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ABSTRACT The preparation and photophysical properties of heteroleptic iridium(III) 

complexes, containing a dianionic C,C,C,C-tetradentate ligand and a cyclometalated 

phenylpyridine group are described. Complex [Ir(μ-OMe)(COD)]2 (1, COD = 1,5-

cyclooctadiene) reacts with 1,1-diphenyl-3,3-butylenediimidazolium iodide 
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([PhIm(CH2)4ImPh]I2), in the presence NaOtBu, to give [Ir(μ-I){κ4-C,C,C,C-

[C6H4Im(CH2)4ImC6H4]}]2 (2), which leads to {[Ir{κ4-C,C,C,C-[C6H4Im(CH2)4ImC6H4]}]2(μ-

OH)(μ-OMe)} (3) by treatment firstly with silver trifluoromethanesulphonate (AgOTf) in 

acetone-dichloromethane and subsequently with KOH in methanol. The reaction of 2 with 

AgOTf and acetonitrile affords the bis(solvento) complex [Ir{κ4-C,C,C,C-

[C6H4Im(CH2)4ImC6H4]}(CH3CN)2]OTf (4). The latter promotes the pyridyl-supported 

heterolytic ortho-CH bond activation of the phenyl group of 2-phenylpyridine, 2-(2,4-

difluorophenyl)pyridine, 2-(p-tolyl)pyridine and 5-methyl-2-phenylpyridine to yield Ir{κ4-

C,C,C,C-[C6H4Im(CH2)4ImC6H4]}{κ2-C,N-[Ar-py]} (Ar-py = C6H4-py (5), C6H2F2-py (6), 

C6H3Me-py (7), C6H4-Mepy (8)) using (piperidinomethyl)polystyrene as an external base. 

Complexes 5–8 are blue-green emitters, which display short lifetimes (0.6–4.8 μs) and quantum 

yields close to the unity in both doped poly(methylmethacrylate) (PMMA) films at 5 wt% and in 

2-methyltetrahydrofuran at room temperature. 

INTRODUCTION 

The straightforward manner in which the photophysical properties of phosphorescent emitters 

can be tuned by combining different ligands in the coordination sphere of the metal center has 

positioned the heteroleptic iridium(III) complexes at the forefront of modern photochemistry.1 

As a consequence, several classes of compounds of this type have been reported, being the focus 

mainly centered on [3b+3b+3b’] derivatives2 which are easily obtained via [Ir(μ-Cl)(3b)2]2 

dimers.3 Because each compound has its own photophysical properties, the development of 

heteroleptic emitters undergoes two main problems: the existence of several isomers with 
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different stereochemistry for a given stoichiometry and their marked trend to reach the ligands 

redistribution equilibrium.4 

A promising strategy to mitigate these problems is to link the donor groups coordinated at the 

metal center. The generation of ligands with higher denticity reduces both the number of possible 

isomers and the number of compounds in the mixtures due to ligand redistribution issues. 

Furthermore, recent studies indicate that the link favors narrow and bluer emissions. This, which 

is highly desirable for OLED display applications, seems to be related to less pronounced 

differences between the excited-state structure and the ground-state structure.1,5 

Cyclometalated phenylpyridines were initially the most used 3b ligands.6 However, they are 

being replaced by cyclometalated aryl-N-heterocyclic carbenes (Ar-NHCs) because of the latter 

effectively raise the LUMO energy, which gives rise to a wider band gap and therefore more 

energetic emissions. In addition, their electronic properties ensures that deactivating ligand-field 

states remain higher in energy than the emissive triplet state.7 The applicability of NHC groups 

needs their coordination, which requires specific procedures. In this context, the cleanest method 

is the direct metalation of imidazolium or benzimidazolium salts.8 If one links two 

cyclometalated Ph-NHC groups with a flexible chain, through the nitrogen atoms, one can 

generate a dianionic C,C,C,C-tetradentate ligand and therefore [6tt+3b] (tt = tetradentate) 

phosphorescent heteroleptic iridium(III) derivatives. 

Tetradentate ligands are less common than those with one, two, or three donor atoms and 

carbon is also a less frequent donor atom than nitrogen, phosphorus, arsenic, oxygen, or sulfur.9 

Thus, although the boom of the NHCs has given rise in recent years to interesting complexes 

containing tetradentate ligands based on one, two, three, and four NHC groups, those 

coordinating four C-donor atoms are very scarce.10 The great majority of C,C,C,C-donors ligands 
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are neutral macrocycles based on four NHC moieties, which coordinate to generate a plane (I),11 

with some exceptions.12 A few acyclic system have been also described, which stabilize 

structures II13 (Chart 1). 

Chart 1. Structures Stabilized by C,C,C,C-Tetradentate Ligands 

 

The generation of tetradentate ligands based on two cyclometalated Ar-NHC moieties requires 

the chelating coordination of a bidentate bis(N-phenyl)-substituted-bis(NHC) ligand and the 

subsequent C-directed ortho-CH bond activation of both N-phenyl substituents.14 The chelating 

versus bridging coordination of bis(NHC) ligands is an unresolved issue.15 It has been suggested 

that the length of the linker between the azole rings plays a main role in the type of 

coordination.16 However, the problem is much more complex. Recently, we have shown that the 

d2-hexahydride OsH6(PiPr3)2 promotes the direct metalation of the benzimidazolium units and the 

ortho-CH bond activation of both phenyl substituents of 1,1’-diphenyl-3,3’-

ethylenedibenzimidazolium to give Os{κ4-C,C,C,C-[C6H4BzIm(CH2)2BzImC6H4]}L2 derivatives, 

containing a dianionic C,C,C,C-tetradentate ligand (Scheme 1).5b In contrast to the d2-

hexahydride, the d4-pentahydride IrH5(PiPr3)2 reacts with 1,1’-diphenyl-3,3’-

alkylenediimidazolium halides ([(CH2)n(HImC6H5)2]X2; n = 2, 3, 4) to yield the dinuclear 

derivatives {[IrH2(PiPr3)2]2[μ-(CH2)n(ImC6H4)2]} (n = 2, 3, 4), regardless of the length of the 

chain between the imidazolylidene groups (Scheme 2),17 although the steric hindrance of both 

polyhydrides is the same. The tetradentate ligand of Os{κ4-C,C,C,C-

[C6H4BzIm(CH2)2BzImC6H4]}L2 avoids a four-planar coordination, whereas it favors sawhorse-

type dispositions (II and III in Chart 1). The reason for this preference appears to be electronic, 
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because the observed arrangement for the donor atoms is not determined by the presence of the 

linker between the benzimidazolylidene groups and is as that found in complexes containing two 

independent orthometalated N-phenylbenzimidazolylidene ligands.5b 

Scheme 1. Reaction of OsH6(PiPr3)2 with 1,1’-Diphenyl-3,3’-ethylenedibenzimidazolium5b 

 

Scheme 2. Reactions of IrH5(PiPr3)2 with 1,1’-Diphenyl-3,3’-alkylenediimidazolium17 

 

This paper shows an entry to iridium(III) emitters of the class [6tt+3b], which display quantum 

yields close to the unity, and at the same time demonstrates that the synthetic precursor plays a 

key role in the coordination mode of tetradentate bis(N-phenyl)-bis(NHC) ligands. 

