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ABSTRACT 

Evolution of the optical transmission of a ferrofluid after magnetic field commutation is 

analyzed by means of an approach based on the so-called mixture laws: expressions which 

predict the effective permittivity of heterogeneous media as a function of their constituents’ 

permittivities, their proportions and the way they are arranged. In particular, this work is 

based on a law proposed by Sihvola and Kong for the effective permittivity of a host substance 

with ellipsoidal inclusions. Ferrofluids are peculiar examples of this kind of media: with the 

solvent as host, the inclusions are nanoparticle agglomerates whose shapes become modified 

by magnetic field exposure. In this work, experimental optical transmission of a ferrofluid is 

compared with predictions based on Sihvola&Kong’s law. A remarkable coincidence is 

obtained both in absence of magnetic field, without using any fitting parameter, and in 

presence of magnetic field, employing the inclusions’ average ellipticity as fitting parameter. 

The results obtained for time dependent optical transmission of a ferrofluid after magnetic 

field switch on or off allow one to estimate how the average shape of the agglomerates 

evolves along time. On the other hand, mixture laws are proven to be an interesting 

alternative to scattering concepts to model the optical transmission changes experienced by 

ferrofluids once they are exposed to magnetic fields. 

Keywords: Ferrofluids, magnetooptics, mixture law, complex permittivity. 

 

I. INTRODUCTION 

Ferrofluids or magnetic fluids are fascinating substances due to their huge range of commercial 

and potential applications [1]: rheological and tribological (dynamic sealing, damping, heat 

dissipation), biomedical (cancer therapy by means of drug targeting or hyperthermia, magnetic 

separation of cells). The possibility of tuning their optical properties by means of an external 

magnetic field makes these substances also attractive for photonic applications such as 

switching, modulation, filtering and all-optical magnetic sensing [2-4]. Some authors have 

shown experimental results of ferrofluid optical transmission dependence on the applied 

magnetic field [5-9]. Nevertheless, there is a lack of a model capable of predicting this behavior 

starting from the characteristics of both the carrier and the nanoparticles. The works devoted 

to model these behaviors are very scarce and they rely on some fitting parameters to explain 

the measurements [10, 11]. Undoubtedly, this is due to the complexity of the phenomena 
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involved: Brownian motion combined with magnetic forces that give rise to attraction of 

nanoparticles and coalescence of chains [12,13], which leads to a distribution of aggregates of 

different shapes whose detailed interaction with light constitutes a demanding scattering 

problem [14-16].  

The aim of this work consists of proposing an alternative way of explaining the optical 

transmission in ferrofluids exposed to a magnetic field, not based on scattering concepts but 

on the so-called mixture laws. This term often refers to formulae which predict the effective 

dielectric constant or refraction index of a mixture of several homogeneous media, as a 

function of the characteristic parameters of each component, their proportions, the way they 

are arranged, etc. [17-26].  Most of these laws, although originally intended for the treatment 

of lossless constituents, also apply for lossy media as the spectral function formalism makes 

clear [27-28]: this function, exclusively dependent on the geometrical distribution of the 

constituents within the composite, determines any effective property concerning any 

magnitude governed by Laplace’s equation. 

A good deal of solutions with different ranges of validity has been proposed for mixtures 

composed of a host medium with sub-wavelength-size inclusions of another medium [20-26].  

Specifically, Sihvola and Kong propose a mixture law suitable for heterogeneous media 

consisting of a host with ellipsoidal inclusions [25]. This approach is interesting for ferrofluids, 

as they contain agglomerates whose shape is modified in presence of a magnetic field. In 

absence of it, particles or small agglomerates can be considered spherical in average. If a 

magnetic field is applied, the agglomerates, apart from increasing in size, become slender. As 

an approximation, agglomerates can be treated as spheroids, with the polar axis parallel to the 

magnetic field direction and longer than the equatorial diameter (prolate spheroid). So, as the 

magnetic field is increased, the proportion between polar axis and equatorial diameter also 

increases. According to [25], the variation in the shape of the inclusion leads to a change in the 

effective permittivity and, therefore, to a modification of the optical transmission of the 

mixture. In this paper, measurements of ferrofluid optical transmission time evolution after 

magnetic field switch on and off are analyzed by means of the mentioned mixture law. 

