmed using a
High-level Petri nets formalism or other standard lan-
guages widely accepted by the scientific community.

• To simultaneously work with different and heterogeneous
grid middlewares or with middlewares implemented using
different technologies (e.g. Web services). At this respect,
workflow execution engines must be uncoupled from
specific grid technologies.

• To allow the addition or removal of resources without
previous announcement.

• To support different scheduling strategies and policies
in the execution environment. The use of a particular
scheduling strategy or policy should depend on the char-

acteristics and requirements of each workflow applica-
tion.

Fig. 1. Architecture of the execution environment.

Figure 1 shows the high-level architecture of the proposed
framework. As shown, the architecture consists of three layers:
the modelling layer, the execution layerand thecomputing
infrastructure layer. In the following, each layer as well as its
main components and interfaces are described in detail.

Firstly, the modelling layer consists of a set of tools
for the programming of workflow applications. A workflow
can be developed using the broker services, which are ex-
posed through its Web service interface, using a workflow
modeling tool such as Taverna [15], for instance. Also, we
propose the use of Reference nets, a subclass of Petri nets,
to implement workflow applications from the perspective of
the Nets-within-Nets paradigm [5]. Nevertheless, other high-
level programming languages for workflows could be also
used by scientific communities (e.g. physicists, biologists or
astronomers) for programming their workflows. With respect
to this issue, plugins can be added to the modelling layer to
support existing or new modelling approaches, such as the
Taverna plugin shown in Figure 1, for instance. This plugin
allows to import workflows programmed with Taverna, which
are automatically translated to the workflow format in the
workflow editor and then directly executed. A good repository
for these type of workflows is the scientific community hosted
at MyExperiment.org. In this work, Renew [6] is used as a
workflow editor. Renew is an academic open-source tool that
allows the direct execution of Reference nets without any
additional coding process and which represents a worth benefit
for the final user.
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Secondly, theexecution layeris composed of the core com-
ponents. Theworkflow execution environmentis responsible
for controlling the execution of workflows and submitting
tasks to theresource brokerwhen they must be executed.
Internally, the broker consists of amessage repositoryand
a set of mediators. Messages are used to encapsulate any
information that is passed through the components of the
system. A message can describe a task to be executed or
the result of its execution, for instance. Mediators encapsulate
the heterogeneity of a specific grid middleware, having a
complete knowledge of its capabilities. This knowledge is used
for making dispatching decisions (which specific computing
infrastructure will execute a pending task?). Subsequently,
the grid middleware of the selected computing platform will
schedule the set of resources needed for executing the task.
As a result, the broker uncouples the workflow execution
environment from the specific details about the grid-based
computing infrastructures where tasks will be executed. This
design avoids the need for a close integration of the workflow
execution environment with specific grid middlewares used for
the execution of tasks.

Let us now go deeper into the description of the two com-
ponents of the broker. On the one hand, the Linda coordination
model [4] has inspired the implementation of the message
repository. Messages are encoded as tuples and stored into
a tuple space. The interface of the repository provides a set
of operations for accessing the tuples stored in the tuple
space according to the semantics of Linda. In Section IV we
will depict the advantages of using a Linda-based repository
and provide details about its implementation. On the other
hand,mediatorsare required for achieving the aforementioned
uncoupled integration. In general, a mediator is an entity that
directly communicates with the tuple repository, matches and
retrieves special-tagged tuples and processes them. In our
approach, each grid middleware is represented by a media-
tor. Internally, this mediator is responsible for: i) having a
complete information of the grid resource it represents; ii)
interacting with the tuple repository to find at run-time tasks
that could be executed by the set resources of its middleware;
iii) dispatching the task to the middleware for its execution
and controlling the input and output data transference; and,
finally, iv) storing the results of the executed task in the tuple
repository as tuples. Mediators of different and heterogeneous
grid middlewares could compete for the execution of a specific
task. Currently, as it will be described in Section V, different
mediators have been implemented for the grid middleware we
have access to (Condor and gLite) and then integrated into the
infrastructure of mediators.

On the other hand, a set ofmanagement componentshas
also been integrated into the execution layer to support the
execution of workflow applications: the fault management
component, the data movement component or the advanced
scheduling component, for instance. The integration procedure
of these components is similar to the one used by mediators.
A management component interacts with the tuple repository
in order to match and retrieve special-tagged tuples and then

processes them. Therefore, the action of these components can
be triggered as a result from the previous processing, which
allows to dynamically compose complex action chains. In
Section V the component for the fault management subsystem
and its integration will be detailed.

Finally, the computing infrastructure layeris composed
of different and heterogeneous computing platforms.
The interaction with these platforms is managed by the
corresponding grid middlewares. Currently, three computing
platforms are integrated in the framework we manage:
the HERMES cluster hosted by the Aragón Institute of
Engineering Research (I3A, http://i3a.unizar.es/), which is
managed by the Condor middleware; and the two research
and production grids managed by the gLite middleware
and hosted by the Institute for Biocomputation and Physics
of Complex Systems (BIFI, http://bifi.es/en/) belonging
to the European Grid Initiative (EGI, http://www.egi.eu/),
namely AraGrid (http://www.aragrid.es/) and PireGrid
(http://www.piregrid.eu/).

To sum up, the open nature of the proposed solution is
provided by the resource broker, composed of a Linda-based
repository and a set of mediators, providing scientists with
a high level of abstraction and flexibility when developing
workflows. On the one hand, workflow programmers must
concentrate on the functional description of workflow tasks
and corresponding involved data. Specific details about the
computing platforms where these tasks will be executed are
ignored from the programmer perspective. On the other hand,
the message repository facilitates the integration of mediators
and management components and the scalability of the overall
framework. Currently, its dispatching model is based on the
functional capabilities of the computing platforms managed
by the set of mediators. And, finally, these mediators are
responsible for encapsulating the technological heterogeneity
of the different types of grid middlewares and resource-access
technologies (e.g. Web services). New mediators may be easily
added in order to integrate new middlewares or technologies.

IV. L INDA -BASED TASK DISPATCHING

As previously stated, the resource broker is composed of
a message repository and a set of components (mediators)
that interact through this space by means of the exchange
of messages. In this section, the role of the Linda-based
message repository and the corresponding task descriptionand
dispatching mechanisms are presented.

Linda [4] is a coordination model based on two notions: tu-
ples and a tuple-space. A tuple is something like [”Gelernter”,
1989], a list of untyped values. The tuple space is a collection
of tuples stored in a shared and global space that can be
accessed with certain operations, that allow processes to read
and take tuples from and write them into it in a decentralized
manner. For instance, the operationin(x,["Gelernter",
?]) tries to match thetemplate ["Gelernter", ?],
which contains a wildcard, with a tuple in the shared space. If
there is a match, a tuple is extracted from the tuple space and
assigned to variablex; otherwise, the process blocks until a
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matching tuple appears. The matching is free for the wildcard,
but literal for constant values. The Linda matching mecha-
nism allows easily programming distributed synchronization
processes.

Linda-based coordination systems have been widely used
for communicating and coordinating distributed processes.
Their success in distributed systems is due to a reduced set
of basic operations, a data-driven coordination and a space
and time uncoupled communication among processes that can
cooperate without adapting or announcing themselves [16].

Let us now introduce how tuples are describe and dispatched
in our appraoch. Tuples are used to code the information
needed for submitting a job to a grid middleware or re-
covering the result (or an exception) of an executed job.
A tuple structure based on theJob Submission Description
Languagestandard, JSDL [18], has been adopted. From the
job submission point of view, this representation includesthe
specification of the application to be executed, the references
to input and output data (represented by the corresponding
URIs), a description of the host required for its execution
(operating system, CPU architecture and features, memory,
network bandwidth, etc.), QoS parameters and, optionally,the
grid middleware responsible for its execution. In case the target
grid platform is not specified, different mediators competefor
the job execution in base to certain policies. On the other
hand, a result tuple contains a reference to the original request,
a reference to the output data and the execution log (grid
and host used for the job execution, execution costs and QoS
results, mainly). If an error occurs, the result tuple will contain
the information about it. The fault handling component, which
handles these faults, will be depicted in Section V.

Once the tuple representing a job has been created, the
workflow execution environment puts it into the message
repository by means of anout operation. Each grid computing
platform is connected to the platform by means of a mediator,
which knows the applications that could be locally executedby
its grid and the description of the available internal resources.
Each mediator is then waiting for tuples that encode such job
requests able to be executed by its grid. Obviously, this waiting
will depend on the availability at run-time of the grid and its
capabilities. Anin operation is invoked by the mediator in
order to retrieve a tuple of its interest, using the Linda match-
ing mechanism. Then, the retrieved tuple is locally processed
by the mediator to perform the corresponding invocation to
the grid middleware it represents.

If many grid computing platforms are able to execute a
job, their mediators will compete to retrieve the job request
tuple. The Linda matching mechanism is non-deterministic
and, therefore, it does not offer any further guidance about
which mediator will retrieve the job request tuple. In this
work, the use of WS-PTRLinda, an extension of a previous
distributed Linda-based implementation of a message bro-
ker, called DRLinda [17], is proposed. As DRLinda, WS-
PTRLinda was developed using Nets-within-Nets and the
Renew tool, the same technologies we used for programming
workflow applications. WS-PTRLinda provides a new Web-

service based interface (SOAP 1x. SOAP2 and REST), sup-
port for persistence of the tuple space (for high-availability
demanding environments), and a timeout mechanism useful
for failure detection. Currently, a basic and non-deterministic
scheduling is being used for dispatching job requests to
grid mediators. In [17] we proposed and implemented some
alternative matching mechanisms to solve specific problems.
Similarly, new grid-oriented matching mechanisms could be
defined to extend the scheduling policies of the broker (e.g.a
QoS-based scheduling policy). Let us finally comment on two
relevant advantages of this Linda-based brokering. Firstly, the
cooperation is uncoupled because the execution environment
does not have any prior knowledge about mediators and vice
versa. The interaction style is adequate enough to be used in
environments where it is very important to reduce as much as
possible the shared knowledge between different components.
Also, writing and reading components can cooperate without
adapting or announcing themselves. New mediators could
be added/removed without affecting the rest of components
integrated into the framework.

V. FLEXIBLE INTEGRATION OF GRID MIDDLEWARES

Following the presented approach, different types of re-
sources and components (execution engines, management
components or mediators, for instance) can be integrated in
an easy and uncoupled way. The only requirement for these
components is to implement the Linda coordination API in
order to put and remove tuples. Besides, components can be
added or removed dynamically and transparently to the rest of
the system, facilitating this way the scalability and adaptation
of the framework.

In this section two different types of integrated components
are presented. The first one is a mediator able to interact with
the Condor middleware, whereas the second one is a fault
management component. When a fault is detected during the
execution of a job, this component will re-schedule the job
according to different policies. Our aim is to illustrate how
this solution is able to interact with grid computing platforms
managed by heterogeneous grid middlewares.