RESULTS AND DISCUSSION 

The Synthetic Precursor. Dimers [Ir(μ-Cl){κ2-C,C-(C6R4-NHC)}2]2 have shown to be useful 

synthetic precursors to prepare iridium(III) emitters of the class [3b+3b+3b’], with two 

cyclometalated Ar-NHC ligands, which are the counterparts of our target [6tt+3b] compounds. 

They are usually obtained from the reactions of the known complex [Ir(μ-Cl)(COD)]2 (COD = 

1,5-cyclooctadiene) with the corresponding imidazolium or benziimidazolium chloride in the 
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presence of a base and their X-ray structures reveal that the NHC groups are mutually trans 

disposed at the coordination sphere of each iridium(III).7b,c As a consequence, the resulting 

[3b+3b+3b’] derivatives also show a mutually trans NHC arrangement.7d−f,i We decided to 

explore this synthetic strategy to prepare [6tt+3b] derivatives containing two cyclometalated Ar-

NHC moieties linked by a butylene chain, given that the use of the pentahydride IrH5(PiPr3)2 as 

synthetic precursor had previously led to a compound with a bridging bis(NHC) ligand.17 

However, a more suitable precursor than [Ir(μ-Cl)(COD)]2 would be the methoxide-counterpart 

[Ir(μ-OMe)(COD)]2 (1), since the methoxide ligand of this type of dimers has proven to allow 

the direct metalation of imidazolium and benzimidazolium salts.18 

Treatment of 2-methoxyethanol suspensions of 1 with 3.4 equivalents of 1,1’-diphenyl-3,3-

butylenediimidazolium iodide ([PhIm(CH2)4ImPh]I2), in the presence of sodium tert-butoxide 

(NaOtBu), at 130 ºC, for 6 hours produces the precipitation of the dimer [Ir(μ-I){κ4-C,C,C,C-

[C6H4Im(CH2)4ImC6H4]}]2 (2), as a white solid in 65% yield (Scheme 3). Interestingly, its 

13C{1H} NMR spectrum, in dichloromethane-d2, at room temperature shows two resonances for 

the metalated NHC-carbon atoms, at 175.6 and 153 ppm, and two resonances for the metalated 

phenyl-carbon atoms, at 150.7 and 131.7 ppm. This reveals that the imidazolylidene units of 2 

are mutually cis disposed, in contrast to that observed for related dimers containing two free 

cyclometalated Ar-NHC ligands. So, unlike the osmium complexes Os{κ4-C,C,C,C-

[C6H4BzIm(CH2)2BzImC6H4]}L2 shown in Scheme 1, the linker between the NHC units of 2 is 

determinant to place the donor atoms in their positions at the coordination sphere of the metal 

centers. 
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Scheme 3. Synthesis of the Precursors 

 

Treatment of 2 firstly with silver trifluoromethanesulphonate (AgOTf) in acetone-

dichloromethane and subsequently with KOH in methanol produces the replacement of the 

double iodide bridge by a mixed hydroxide-methoxide bridge. The resulting dimer {[Ir{κ4-

C,C,C,C-[C6H4Im(CH2)4ImC6H4]}]2(μ-OH)(μ-OMe)} (3), was isolated in 47% yield, also as a 

white solid. Like for 2, the 13C{1H} NMR spectrum of 3, in dichloromethane-d2, at room 

temperature displays two resonances for the metalated NHC-carbon atoms, at 182.7 and 160.9 

ppm, and two resonances for the metalated phenyl-carbon atoms, at 156.8 and 133.0 ppm, 

indicating that the arrangement of the C-donor atoms around the metal center of 2 is kept in 3. 

This was confirmed by means of the X-ray diffraction analysis of the structure of the latter 

(Figure 1). The structure has a C2 axis, which contains the oxygen atoms of the bridge. As a 

consequence, the tetradentate ligands are oriented in anti-disposition. In agreement with the 

13C{1H} NMR spectra, the coordination polyhedron around each iridium atom can be described 

as a distorted octahedron with the imidazolylidene of a cyclometalated Ph-NHC moiety trans to 

the orthometalated phenyl of the other one (C7−Ir−C18 = 172.1(2)º), whereas the hydroxide 
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ligand lies trans to the remaining orthometalated phenyl (O1−Ir−C1 = 169.97(18)º) and the 

methoxide ligand is trans to the remaining imidazolylidene (O2−Ir−C14 = 168.81(18)º). The 

separation between the metal center and the phenyl trans to the hydroxide ligand (Ir−C1 = 

2.019(5) Å) is about 0.05Å shorter than the separation between the iridium atom and the phenyl 

trans to the imidazolylidene (Ir−C18 = 2.066(6) Å). Similarly, the separation between the metal 

center and the imidazolylidene trans to the methoxide ligand (Ir−C14 = 1.963(5) Å) is about 0.05 

Å shorter than the separation between the iridium atom and imidazolylidene situated trans to the 

phenyl (Ir−C7 = 2.051(6) Å). The Ir−OH and Ir−OMe bond lengths of 2.190(4) (Ir−O1) and 

2.123(3) (Ir−O2) Å, respectively, compare well with those reported for double hydroxide19 and 

methoxide20 bridges in iridium(III) complexes. 

O1

H1

O2
C23

C7

C14

C1

C18

C17

N4

N3 N1

N2

C6
Ir

 

Figure 1. Molecular diagram of 3 (50% probability ellipsoids). Hydrogen atoms (except H1) are 

omitted for clarity. Selected bond lengths (Å) and angles (deg): Ir−C1 = 2.019(5), Ir−C7 = 

2.051(6), Ir−C14 = 1.963(5), Ir−C18 = 2.066(6), Ir−O1 = 2.190(4), Ir−O2 = 2.123(3); 

C7−Ir−C18 = 172.1(2), O1−Ir−C1 = 169.97(18), O2−Ir−C14 = 168.81(18), C1−Ir−C18 = 

93.3(2), C7−Ir−C14 = 97.6(2). 
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The removal of the iodide ligands of 2 with AgOTf in acetone-dichloromethane leads to a 

complex mixture of solvento species, which in acetonitrile affords the mononuclear 

bis(acetonitrile) derivative [Ir{κ4-C,C,C,C-[C6H4Im(CH2)4ImC6H4]}(CH3CN)2]OTf (4). This salt 

was isolated as a white solid in 71% yield. The demolishing of the dinuclear structure does not 

give rise to any change in the disposition of the C-donor atoms of the tetradentate ligand. Thus, 

in agreement with 2 and 3, the 13C{1H} NMR spectrum of 4, in dichloromethane-d2, at room 

temperature shows two resonances for the inequivalent metalated imidazolylidene carbon atoms, 

at 170.9 and 151.1 ppm, and two resonances for the inequivalent metalated phenyl carbon atoms, 

at 146.8 and 124.6 ppm. 