Comparison of transmissions obtained with the magnetic field oriented parallel and 

perpendicular to the light beam shows a remarkable match with Sihvola&Kong’s predictions 

[25]. So, this law may constitute an adequate tool to model how the optical transmission of 

ferrofluids depends on magnetic field. In addition, the good performance of the law proposed 

in Ref. [25] for these substances allows one to estimate the average aspect ratio of 

agglomerates by comparing the optical transmission of the mixture at any working condition 

with its transmission in absence of magnetic field. This way, it is even possible to track how the 

shape of agglomerates evolves along time. 

The paper is organized as follows. Section II is devoted to revise the mixture law proposed in 

Ref. [25]. Section III presents the experimental setup and contains two subsections: the first 

one shows the mixture law capability of predicting the ferrofluid transmission in absence of 

magnetic field and the second one presents the results with applied magnetic field. Section IV 

presents the conclusions. 
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II. MIXTURE LAW 

The mixture law considered is an adaptation of the Maxwell Garnett formula [17] in order to 

account for inclusions with ellipsoidal shape and uniform orientation. Here the formula is 

adapted for spheroids. We refer to the directions as parallel (∥) and perpendicular (⊥) with 

regard to the polar axis of the spheroids. The effective permittivity of a mixture, according to 

[25], is given by: 

����,�∗ = ��
� + ∗�     [1] 

where 

∗ =	 �
��∗����
���
������
��∗����     [2] 

In the former expressions, the asterisk denotes a complex magnitude, ����,�∗  is the mixture 

effective permittivity in the U direction (U = ∥ or ⊥), �� and ��∗ are the host and inclusion 

permittivities, respectively, p is the volume fraction occupied by the inclusions and NU is the 

spheroid depolarization factor in the U direction. If the polar and equatorial semi-axes are �∥ 
and ��, respectively, the depolarization factor NU is [25]: 

�� = �∥���
� � ��

����∥���/������� ������� �
�
      [3] 

The depolarization factors of a spheroid satisfy:  

�∥ + ��� = �     [4] 

Figure 1 shows the relationship between the spheroid aspect ratio ! = ��/�∥ and the 

depolarization factors. For the sake of clarity, the inset table particularizes this relationship for 

three significant cases: when the spheroid becomes a sphere, a needle and a disk. 

 

Figure 1. Dependence of the depolarization factors �∥, �� on the aspect ratio of the spheroids. 

The inset table shows the relationship between shape, aspect ratio and depolarization factor in 

three significant cases. 
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As it will be explained next, the direct measurement for characterization is the sample optical 

transmission factor in the U direction, TU. It is well-known that the link between TU and ����,�∗  

is:  

"� = ��
#�$�  ,     [5] 

where  

#� = %&
' ()*+����,�∗ ,   ,    [6] 

L is the sample width in the light propagation direction and λ is the operation wavelength.  

 

III. EXPERIMENT  

Figure 2 shows the experimental setup employed for determination of the ferrofluid optical 

transmission as a function of the magnetic field applied. The coils (radius: 16.5 cm), are 

connected to a DC power supply and placed in Helmholtz configuration in order to produce a 

homogeneous magnetic field. In their central point, the maximum magnetic field generated by 

them is 72 G (at a rate of 32.4 G/A). The ferrofluid is contained in an optical glass cuvette, 

centered with regard to the coils. The cuvette dimensions are 9.5 mm × 36.8 mm ×	2 mm 

(inner light path). It is illuminated by a perpendicular He-Ne laser beam (wavelength: 632.8 

nm; power: 20 mW) expanded and collimated. The beam is expanded in order to measure the 

transmission as an average over a sample section as wide as possible (9.5 mm in diameter). 

