000078327 001__ 78327
000078327 005__ 20200117213748.0
000078327 0247_ $$2doi$$a10.1021/acs.nanolett.7b04791
000078327 0248_ $$2sideral$$a105457
000078327 037__ $$aART-2018-105457
000078327 041__ $$aeng
000078327 100__ $$aDrisko, G.L.
000078327 245__ $$aAir-Stable Anisotropic Monocrystalline Nickel Nanowires Characterized Using Electron Holography
000078327 260__ $$c2018
000078327 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078327 5203_ $$aNickel is capable of discharging electric and magnetic shocks in aerospace materials thanks to its conductivity and magnetism. Nickel nanowires are especially desirable for such an application as electronic percolation can be achieved without significantly increasing the weight of the composite material. In this work, single-crystal nickel nanowires possessing a homogeneous magnetic field are produced via a metal-organic precursor decomposition synthesis in solution. The nickel wires are 20 nm in width and 1-2 µm in length. The high anisotropy is attained through a combination of preferential crystal growth in the "100" direction and surfactant templating using hexadecylamine and stearic acid. The organic template ligands protect the nickel from oxidation, even after months of exposure to ambient conditions. These materials were studied using electron holography to characterize their magnetic properties. These thin nanowires display homogeneous ferromagnetism with a magnetic saturation (517 ± 80 emu cm-3), which is nearly equivalent to that of bulk nickel (557 emu cm-3). Nickel nanowires were incorporated into carbon composite test pieces and were shown to dramatically improve the electric discharge properties of the composite material.
000078327 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E81$$9info:eu-repo/grantAgreement/EUR/FEDER/CPER program
000078327 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000078327 590__ $$a12.279$$b2018
000078327 591__ $$aCHEMISTRY, PHYSICAL$$b10 / 148 = 0.068$$c2018$$dQ1$$eT1
000078327 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b19 / 293 = 0.065$$c2018$$dQ1$$eT1
000078327 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b10 / 94 = 0.106$$c2018$$dQ1$$eT1
000078327 591__ $$aPHYSICS, CONDENSED MATTER$$b8 / 68 = 0.118$$c2018$$dQ1$$eT1
000078327 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b16 / 172 = 0.093$$c2018$$dQ1$$eT1
000078327 591__ $$aPHYSICS, APPLIED$$b9 / 148 = 0.061$$c2018$$dQ1$$eT1
000078327 592__ $$a6.211$$b2018
000078327 593__ $$aBioengineering$$c2018$$dQ1
000078327 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000078327 593__ $$aNanoscience and Nanotechnology$$c2018$$dQ1
000078327 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ1
000078327 593__ $$aMechanical Engineering$$c2018$$dQ1
000078327 593__ $$aCondensed Matter Physics$$c2018$$dQ1
000078327 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078327 700__ $$aGatel, C.
000078327 700__ $$aFazzini, P.-F.
000078327 700__ $$0(orcid)0000-0002-4599-3013$$aIbarra, A.$$uUniversidad de Zaragoza
000078327 700__ $$aMourdikoudis, S.
000078327 700__ $$aBley, V.
000078327 700__ $$aFajerwerg, K.
000078327 700__ $$aFau, P.
000078327 700__ $$aKahn, M.
000078327 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000078327 773__ $$g18, 3 (2018), 1733-1738$$pNano lett.$$tNano Letters$$x1530-6984
000078327 8564_ $$s528283$$uhttps://zaguan.unizar.es/record/78327/files/texto_completo.pdf$$yPostprint
000078327 8564_ $$s72645$$uhttps://zaguan.unizar.es/record/78327/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078327 909CO $$ooai:zaguan.unizar.es:78327$$particulos$$pdriver
000078327 951__ $$a2020-01-17-21:30:43
000078327 980__ $$aARTICLE