Preparation and Characterization of [6tt+3b] Complexes. The bis(acetonitrile) complex 4 

is an excellent synthetic precursor to prepare [6tt+3b] complexes containing a cyclometalated 

phenylpyridine ligand. The procedure implies pyridyl-supported heterolytic ortho-CH bond 

activation reactions, on the phenyl group, which use (piperidinomethyl)polystyrene as an 

external base. The reactions were carried out in fluorobenzene under reflux and are compatible 

with substituents at both the pyridyl and phenyl groups (Scheme 4). Thus, under the above 

mentioned conditions, the treatment of 4 with 1.0 equivalent of 2-phenylpyridine (C6H5-py), 2-

(2,4-difluorophenyl)pyridine (C6H3F2-py), 2-(p-tolyl)pyridine (C6H4Me-py), and 5-methyl-2-

phenylpyridine (C6H5-Mepy) affords the respective derivatives Ir{κ4-C,C,C,C-

[C6H4Im(CH2)4ImC6H4]}{κ2-C,N-[Ar-py]} (Ar-py = C6H4-py (5), C6H2F2-py (6), C6H3Me-py (7), 

C6H4-Mepy (8)), which were isolated as analytically pure yellow solids in high yields (80−95%) 

without further purification. 
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Scheme 4. Preparation of [6tt+3b] Complexes 
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The stereochemistry of the obtained [6tt+3b] complexes was confirmed by means of the X-ray 

diffraction analysis of 5. Its structure (Figure 2) reveals that the relative disposition of the donor 

atoms of the tetradentate ligands does not change in the new octahedral environment, i.e., the 

imidazolylidene of a cyclometalated Ph-NHC unit is situated trans to the orthometalated phenyl 

of the other one (C25−Ir−C12 = 167.2(2)º). Furthermore, it proves that from the two possible 

isomers resulting from the cyclometalation of the phenylpyiridine, pyridine trans to phenyl and 

pyridine trans to imidazolylidene, the latter is regioselectively formed with 

pyridine−iridium−imidazolylidene and phenyl−iridium−phenyl angles of 167.2(2) (N1−Ir−C18) 

and 170.9(2)º (C7−Ir−C29) respectively. The iridium−imidazolylidene distances of 1.956(6) 

(Ir−C18) and 2.072(6) (Ir−C25) Å and the iridium−phenyl bond lengths of 2.062(6) (Ir−C12), 

2.090(6) (Ir−C7), and 2.115(6) (Ir−C29) Å compare well with those of 3. 
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Figure 2. Molecular diagram of 5 (50% probability ellipsoids). Hydrogen atoms are omitted for 

clarity. Selected bond lengths (Å) and angles (deg): Ir−N1 = 2.096(6), Ir−C7 = 2.090(6), Ir−C12 

= 2.062(6), Ir−C18 = 1.956(6), Ir−C25 = 2.072(6), Ir−C29 = 2.115(6); N1−Ir−C18 = 167.2(2), 

C7−Ir−C29 = 170.9(2), C12−Ir−C25 = 167.2(2), N1−Ir−C7 = 78.9(2), C12−Ir−C18 = 79.7(2), 

C25−Ir−C29 = 77.8(2). 

The 13C{1H} NMR spectra 5−8, in dichloromethane-d2, at room temperature are consistent 

with the structure shown in Figure 2 and agree well with those of 2−4. Thus, they show two 

resonances for the inequivalent metalated imidazolylidene carbon atoms, at about 176 and 165 

ppm, and two resonances for the metalated carbon atoms of the inequivalent phenyl groups of the 

tetradentate ligand, between 152 and 155 ppm. The resonance corresponding to the metalated 

carbon atom of the bidentate C,N-donor ligand appears between 171 and 173 ppm for 5, 7, and 8 

and at 179.8 ppm for 6. 

As it has been previously mentioned, the [3b+3b+3b’] iridium complexes containing two free 

cyclometalated Ph-NHC ligands display octahedral environments with the NHC units disposed 

mutually trans. In this context, it should be pointed out that the linkage of the cyclometalated 
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moieties with a butylene chain allows to isolate species with an arrangement NHC trans to 

phenyl. 

Photophysical and Electrochemical Properties of the [6tt+3b] Complexes. UV/vis 

absorption data of 1.0–6.5 x 10-5 M 2-methyltetrahydrofuran (MeTHF) solutions of complexes 

5–8, at room temperature, are collected in Table 1. The spectra of the four complexes are similar 

(Figures S19 – S22 in the Supporting Information), showing three different zones: 230–300, 

320–410, and >420 nm. Time-dependent DFT calculations (B3LYP-GD3//SDD(f)/6-31G**), 

computed in tetrahydrofuran as solvent, indicate that the absorptions at the highest energy region 

correspond mainly to 1π–π* interligand and intraligand transitions. The bands in the region of 

moderate energy are due to allowed spin metal-to-phenylpyridine charge transfer (1MLCT) 

mixed with NHC-to-phenylpyridine transitions. The weak absorption tails after 420 nm are 

usually assigned to formally spin-forbidden 3MLCT transitions, caused by the large spin-orbit 

coupling introduced by the iridium center.21 

The oxidation and reduction potentials of 5–8 were measured by cyclic voltammetry in 

degassed acetonitrile solutions and referenced vs Fc/Fc+. The data are collected on Table 2. The 

four complexes exhibit an irreversible oxidation peak potential in the region 0.23–0.41 V and a 

quasi-reversible reduction in the narrow region from –2.94 to –3.02 V. The electrochemical gap 

is in agreement with the calculated HOMO-LUMO gap (Table 2, Tables S10–S13, and Figures 

S23–S26) and with those previously reported for neutral iridium complexes containing two free 

cyclometalated NHC ligands with the NHC disposed mutually trans.7d,e,g. 
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Table 1. Selected Experimental UV-Vis Absorptions for 5–8 (in MeTHF) and Computed 

TD-DFT (in THF) Vertical Excitation Energies and their Major Contributions 

Complex λexp 
(nm) ε x 10-3 (M-1·cm-1) 

Excitation 
energy 
(nm) 

Oscillator 
strength, f Transition Contrib (%) 