This way, transmission fluctuations are minimized (for a beam too thin, the sample 

transmission fluctuations become evident when aggregates are present). Transmitted light is 

collected by a photodetector. The coils can be rotated around an axis perpendicular to the 

laser beam, so that the magnetic field and the beam may have parallel (as shown in Figure 2) 

or perpendicular orientations. 

 

Figure 2. Experimental light transmission setup. 

The ferrofluid, supplied by NanoMyP, contains MagP® particles (184 nm of average 

hydrodynamic diameter, PdI = 0.176) suspended in water/SDS as carrier fluid. Figure 3 shows 

TEM images of the nanoparticles’ core of magnetite with a radius of about 50 nm,  
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surrounded by the polymeric surfactant that stabilizes the suspended particles in the fluid. The 

coating composition is 58 wt% MMA and 42 wt% EGDMA. 

      

Figure 3. (a)Transmission electron microscope image of the ferrofluid nanoparticles without the 

carrier fluid for the observation and (b) detail of a group of nanoparticles with radius ~ 50 nm. 

A. Transmission measurements without applied magnetic field 

First of all, the transmissions of the sample with several particle concentrations are measured 

in absence of applied magnetic field. Figure 4 shows the obtained experimental results, 

compared with the corresponding theoretical values given by Eqs. (1), (5) and (6), considering 

the different sample concentrations. For this calculation, obviously N is considered 1/3, as it 

corresponds to absence of magnetic field, while water and magnetite permittivities considered 

are, respectively, �� = 1.7734 and ��∗ = 5.5498 − 0.6947j [29].  

 

Figure 4. Optical transmission as a function of the volume fraction (bottom) and number of 

particles/mL (top): experimental results (squares) and mixture law prediction (dashed line). 

It can be seen that the agreement is remarkably good. In addition, the theoretical line is not 

the result of a fitting procedure but a straightforward calculation with the permittivity 

parameters found in the Literature [29]. So, this result supports the usefulness of the mixture 

law employed.  
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On the other hand, it can be appreciated that the theoretical curve is a straight line. This fact 

can be explained taking into account that the nanoparticle concentrations employed here yield 

∗ values whose moduli are considerably lower than unity. The maximum modulus 

corresponds to our maximum concentration, 7.1 mg/mL, which using ρmagnetite = 5170 kg/m3 

gives p = 1.37×10-3 and ∗ = (1.73 −	0.18j)×10-3. So, it is a good approximation to rewrite 

√� + ∗ ≅ � + ∗ �	⁄ , and consequently Eq. (5) turns to: 

23 " = %&
' $	4��()
� + ∗

� �     [7] 

which, considering 1 – p ≅ 1, yields: 

23 " = 5�& $
'4��()67
��∗����������∗ 89 �    [8] 

This equation shows that the optical transmission represented in logarithmic scale as a 

function of p (proportional to the nanoparticle concentration) must be a straight line, in good 

coincidence with the experimental results obtained. It is worthwhile to underline that this 

expression, valid for low volume fraction of the inclusions in any mixture following Eq. (1), 

allows one to estimate easily the nanoparticle concentration by means of optical transmission 

measurements.  

B. Transmission measurements with applied magnetic field 

Several series of measurements have been carried out, corresponding to different magnetic 

field intensities combined with several nanoparticle concentrations and with the parallel or 

perpendicular orientation of the magnetic field with regard to the laser beam. In each 

measurement, the time evolution of the optical transmission is registered during 360 s. 

Magnetic field is switched on at t = 0 s and it is switched off at t = 180 s.  