A. Interaction with the Condor middleware

As previously described, the framework is able to interact
with several underlying grid infrastructures. Let us depict
how a mediator has been developed to integrate a Condor
middleware. Specifically, this mediator is responsible forthe
interaction with the HERMES cluster. Figure 2 shows the
functional components of the mediator required for supporting
such interaction. Additionally, this mediator can be reused for
interacting with any computing platform managed by Condor.

The Job Managerinteracts with the Linda-based broker
depicted in the previous section in order to read job requests
and write their results. Obviously, all request types that could
be fulfilled by the cluster must be known by the manager.
For this purpose, theInternal Resource Registryknows the
list of applications that could be locally executed and the
description of available internal resources. This registry should
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Fig. 2. Components of the Condor mediator.

monitor the cluster and dynamically update its information,
but at this first implementation of the Condor mediator this
information is static. Once a job request has been retrieved,
the manager sends it to theMiddleware Adaptercomponent
that is responsible for translating the request into a Condor job.
Before submitting the job to the cluster via the SSH protocol,
the adapter internally carries out two important tasks. First,
it assigns an identifier to the job (Job ID) and sends it to the
Job Monitorcomponent. This ID will be used to correlate jobs
and tuples. In case the input data required by a job are stored
in an external computing platform, the adapter interacts with
the Data Movement component for moving them (or making a
copy) into the Condor cluster. After that, the adapter submits
the job to the Condor middleware.

Internally, Condor can schedule the execution of submitted
jobs depending on the local state of its resources. The goal is
to achieve the best possible throughput. Therefore, a double
scheduling can be done in the approach, similarly to the
hierarchical scheduling model described in [19]. Once the
job execution has been completed, results are sent through
a logging mechanism (in our case, SMTP-IMAP) service
integrated in theJob Monitor. This component maps received
results with job requests and forwards them to the job manager.
Finally, results are written in the broker so they can be then
taken by the workflow application that submitted the original
request.

This design and implementation is quite flexible and pro-
vides reusability. For instance, we have also developed a me-
diator to interact with the gLite middleware used in AraGrid.
Its design is similar to the previous one. In fact, most internal
components have been reused, as the job manager and the
internal resource registry, and others components have been
adapted, as the middleware adapter or the job monitor, for
instance.

B. Fault handling

When dealing with scientific workflows, failures can arise
at several levels. In this work, we will focus on those faults
and exceptions that happen at the execution level. When the
execution of a job fails, the corresponding mediator captures

the fault and puts an error tuple into the message repository.
This tuple, which will be processed by theFault management
component, contains information about the cause of the fault
that will be used by the manager to take a decision with respect
to the job execution. Different decisions could be taken: to
submit the job again to the same grid computing platform, to
submit the job to an alternative and reliable grid computing
platform or to notify the error to the workflow executing
environment in case the error persists, for instance. In thelast
case, most grid solutions offer two different ways to manage
the fault: corrective actions or alternative workflows.

Fig. 3. Components of the fault management component.

Figure 3 shows the internal design of the fault management
component. AFault Manager interacts with the message
repository in order to retrieve error tuples and to write the
corresponding decision tuple. When an error tuple is found,
the fault manager processes it and creates a decision request
that is sent to a decision maker. We have used arules engine
as the decision maker. Rules are encoded in RuleML (the
standard Web language for rules using XML markup [20])
and describe the corrective actions that will be executed in
case of each type of error. These actions can be changed and
modified at runtime, providing adaptation capabilities based
on specific scenarios. Normally, the job will be sent again for
a new execution on the corresponding infrastructure. However,
in case it fails again or even if the error tuple contains some
critical information, a usual action is to send the job request to
a reliable grid middleware (our ultimate goal is the successful
execution of job requests). Reliable grid middlewares have
special characteristics (number of nodes, throughput, rejection
rate, etc.), which turn them into more suitable candidates for a
difficult job execution. For this purpose, aReliable Resource
Registry has been implemented and integrated in the fault
management component. The current version of the registry
contains a list of reliable grid middlewares. This list is used
by the rules engine to decide in which middleware the failed
job request will be executed. Finally, the fault manager puts
a new job request tuple into the broker, specifying the grid
middleware responsible for its execution.

VI. A CASE STUDY: THE FIRST PROVENANCE CHALLENGE

As a case study we present a workflow implementing the
First Provenance Challenge [21].

The goal of the First Provenance Challenge (FPC) workflow
is to create abrain atlas from an archive of four high
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resolution anatomical data and a reference image. Some image
processing services are required for the workflow execution.
These services have been deployed into heterogenous grid
middlewares (more specifically, into the Condor cluster hosted
by the I3A Institute and the gLite grids hosted by the BIFI
Institute). In this example we show the flexibility of our
proposal: some jobs are programmed to be executed by a spe-
cific computing platform, and other jobs may be executed by
any available computing platform able to invoke the required
service.

The workflow requires seven input parameters, whose
specific values are implemented as the initial markings
of places Grid_Environment, Reference_image,
Input_image_{1..4}, andImages_directory. Their
meanings are, respectively: the URL of one of the clusters
where the workflow is going to be executed (more specifically,
the cluster hosted by the I3A), the URI of the reference image,
the URIs of the four images to be processed and the directory
where the intermediate and final image files will be stored.

Figure 4 shows the implementation of the workflow using
the Renew tool. Due to space limitations, only the first image
processing flow is detailed in the figure, although the remain-
ing branches for anatomyImage2, Image3 andImage4 are
similar. Alternatively, Figure 5 depicts the implementation of
the same workflow using Taverna. Job requests and results
are encoded as Linda tuples. A request tuple is a nested
tuple composed of four elements: the application or service
to be executed and the URIs of the input and output data, the
file descriptors for standard streams, QoS parameters and the
computing platform where the request is going to be executed,
respectively. Let us explain a tuple example, specifically the tu-
ple depicted in transitionAlign_warp_1(out). By putting
that tuple in the message repository, theAlign_warp service
is invoked by the corresponding mediator using as input data
an anatomy image, a reference image and their headers. The
output is a warped image. For the sake of simplicity, file
descriptors and QoS parameters are omitted in the tuple.
Finally, the initial marking of thegrid_environment
place determines the value of thegrid variable and, therefore,
the computing platform selected for the job execution (the first
field of this last tuple contains the access information required
by the platform).

Tuples are either built and put into the message repos-
itory by means of theBroker.out action (as in the
Align_warp_1 (out) transition, for instance) or
withdrawn from the broker by means of theBroker.in
action (as in theAlign_warp_1 (in) transition,
for instance). The sequential execution of these couple of
transitions for a given image corresponds to an asynchronous
call to the Align_warp service: first, the tuple with the
information is put into the message broker, then the corre-
sponding mediator takes it and invokes the service, putting
the invocation result into the broker as a tuple and finally the
result is captured and put into the workflow net by means of
the second transition. Given the semantics of Petri nets, the
processing of the input images can be done in any interleaved

Fig. 4. Nets-within-Nets based implementation of the FirstProvenance
Challenge workflow.

way, since tuples are put/removed into/from the broker as soon
as resources are available. In this first stage the job request is
executed in the cluster specified by the initial marking (the
grid variable is an input parameter of the request submitted
to the broker by theAlign_warp (out) transition).

Once stages 1 and 2 are finished, Stage 3 takes the whole
set of images from the directory specified by the parameter
Images_directory, and executes thesoftmean method
with these images as an input. At this stage the service
deployed in one of the grids hosted by the BIFI institute
is explicitly invoked. The last job request and its result are
carried out by means of theBroker.outIn action: from the
workflow point of view this corresponds to a synchronous call
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Fig. 5. Taverna implementation of the First Provenance Challenge workflow.

to the service described in the tuple. Then, softmean results are
distributed so that stages 4 and 5 could be executed in parallel
to compute the atlas data set for each dimension in axis x, y
and z. The slicer and convert jobs could be executed by any
available computing platform. Therefore, different executions
of the workflow could invoke services deployed in different
platforms. Finally, firing of transitioneow (end-of-workflow)
terminates the workflow. The resulting images will have been
stored in the images directory.

Figure 5 depicts the workflow implemented with Taverna
(some flow symbols in the top of the figure have been removed
to improve readability). As shown, the structure is similar
to the Nets-within-Nets implementation, although in this case
the workflow is composed of several subworkflows, each of
them implementing the previous invocations to the broker in
order to put and withdraw tuples. Due to space limitations, the
description of these subworkflows is left out of this paper.

A. Flexible deployment and execution

In order to analyze and test the transparency and flexibility
of the proposed approach, the First Provenance Challenge
workflow was executed using the framework. The target com-
puting infrastructure for the execution of each stage (which
can be specified in out transitions at each stage in Figure
5) was left unset, meaning that the mediators compete for
each submitted task. At this respect, both HERMES and
AraGrid were setup to separately allow the execution of the
FPC workflow. However, as the aim of this experiment was
to improve the overall execution cost of the workflow, the
advanced scheduling component was programmed to perform
a meta-scheduling process considering the load of the under-
lying computing infrastructures and the history of previous
executions. Therefore, at every moment the best suitable
candidate is estimated, avoiding the dispatching of a task to
an overloaded infrastructure. This means that each task is first
captured by the advanced scheduling component and then the
target infrastructure is set (so the corresponding mediator will
retrieve the task for its execution). However, the whole process

is transparent from the user’s perspective.
To do that, the advanced scheduler also considered the

average load of each infrastructure at every moment. Figure6
depicts the daily average load (% of the maximum load) in the
HERMES and AraGrid computing infrastructures. As it can be
observed, both computing infrastructures have different load
models. Their trends during the day as well as the previous
execution time are used to decide the most suitable candidate
for each task deployment.

Fig. 6. Hermes and AraGrid daily utilization (in percentaje).

Figure 7 depicts the results obtained for 900 executions of
the FPC workflow deployed on the framework. Average exe-
cution times (in seconds) are shown for each separated infras-
tructure (HERMES and AraGrid) and also for the framework
for each stage of the First Provenance Challenge workflow.
The overall execution time (average) is better when using
the framework. This is due to the best candidate selection
performed by the advanced scheduler (in most cases). The
analysis of each separated stage depics that most of the time
(70%) the HERMES cluster computing infrastructure gets a
better execution time that AraGrid, which is related to the fact
that the framework execution time is closed to the HERMES
one.

Fig. 7. Experimental results for the First Provenance Challenge workflow.

If we consider the average execution times for the complete
workflow, AraGrid got the worst results with 777 seconds,
HERMES got 362 seconds and the framework got 260 sec-
onds. Obviously, using the most adequate infrastructure toget
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the better execution time is not a trivial process from the
researcher’s point of view. However, by means of the use of
the framework, this is done in a flexible and transparent way.
Other possibilities are to reduce access costs (for instance,
if each computing hour has an asssociated cost), resource
usage, etc. Regarding the time to move data between the two
infrastructures (as output from a stage is used as input of the
following one), the average time for each workflow execution
was less than 55 seconds (so the average framework execution
time goes to 315 seconds).