5 244 16.5 238 0.0678 HOMO-5 → LUMO+2  63 

 272 24.5 279 0.0684 HOMO-6 → LUMO  83 

 344 4.0 345 0.0495 HOMO-2 → LUMO  85 

 376 2.6 381 0.0250 HOMO-1 → LUMO  98 

 402 2.1 409 0.0246 HOMO → LUMO 98 

 444 1.1     

6 234 94.1 242 0.0648 HOMO-4 → LUMO+3  48 

 266 56.8 278 0.1028 HOMO-6 → LUMO  55 

     HOMO-3 → LUMO+1 26 

 324 12.3 336 0.0119 HOMO → LUMO+1 96 

 342 6.7 343 0.0399 HOMO-2 → LUMO  94 

 374 3.8 374 0.0250 HOMO-1 → LUMO 97 

 400 2.7 401 0.0165 HOMO → LUMO  97 

 430 1.0     

7 234 137 243 0.0555 HOMO-4 → LUMO+3  58 

 272 40.3 289 0.1577 HOMO-5 → LUMO  39 

     HOMO-3 → LUMO+1 32 

 342 5.2 342 0.0519 HOMO → LUMO+1  90 

 376 2.9 376 0.0249 HOMO-1 → LUMO  98 

 404 2.4 404 0.0284 HOMO → LUMO 98 

 440 1.0     

8 234 43.9 254 0.0603 HOMO-9 → LUMO  69 

 272 27.8 287 0.1571 HOMO-3 → LUMO+1  33 

     HOMO-5 → LUMO 32 

     HOMO-1 → LUMO+3 14 

 340 4.8 341 0.0335 HOMO → LUMO+1 78 

     HOMO-2 → LUMO  18 

 376 2.6 377 0.0259 HOMO-1 → LUMO 98 

 404 2.1 405 0.0284 HOMO → LUMO  98 

 440 0.9     
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Table 2. Electrochemical and DFT MO Energy Data for Complexes 5–8 

Complex Eox 
(V)a 

Ered 
(V)a 

Eox – Ered 
(V) 

HOMO 
(eV)b 

LUMO 
(eV)b 

HLG 
(eV)b,c 

5 0.26 -2.94 3.20 -4.86 -1.10 3.76 

6 0.41 -2.94 3.35 -4.97 -1.16 3.81 

7 0.23 -3.02 3.25 -4.84 -1.05 3.79 

8 0.23 -3.02 3.25 -4.84 -1.06 3.78 
aMeasured in degassed acetonitrile solution (10-3 M) / [Bu4N]PF6 

(0.1 M), vs Fc/Fc+ at 0.1 V·s-1, at room temperature. bValues from 
electronic structure DFT calculations. cHLG = LUMO – HOMO. 

 

Complexes 5−8 are emissive in the blue-green spectral region upon photoexcitation, in doped 

poly(methylmethacrylate) (PMMA) films at 5 wt% and in powder at room temperature and in 2-

methyltetrahydrofuran at room temperature and 77 K, displaying bands centered between 455 

and 520 nm. Figure 3 depicts the emission spectra, whereas Table 3 summarizes calculated and 

experimental wavelengths, lifetimes, quantum yields at room temperature in PMMA films and 2-

methyltetrahydrofuran solutions, and radiative and nonradiative rate constants. The emission 

spectra in PMMA films, in neat solid powders, and in 2-methyltetrahydrofuran at room 

temperature show broad structureless bands. However, the spectra in glassy 2-

methyltetrahydrofuran, at 77 K, display vibronic fine structures which are consistent with a 

notable contribution of ligand centered 3π–π* transitions to the excited state. The emission 

maxima further undergo a blue shift, which has been attributed to a significant additional 3MLCT 

character of the excited state at room temperature.7d,22 The nature of the substituents of the 

cyclometalated phenylpyridine has a moderated influence on the emission. Thus, while the 

methyl substituted complexes 7 and 8 display emission wavelengths similar to the unsubstituted 

derivative 5, the emission wavelength of the fluoride disubstituted compound 6 undergoes a 



 

15

higher energy shift of about 30 nm. This blue shift is in agreement with the higher HOMO-

LUMO gap of 6 with regard to those of 5, 7, and 8. It should be noted that although the reduction 

potentials of the four complexes are similar, the oxidation potential of 6 is higher. The lifetimes 

are short lying in the range 0.6–4.8 μs, whereas the quantum yields, measured in PMMA films 

are in all cases close to the unity (0.87–0.96), whereas are approximately 1 for 5, 7, and 8 and 

0.73 for 6 in solution at room temperature. In this context, it should be mentioned that, as far as 

we know, the highest quantum yield reported for complexes with two free cyclometalated aryl-

NHC ligands is 0.79.7e In PMMA films, the radiative rate constants are one order of magnitude 

higher than the nonradiative rate constants for 5, 7, and 8 whereas are of the same order of 

magnitude for 6. The radiative rate constants in PMMA films and solution are comparable. The 

exceptional quantum yields in solution suggest that the rigidity of the structure imposed by the 

linker between the carbene moieties plays a main role in the brightness of the emitters.  
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Figure 3. Emission spectra in 5 wt% PMMA films at 298 K (a), in neat solid powders at 298 K 

(b), in MeTHF at 298K (c), and in MeTHF at 77 K (d) for complexes 5–8. 

 



 

17

Table 3. Photophysical Data for Complexes 5–8 

Complex Calcd 
λem

a 
(nm) 

Media (T/K) λem 
(nm) 

λexc 
(nm) 

τ (μs) ϕ kr (s-1)b knr (s-1)b kr/knr 

5  PMMA film 
(298) 

509 407 1.7 0.93 5.5 x 105 4.1 x 104 13.3 

  powder (298) 519 475 1.1     

 505 MeTHF 
(298) 

510 431 3.9 ~1 2.6 x 105   

  MeTHF (77) 478, 
506 

439 4.8     

6  PMMA film 
(298) 

485 401 1.3 0.87 6.7 x 105 1.0 x 105 6.7 

  powder (298) 485 450 0.7     

 478 MeTHF 
(298) 

473 394 1.6 0.73 4.6 x 105 1.7 x 105 2.7 

  MeTHF (77) 455, 
484 

396 3.1     

7  PMMA film 
(298) 

509 401 1.7 0.93 5.5 x 105 4.1 x 104 13.3 

  powder (298) 517 470 0.6     

 500 MeTHF 
(298) 

492 424 3.1 ~1 3.2 x 105   

  MeTHF (77) 473, 
506 

429 4.5     

8  PMMA film 
(298) 

508 403 1.8 0.96 5.3 x 105 2.2 x 104 24.0 

  powder (298) 513 475 1.1     

 501 MeTHF 
(298) 

492 425 2.4 ~1 4.2 x 105   

  MeTHF (77) 476, 
510 

429 4.4     

aPredicted from TD-DFT calculations in THF at 298 K. bCalculated according to the 
equations kr = ϕ/τ and knr = (1 − ϕ)/τ, where kr is the radiative rate constant, knr is the 
nonradiative rate constant, ϕ is the quantum yield, and τ is the excited-state lifetime. 
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The emissions can be attributed to T1 excited states originated by HOMO→LUMO charge 

transfer transitions. Figure 4 displays the spin density distribution calculated for the T1 states at 

their minimum energy geometry. In accordance with this, good agreement is observed between 

the experimental wavelengths and those calculated by estimating the difference in energy 

between the optimized triplet state and the singlet state S0, in tetrahydrofuran. 