Figure 5a shows the transmission temporal evolution as a function of the magnetic field 

intensity (four different magnetic field intensities are considered), both for perpendicular and 

parallel configurations at a fixed nanoparticle concentration of 7.1 mg/mL. The optical 

transmission is presented normalized to its value in absence of magnetic field. It is interesting 

to remark that the curves after magnetic field switch on present some differences in their 

profiles, that is to say, they do not overlap even though we scale their ordinates. Nevertheless, 

the curves after switch off show a very similar behavior. Besides, they admit a good fit to an 

exponential, with a characteristic time around 12 s in all cases. This similarity in the profile of 

the different curves suggests a simple Brownian dispersion process without any significant 

influence of the interaction between nanoparticles once the external magnetic field is 

switched off. Undoubtedly, the time evolutions observed would present different profiles in 

ferrofluids with stronger particle-particle interactions, which is a characteristic of certain 

ferrofluid samples with interest for photonic applications, such as the highly transparent 

ferrofluids based on cadmium ferrite [30]. 
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Figure 5. (a) Time evolution of the ferrofluid optical transmission after magnetic field switch on 

(t = 0 s) and off (t = 180 s), for parallel and perpendicular configurations applying four magnetic 

field strengths (pointed out close to the curves). (b) Depolarization factors obtained departing 

from 5.a and the mixture law, Eq. (1). The inset shows the sum �∥ + ��� obtained in each 

case (in order to know which curve of the inset corresponds to which field intensity: the greater 

the curve deviation from unity, the greater the magnetic field intensity).  

According to Eqs. (5) and (6), changes in the transmission require changes in the complex 

permittivity of the mixture. Their components and proportions are not modified, so that the 

variations observed must be associated to variations in the depolarization factors or, linked 

with them, to variations in the aspect ratio of the inclusions. These variations are in agreement 

with the way the nanoparticles evolve when an applied magnetic field is present. First of all, it 

must be cleared up that, as nanoparticles coalesce under this condition, the concept of 

inclusion changes slightly: without coalescence, the term inclusion refers to single 

nanoparticles; with coalescence, each aggregate can be considered an inclusion. And second of 

all, these aggregates tend to lengthen along the direction of the magnetic field. Of course they 

may take different irregular shapes more or less alike to spheroids, but a global change in 

depolarization factor can be interpreted as an evidence of change in the average aspect ratio 

of the inclusions. It is straightforward to relate the transmission values with NU through Eqs. 

(1), (2), (5) and (6). Figure 5b shows the results of Figure 5a but presented in terms of NU. 

Results show a good agreement with Eq. (4), as the inset emphasizes. It has to be underlined 

that neither the inclusions are spheroids nor their aspect ratios are homogeneous, so it should 
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not be expected that the experimental sum �∥ + ��� equals unity. However, the results 

obtained for this sum are significantly close to one. The comparison between Eq. (4) and the 

�∥, �� values obtained, at any time instant, constitutes a demanding test for the validity of 

the mixture law in the presence of magnetic field. The good match obtained constitutes a 

significant support for the validity of Sihvola&Kong’s mixture law for ferrofluids [25], in 

presence of magnetic field. Besides, this law provides a physical explanation of the trends 

observed in the transmission changes: the reason why transmission decreases in parallel 

configuration and increases in the perpendicular one can be explained by relating the 

modification in the shape of the aggregates with the changes due to this fact in the ferrofluid 

effective complex permittivity.  

According to Eq. (3) and Figure 1, there is a direct link between depolarization factor and 

aspect ratio. This fact allows one to turn Figure 5b results into the aspect ratio values: Figure 6 

shows the time evolution of the aspect ratio obtained for the four magnetic intensities 

considered previously. Some differences in the curve calculation can be observed, depending 

on whether the depolarization factors considered are :∥	or :�, as shown in the figure for the 

36 G curve. This is a consequence of the imperfect match between their experimental values 

and Eq. (4), which is justified by the variety of shapes that present the real inclusions, while the 

mixture law is developed for ellipsoids. The average value between both calculations is shown 

for the four magnetic field strengths. This figure shows how the aspect ratios decrease as time 

evolves, which corresponds to an evolution of the aggregate shapes towards more prolate 

forms, as expected. Certainly the aspect ratios found here can only be interpreted as effective, 

average aspect ratios which do not reflect the various aggregate sizes, orientations and shapes 

that may coexist, but anyway we think that these results provide an interesting insight of the 

processes of aggregate formation and dissolution. 