VII. C ONCLUSIONS

In this paper, a framework to solve some of the open chal-
lenges in the application of grid-based solutions to scientific
workflows has been presented. This framework is uncoupled
from specific grid technologies, able to work simultaneously
and transparently with different and heterogeneous grid mid-
dlewares, providing scientists with a high level of abstraction
when developing their workflows. The integration of the
execution environment with different grid middlewares has
been carried out by means of a resource broker composed
of a Linda-based coordination system and a set of media-
tors. Thanks to the aforementioned broker, this integration
is flexible and scalable. On the other hand, regarding the
workflow programming point of view, the proposal is also open
and flexible. As it has been shown, workflows programmed
using standard languages or existing service-oriented workflow
management systems (e.g. Taverna) can also be executed in the
framework.

Currently, the proposed framework is being applied to solve
some complex and high time-consuming problems, such as
the behavioural analysis of semantically-annotated scientific
workflows, or the analysis of existing data connections into
the Linked data cloud, for instance. These solutions will allow
improving the capabilities of the presented approach and also
analyzing its performances.

We are also working on the integration of Cloud-related
solutions, such as using theAmazon Elastic Cloud Computing
Simple Queue Service(Amazon EC2 SQS) in order to have an
alternative message repository, as well as providing specific
high-performance computing capabilities (indeed, currently
Amazon EC2 offers a mechanism to virtualize a HPC ma-
chine, able to handle critical and complex computation tasks).
Related to this last point, we are adding some external reliable
computing platforms by means of virtualization technologies.
In [2] we sketched the implementation of a similar mediator
able to support the execution of business tasks. Similarly,a
new mediator able to submit job requests to the EC2 interface
with the required policies has been implemented.
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Anexo B | A Simulation-Based

Scheduling Strategy for

Scientific Workflows

En este Anexo se muestra el art́ıculo titulado “A Simulation-Based Scheduling Strategy for
Scientific Workflows” el cual ha sido aceptado para su publicación en la II International Confe-
rence on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH
2012) que se celebrará en Roma (Italia), del 28 al 31 de Julio de 2012.

El art́ıculo se presenta manteniendo el formato con el que aparecerá en el congreso
mencionado.
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Abstract: Grid computing infrastructures have recently come up as computing environments able to manage hetero-
geneous and geographically distributed resources, being very suitable for the deployment and execution of
scientific workflows. An emerging topic in this discipline isthe improvement of the scheduling process and
the overall execution requirements by means of simulation environments. In this work, a simulation compo-
nent based on realistic workload usage is presented and integrated into a framework for the flexible deployment
of scientific workflows in Grid environments. This frameworkallows researchers to simultaneously work with
different and heterogeneous Grid middlewares in a transparent way and also provides a high level of abstrac-
tion when developing their workflows. The approach presented here allows to model and simulate different
computing infrastructures, helping in the scheduling process and improving the deployment and execution
requirements in terms of performance, resource usage, cost, etc. As a use case, the Inspiral analysis workflow
is executed on two different computing infrastructures, reducing the overall execution cost.

1 INTRODUCTION

Grid computing emerged as a paradigm for the
development of computing infrastructures able to
share heterogeneous and geographically distributed
resources (Foster and Kesselman, 2003). Due to their
computational and networking capabilities, this type
of infrastructure has turned into execution environ-
ments suitable for scientific workflows, which require
intensive computations as well as complex data man-
agement. Nevertheless, the comparison of existing
Grid workflow systems has shown relevant differ-
ences in the building and execution of workflows that
causes experiments programmed by scientists and en-
gineers to be strongly coupled to the underlying sys-
tem responsible for their execution (Rahman et al.,
2011; Yu and Buyya, 2005). Therefore, two of the
most interesting open challenges in the field of sci-
entific computing are the ability to program scien-
tific workflows independently of the execution envi-
ronment and the flexible integration of heterogeneous
execution environments to create more powerful com-
puting infrastructures for their execution.

This new generation of computing infrastructures
requires new strategies of resource brokering and
scheduling to facilitate the utilization of multiple-
domain resources and the allocation and binding of
workflow activities to them. An emerging topic in
this discipline is the use of simulation environments
to help in the scheduling process, improving the over-
all execution requirements in terms of resource us-
age, time and costs. Some approaches such as GMBS
(Kertész and Kacsuk, 2010) or SCI-BUS1, for in-
stance, propose the use of simulation tools to evaluate
the best meta-scheduling strategy. Different schedul-
ing policies can be evaluated to decide the most suit-
able allocation of workflow activities to resources. On
the other hand, another research focus on the devel-
opment of a novel scheduling algorithm and its ex-
ecution over a simulated environment. The results
are then compared with other similar algorithms in
order to classify the algorithm with respect to some
predefined criteria. Strategies are normally compared
in terms of makespan (Hamscher et al., 2000; Abra-
ham et al., 2006; Yu and Shi, 2007), simulation times
(Ludwig and Moallem, 2011) or queue times (Yu and
Shi, 2007; Ludwig and Moallem, 2011).

1http://www.sci-bus.eu/
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Regardless of the problem to be solved, simula-
tion environments may consider execution environ-
ment models and workloads with the purpose of im-
proving scheduling decisions. The first provide a
complete specification of architectures and configura-
tions of the execution environment. Flexible mecha-
nisms for the specification of these models should be
provided, specially to model evolving and heteroge-
neous computing infrastructures. Meanwhile, work-
loads are logs of job sets based on historical data or
statistical models representing jobs to be executed in
the environment. The relation between workloads and
scheduling policies turns around the necessity of us-
ing a workload fitting the characteristics of jobs ex-
ecuted in the infrastructure in order to evaluate the
suitability of a concrete scheduling algorithm in real
terms. In (Feitelson, 2002), the benefits of using
workloads as well as how to use them to evaluate a
system are discussed. However, their use is still rather
limited, due mainly to the complexity of its creation,
being the process automation a difficult task. There-
fore, workloads are mainly used just for the analysis
of Grid systems (Iosup and Epema, 2011; Li et al.,
2004). Understanding these real workloads is a must
for the tuning of existing Grids and also for the design
of future Grids and Cloud infrastructures.

In (Fabra et al., 2012), a framework for the deploy-
ment and execution of scientific workflows whose
main features are described in Section 2 was pre-
sented. This framework facilitates the flexible in-
tegration of heterogeneous Grid computing environ-
ments, addressing the challenge of creating more
powerful infrastructures. Besides, its architectural de-
sign guarantees that workflow programmers do not
need to be aware of this heterogeneity. In this paper,
we integrate new components into our framework for
the simulation of scientific workflows using realistic
workloads, allowing the improvement and flexibility
of job allocation by means of a meta-scheduler. Un-
like other approaches which are focused on assisting
the researcher, in our proposal simulation results are
internally used to make scheduling decisions transpar-
ently to researchers and their workflows. Obviously,
the complexity of this simulation-based scheduling is
increased by the evolving nature of the underlying
computing infrastructure.

The information obtained from the simulator com-
ponent can also be used by the meta-scheduler in or-
der to carry out some optimization process depend-
ing on the parameters to be optimized. For instance,
it is possible to provide a better-execution-time algo-
rithm which schedules the execution of jobs on the
most suitable computing infrastructure depending on
the workload provided at the execution time. It is also

possible to easily minimize resource costs while keep-
ing a defined relation between execution time and in-
volved costs, for instance.

The remainder of this paper is organized as fol-
lows. The main features of the developed framework
in which the presented simulation approach is inte-
grated are described in Section 2. The design and im-
plementation of the simulator is sketched by means of
the application to a real cluster which uses Condor in
Section 3. The flexibility and reuse capabilities of the
component are then depicted in Section 4 by means of
the integration of another real Grid managed by gLite.
Then, the simulation approach integration is applied
to the development of a real case study, the LIGO In-
spiral analysis workflow in Section 5. Finally, Section
6 concludes the paper and addresses future research
directions.

2 EVOLVING TOWARDS THE
ADAPTABLE DEPLOYMENT
OF SCIENTIFIC WORKFLOWS

The proposed Grid-based framework for program-
ming and executing scientific workflows is able to
tackle some of the open challenges in the field of Grid
computing. From the programmer’s point of view,
workflows can be programmed independently of the
execution environment where the related tasks will be
executed. Different standard languages, widely ac-
cepted by the scientific community (e.g. Taverna),
can be used for programming this type of abstract
workflows. On the other hand, the proposed frame-
work is open and flexible from the computing re-
source integration’s point of view. First, and in ac-
cordance with this feature, it is able to simultaneously
work with different Grid middlewares or middlewares
implemented using other alternatives (e.g. Web ser-
vices). And, secondly, heterogeneous execution en-
vironments can be added, modified or even removed
without previous announcement and in a flexible and
transparent way. Therefore, the combination of these
features turns our solution into a novel and suitable
proposal in the field of scientific workflows (Yu and
Buyya, 2005).

Figure 1 shows the high-level architecture of the
proposed framework. A more detailed description is
outside the scope of this paper. Let us concentrate
on the process of executing workflow tasks and the
architectural components involved in it.

Once a workflow has been deployed, thework-
flow execution environmentis responsible for control-
ling its execution and submitting tasks to theresource
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Figure 1: Architecture of the execution environment.

brokerby means of its interface as they must be exe-
cuted. Submitted tasks are then stored into themes-
sage repositoryas messages that encapsulate the in-
formation needed for the execution of a task, includ-
ing the application to be executed, the references to
input and output data, a description of the resources
required for its execution (operating system, CPU ar-
chitecture and features, memory, network bandwidth,
etc.) and QoS parameters. These messages are de-
scribed using the JSDL standard. Optionally, the tar-
get computing environment responsible for the task
execution can be also included into the message. This
type of tasks is calledconcrete tasks. Nevertheless,
workflows will be usually programmed independently
of the execution environment where their tasks will be
executed (abstract tasks). This decision tries to take
full advantage of the integration capabilities of rid-
based framework.

An infrastructure of mediatorsuncouples the re-
source broker from the specific and technological de-
tails about the Grid-based computing environments
where tasks will be executed. Each computing en-
vironment is represented by a mediator. Internally,
a mediator handles a complete information about the
Grid infrastructure it represents. Subsequently, this
knowledge will be used by the mediator to interact
with the message repository and to find at run-time
abstract tasks that could be executed by its middle-
ware. Therefore, mediators are responsible for mak-
ing dispatching decisions related to the execution of
tasks. Obviously, in this dispatching model more
than one mediator could compete for the execution

of a specific task (the criterion would be that their
corresponding middlewares were able to execute it).
This proposal is an alternative to traditional solutions
based on the use of a centralized task scheduler re-
sponsible for deciding where tasks will be executed.

Finally, each mediator dispatches its tasks to the
middleware managing the infrastructure it represents
for their execution and stores the results of the exe-
cuted tasks into the message repository, as well as the
resulting execution log, which can be used for moni-
toring or analysis purposes. These results will be sub-
sequently recovered by the workflow execution envi-
ronment for controlling the execution of the deployed
workflow.