5 6

7 8  

Figure 4. Unpaired electron spin-contours density (0.03 au) calculated for the T1 states of 

complexes 5–8. 

CONCLUDING REMARKS 

This study shows the discovery of a family of iridium(III) emitters of the class [6tt+3b], which 

contain a C,C,C,C-tetradentate ligand and display quantum yields close to the unity. In addition, 

the study reveals that there are marked differences in stereochemistry and photophysical features 

between the compounds with two free cyclometalated aryl-NHC ligands and those bearing the 

NHC moieties linked by a butylene chain. 
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The coordination mode of bis(N-phenyl)-bis(NHC) ligands depends upon the metal precursor. 

In contrast to the pentahydride IrH5(PiPr3)2, that reacts with 1,1-diphenyl-3,3-

butylenediimidazolium iodide to afford a bis(NHC) bridge, the known dimer [Ir(μ-OMe)(COD)]2 

metalates the cation of this salt to generate a C,C,C,C-tetradentate ligand, formed by two 

cyclometalated Ph-NHC moieties linked by a butylene chain, which coordinates to only one 

iridium atom. The resulting species is easily transformed into the cation [Ir{κ4-C,C,C,C-

[C6H4Im(CH2)4ImC6H4]}(CH3CN)2]+, which promotes the pyridyl supported heterolytic ortho-

CH bond activation of the phenyl group of phenylpyridines to give the [6tt+3b] complexes in 

almost quantitative yield. In contrast to the complexes with two free cyclometalated aryl-NHC 

ligands, the structures of these compounds have the NHC moieties of the tetradentate ligand 

disposed mutually cis. The rigidity imposed by the chain not only changes the disposition of the 

donor atoms in the coordination sphere of the metal, but also produces an increase of the 

quantum efficiency. Thus, they are blue-green emitters, which display short lifetimes (0.6–4.8 

μs) and reach quantum yields close to the unity, upon photoexcitation, in both doped 

poly(methylmethacrylate) (PMMA) films at 5 wt% and in 2-methyltetrahydrofuran at room 

temperature. 

In conclusion, the linkage of chelate ligands with alkylene chains allows to stabilize particular 

isomers of heteroleptic iridium(III) emitters, containing three bidentate units, and reduces the 

mixtures due to ligand redistribution. Furthermore, the rigidity imposed by the chain increases 

the quantum efficiency. 

EXPERIMENTAL SECTION 

Reactions were performed under argon with dried solvents using Schlenk-tube techniques. 

Instrumental methods used for characterization, X-ray information, and DFT computational 

details are given in the Supporting Information. Chemical shifts (in ppm) are referenced to 



 

20

residual solvent peaks (1H, 13C{1H}) or external CFCl3 (19F) whereas coupling constants J are 

given in hertz. Complex [Ir(μ-OMe)(COD)]2 (1)23 and 1,1’-diphenyl-3,3’-butylenediimidazolium 

ioide24 were prepared according to the published methods.  

Preparation of [Ir(μ-I){κ4-C,C,C,C-[C6H4Im(CH2)4ImC6H4]}]2 (2). A mixture of 1 (213.2 

mg, 0.322 mmol), 1,1’-diphenyl-3,3’-butylenediimidazolium iodide (654 mg, 1.09 mmol), and 

sodium tert-butoxide (154.5 mg, 1.61 mmol) in 15 mL of 2-methoxyethanol was heated at 130 

ºC in a Schlenk flask with a Teflon stopcock for 6 h. During this time a white solid appeared. 

The resulting suspension was transferred to a Schlenk flask. After cooling to room temperature, 

the white solid was decanted, washed with methanol (4 x 3 mL) and dried in vacuo. Yield: 276 

mg (65%). Anal. Calcd for C44H40I2Ir2N8: C, 40.06; H, 3.06; N, 8.50. Found: C, 40.19; H, 3.39; 

N, 8.09. HRMS (electrospray, m/z): Calcd for C22H20IrN4 [M/2 – I]+: 533.1312; found 533.1312. 

1H NMR (400 MHz, CD2Cl2, 298 K): δ 8.75 (m, 2H, Ph), 7.67 (d, 2H, 3JH-H = 2.0, Im), 7.28 (d, 

2H, 3JH-H = 2.1, Im), 7.25 (m, 4H, Ph), 7.22 (d, 2H, 3JH-H = 2.0, Im), 7.15 (m, 2H, Ph), 7.01 (dd, 

2H, 3JH-H = 7.7, 4JH-H = 1.3, Ph), 6.68 (ddd, 2H, 3JH-H = 3JH-H = 7.4, 4JH-H = 1.3, Ph), 6.55 (d, 2H, 

3JH-H = 2.1, Im), 6.36 (ddd, 2H, 3JH-H = 3JH-H = 7.4, 4JH-H = 1.3, Ph), 6.18 (dd, 2H, 3JH-H = 7.7, 4JH-H 

= 1.3, Ph), 5.27, 3.61, 3.40, 2.44 (all m, 2H each, NCH2), 2.13, 2.03, 1.93, 1.48 (all m, 2H each, 

NCH2CH2). 13C{1H} NMR (100.63 MHz, CD2Cl2, 298 K): δ 175.6, 153.0 (both IrC Im), 150.7 

(IrC Ph), 147.7, 146.3 (both NC Ph), 141.3, 136.3 (both CH Ph), 131.7 (IrC Ph), 126.3, 124.4 

(both CH Ph), 122.8 (CH Im), 121.9, 121.6 (both CH Ph), 120.5, 115.7, 114.4 (all CH Im), 

111.3, 110.5 (both CH Ph), 51.8, 48.1 (both NCH2), 29.4, 26.0 (both NCH2CH2). 