 

Figure 6. Evolution of the aspect ratios departing from the results of Figure 5 (solid lines). 

Results obtained from the measurements in parallel (--) and perpendicular (···) configurations 

are shown just in one case as an example. The inset presents the results obtained at t = 180 s, 

in which additional measurements at other magnetic field intensities are also included 

(measurements in parallel: ∆;	in	perpendicular:	∇;	average:	•�. 
It is also interesting to analyze the influence of the magnetic field intensity on the shape of the 

aggregates. The inset of Figure 6 summarizes the aspect ratio as a function of the applied 
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magnetic field at t = 180 s. It is clear that the greater the intensity of the magnetic field, the 

more prolate the aspect ratio obtained, as it could be expected.  

Measurements similar to the ones shown in Figure 5a have also been carried out with different 

nanoparticle concentrations lower than the previous one. The results obtained turn out to be 

quite similar to Figure 5 but scaled. Figure 7 shows the influence of concentration on the 

transmission value at t = 180 s, for different magnetic field intensities applied in parallel 

configuration (Fig. 7a) and the corresponding aspect ratio according to the mixture law (Fig. 

7b). Clearly, the greater the concentration, the more prolate the shape of the aggregate is. This 

result is also logical taking into account that the ellipticity obtained reflects an average over 

the inclusions present in the mixture: at very low concentrations aggregates are extremely 

rare, so most inclusions are individual nanoparticles, whose average shape turns out to be 

nearly a sphere; as concentration is increased, the proportion of nanoparticles grouped in 

prolate aggregates also grows and, consequently, the average aspect ratio decreases.  

 

Figure 7. (a) Normalized transmission in parallel configuration at t = 180 s after magnetic field 

switch-on, for different volume fractions and magnetic field intensities and (b) corresponding 

aspect ratios. 

 

IV. CONCLUSIONS 

The mixture law proposed by Sihvola and Kong predicts correctly the optical 

transmission of a ferrofluid, both in absence and in presence of applied magnetic field. 

Concerning the good match between theoretical predictions and experiment in absence of 

magnetic field, it is remarkable that predictions do not involve the fitting of any free 

parameter, which constitutes a notable success of the mixture law. With regard to the study in 

presence of magnetic field, we have compared the mixture law predictions with a wide series 

of measurements obtained by combining several nanoparticle concentrations, different 

magnetic field intensities and two different orientations of the magnetic field with regard to 

the light beam (parallel and perpendicular). In every combination, the evolution of the optical 

transmission after magnetic field switch on and off has been measured. Comparison of each 

measurement with the mixture formula leads to determination of an average depolarization 
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factor. Observation of any pair of results corresponding to perpendicular and parallel 

transmission of the sample with regard to the magnetic field at the same working conditions 

shows a good match with the theory, which supports the validity of the mixture law also if the 

magnetic field is applied. On the other hand, knowledge of the average depolarization factor 

leads to an estimation of the average aspect ratio of the agglomerates present in the mixture. 

Based on the link between both magnitudes, it has been possible to estimate the evolution of 

the average aspect ratio of the agglomerates after magnetic field switch on and off. Its 

dependence on the applied magnetic field and on the nanoparticle concentrations is also 

evidenced. The experiment and subsequent analysis presented offer a new approach for 

tracking the aggregate formation and dissolution processes in ferrofluids. Besides, we prove 

that effective permittivity is a valid concept to understand optical transmission variations in 

ferrofluids exposed to magnetic field. 