2.1 Improving the scheduling
capabilities of the framework

The dispatching strategy of our proposal presents a
set of drawbacks: 1) performance issues related to the
execution of tasks are not considered by mediators
(therefore, a task could be executed by an inappro-
priate computing environment degrading the perfor-
mance of the whole workflow); 2) dispatching deci-
sions are locally adopted by each mediator and, con-
sequently, one of them could monopolize the execu-
tion of pending tasks (this could cause unnecessary
overloads on its corresponding computing environ-
ment); and, finally, 3) the real behaviour of the ex-
isting computing environments and the state of their
resources is also ignored by the mediators.

Figure 2: Architectural components for the simulation-
based scheduling.

In order to solve the previous drawbacks and also
to improve and enhance our infrastructure, ameta-
schedulerbased on simulation techniques will be in-
tegrated into the Grid-based framework in this paper.
Figure 2 represents the alternative process of execut-
ing workflow tasks using a meta-scheduler. Initially,
pending (abstract) tasks are stored into the message
repository. The meta-scheduler retrieves this type of
tasks for determining where they will be finally ex-
ecuted. Scheduling decisions are made by simulat-
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ing the execution of each task in the existing com-
puting environments and analysing the simulation re-
sults. With these results, the task is made concrete
and then submitted to the message repository, allow-
ing the task to be executed by the selected mediator.

The interface of mediators has been extended to
support this process. Now, each mediator exposes
a set of operations able to simulate the execution of
a task. Internally, a simulator has been integrated
into each mediator for providing the required func-
tionality. More specifically, the simulator is able
to: 1) model the corresponding computing environ-
ment managed by the mediator (computing resources,
memory, network bandwidth, user and scheduling in-
ternal policies, etc.); 2) select the most suitable work-
load for representing the real behaviour of the com-
puting environment and the state of its resources (ex-
ecution logs are used for creating these workloads);
and, finally, 3) simulate the execution of tasks mea-
suring parameters such as the execution time, the data
transfer time, the queuing time, the consumed mem-
ory, etc.

In the following, the design and implementation
of the simulator component is depicted. As it will be
shown, this component is flexible enough as to allow
an easy adaptation for different computing infrastruc-
tures with different scheduling policies.

3 SIMULATING WORKFLOW’S
EXECUTION

As stated, the simulator component has been in-
tegrated as an internal component in each mediator.
Therefore, each computing infrastructure can han-
dle different and customized simulation capabilities.
Anyway, simulators are accessed through a well de-
fined API, so adding new simulators to the framework
is a guided and easy process. Also, coupling simu-
lation components with mediators allows developers
to introduce new computing infrastructures without
needing to implement them. Obly the corresponding
scheduling policy and the associated simulator must
be considered.

The simulation component receives the Grid
model and the workload as an input, which are stored
as files accessible from the corresponding mediator.
Then, after a processing cycle, it generates as a re-
sult the execution estimation in terms of time and re-
source usage with respect to the input provided. The
simulator also provides some metrics for analysis pur-
poses such as the average system utilization of each
resource, for instance, which can be used to improve
the process.

In the following, the design and implementation
of the simulation component is sketched by means of
the description of two real use cases: the HERMES
cluster and the AraGrid multi-cluster Grid.

3.1 Overview of the HERMES cluster

HERMES is a cluster hosted by the Aragón Institute
of Engineering Research (I3A)2. In general terms,
HERMES consists of 1308 cores and 2.56 TB of
RAM. More specifically, it consists of 126 heteroge-
neous computing nodes, including 52 nodes with two
2.33 GHz 4-core Intel Nehalem CPUs and 24 GB of
RAM per node, 48 nodes with two 2.00 GHz 8-core
AMD Magny-Cours CPUs and 16 GB of RAM per
node, 12 nodes with a 3.00 GHz 4-core Intel Wood-
creest quadcore CPUs and 8 GB of RAM per node,
11 nodes with two 2.33 GHz 2-core Intel Woodcreest
CPUs and 4 GB of RAM per node, and 4 nodes with
two 2.66 GHz 4-core Intel Woodcrest CPUs and 16
GB of RAM per node. The computing nodes in HER-
MES are connected by Gigabit links, allowing high-
speed data transfers.

At the moment of this writing, the cluster is man-
aged by the Condor3 middleware version 7.6.3.

The cluster is used by a vast variety of researchers,
mainly focused on inductive and physical systems,
automotive systems, discrete event system analysis
and complex semantic workflow analysis. System uti-
lization is usually focused on the use of CPUs rather
than memory consumption. Data inputs are usually
small sized, although there is a group handling com-
plex experiments with files of more than 20TB. The
analysis of relevant workloads shown that the aver-
age user is not aware of load peaks or advanced con-
figuration issues, which normally produces that ex-
periments last extremely long, require oversized re-
sources or even are queued for long times. In this
scenario, our proposal for a framework which would
optimize such situations is extremely useful from both
the researcher and also the system usage perspectives.

3.2 Implementation details of the
HERMES simulator

Alea (Klusáček and Rudová, 2010) has been used to
implement the internal simulator in the HERMES me-
diator component. Alea is an event-based simulator
built upon the GridSim toolkit (Sulistio et al., 2008).
Alea extends GridSim and provides a central sched-
uler, extending some functionalities and improving

2http://i3a.unizar.es
3http://research.cs.wisc.edu/condor/
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scalability and simulation speed. Alea has been de-
signed to allow an easy incorporation of new schedul-
ing policies and to easily extend its functionalities.
Also, Alea provides an experimentation environment
easy to configure and use, which helps in the quick
and rapid development of simulators when a new in-
frastructure is going to be added to the system.

The original implementation of Alea has been ex-
tended to allow some Condor features such as user
priorities, RAM requirements and preemptions. Fig-
ure 3 depicts the structure of the simulator. As shown,
it consists of two input files, theworkload and the
Grid model, and four main modules, theJob Loader,
the Machine Loader, the Schedulerand theResult
Collector, respectively.

Figure 3: Architecture of the Condor simulator based on
Alea.

Multiple workload have been composed using the
cluster execution logs from the last year and identi-
fying common situations of resource utilization and
job submission. The workload is represented using
the Grid Workload Format (GWF format) proposed
by the Grid Workload Archive (GWA) (Iosup et al.,
2008a). For each job, the job execution time, the num-
ber of CPUs required, the memory requirements, the
user and group who executes the job and the job de-
pendencies (if exists) are provided. More details on
the creation of workloads is provided in subsection
5.1.

TheGrid modelis a text file that contains the in-
formation of each computing node. The representa-
tion of each node includes a node identifier, the num-
ber of machines, the number of CPUs per machine,
the total amount of memory per machine, the sys-
tem architecture, its operating system and the network
characteristics. Also, a failure model can be detailed
to reflect dynamic changes in the infrastructure during

the simulation.
TheJob Loadercomponent reads the job descrip-

tions and sends them to the scheduler. This module
has been extended to allow RAM requirements and
user and group details of the submitted jobs.

TheMachine Loadercomponent is responsible for
reading the resource description from a file containing
the Grid model. This module has been extended to be
able to parse and save the information provided.

The Schedulercomponent is the more complex
one. It has been extended with a new scheduling
policy considering the schema for user priorities that
Condor applies in HERMES. This scheduling policy
works as follows: when a job sent by the Job Loader
reaches the scheduler, the job is queued in the right
user queue. This queue is ordered by the job prior-
ity and the job arrival time. When the scheduler re-
quests a new job to be executed, jobs are ordered by
their user priority and the job with the highest prior-
ity is chosen. Then, the machines with available re-
sources (CPUs and RAM) and also the machines that
could have available resources (if some running jobs
are evicted) are selected as potential candidates to ex-
ecute the job. The list of all potential candidates is or-
dered by multiple criteria (job preferences, machine
preferences, etc.) to get the most suitable resource. If
there is no resource available to execute the job, this
is queued again and the scheduler looks for the next
job. Finally, when a job and a resource have been
chosen, the job is sent to the resource and its state is
updated. In addition, some of the current running jobs
are evicted from the selected resource if necessary to
execute the new job. These evicted jobs are requeued
and will be reexecuted later.

Finally, the Result Collector component is respon-
sible for storing the simulation results and provide
them as output. When a job is sent to a resource,
evicted or a machine fails, the Result Collector stores
this information. When a job ends, the Result Collec-
tor stores the job information in an output file. For
each job, the arrival time, the time the job has spent
queued, the execution time of the resource, the re-
source where the job was executed and the number
of evictions suffered by the job are stored in the file.

3.3 Validation of the HERMES
simulator

The aim of the developed simulator is to be used as
a decision tool at meta-scheduling level. In terms of
simulation accuracy, its validation is a key issue to
verify its feasibility and usefulness for this purpose
(Sargent, 2010). Figure 4 shows a comparison of the
actual cluster utilization, extracted from the logs, and
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the simulated utilization, obtained from the simula-
tion of the tasks described in the workload. The com-
parison is presented as a daily cycle in which the hor-
izontal axis indicates the time (in hours) and the ver-
tical axis shows the CPU utilization rate (in percent-
age). As it can be observed, the simulation results are
very similar to real results. Both plots follow the same
trend, being the simulation utilization slightly lower.
In terms of the deviation of the simulation results, an
average error of 15.09% and a standard deviation of
8.03% is observed.

Figure 4: Condor cluster utilization for the real and simu-
lated environment.

In order to validate the job performance indicator,
two metrics are provided: the execution time and the
queue time. Figure 5 shows the cumulative distribu-
tion function for the execution time (Figure 5-a) and
the queue time (Figure 5-b). For the sake of clarity,
the horizontal axis is shown on a log scale. Figure 5-a
illustrates that job execution time is almost the same
in the simulation and the real environment. In con-
trast, there is an important difference between queue
time in both environments, which can be explained
because the simulator is able to schedule a job without
delay when there are available resources to execute a
job. However, Condor middleware suffers for several
delays due to different reasons such as delay notifi-
cations between distributed components, scheduling
cycle duration or status update. To fix this error and
reduce its influence on the results, two techniques are
proposed: the first one adds a synthetic delay to the
job execution time, whereas the second one adds the
synthetic delay to the job queue time results. Also,
how this feature can be incorporated in the simulator
to get more accurate simulations is being studied for
the meantime.

4 EXPERIENCE REUSE FOR THE
SIMULATION OF A GLITE
GRID

In this section, how a simulator for a multi-cluster
Grid can be easily implemented replacing some parts
of the previously developed simulator is shown. Also,
we illustrate the usefulness of the methodology pre-
sented to validate the simulator results.

4.1 Overview of the AraGrid Grid

AraGrid4 is a research and production Grid hosted by
the Institute for Biocomputation and Physics of Com-
plex Systems (BIFI)5 and it is part of the European
Grid Initiative (EGI)6. AraGrid consists of four ho-
mogeneous sites located at four different faculties in
different geolocated cities. Every site is formed by 36
nodes with two 2.67 GHz 6-core Intel Xeon X5650
CPUs and 24 GB of RAM per node, making a total
amount of 1728 cores and 4 TB of RAM. Both sites
and nodes are interconnected by Gigabit links.

