000078351 001__ 78351
000078351 005__ 20211201113714.0
000078351 0247_ $$2doi$$a10.1007/s00170-018-1950-9
000078351 0248_ $$2sideral$$a105401
000078351 037__ $$aART-2018-105401
000078351 041__ $$aeng
000078351 100__ $$0(orcid)0000-0002-3069-2736$$aTorralba, M.
000078351 245__ $$aComparison of surface extraction techniques performance in computed tomography for 3D complex micro-geometry dimensional measurements
000078351 260__ $$c2018
000078351 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078351 5203_ $$aThe number of industrial applications of computed tomography (CT) for dimensional metrology in 100–103 mm range has been continuously increasing, especially in the last years. Due to its specific characteristics, CT has the potential to be employed as a viable solution for measuring 3D complex micro-geometries as well (i.e., in the sub-mm dimensional range). However, there are different factors that may influence the CT process performance, being one of them the surface extraction technique used. In this paper, two different extraction techniques are applied to measure a complex miniaturized dental file by CT in order to analyze its contribution to the final measurement uncertainty in complex geometries at the mm to sub-mm scales. The first method is based on a similarity analysis: the threshold determination; while the second one is based on a gradient or discontinuity analysis: the 3D Canny algorithm. This algorithm has proven to provide accurate results in parts with simple geometries, but its suitability for 3D complex geometries has not been proven so far. To verify the measurement results and compare both techniques, reference measurements are performed on an optical coordinate measuring machine (OCMM). The systematic errors and uncertainty results obtained show that the 3D Canny adapted method slightly lower systematic deviations and a more robust edge definition than the local threshold method for 3D complex micro-geometry dimensional measurements.
000078351 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/DPI2015-69403-C3-1-R$$9info:eu-repo/grantAgreement/ES/UZ/CUD2016-TEC-09
000078351 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000078351 590__ $$a2.496$$b2018
000078351 591__ $$aENGINEERING, MANUFACTURING$$b23 / 49 = 0.469$$c2018$$dQ2$$eT2
000078351 591__ $$aAUTOMATION & CONTROL SYSTEMS$$b29 / 62 = 0.468$$c2018$$dQ2$$eT2
000078351 592__ $$a0.987$$b2018
000078351 593__ $$aComputer Science Applications$$c2018$$dQ1
000078351 593__ $$aControl and Systems Engineering$$c2018$$dQ1
000078351 593__ $$aSoftware$$c2018$$dQ1
000078351 593__ $$aMechanical Engineering$$c2018$$dQ1
000078351 593__ $$aIndustrial and Manufacturing Engineering$$c2018$$dQ1
000078351 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078351 700__ $$0(orcid)0000-0003-2357-1407$$aJiménez, R.
000078351 700__ $$0(orcid)0000-0001-7152-4117$$aYagüe-Fabra, J.A.$$uUniversidad de Zaragoza
000078351 700__ $$aOntiveros, S.
000078351 700__ $$aTosello, G.
000078351 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000078351 773__ $$g97, 1-4 (2018), 441-453$$pInt. j. adv. manuf. technol.$$tINTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY$$x0268-3768
000078351 8564_ $$s556577$$uhttps://zaguan.unizar.es/record/78351/files/texto_completo.pdf$$yPostprint
000078351 8564_ $$s115329$$uhttps://zaguan.unizar.es/record/78351/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078351 909CO $$ooai:zaguan.unizar.es:78351$$particulos$$pdriver
000078351 951__ $$a2021-12-01-11:34:13
000078351 980__ $$aARTICLE