000078355 001__ 78355
000078355 005__ 20201019094020.0
000078355 0247_ $$2doi$$a10.1088/1361-6463/aab05f
000078355 0248_ $$2sideral$$a105470
000078355 037__ $$aART-2018-105470
000078355 041__ $$aeng
000078355 100__ $$0(orcid)0000-0002-2464-5626$$aSanz-Felipe, Á.$$uUniversidad de Zaragoza
000078355 245__ $$aAnalysis of the optical transmission of a ferrofluid by an electromagnetic mixture law
000078355 260__ $$c2018
000078355 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078355 5203_ $$aEvolution of the optical transmission of a ferrofluid after magnetic field commutation is analyzed by means of an approach based on the so-called mixture laws: expressions which predict the effective permittivity of heterogeneous media as a function of their constituents' permittivities, their proportions and the way they are arranged. In particular, this work is based on a law proposed by Sihvola and Kong for the effective permittivity of a host substance with ellipsoidal inclusions. Ferrofluids are peculiar examples of this kind of media: with the solvent as host, the inclusions are nanoparticle agglomerates whose shapes become modified by magnetic field exposure. In this work, experimental optical transmission of a ferrofluid is compared with predictions based on Sihvola and Kong''s law. A remarkable coincidence is obtained both in the absence of magnetic field, without using any fitting parameter, and in the presence of magnetic field, employing the inclusions' average ellipticity as the fitting parameter. The results obtained for time dependent optical transmission of a ferrofluid after magnetic field switch on or off allow one to estimate how the average shape of the agglomerates evolves over time. On the other hand, mixture laws are proven to be an interesting alternative to scattering concepts to model the optical transmission changes experienced by ferrofluids once they are exposed to magnetic fields.
000078355 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/TEC2014-52642-C2-2-R$$9info:eu-repo/grantAgreement/ES/UZ/UZ2017-CIE-07
000078355 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000078355 590__ $$a2.829$$b2018
000078355 591__ $$aPHYSICS, APPLIED$$b45 / 148 = 0.304$$c2018$$dQ2$$eT1
000078355 592__ $$a0.805$$b2018
000078355 593__ $$aAcoustics and Ultrasonics$$c2018$$dQ1
000078355 593__ $$aSurfaces, Coatings and Films$$c2018$$dQ1
000078355 593__ $$aElectronic, Optical and Magnetic Materials$$c2018$$dQ1
000078355 593__ $$aCondensed Matter Physics$$c2018$$dQ1
000078355 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078355 700__ $$0(orcid)0000-0002-8738-753X$$aMartín, J.C.$$uUniversidad de Zaragoza
000078355 7102_ $$12002$$2247$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Electromagnetismo
000078355 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000078355 773__ $$g51, 13 (2018), 135001 [6 pp]$$pJ. phys., D. Appl. phys.$$tJOURNAL OF PHYSICS D-APPLIED PHYSICS$$x0022-3727
000078355 8564_ $$s320720$$uhttps://zaguan.unizar.es/record/78355/files/texto_completo.pdf$$yPostprint
000078355 8564_ $$s56654$$uhttps://zaguan.unizar.es/record/78355/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078355 909CO $$ooai:zaguan.unizar.es:78355$$particulos$$pdriver
000078355 951__ $$a2020-10-19-09:35:38
000078355 980__ $$aARTICLE