Preparation of [Ir{κ4-C,C,C,C-[C6H4Im(CH2)4ImC6H4]}]2(μ-OH)(μ-OMe)} (3). A solution 

of silver trifluoromethanesulfonate (86.0 mg, 0.335 mmol) in 5 mL of acetone was added to a 

suspension of 2 (201.0 mg, 0.152 mmol) in dichloromethane (20 mL). The suspension was 
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stirred in the dark at room temperature, for 1 h. Then, it was filtered through Celite to remove the 

precipitated AgI. The solvent of the filtrate was almost removed in vacuo. The addition of 

diethyl ether (3 mL) caused the precipitation of a white solid that was dried in vacuo. The white 

solid was dissolved in MeOH (7 mL) and a solution of KOH (18.8 mg, 0.335 mmol) in MeOH (3 

mL) was added to the previous one. After 2 hours at room temperature, a white solid was 

formed. It was decanted and washed with further portions of MeOH (3 x 3 mL). Yield: 80 mg 

(47%). Anal. Calcd for C45H44Ir2N8O2: C, 48.55; H, 3.98; N, 10.06. Found: C, 48.31; H, 3.89; N, 

9.99. HRMS (electrospray, m/z): calcd for C22H20IrN4 [Ir{C6H4Im(CH2)4ImC6H4}]+: 533.1312; 

found 533.1394. 1H NMR (400 MHz, CD2Cl2, 298 K): δ 7.56 (d, 2H, 3JH-H = 2.0, CH Im), 7.47 

(dd, 2H, 3JH-H = 7.1, 4JH-H = 1.4, CH Ph), 7.29 (d, 2H, 3JH-H = 2.1, CH Im), 7.14 (m, 2H, CH Ph), 

7.08 (ddd, 2H, 3JH-H = 3JH-H = 7.4, 4JH-H = 1.4, CH Ph), 6.98 (dd, 2H, 3JH-H = 7.6, 4JH-H = 1.4, CH 

Ph), 6.89 (dd, 2H, 3JH-H = 7.1, 4JH-H = 1.4, CH Ph), 6.86 (d, 2H, JH-H = 2.0, CH Im), 6.65 (ddd, 2H, 

3JH-H = 3JH-H =7.4, 4JH-H = 1.5, CH Ph), 6.51 (d, 2H, 3JH-H = 2.1, CH Im), 6.30 (ddd, 2H, 3JH-H = 3JH-

H =7.4, 4JH-H = 1.3, CH Ph), 6.21 (dd, 2H, 3JH-H = 7.6, 4JH-H = 1.5, CH Ph), 3.45, 3.29, 3.02 (all m, 

2H each, NCH2), 2.48 (s, 3H, OCH3), 2.38 (m, 2H, NCH2CH2), 2.16 (m, 2H, NCH2), 1.75, 1.64, 

1.24 (all m, 2H each, NCH2CH2), –0.77 (s, 1H, OH). 13C{1H} NMR (100.63 MHz, CD2Cl2, 298 

K): δ 182.7, 160.9 (both IrC Im), 156.8 (IrC Ph), 148.8, 148.4 (both NC Ph), 139.4, 137.7 (both, 

CH Ph), 133.0 (IrC Ph), 124.2, 123.7 (both CH Ph), 123.1 (CH Im), 121.0, 120.6 (both, CH Ph), 

120.2, 114.6, 114.4 (all CH Im), 110.4, 109.4 (both CH Ph), 57.3 (s, OCH3), 49.0, 47.7 (both 

NCH2), 29.8, 21.9 (both, NCH2CH2). 

Preparation of [Ir{κ4-C,C,C,C-[C6H4Im(CH2)4ImC6H4]}(CH3CN)2][OTf] (4) A solution of 

silver trifluoromethanesulfonate (87.6 mg, 0.341 mmol) in 5 mL of acetone was added to a 

suspension of 2 (204.5 mg, 0.155 mmol) in dichloromethane (20 mL). The suspension was 
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stirred in the dark at room temperature, for 1 h. Then, it was filtered through Celite to remove the 

precipitated AgI. The solvent of the filtrate was almost removed in vacuo. The addition of 

diethyl ether (3 mL) caused the precipitation of a white solid that was dried in vacuo. The solid 

was dissolved in acetonitrile (5 mL) forming a colorless solution. The solvent was almost 

removed under reduced pressure and the addition of diethyl ether (3 mL) caused the precipitation 

of a white solid that was washed with further portions of diethyl ether (3 x 3 mL). Yield: 168 mg 

(71%). Anal. Calcd for C27H26F3IrN6O3S: C, 42.45; H, 3.43; N, 11.00; S, 4.20. Found: C, 42.53; 

H, 3.65; N, 10.82; S, 4.55. HRMS (electrospray, m/z): calcd for C24H23IrN5 [M - NCCH3]+ 

574.1578; found 574.1662. IR (cm-1): ν(CN) 2260 (br, m), ν(CF3 + SO3) 1250, 1222, 1148, 1027 

(m). 1H NMR (400 MHz, CD2Cl2, 298 K): δ 7.86 (m, 1H, Ph), 7.65 (d, 1H, 3JH-H = 2.0, Im), 7.37 

(d, 1H, 3JH-H = 2.1, Im), 7.28 (d, 1H, 3JH-H = 2.0, Im), 7.23 (m, 3H, Ph), 7.11 (dd, 1H, 3JH-H = 7.6, 

4JH-H = 1.3, Ph), 6.86 (ddd, 1H, 3JH-H =3 JH-H = 7.6, 4JH-H = 1.4, Ph), 6.74 (d, 1H, 3JH-H = 2.1, Im), 

6.53 (ddd, 1H, 3JH-H = 3JH-H = 7.6, 4JH-H = 1.3, Ph), 6.34 (dd, 1H, 3JH-H = 7.6, 4JH-H = 1.4, Ph), 4.72, 

4.33, 3.57 (all m, 1H each, NCH2), 2.38 (m, 1H, NCH2CH2), 2.37, 2.32 (both s, 3H each, 

CH3CN), 2.14 (m, 2H, NCH2CH2), 1.92, 1.81 (both m, 1H each, NCH2CH2). 19F NMR (282.33 

MHz, CD2Cl2, 298 K): δ -78.9 (s). 13C{1H} NMR (100.63 MHz, CD2Cl2, 298 K): δ 170.9, 151.1 

(both IrC Im), 147.5, 147.3 (both NC Ph), 146.8 (IrC Ph), 137.9, 135.4, 126.5, 125.2 (all CH Ph), 

124.6 (IrC Ph), 123.6, 123.5 (both CH Ph), 123.4, 122.0 (both CH Im), 120.1, 118.3 (both 

CH3CN), 116.5, 115.2 (both CH Im), 111.8, 111.7 (both CH Ph), 51.8, 48.1 (both NCH2), 30.1, 

24.3 (both NCH2CH2), 4.3, 4.1 (both CH3). 

Preparation of Ir{4-C,C,C,C-[C6H4Im(CH2)4ImC6H4]}{2-C,N-[C6H4-py]} (5). A mixture 

of 4 (268 mg, 0.351 mmol), (piperidinomethyl)polystyrene (100 mg, 0.351 mmol), and 2-

phenylpyridine (50.1 μL, 0.351 mmol) was refluxed in 10 mL of fluorobenzene for 5h. After 
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cooling at room temperature, the resulting suspension was filtered through Celite. The oily 

residue remaining in the Schlenck flask was washed with dichloromethane (2 x 3 mL). The 

filtrate and washings were combined and the solvent removed under reduced pressure. The 

obtained yellow solid was washed with diethyl ether (3 x 3 mL). Yield: 193 mg (80%). Anal. 