The Grid is managed by the gLite7 middleware
version 3.2.0 and every site use openPBS8 version 2.5
as local batch system.

The AraGrid infrastructure is oriented to long-
term experiment in the fields of physics, biochemistry,
social behaviour analysis, astronomy, etc. Users are
more conscious of loads and resource usage, although
they deploy experiments similarly to the HERMES
case, getting long waiting times.

4.2 Implementation and validation of
the AraGrid simulator

Starting from the simulator structure, the design and
implementation of the Condor simulator has been
reused to develop a gLite simulator valid for the Ara-
Grid computing infrastructure. This is an easy and
quick implementation process, and the resulting sim-
ulator can be easily adapted to another gLite infras-
tructure. The reasons to implement these two simu-
lators is twofold. On the one hand, HERMES (man-
aged using Condor), AraGrid (gLite) and also Pire-
Grid (gLite) are connected using high speed Gigabit
links, which enhances data movement performance
(which is left out of the scope of this paper). On
the other hand, Condor and gLite are well known and

4http://www.araGrid.es/
5http://bifi.es/es/
6http://www.egi.eu/
7http://glite.cern.ch/
8http://www.mcs.anl.gov/research/projects/openpbs/
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Figure 5: Job performance comparison between real data and simulation results in terms of: (a) job execution time, (b) job
queue time.

widespread cluster/Grid middlewares in the research
community.

The only component that needed a custom adap-
tation to fit the behaviour of AraGrid with respect
to the HERMES simulator component is the sched-
uler. The scheduler’s policy follows a hierarchical ap-
proach, as shown in Figure 6. Jobs sent by the Job
Loader are managed by the global scheduler compo-
nent that sends them to the right local scheduler con-
sidering job requirements, job rank and site occupa-
tion are taken. Meanwhile, every local scheduler uses
a custom First Come First Serve (FCFS) policy.

Figure 6: Architecture of the gLite simulator and detail of
the local scheduler of a site.

It is important to consider a special case. As some
sites are shared with other Grid initiatives such as
EGI, the workload used as input contains jobs that
can only be executed in shared sites. Sites where a

job can be executed depends on the Virtual Organi-
zation (VO). Since this information is included in the
workload, this special case can be properly treated by
the scheduler when this kind of job reaches the global
scheduler.

The resulting simulator component has been inte-
grated into the AraGrid gLite mediator. The valida-
tion of the component has been carried out following
the same approach depicted in subsection 3.3. In this
case, the results are more accurate than in the HER-
MES case. That is because AraGrid scheduling policy
is easier to replicate. The average error is of 1.19%
with a standard deviation of 0.85%.

5 A CASE STUDY: INSPIRAL
ANALYSIS WORKFLOW

In this section, the proposed simulation-based ap-
proach is applied in order to improve the performance
of the Inspiral analysis scientific workflow. The ex-
periment setup is detailed, with particular attention
to the workload creation method used for modelling
other users jobs that are executed in HERMES and
AraGrid at the same time. Finally, performance re-
sults showing the benefits of our infrastructure are
presented and discussed.

One of the main research lines of the Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) is
the detection of gravitational waves produced by var-
ious events in the universe (based on Einstein’s the-
ory of general relativity). The LIGO Inspiral Anal-
ysis Workflow is a scientific workflow which ana-
lyzes and tries to detect gravitational waves produced
by various events in the universe using data obtained
from the coalescing of compact binary systems such
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as binary neutron stars and black holes (Taylor et al.,
2006). Figure 7 depicts a simplified view of the main
structure of the workflow. Although the workflow
has a simple structure, it allows a high level of par-
allelism. As shown, the whole experiment is split
into several smaller stages or blocks for analysis. The
time-frequency data from any event for each of the
LIGO detectors is arranged into template banks and
used as an input for the workflow, which generates a
subset of waveforms belonging to the parameter space
and computes the matched filter output in each stage.
Inspiral jobs are the most computationally intensive
tasks in the workflow, generating most of the comput-
ing requirements. In case a true inspiral is detected,
the matched filter output is computed and a trigger
is generated and tested for consistency by the Thinca
jobs as a result from the experiment. Finally, template
banks are then generated from these trigger outputs
and the process repeats.

Figure 7: Workflow of the LIGO Inspiral analysis scientific
workflow.

Several scientific workflows management systems
could be used to develop the workflow. In our case, a
high level Petri nets implementation (Reference nets)
has been developed using the workflow editor pro-
vided by the framework depicted in Section 2. How-
ever, the workflow implementation details are out of
the scope of this paper.

5.1 Experiment setup

The experiment setup is not specific for this experi-
ment or case study, but it is a general setup automati-
cally generated by the components of the framework.
This design simplifies the use of the infrastructure,
making the simulation-based meta-scheduling com-
pletely transparent to the user.

The process is as follows: first, when a mediator

retrieves a simulation request, it builds a workload de-
scribing the tasks to be simulated. Next, it gets infor-
mation about the state of the computing infrastructure
it represents. These data are used to adapt the pre-
defined Grid model to its current situation (introduc-
ing resource failures) and to build a second workload
representing the infrastructure state during the simu-
lation. Details about the creation of this second work-
load are shown below. Once both workloads have
been created, they are combined into one that is used
as the simulation input. Then, the simulation starts
its execution. Once it has finished, the simulation re-
sults are analysed by the mediator and only the infor-
mation concerning the target tasks is provided to the
meta-scheduler. Finally, the meta-scheduler chooses
the best computing infrastructure based on data ob-
tained from several simulations. For that purpose, the
meta-scheduling policy uses a better-execution-time
algorithm. Nevertheless, more complex policies in-
volving the information obtained in previous simula-
tions could be easily used.

The creation of the workload used to represent
the state of the computing infrastructure is a key step
in the simulation process. The importance of using
an appropriate workload has been identified as a cru-
cial input in some previous work (Feitelson, 2002; Li
et al., 2004). Using a wrong workload can cause the
simulation results not to correspond to the actual be-
haviour of the involved Grids. These research papers
propose the generation of a single workload based on
historical information from a long period of time and
only considering representative periods (e.g. the peak
hours during weekdays in job-intensive months). It
is assumed that the longer the observation period is,
the more representative is the workload, which al-
lows tunning the Grid in extreme situations (Feitel-
son, 2002). Nevertheless, for simulation purposes
these approaches are not valid because the state of the
resources must be considered as the simulation starts.
If an average or extreme workload is used, it is very
likely to get very inaccurate results that lead to wrong
scheduling decisions. Our proposal is to build several
representative workloads with different situations de-
pending on the state of the infrastructure (e.g. low
load, average load and high load) and date. There-
fore, the current computing infrastructure state is ob-
tained before starting a simulation and used to select
the most suitable workload. Also, the recovered in-
frastructure information, including currently running
jobs and queued jobs, is added at the beginning of the
workload, obtaining this way a workload describing
the current infrastructure state and its evolution.

The model proposed in (Iosup et al., 2008b) has
been used for workload creation. This model incorpo-
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rates the notions of different users and jobs inBag-of-
Tasks(BoTs) to the Lublin-Feitelson model (Lublin
and Feitelson, 2003). Due to the fact that the HER-
MES and AraGrid analysis has shown that more than
90% of jobs belongs a BoT and a few users are re-
sponsible for the entire load, this model is suitable for
modelling jobs in our infrastructures.

5.2 Analysis of the results

To prove the usefulness of the proposed approach,
the workflow has been executed for a whole day (24
hours). Figure 8 depicts the CPU load observed in
HERMES and AraGrid during the experiment. Note
that HERMES load is different from the one sketched
in figure 4. That is because the load in Figure 4 is
an average load extracted from the execution log cor-
responding to the whole last year, whereas Figure 8
shows the cluster load on a particular day. As it can
be observed, both computing infrastructures have dif-
ferent load models. Throughout the day there are bet-
ter periods of time for submitting jobs to HERMES
(mostly at early morning and night), and times more
appropriate to submit jobs to AraGrid (in the after-
noon). However, this is not the only criterion to be
considered as the performance of a Grid infrastruc-
ture depends on many factors.

Figure 8: HERMES and AraGrid utilization (in percentage)
observed during workflow execution.

The use of the simulation as a decision tool for
meta-scheduling deals with this complexity and im-
proves the performance obtained in the execution of
the workflow as shown in Figure 9. The figure shows
the total execution time for each stage of the In-
spiral workflow entirely executed in each comput-
ing infrastructure (HERMES on the left bar and Ara-
Grid on the right bar ) and using the framework with
the simulation-based meta-scheduling strategy (cen-
ter bar) depicted previously. The results show that

the use of the proposed approach leads to an improve-
ment of 59% in HERMES execution time and a 111%
in AraGrid execution time.

Figure 9: Experimental results for LIGO Inspiral analysis
workflow.

Regarding the simulation overhead in terms of ex-
ecution time, the simulation process for HERMES is
more complex (more iterative structures) and can take
up to 3-4 minutes for a bag of 10000 tasks, whereas
for gLite it takes one minute approximately. There-
fore, simulation times are insignificant in comparison
to the execution time of each stage. Also, data move-
ment has been measured. For the sake of clarity, as
HERMES and AraGrid are connected by a Gigabit
link, these times are small and can be avoided in the
calculation of the overall execution time.

6 CONCLUSIONS

In this paper, a simulation component based on
realistic workload usage has been presented. This
component allows modelling and simulating different
computing infrastructures in terms of performance,
resource usage, cost, etc. We have also described a
framework developed for the flexible deployment of
scientific workflows in Grid environments, and which
allows researchers to transparently work simultane-
ously with different and heterogeneous Grid middle-
wares.

The integration of the simulation component into
the framework allows improving the meta-scheduling
process. Not only a simulation process can be carried
out to find the best computing infrastructure to exe-
cute a task (or a bag of tasks) in terms of performance
or costs, but also the process may vary depending on
the used workload. The use of realistic workloads
provides very suitable and reliable results.

The flexible design and implementation of the
simulation component also allows an easy adaptation
for being used with different computing infrastruc-
tures, as it was shown by means of the reuse of the
HERMES simulator component (Condor) to develop
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the AraGrid one (gLite). Both Condor and gLite are
two of the most used cluster/Grid middlewares in the
research community. Thus, an additional advantage
is that the developed components can be easily reused
for simulating other existing computing infrastruc-
tures.

Finally, the integration of the presented approach
into the framework has been applied to the develop-
ment and execution of the Inspiral analysis over two
different computing infrastructures, HERMES and
AraGrid. As a result, the overall execution cost was
significantly reduced.

