000078311 001__ 78311
000078311 005__ 20200117221654.0
000078311 0247_ $$2doi$$a10.1016/j.jcis.2017.11.055
000078311 0248_ $$2sideral$$a103468
000078311 037__ $$aART-2018-103468
000078311 041__ $$aeng
000078311 100__ $$0(orcid)0000-0002-8787-117X$$aClemente, A.
000078311 245__ $$aVersatile hollow fluorescent metal-silica nanohybrids through a modified microemulsion synthesis route
000078311 260__ $$c2018
000078311 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078311 5203_ $$aSilica-metal nanohybrids are common materials for applications in biomedicine, catalysis or sensing. Also, hollow structures are of interest as they provide additional useful features. However, in these materials the control of the size and accessibility to the inner regions of the structure usually requires complex synthesis procedures. Here we report a simple colloidal procedure for synthesizing hollow silica-metal nanohybrids, driven by the diffusion of metal precursors through the porous silica shell and subsequent reduction in aqueous solutions. The formation of hollow nanoparticles is controlled by the colloidal conditions during synthesis, which affect the ripening of hollow nanoparticles in presence of organosilanes. The modification of the conditions during synthesis affected the growth of silica precursors in presence of fluorescein isothiocyanate (FITC). The limited access to water molecules during the hydrolysis of silica precursors is attributed to the hydrophobicity of organic fluorescent molecules linked to the condensing silica clusters at the initial stages of nanoparticle formation and to the limitation of water content in the microemulsion method used. Finally, the growth of metal nanoseeds at the core of hollow nanoparticles can be easily achieved though a simple method in aqueous environment. The pH and thermal conditions during the reduction process affect the formation of metal-silica nanohybrids and their structural features.
000078311 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2011-07641$$9info:eu-repo/grantAgreement/ES/MINECO/JCI-2012-13421$$9info:eu-repo/grantAgreement/EC/FP7/263147/EU/Development of reference methods for hazard identification, risk assessment and LCA of engineered nanomaterials/NANOVALID$$9info:eu-repo/grantAgreement/ES/DGA/FSE
000078311 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000078311 590__ $$a6.361$$b2018
000078311 591__ $$aCHEMISTRY, PHYSICAL$$b29 / 148 = 0.196$$c2018$$dQ1$$eT1
000078311 592__ $$a1.29$$b2018
000078311 593__ $$aBiomaterials$$c2018$$dQ1
000078311 593__ $$aSurfaces, Coatings and Films$$c2018$$dQ1
000078311 593__ $$aElectronic, Optical and Magnetic Materials$$c2018$$dQ1
000078311 593__ $$aColloid and Surface Chemistry$$c2018$$dQ1
000078311 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078311 700__ $$aMoreno, N.
000078311 700__ $$0(orcid)0000-0002-2436-1041$$aLobera, M.P.$$uUniversidad de Zaragoza
000078311 700__ $$0(orcid)0000-0001-5512-0075$$aBalas, F.$$uUniversidad de Zaragoza
000078311 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, J.$$uUniversidad de Zaragoza
000078311 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000078311 773__ $$g513 (2018), 497-504$$pJ. colloid interface sci.$$tJOURNAL OF COLLOID AND INTERFACE SCIENCE$$x0021-9797
000078311 8564_ $$s564150$$uhttps://zaguan.unizar.es/record/78311/files/texto_completo.pdf$$yPostprint
000078311 8564_ $$s55922$$uhttps://zaguan.unizar.es/record/78311/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078311 909CO $$ooai:zaguan.unizar.es:78311$$particulos$$pdriver
000078311 951__ $$a2020-01-17-22:10:31
000078311 980__ $$aARTICLE