Calcd for C33H28IrN5: C, 57.71 H, 4.11; N, 10.20. Found: C, 57.49; H, 4.30; N, 9.84. HRMS 

(electrospray, m/z): calcd for C33H29IrN5 [M + H]+ 688.2048; found 688.2042. 1H NMR (300 

MHz, CD2Cl2, 298 K): δ 7.86 (d, 1H, 3JH-H = 8.0, py), 7.75 (dd, 1H, 3JH-H = 5.6, 4JH-H = 1.3, py), 

7.69 (d, 1H, 3JH-H = 7.8, Ph), 7.58 (ddd, 1H, 3JH-H = 3JH-H = 8.0, 4JH-H = 1.3, py), 7.51 (d, 1H, 3JH-H 

= 1.9, Im), 7.41 (d, 1H, 3JH-H = 2.1, Im), 7.20 (d, 1H, 3JH-H = 7.4, Ph), 7.16 (d, 1H, 3JH-H = 7.3, Ph), 

7.00-6.82 (m, 4H, Ph), 6.80 (d, 1H, 3JH-H = 1.9, Im), 6.78 (d, 1H, 3JH-H = 2.1, Im), 6.77-6.71 (m, 

4H, 1H py + 3H Ph), 6.67 (ddd, 1H, 3JH-H = 3JH-H = 7.3, 4JH-H = 1.0, Ph), 6.38 (dd, 1H, 3JH-H = 7.3, 

4JH-H = 1.0, Ph), 3.74 (m, 1H, NCH2), 3.54 (m, 2H, NCH2), 2.55 (m, 1H, NCH2), 2.36 (m, 1H, 

NCH2CH2), 2.10 (m, 2H, NCH2CH2), 1.49 (m, 1H, NCH2CH2). 13C{1H} NMR (75.47 MHz, 

CD2Cl2, 298 K): δ 176.7 (IrC Im), 172.2 (IrC Ph), 169.0 (NC py), 165.2 (IrC Im), 154.6, 153.7 

(both IrC Ph), 151.0 (CH py), 148.6, 146.6, 145.0 (all C Ph), 139.54, 139.51 (both CH Ph), 135.6 

(CH py), 132.8, 128.7, 125.7, 124.7, 124.2, 121.9 (all CH Ph), 121.5 (CH py), 120.7 (CH Im), 

120.3 (CH Ph), 120.1 (CH Im), 119.7 (CH Ph), 118.9 (CH py), 116.3, 114.0 (both CH Im), 

110.9, 110.4 (both CH Ph), 50.9, 47.9 both (NCH2), 29.9, 26.4 (both NCH2CH2). 

Preparation of Ir{4-C,C,C,C-[C6H4Im(CH2)4ImC6H4]}2-C,N-[C6H2F2-py]} (6). A mixture 

of 4 (220 mg, 0.288 mmol), (piperidinomethyl)polystyrene (82 mg, 0.288 mmol), and 2-(2,4-

difluorophenyl)pyridine (45 μL, 0.288 mmol) was refluxed in 10 mL of fluorobenzene for 5h. 

After cooling at room temperature, the resulting suspension was filtered through Celite. The 

solvent was removed under reduced pressure and the addition of diethyl ether resulted on a 
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precipitation of a yellow solid that was washed with diethyl ether (3 x 3 mL). Yield: 170 mg 

(82%). Anal. Calcd for C33H26F2IrN5: C, 54.83 H, 3.63; N, 9.69. Found: C, 54.85 H, 3.54; N, 

9.34. HRMS (electrospray, m/z): calcd for C33H27F2IrN5 [M + H]+ 724.1860; found 724.1897. 1H 

NMR (400 MHz, CD2Cl2, 298 K): δ 8.25 (dd, 1H, 3JH-H = 8.0, 4JH-H = 1.5, py), 7.82 (dd, 1H, 3JH-H 

= 5.7, 4JH-H = 1.0, py), 7.61 (dd, 1H, 3JH-H = 8.0, 4JH-H = 1.0, py), 7.52 (d, 1H, 3JH-H = 2.0, Im), 7.41 

(d, 1H, 3JH-H = 2.1, Im), 7.21 (m, 2H, Ph), 6.98 (ddd, 1H, 3JH-H = 3JH-H = 7.5, 4JH-H = 1.7, Ph), 6.93 

(ddd, 1H, 3JH-H = 7.5, 4 JH-H = 1.3, Ph), 6.82 (d, 1H, JH-H = 2.0, Im), 6.78-6.68 (m, 5H, 1H Im + 1H 

py + 3H Ph), 6.39 (dd, 1H, 3JH-H = 7.2, 4JH-H = 1.3, Ph), 6.32 (m, 2H, dfp), 3.72, 3.62, 3.54, 2.50 

(all m, 1H each, NCH2), 2.24, 2.16, 2.07, 1.53 (all m, 1H each, NCH2CH2). 19F NMR (282.33 

MHz, CD2Cl2, 298 K): δ -(ddd, F2, 4JF-F = 3JF-H = 8.9, 5JF-H = 2.4), -1ddd, F4, 4JF-F = 

3JF-H = 3JF-H = 8.9 19F{1H} NMR (282.33 MHz, CD2Cl2, 298 K): δ -(d, F2, 4JF-F = 8.9), -

dF4, 4JF-F = 8.9 13C{1H} NMR (100.63 MHz, CD2Cl2, 298 K): δ 179.8 (dd, 3JC-F = 2.9, 

3JC-F = 4.6, IrC dfp), 176.3 (s, IrC Im), 165.6 (d, 3JC-F = 7.9, NC py), 164.3 (s, IrC Im), 163.4 (dd, 

1JC-F = 255.3, 3JC-F = 10.8, CF), 162.6 (dd, 1JC-F = 260.6, 3JC-F = 11.5, CF), 153.6 (s, IrC Ph), 152.3 

(dd, 5JC-F = 2.2, IrC Ph trans to C6H2F2-py), 151.2 (s, CH py), 148.5, 146.6 (both s, C Ph), 139.3 

(s, CH Ph), 136.2 (s, CH py), 133.0 (s, CH Ph), 128.7 (d, 2JC-F = 2.5, C-py dfp), 126.0, 125.1 

(both s, CH Ph), 123.0 (d, 4JC-F = 22.5, CH py), 122.4 (s, CH Ph), 121.7 (s, CH py), 121.0 (s, CH 

Im), 120.9 (s, CH Ph), 120.6 (s, CH Im), 119.8 (dd, 2JC-F = 13.6, 4JC-F = 2.8, CH dfp), 116.7 (s, 

CH Im), 114.3 (s, CH Im), 111.2 (s, CH Ph), 110.9 (s, CH Ph), 95.8 (dd, 2JC-F = 2JC-F = 27.5, CH 

dfp), 51.3, 48.0 (both s, NCH2), 30.2, 26.5 (both s, NCH2CH2). 