Currently, the proposed simulation component is
being extended to support the dynamic building of
workloads. The use of dynamic workloads will mini-
mize the effort required to build a new simulator and
allow to obtain more accurate simulations. Also, the
addition of new features in the simulator is being ad-
dressed in order to get more accurate queue times in
simulations. Finally, the incorporation of complex
meta-scheduling approaches that can use the informa-
tion provided by the simulation process will be stud-
ied.
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Anexo C | Una solución SOA para

ejecutar workflows

cient́ıficos en entornos

Grid heterogéneos

En este Anexo se muestra el art́ıculo titulado “Una solución SOA para ejecutar workflows
cient́ıficos en entornos Grid heterogéneos” el cual ha sido aceptado para su publicación en las
VIII Jornadas de Ciencia e Ingenieŕıa de Servicios (JCIS 2012) que se celebrará en Almeŕıa
(España), del 17 al 19 de Septiembre de 2012.

El art́ıculo se presenta manteniendo el formato con el que aparecerá en el congreso
mencionado.
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Abstract. La posibilidad de ejecutar un mismo workflow cient́ıfico
en distintos entornos Grid heterogéneos es todav́ıa a d́ıa de hoy un
reto abierto. Aunque la orientación a servicios logró allanar el camino,
las propuestas de solución existentes aún requieren un papel activo
por parte de los programadores de los workflows. En este trabajo
se pretende dar un paso más allá, liberando al programador de esta
responsabilidad. Concretamente, se propone un servicio de computación
que permite programar workflows independientemente del entorno de
ejecución y a diferentes niveles de abstracción. El servicio integra
diversas infraestructuras Grid heterogéneas, sacando el máximo provecho
de las mismas mediante una estrategia de meta-scheduling basada en
simulación. Como caso de uso, el workflow de análisis Inspiral es
ejecutado sobre dos Grids mejorando el rendimiento del workflow.

Keywords: Workflows cient́ıficos, orientación a servicios, Grid, inte-
gración de sistemas heterogéneos

1 Introducción

El creciente interés de la comunidad cient́ıfica por automatizar de manera
sistemática la ejecución de sus experimentos ha supuesto el impulso definitivo
de los workflows cient́ıficos. Este tipo de workflow presenta unas caracteŕısticas
muy particulares que condicionan su ejecución: están compuestos por actividades
complejas desde el punto de vista de los recursos computacionales necesarios
para su ejecución, gestionan grandes volúmenes de datos como entrada/salida
de las tareas ejecutadas, y necesitan gestionar adecuadamente la disponibilidad
de recursos hardware y software heterogéneos. Por otro lado, el paradigma de
computación Grid [1] propone el desarrollo de infraestructuras de computación
formadas por recursos heterogéneos y geográficamente distribuidos. La capacidad
computacional y las comunicaciones en red de este tipo de infraestructura
han promovido su explotación como entornos para la ejecución de workflows

cient́ıficos.
La programación de workflows cient́ıficos ejecutables en este tipo de

infraestructuras Grid ha experimentado una fuerte evolución. Ésta está
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condicionada por el nivel de abstracción ofrecido por losmiddlewares construidos
para gestionar este tipo de infraestructuras, como gLite [2] o Condor [3].
Inicialmente, cada middleware concreto especificaba su propio lenguaje de
programación de bajo nivel. Este enfoque tiene dos problemas. Primero,
el programador debe conocer en detalle las caracteŕısticas intŕınsecas del
middleware (configuración hardware y software, mecanismos de interacción,
recursos disponibles, etc.), en vez de preocuparse únicamente por los aspectos
funcionales del workflow a programar. Segundo, los workflows resultantes
están altamente acoplados al middleware utilizado y, en muchos casos, a la
infraestructura de computación concreta sobre la que se van a ejecutar.

En respuesta a estos dos problemas emerge la orientación a servicios desde dos
direcciones diferentes [4]. Por un lado, nacen los denominados sistemas de gestión
de workflows como herramientas de ayuda al programador (Taverna [5] o Kepler
[6], entre otros). Las tareas de un workflow pueden ahora ser programadas como
invocaciones a servicios, abstrayendo los detalles de bajo nivel relacionados con
su futura ejecución. Por otro lado, los middlewares Grid ofrecen su funcionalidad
a través de servicios, bajo las premisas y recomendaciones del estándar OGSA
[7]. El uso combinado de sistemas de gestión ymiddlewares orientados a servicios
fue clave para liberar al programador de los detalles de bajo nivel, resolviendo
el primero de los problemas mencionados. Sin embargo, no se logró desacoplar
completamente los sistemas de gestión de workflows de los middlewares. Este
hecho dificulta que un workflow programado con una herramienta concreta sea
portable y ejecutable en middlewares heterogéneos.

Los portales surgen como una alternativa de solución. Heredan las virtudes
de programar workflows con una orientación a servicios y añaden la posibilidad
de usar distintas infraestructuras de computación a través de una interfaz única.
Algunos ejemplos de portales son P-GRADE [8] o HPC-Europa [9]. Aunque
constituyen un avance en el problema de ejecutar un mismo workflow en distintas
infraestructuras, presentan un problema de flexibilidad relativo a su proceso de
scheduling: determinar en qué recursos computacionales se ejecuta cada tarea
concreta. En estos portales el scheduling es estático y guiado por el usuario.
Esto implica que el usuario es el encargado de seleccionar la infraestructura
de ejecución al comienzo del workflow, sin que esta información pueda ser
modificada durante su ejecución. Esta limitación provoca que no se logre un buen
aprovechamiento de los recursos disponibles, ya que el proceso de scheduling es
muy complejo, y el usuario no suele disponer de información que le ayude en la
toma de la decisión. Como consecuencia, las tareas que forman los workflows se
ven sometidas a elevados tiempos de espera, con la consiguiente reducción del
rendimiento obtenido.

En este trabajo pretendemos avanzar un paso más allá. El objetivo es
lograr que los workflows puedan ser ejecutados en diferentes middlewares

e infraestructuras de computación, de forma que el usuario o programador
no deba preocuparse en ningún momento de esta heterogeneidad. Para
conseguirlo se define un servicio de computación que permite la ejecución de
workflows cient́ıficos y tareas computacionalmente muy costosas cumpliendo las

59



Sergio Hernández de Mesa

caracteŕısticas anteriores. El servicio encapsula e integra dinámicamente distintas
infraestructuras de computación heterogéneas. Además, es capaz de determinar
cuál es la infraestructura disponible más adecuada para la ejecución de cada tarea
en base a un mecanismo de meta-scheduling basado en simulación, liberando de
esta responsabilidad al programador. Finalmente, la interfaz del servicio facilita
su uso conjunto con los sistemas de gestión de workflows cient́ıficos existentes,
lo que facilita su utilización por diferentes usuarios acostumbrados a diversas
herramientas y lenguajes de modelado.

El resto de este art́ıculo se organiza como sigue. En la Sección 2, se realiza
una descripción del servicio indicando su interfaz y cómo utilizar el mismo. En
la Sección 3, se muestra la arquitectura interna del servicio y se explican las
componentes fundamentales del mismo. La Sección 4 muestra el proceso demeta-

scheduling utilizado para seleccionar la infraestructura de ejecución en la que
ejecutar las tareas enviadas al servicio. La aplicación del servicio a un caso real
se detalla en la Sección 5, utilizando como caso de estudio el workflow de análisis
LIGO Inspiral. Finalmente, en la Sección 6, se presentan las conclusiones.

2 Descripción del servicio de computación

El servicio de computación ofrecido tiene como objetivo permitir la ejecución
de workflows cient́ıficos y tareas computacionalmente muy costosas en entornos
de computación Grid. La Figura 1 refleja las diferentes posibilidades existentes
para utilizar el servicio.

Fig. 1. Interacción de los programadores de workflows con el servicio de computación
ofrecido a diferentes niveles de abstracción.
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El servicio permite trabajar a dos niveles de abstracción: nivel de workflow

y nivel de tarea. El nivel de abstracción de workflow permite solicitar al servicio
la ejecución completa de un workflow, de forma que el servicio se encarga de la
gestión de todo el ciclo de vida del mismo, liberando al usuario de esta labor.
Esta alternativa corresponde a la parte izquierda de la Figura 1. Por su parte,
trabajar a nivel de abstracción de tarea, permite al programador utilizar sistemas
de gestión que controlen el ciclo de vida del workflow y solicitar la ejecución de
las tareas que componen el mismo bajo demanda. Esta alternativa, reflejada en
la parte derecha de la Figura 1, proporciona más flexibilidad al programador y
permite integrar en el workflow tareas locales y servicios externos.

En caso de que el programador desee trabajar a nivel de workflow, tan sólo
es necesaria la utilización de un editor de texto para describir las tareas y
las relaciones existentes entre las mismas. Para describir las tareas se utiliza
el estándar Job Submission Description Language (JSDL), mientras que para
describir las relaciones existentes entre las mismas se usa el lenguaje de
CondorDAGMan.

JSDL [10] es un lenguaje estándar propuesto por el Open Grid Forum1 para
la descripción textual de tareas, utilizando una sintaxis XML. El mismo ha sido
ampliamente utilizado en entornos de computación Grid. La descripción de los
trabajos incluye la aplicación a ejecutar, los argumentos pasados a la aplicación,
referencias a los datos de entrada y salida involucrados (representados por las
URIs correspondientes) y una descripción de los recursos necesarios para ejecutar
la tarea (Sistema Operativo, arquitectura de la máquina, número de CPUs,
memoria necesaria, ancho de banda de la red, etc.). Nótese que la descripción
de los recursos necesarios no implica que el usuario tenga que especificar los
recursos concretos de ejecución, si no que permite indicar las caracteŕısticas que
deben cumplir dichos recursos para poder ejecutar las tareas.

Por su parte, CondorDAGMan [3] es un sistema de gestión de workflows que
permite especificar de forma textual la relación existente entre las tareas de un
workflow. Mediante este lenguaje, se pueden especificar de una forma sencilla las
relaciones existentes entre las tareas.

Si por el contrario, el usuario trabaja a nivel de tarea, el servicio puede
utilizarse de forma conjunta con un sistema de gestión de workflows. La
utilización de este tipo de sistemas está muy extendida, en parte debido a que
hay sistemas de gestión orientados a una determinada comunidad cient́ıfica, de
forma que presentan facilidades a la hora de construir workflows de ese tipo (es
el caso de Taverna que está enfocado en bioinformática). En esta alternativa,
el programador especifica las relaciones existentes entre las tareas del workflow
utilizando el lenguaje proporcionado por el sistema de gestión y env́ıa las tareas
al servicio individualmente, siendo el sistema de gestión el encargado de controlar
el flujo de ejecución del workflow.

En cuanto a la funcionalidad ofrecida, el servicio permite la ejecución de
workflows programados de forma completamente independiente del entorno de
ejecución. Asimismo, los workflows pueden programarse a diferentes niveles

1 http://www.ogf.org/
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de abstracción proporcionando una gran flexibilidad al programador. Esta
flexibilidad es necesaria por el elevado número de sistemas de gestión utilizados
actualmente y la gran diversidad de usuarios existentes, los cuales no sólo están
acostumbrados a diferentes herramientas, sino también a diferentes lenguajes y
modelos de interacción. Para permitir diferentes tipos de interacción, el servicio
incorpora internamente varios componentes de gestión que permiten controlar
y gestionar adecuadamente el ciclo de las tareas a ejecutar independientemente
del nivel de abstracción utilizado por el usuario (véase la Sección 3). Por otro
lado, la necesidad de integrar y utilizar conjuntamente diversas infraestructuras
de computación heterogéneas y componentes que permitan utilizar las mismas
de forma adecuada y obtener el mayor rendimiento posible (véase la Sección 4).