 

ACKNOWLEDGEMENTS 

This work was supported in part by the national program MINECO TEC2014-52642-C2-2-R and 
in part by the Universidad de Zaragoza UZ2017-CIE-07. 

 

REFERENCES 

[1] Odenbach S 2002 Ferrofluids: magnetically controllable fluids and their applications 

(Berlin: Springer) 

[2] Pu S, Chen X, Chen Y, Yu Y, Liao W, Chen L and Xia Y 2006 J. Appl. Phys 99 093516 

[3] Miao Y, Wu J, Lin W, Zhang K, Yuan Y and Song B 2013 Opt. Express 21 29914 
[4] Miao Y, Ma X, Wu J, Song B, Zhang H, Zhang K, Liu B and Yao J 2015 Opt. Lett. 40 3905 
[5] Brojabasi S, Mahendran V, Lahiri B B and Philip J 2015 Opt. Commun. 342 224 
[6] Rao G N, Yao Y D, Chen Y L, Wu K T and Chen J W 2005 Phys. Rev. E 72 031408 
[7] Chen L, Li J, Qiu X, Lin Y, Liu X, Miao H and Fu J 2014 Opt. Commun. 316 146 
[8] Laskar J M, Philip J and Raj B 2008 Phys. Rev. E 78 031404 
[9] Patel R, Upadhyay R V and Mehta R V 2006 J. Magn. Magn. Mater. 300 E217 
[10] Elmore W C 1941 Phys. Rev. 60 593 
[11] Eloi M T A, Santos J L, Morais P C and Bakuzis A F 2010 Phys. Rev. E 82 021407 
[12] Solovyova A Y, Elfimova E A, Ivanov A O and Camp P J 2017 Phys. Rev. E 96 052609 
[13] Hassan M, Zeeshan A, Majeed A and Ellahi R 2017 J. Magn. Magn. Mater. 443 36 
[14] Zhang Q, Wang Q J H and Zhu H S 1996 IEEE Trans. Mag. 32 297 
[15] Yardley J G, McPhedran R C, Nicorovici N A and Botten L C 1999 Phys. Rev. E 60 6068 
[16] Lee S C 2011 J. Opt. Soc. Am. A 28 1812 
[17] Maxwell-Garnett J C 1904 Trans. R. Soc. Can. 203 385 
[18] Bruggeman D A G 1935 Ann. Phys. 24 636 
[19] Lichtenecker K and Rother K 1931 Phys. Z. 32 255 
[20] Hashin Z and Shtrikman S 1962 J. Appl. Phys. 33 3125 
[21] Brosseau C 2006 J. Phys. D: Appl. Phys. 39 1277 
[22] Sihvola A 1999 Electromagnetic mixing formulas and applications (London: IEEE 

Publishing) 
[23] Kärkkäinen K, Sihvola A and Nikoskinen K 2000 IEEE Trans. Geosci. Rem. Sens. 37 1303 
[24] Martín J C, Forniés-Marquina J M and Bottreau A M 2003 Mol. Phys. 101 1789 
[25] Sihvola A and Kong J A 1988 IEEE Trans. Geosci. Rem. Sens. 26 420  

Page 10 of 11AUTHOR SUBMITTED MANUSCRIPT - JPhysD-115473.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



[26] Sihvola A 2013 Phot. Nano. Fund. Appl. 11 364 
[27] Bergman D J 1988 Phys. Rep. 43 377 
[28] Milton G W 1981 J. Appl. Phys. 52 5286 
[29] https://refractiveindex.info/ 
[30] Bazukis A F, Neto K S, Gravina P P, Figueiredo L C and Morais P C 2004 Appl. Phys. Lett. 84 

2355 
 

Page 11 of 11 AUTHOR SUBMITTED MANUSCRIPT - JPhysD-115473.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t