Preparation of Ir{4-C,C,C,C-[C6H4Im(CH2)4ImC6H4]}{κ2-C,N-[C6H3Me-py]} (7). It was 

prepared following the procedure described for 6 starting from 4 (115 mg, 0.150 mmol), 

(piperidinomethyl)polystyrene (43 mg, 0.150 mmol), and 2-(p-tolyl)pyridine (25 μL, 0.150 
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mmol). Yellow solid. Yield: 95 mg (90 %). Anal. Calcd for C34H30IrN5: C, 58.27 H, 4.31; N, 

9.99. Found: C, 58.69 H, 4.17; N, 9.74. HRMS (electrospray, m/z): calcd for C34H31IrN5 [M + H]+ 

702.2205; found 702.2212. 1H NMR (300 MHz, CD2Cl2, 298 K): δ 7.81 (d, 1H, 3JH-H = 8.2, py), 

7.72 (m, 1H, py), 7.58 (m, 1H, C6MeH3), 7.54 (m, 1H, py), 7.51 (d, 1H, 3JH-H = 2.0, Im), 7.41 (d, 

1H, 3JH-H = 2.2, Im), 7.19 (m, 2H, Ph), 6.95 (m, 1H, Ph), 6.89 (m, 1H, Ph), 6.80 (d, 1H, 3JH-H = 

2.0, Im), 6.79 (d, 1H, 3JH-H = 2.2, Im), 6.74-6.65 (m, 6H, 1H py + 3H Ph + 2H C6MeH3), 6.39 

(dd, 1H, 3JH-H = 7.2, 4JH-H = 1.2, Ph), 3.75 (m, 1H, NCH2), 3.54 (m, 2H, NCH2), 2.57 (m, 1H, 

NCH2CH2), 2.38 (m, 1H, NCH2CH2), 2.13 (s, 3H, CH3), 2.07 (m, 2H, NCH2CH2), 1.47 (m, 1H, 

NCH2CH2). 13C{1H} NMR (75.48 MHz, CD2Cl2, 298 K): δ 176.9 (IrC Im), 172.2 (IrC C6H3Me), 

169.1 (NC py), 165.4 (IrC Im), 154.9, 154.0 (both IrC Ph), 151.0 (CH py), 148.7, 146.8 (both C 

Ph), 142.7 (C C6H3Me(-py)), 140.6 (CH C6H3Me), 139.6 (CH Ph), 138.4 (C C6H3Me(-CH3)), 

135.6 (CH py), 133.0, 125.8, 124.8 (all CH Ph), 124.3 (CH C6H3Me), 122.0 (CH Ph), 121.2 (CH 

py), 121.1 (CH C6H3Me), 120.8 (CH Im), 120.3 (CH Ph), 120.2 (CH Im), 118.7 (CH py), 116.5, 

114.1 (both CH Im), 111.0, 110.6 (both CH Ph), 50.9, 48.0 (both NCH2), 29.9, 26.7 (both 

NCH2CH2), 22.0 (CH3). 

Preparation of Ir{4-C,C,C,C-[C6H4Im(CH2)4ImC6H4]}{κ2-C,N-[C6H4-Mepy]} (8). It was 

prepared following the procedure described for 6 starting from 4 (125 mg, 0.164 mmol), 

(piperidinomethyl)polystyrene (47 mg, 0.164 mmol), and 5-methyl-2-phenylpyridine (28 mg, 

0.164 mmol). Yellow solid. Yield: 110 mg (95%). Anal. Calcd for C34H30IrN5: C, 58.27 H, 4.31; 

N, 9.99. Found: C, 58.48 H, 4.47; N, 9.72. HRMS (electrospray, m/z): calcd for C34H31IrN5 [M + 

H]+ 702.2205; found 702.2203. 1H NMR (400 MHz, CD2Cl2, 298 K): δ 7.75 (d, 1H, 3JH-H = 8.3, 

py), 7.64 (d, 1H, 3JH-H = 7.8, Ph), 7.53 (d, 1H, 4JH-H = 0.9, NCH py), 7.53 (d, 1H, 3JH-H = 2.0, Im), 

7.42 (dd, 1H, 3JH-H = 8.3, 4JH-H = 0.9, py), 7.40 (d, 1H, 3JH-H = 2.1, Im), 7.20 (d, 1H, 3JH-H = 7.8, 
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Ph), 7.17 (d, 1H, 3JH-H = 7.3, Ph), 6.97 (m, 1H, Ph), 6.89 (ddd, 1H, 3JH-H = 3JH-H = 7.5, 4JH-H = 1.3, 

Ph), 6.86-6.81 (m, 2H, Ph), 6.80 (d, 1H, 3JH-H = 2.0, Im), 6.77 (d, 1H, 3JH-H = 2.1, Im), 6.77-6.72 

(m, 3H, Ph), 6.67 (ddd, 1H, 3JH-H = 3JH-H = 7.2, 4JH-H = 1.0, Ph), 6.39 (dd, 1H, 3JH-H = 7.2, 4JH-H = 

1.0, Ph), 3.75 (m, 1H, NCH2), 3.54 (m, 2H, NCH2), 2.56 (m, 1H, NCH2), 2.34 (m, 1H, 

NCH2CH2), 2.10 (m, 2H, NCH2CH2), 2.02 (s, 3H, CH3), 1.50 (m, 1H, NCH2CH2). 13C{1H} NMR 

(100 MHz, CD2Cl2, 298 K): δ 176.8 (IrC Im), 171.2 (IrC Ph), 166.5 (NC py), 165.4 (IrC Im), 

155.0, 153.9 (both IrC Ph), 151.0 (CHN py), 148.6, 146.7, 145.3 (all C Ph), 139.6, 139.5 (both 

CH Ph), 136.6 (CH py), 133.0 (CH Ph), 131.3 (CCH3), 128.5, 125.9, 124.8, 123.9, 122.0 (all CH 

Ph), 120.8, 120.4 (both CH Im), 119.8 (CH Ph), 118.5 (CH py), 116.5, 114.1 (both CH Im), 

110.5 (CH Ph), 51.0, 48.0 (both NCH2), 30.1, 26.5 (both NCH2CH2), 18.5 (CH3). 
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SYNOPSIS:  Binding of a bis(aryl-N-heterocyclic carbene) as a tetradentate ligand to 

iridium(III) combined with a cyclometalated phenylpyridine ligand leads to complexes that are 

highly efficient blue-green emitters with quantum yields close to the unity. 
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