Para soportar los diferentes tipos de utilización ofrecidos, se ofrecen
mecanismos de interacción tanto śıncronos (bloqueantes) como aśıncronos (no
bloqueantes). Asimismo, se incluyen operaciones que permiten la monitorización
de los workflows y la obtención de los resultados junto con el log de ejecución
de los mismos. En el caso de utilizar un modelo de comunicación śıncrono, las
operaciones ofrecidas por el servicio son las siguientes:

– execWorkflowS: Ejecuta de forma completa un workflow. Recibe como
parámetros la descripción de las tareas y las dependencias existentes entre
las mismas y devuelve el log de la ejecución de las tareas y referencias a los
resultados.

– execTaskS: Ejecuta una tarea. Recibe como parámetro la descripción de una
tarea y devuelve el log de ejecución de la tarea y referencias a los resultados.

En caso de utilizar un modelo de comunicación aśıncrono, las operaciones
ofrecidas por el servicio son las siguientes:

– execWorkflowA: Ejecuta de forma completa un workflow. Recibe como
parámetros la descripción de las tareas y las dependencias existentes entre
las mismas y devuelve como resultado un identificador del workflow.

– execTaskA: Ejecuta una tarea. Recibe como parámetro la descripción de una
tarea y devuelve como resultado un identificador de la tarea.

– getStatus: Obtiene el estado de una tarea o workflow. Recibe como parámetro
el identificador de una tarea o workflow y devuelve como resultado el estado
de la tarea o workflow correspondiente.

– getResult: Obtiene el resultado de una tarea o workflow. Recibe como
parámetro el identificador de una tarea o workflow y devuelve como resultado
su log de ejecución y referencias a los resultados.

Adicionalmente, las operaciones aśıncronas permiten indicar una dirección
de correo electrónico para avisar al usuario de que la ejecución ha finalizado y
facilitar el seguimiento de su estado y la recogida de los resultados.

Para la implementación del servicio se ha utilizado tecnoloǵıa de Servicios
Web por ser estándar en la construcción de middlewares Grid [7], ser sencilla
de utilizar y presentar la suficiente flexibilidad para dar soporte a los diferentes
tipos de interacción propuestos. Concretamente, se han desarrollado interfaces
SOAP, junto con WSDL (para la descripción de las operaciones), y REST.
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3 Arquitectura interna del servicio

En esta sección, se presenta la arquitectura interna del servicio mostrando sus
principales componentes. La Figura 2 muestra dicha arquitectura. En la parte
superior, se refleja la interacción con el programador del workflow, la cual se
detalló en la sección anterior; en el centro de la figura se muestra la arquitectura
interna del servicio; y en la parte inferior se indican las diferentes infraestructuras
de computación integradas en el servicio junto con el middleware encargado de
su gestión. A continuación, analizaremos en profundidad la arquitectura interna
del servicio y describiremos las infraestructuras de computación utilizadas.

Internamente, el servicio también utiliza una arquitectura SOA, siguiendo
un modelo ESB, que se traduce en un diseño flexible en el cual las diferentes
componentes se encuentran desacopladas y pueden ser sustituidas, adaptadas o
modificadas de forma dinámica y transparente para el usuario. Concretamente,
el servicio está formado por un broker de recursos y un conjunto de componentes
de gestión. El broker constituye el núcleo del servicio, encargándose de gestionar
la interacción con el exterior, conocer el estado de las infraestructuras y permitir
la comunicación entre los diferentes componentes del sistema. Por su parte,
las componentes de gestión ofrecen diferentes funcionalidades encaminadas a
la gestión del ciclo de vida de los workflows y a la mejora del mismo mediante,
por ejemplo, la utilización de un meta-scheduler que permite decidir cuál es la
mejor infraestructura para ejecutar una tarea.

A su vez, el broker, está formado por un repositorio de mensajes y una
infraestructura de mediadores. La comunicación entre los diferentes componentes
del servicio se realiza a través de mensajes que contienen información de diversa
naturaleza. Por su parte, los mediadores encapsulan la heterogeneidad de un
middleware determinado, teniendo completo conocimiento de sus capacidades
y caracteŕısticas. Este diseño elimina la necesidad de que el broker tenga
que estar muy acoplado con la tecnoloǵıa concreta de la infraestructura
Grid, permitiendo incorporar diferentes infraestructuras heterogéneas de forma
sencilla y transparente para el programador de workflows. Asimismo, permite la
integración y sustitución dinámica de diferentes componentes de gestión.

En cuanta a la estructura interna del broker, por una parte, la implementación
del repositorio de mensajes se ha inspirado en el modelo de coordinación Linda
[11]. Los mensajes se codifican como tuplas y son almacenados en un espacio
de tuplas. La interfaz del repositorio proporciona una serie de operaciones para
acceder a las tuplas almacenadas de acuerdo a la semántica de Linda. Por otra
parte, la infraestructura de mediadores permite lograr la integración de diferentes
entornos de computación heterogéneos. En general, un mediador es una entidad
que se comunica con el repositorio de tuplas, empareja y recupera las tuplas
destinadas al mismo, de acuerdo a etiquetas identificativas presentes en las tuplas
(tupla con tarea a ejecutar, tupla de fallo, etc.) y las procesa. En nuestro enfoque,
un mediador representa unmiddleware capaz de gestionar una infraestructura de
computación. Internamente, el mediador es responsable de: i) tener información
completa de la infraestructura Grid que encapsula; ii) simular la ejecución de
tareas en la misma; iii) interaccionar con el repositorio de tuplas para obtener
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Fig. 2. Arquitectura del servicio propuesto e interacción del mismo con el exterior.

tareas a ejecutar o simular; iv) enviar tareas al middleware para su ejecución y
controlar la transferencia de los datos de entrada y de salida; y v) insertar tuplas
en el repositorio de mensajes con el resultado de la ejecución o simulación de
las mismas para que esta información sea tratada por la componente adecuada.
Se ha implementado un mediador para cada uno de los middlewares (Condor y
gLite) utilizados por las infraestructuras de computación disponibles. Además,
se ha incluido un simulador dentro de los mediadores para permitir realizar
simulaciones que ayuden a decidir la infraestructura de ejecución más adecuada.

En cuanto a las componentes de gestión, éstas ofrecen diferentes funcional-
idades encaminadas a gestionar el ciclo de vida de los workflows ejecutados.
Se han desarrollado: una componente de gestión de fallos, una componente de
movimiento de datos y una componente demeta-scheduling avanzado. El proced-
imiento de integración de estas componentes es similar al utilizado en los medi-
adores. Cada componente de gestión interacciona con el repositorio de mensajes
para retirar mensajes con la etiqueta asociada a esa componente y procesarlos.
Por lo tanto, la utilización de estas componentes puede ser debida a la necesidad
de un procesado concreto (p. ej. textitmeta-scheduling) o como respuesta al re-
sultado de otro componente (p. ej. gestión de fallos), permitiendo la composición
dinámica de complejas cadenas de acción. Con la integración de estas compo-
nentes, se consigue gestionar de forma completa el ciclo de vida de un worfklow y
se incluyen funcionalidades avanzadas como la utilización de un meta-scheduler
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que permite obtener un mayor rendimiento y un mejor aprovechamiento de las
infraestructuras disponibles. En la sección 4 se ofrecen más detalles sobre elmeta-

scheduler, mientras que en [12] se ofrecen más detalles sobre las componentes de
movimiento de datos y gestión de fallos.

A modo de ejemplo, para que el lector comprenda la interacción existente
entre las componentes del servicio, mostraremos el proceso seguido al utilizar
la operación execTaskA, es decir, al ejecutar una tarea de forma aśıncrona. En
primer lugar, la descripción de la tarea se almacena en el repositorio de mensajes.
A continuación, el meta-scheduler obtiene la tarea y solicita a los mediadores
que simulen la ejecución de la misma. Con los resultados de las simulaciones, el
meta-scheduler decide cuál es la infraestructura más adecuada para su ejecución.
Dicha información es almacenada en el repositorio y recuperada por el mediador
correspondiente. Antes de ejecutar la tarea, el mediador solicita el movimiento
de los datos de entrada necesarios. Una vez transferidos, el mediador env́ıa la
tarea al Grid que representa para que se ejecute. Cuando la tarea finaliza o
falla, el mediador solicita el movimiento de los datos de salida a su ubicación
final, recupera el log de ejecución de la tarea e introduce dicha información en
el repositorio de mensajes. Si la tarea ha finalizado correctamente, se env́ıa un
correo electrónico al usuario (sólo si se indicó al enviar la tarea) y la información
queda almacenada en el repositorio de mensajes hasta que sea obtenida por el
usuario a través de la operación getResult. Si por contra, la tarea ha fallado, la
componente de gestión de fallos obtiene la causa del fallo y toma alguna decisión
al respecto, por ejemplo, volver a ejecutar la tarea en otra infraestructura o
notificar al usuario del error que se ha producido. En caso de que la tarea sea
reejecutada, se repite el proceso, mientras que si se decide avisar al usuario
del fallo, se actúa de la misma manera que en el caso de que la tarea finalice
correctamente.

En lo que corresponde a las infraestructuras de computación, se han
integrado: el cluster Hermes del Instituto de Investigación en Ingenieŕıa de
Aragón (I3A)2, el cual es gestionado utilizando el middleware Condor; y
dos Grids pertenecientes a la Iniciativa Grid Europea (EGI)3: AraGrid4 y
PireGrid5, gestionados por el middleware gLite y administrados por el Instituto
de Biocomputación y F́ısica de Sistemas Complejos (BIFI)6. A pesar de
su heterogeneidad, gracias a la infraestructura de mediadores y al diseño
desacoplado de las componentes del sistema, su integración es sencilla y puede
realizarse dinámicamente. Asimismo, la utilización de un meta-scheduler y otras
componentes de gestión permite utilizar las infraestructuras de forma conjunta,
siendo este proceso totalmente transparente para el usuario. Como resultado,
se consigue dotar al servicio de una elevada potencia de cálculo y mejorar el
rendimiento de los workflows ejecutados.

2 http://i3a.unizar.es/
3 http://www.egi.eu/
4 http://www.araGrid.es/
5 http://www.pireGrid.eu/
6 http://bifi.es/es/
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En resumen, la naturaleza abierta y flexible de la solución propuesta se
basa en la utilización de un broker de recursos formado por un repositorio
de mensajes basado en Linda y un conjunto de mediadores. El repositorio de
mensajes facilita la integración de mediadores y componentes de gestión de forma
dinámica, aśı como su sustitución, modificación y eliminación. La integración
de un conjunto de mediadores encapsula la heterogeneidad de las diferentes
infraestructuras de computación utilizadas, desacopla el broker de recursos de
los detalles de los diferentes middleware de Grid existentes, abstrae al usuario
de la complejidad de los mismos, permite la reutilización de mediadores en
infraestructuras gestionadas por el mismo middleware y facilita la integración
de nuevas infraestructuras. Finalmente, la integración de diferentes componentes
de gestión permite mejorar la gestión del ciclo de vida de las tareas ejecutadas
ofreciendo servicios de meta-scheduling, movimiento de datos y gestión de fallos.

4 Meta-scheduling basado en simulación

En esta sección se detalla el proceso utilizado por el servicio para seleccionar
la infraestructura más adecuada para ejecutar las tareas enviadas. Debido a su
importancia en el proceso, se prestará especial atención al componente de meta-

scheduling y a los simuladores incluidos dentro de cada mediador Finalmente, se
incidirá en la importancia del workload utilizado para realizar las simulaciones.

La introducción de una componente de meta-scheduling proporciona nuevas
oportunidades respecto a estrategias de planificación básicas que obligan al
usuario a indicar la plataforma de ejecución, seleccionan una infraestructura
de forma aleatoria o elijen una infraestructura en base a criterios estáticos. Se
han propuesto multitud de estrategias en la literatura [13]. En general, estas
estrategias buscan optimizar algún tipo de función objetivo como, por ejemplo,
el coste de utilización de los recursos o el tiempo de ejecución. En nuestro caso
concreto, el algoritmo utilizado por la componente demeta-scheduling tiene como
objetivo minimizar el tiempo de ejecución, utilizando para ello los resultados
proporcionados por los simuladores. En cualquier caso, la discusión de la mejor
estrategia de meta-scheduling posible queda fuera del alcance de este trabajo.

La Figura 3 muestra el proceso que supone la ejecución de las tareas de
un workflow utilizando un meta-scheduler. Inicialmente, las tareas pendientes
(abstractas), almacenadas en el repositorio de mensajes, son recuperadas por el
meta-scheduler. A continuación, esta componente determina las infraestructuras
capaces de ejecutar dichas tareas y solicita a los mediadores correspondientes que
simulen su ejecución. Los mediadores realizan la simulación, utilizando workloads
construidos dinámicamente, y devuelven el resultado al meta-scheduler. Cuando
el meta-scheduler ha recibido el resultado de todas las simulaciones, elige la
infraestructura más adecuada en base al algoritmo de optimización utilizado y
almacena dicha información en la descripción de la tarea, la cual pasa a ser una
tarea concreta. Finalmente, el meta-scheduler env́ıa la tarea al repositorio de
mensajes para que sea recuperada por el mediador correspondiente y ejecutada.
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Fig. 3. Componente arquitectural para realizar scheduling basado en simulación.

Para soportar este proceso, los mediadores han sido extendidos mediante
la integración de un simulador dentro del mismo. El simulador es capaz de: i)
modelar el entorno de computación (recursos computacionales, memoria, ancho
de banda de la red, usuario, poĺıtica de scheduling, etc.); ii) seleccionar el
workload más adecuado para representar el comportamiento real de cada entorno
de ejecución y el estado actual de sus recursos (para crear estos workloads se
han utilizado logs de ejecución reales); y, finalmente, iii) simular la ejecución
de tareas midiendo parámetros como el tiempo de ejecución, el tiempo de
transferencia de los datos, el tiempo de encolamiento, la memoria consumida, etc.
La integración del simulador como componente interno de cada mediador permite
que los mismos sean capaces de manejar diferentes situaciones y personalizar la
simulación dependiendo del estado concreto de la infraestructura. En cualquier
caso, el simulador es accedido a través de una API bien definida, de forma que
añadir nuevos simuladores es sencillo y sólo implica modificar el modelo de la
infraestructura y la poĺıtica de scheduling utilizada por la misma .

Como base para los simuladores desarrollados se ha utilizado Alea [14].
Alea es un simulador basado en eventos y construido sobre GridSim [15]. Alea
extiende GridSim proporcionando un scheduler centralizado, mejorando algunas
funcionalidades y aumentando la escalabilidad y la velocidad de la simulación.
Además, Alea proporciona un entorno de experimentación fácil de configurar y
utilizar, el cual ayuda en la adaptación del simulador a las nuevas infraestructura
añadidas al servicio. La implementación de Alea ha sido extendida para soportar
tanto la poĺıtica de scheduling basada en prioridades utilizada por Condor como
la poĺıtica jerárquica utilizada por gLite.

En lo que respecta a las simulaciones, un aspecto clave es la creación del
workload que indica las tareas a simular. La importancia de utilizar un workload

apropiado ha sido identificada en varios trabajos [16, 17]. El uso de un workload

erróneo puede provocar que los resultados de la simulación no se ajusten al
comportamiento real y, por tanto, lleven a tomar malas decisiones de meta-
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scheduling. En nuestro caso, los workloads se crean dinámicamente mediante la
agregación de las tareas que se quieren simular, las tareas que se están ejecutando
actualmente en la infraestructura y una serie de tareas que representan la
carga esperada de la infraestructura. Más detalles sobre la construcción de los
workloads y los propios simuladores pueden encontrarse en [18].

En conclusión, la utilización de un meta-scheduler basado en simulación
permite sacar partido de la integración de diversas infraestructuras heterogéneas,
logrando una mejor utilización de los recursos disponibles, lo que se traduce en
una disminución del tiempo de ejecución de los worklows ejecutados.

5 Caso de estudio: Inspiral

En esta sección desplegaremos y ejecutaremos el workflow cient́ıfico de análisis
Inspiral con la solución propuesta. El workflow de análisis Inspiral es un workflow

cient́ıfico que analiza e intenta detectar ondas gravitacionales producidas por
varios eventos en el universo utilizando datos obtenidos de la coalescencia de
sistemas binarios compactos como estrellas binarias de neutrones y agujeros
negros [19]. La Figura 4 muestra la estructura del workflow (Figura 4-a) y su
implementación en Taverna (Figura 4-b). Como puede observarse, la relación
entre cada una de las tareas que forman una fase en el diseño de alto nivel
y la implementación correspondiente del workflow en Taverna es inmediata,
siendo muy sencilla la composición del experimento. Internamente, cada una
de las cajas que representan las tareas en Taverna encapsula varias operaciones
sencillas como son la generación de la descripción de las tareas y las invocaciones
al servicio.

Workflow input ports

Workflow output ports

Input1

TmpltBank1

Input2

TmptBlank2

Input3

TmptBlank3

Input4

TmptBlank4

Input5
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Inspiral1_3 Inspiral1_4 Inspiral1_5
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TrigBank3
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Fig. 4. Workflow cient́ıfico de análisis LIGO Inspiral: a) Descripción de alto nivel, b)
Implementación en Taverna.
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El experimento consta de diferentes fases, cuya descripción detallada puede
consultarse en [18, 19], que realizan el procesamiento de grandes conjuntos de
mediciones generadas por un conjunto de sensores y detectores. Los trabajos
Inspiral son los más complejos en términos computacionales y los que más
recursos demandan.

El workflow Inspiral se puede ejecutar tanto en Hermes como en AraGrid.
Sin embargo, ambas infraestructuras muestran una tendencia a tener diferentes
niveles de carga a lo largo del d́ıa, lo que provoca que sea más viable enviar los
trabajos a una infraestructura en ciertos momentos y viceversa. Los detalles de
los diferentes niveles de carga pueden consultarse en [18]. Evidentemente, éste
no es el único criterio a considerar ya que el rendimiento de una plataforma
Grid depende de muchos factores y su análisis es complejo. La utilización de un
simulador como herramienta de decisión permite lidiar con esta complejidad y
mejorar el rendimiento obtenido en la ejecución del workflow como se muestra en
la Figura 5. La figura muestra el tiempo de ejecución total de cada etapa para
el workflow Inspiral ejecutado de forma completa en cada infraestructura (la
barra izquierda corresponde a Hermes mientras que la barra derecha corresponde
a AraGrid) y ejecutado utilizando el servicio y la poĺıtica de meta-scheduling

descrita anteriormente (barra central de la figura). Los resultados muestran que,
para el caso del experimento Inspiral, la utilización del servicio permite obtener
una mejora del 59% respecto a la ejecución del workflow en Hermes y un 111%
respecto a la ejecución del mismo en AraGrid.

Respecto a la sobrecarga que introduce la simulación en términos de tiempo
de ejecución, el proceso de simulación de Hermes es más complejo y tarda entre
3 y 4 minutos para una bolsa de 10000 tareas, mientras que para AraGrid
lleva en torno a 1 minuto. Además, el tiempo de simulación es insignificante
en comparación con el tiempo de ejecución de cada etapa y las transferencias de
datos entre infraestructuras usan enlaces de alta velocidad lo que implica que el
tiempo de ejecución disminuya a pesar de la sobrecarga introducida.

Fig. 5. Resultados experimentales para el workflow Inspiral.
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6 Conclusiones

En este art́ıculo se ha propuesto un servicio de computación para la ejecución
de workflows cient́ıficos. El servicio soluciona varios de los problemas abiertos
en el contexto de la ejecución de workflows cient́ıficos en infraestructuras Grid,
en lo que atañe al modelado de los workflowsy a la ejecución de los mismos.

En primer lugar, el servicio permite ejecutar workflows programados
de manera independiente del entorno de ejecución. Esto permite liberar al
programador de los detalles de bajo nivel referentes a la infraestructura y la
interacción con el middleware, lo que facilita la creación del workflow. Asimismo,
la posibilidad de utilizar el servicio junto con un sistema de gestión de workflows
permite ejecutar workflows programados en diferentes lenguajes, facilitando el
uso del servicio por usuarios con diferentes conocimientos y necesidades.

En segundo lugar, el diseño flexible y desacoplado propuesto permite integrar
diversas infraestructuras de computación heterogéneas de forma dinámica y
utilizar las mismas conjuntamente, dotando al servicio de una elevada potencia
computacional. La inclusión de un meta-scheduler y técnicas de simulación
permite decidir de forma dinámica la infraestructura más adecuada para ejecutar
cada tarea, sacando el máximo partido posible a las infraestructuras disponibles
y obteniendo una mejora en el rendimiento de los workflows ejecutados, como
puede observarse en la aplicación del mismo al workflow de análisis Inspiral.

Actualmente, se está trabajando en la mejora de diferentes aspectos del
servicio. Por un lado, se pretenden integrar más infraestructuras de computación,
en particular se plantea la utilización de entornos de computación Cloud
como Amazon EC2. Por otra parte, se pretende aumentar la precisión de las
simulaciones, para poder tomar mejores decisiones y aumentar el rendimiento de
los workflows ejecutados. En esa misma ĺınea, se pretende estudiar el rendimiento
que ofrecen diferentes algoritmos de meta-scheduling. Finalmente, se pretende
aplicar el servicio a la resolución de problemas complejos desde un punto de vista
computacional, como el análisis del comportamiento de workflows cient́ıficos
anotados semánticamente.
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