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Diseño del control de par adaptativo 

de un exoesqueleto robotizado 

para rehabilitación motora 
 

 

Resumen 

 

El presente Trabajo Fin de Máster, se enmarca en el proyecto HYPER-Consolider, en el Grupo de 

Robótica de la Universidad de Zaragoza. La finalidad de este proyecto es diseñar un control de 

par adaptativo a pares externos y su posterior implementación en el sistema físico de un 

exoesqueleto para ayudar en la rehabilitación de miembros inferiores de pacientes que han 

sufrido un accidente cerebrovascular. El clásico control de posición de los exoesqueletos, un 

control rígido, es sustituido por un control de par adaptativo flexible, que permite adaptar el 

movimiento del exoesqueleto a fuerzas o pares externos. Estos pares externos pueden ser 

proporcionados por la persona que usa el exoesqueleto y al que debe adaptarse o pueden 

provenir del par ejercido por un rehabilitador si se utiliza para ejercicios de rehabilitación 

motora. Se diseñan y evalúan diversas situaciones de asistencia del robot y de contribuciones 

de un sujeto de 60 Kg. de acuerdo a su capacidad residual estimada, desde una contribución 

parcial del paciente a una contribución casi total.  
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CAPÍTULO 1 
 

Introducción 

 

1.1  Motivación  

La terapia robótica para la rehabilitación de la marcha, en patologías neurológicas, se puede 

clasificar según su estado de desarrollo y comercialización, o según el tipo de estructura: tipo 

exoesqueleto, estáticos o portátiles y con sistemas de efector final o sistemas híbridos. Aunque 

son múltiples los exoesqueletos de rehabilitación de miembros inferiores desarrollados con el 

mismo propósito de lograr la recuperación de las funciones motoras del paciente con o sin la 

ayuda de personal médico cualificado, presentan diferentes técnicas de control para este 

propósito. Por ejemplo, el exoesqueleto HAL [1] en su versión de miembros inferiores posee un 

control de impedancia y su mecanismo de actuación está basado en señales electromiografías 

(EMGs). Por otro lado, el exoesqueleto ALLOR [2], propone una rehabilitación estática de la 

marcha usando controladores de posición y admitancia basados en la interacción física y no en 

la interacción cognitiva. En [3] el exoesqueleto ALEX plantea un controlador de campo de fuerza 

para proporcionar asistencia al paciente, en cambio el exoesqueleto MINA [4] usa un control 

posición-derivativo de par. En la figura 1.1 se muestra un resumen de diferentes ejemplos 

exoesqueletos y sus características más relevantes: grados de libertad, peso y altura que son 

capaces de soportar… etc 

Viendo la variabilidad de los casos nombrados anteriormente, el presente Trabajo Fin de Máster 

(TFM) presenta el diseño de un control de par motor adaptativo (al aportar una mayor 

flexibilidad a fuerzas externas) para asistir ejercicios de rehabilitación en pacientes que 

presentan descompensación en la coordinación de la marcha tras sufrir un accidente 

cerebrovascular. El equipo utilizado para este fin, es una plataforma robótica desarrollada 

dentro del proyecto HYPER - Consolider Ingenio 2010 [5] destinado a la investigación y desarrollo 

de dispositivos neurorrobóticos (NR) y neuroprotésicos (NP).  El objetivo de HYPER, es lograr la 

restauración de las funciones motoras en pacientes afectados a través de la compensación 

funcional y de la rehabilitación, mediante la validación funcional y clínica de sistemas híbridos 
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robóticos (NR-NP), fomentando el reaprendizaje de dichos trastornos motores, bajo el 

paradigma de asistencia bajo demanda según necesidades del paciente.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 1. 1. Ejemplos de exoesqueletos de miembros inferiores y de sus características más 
relevantes. 
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1.2  Objetivos del proyecto 

La finalidad de este TFM, será el diseño un control de par motor adaptativo a pares externos y 

su posterior implementación en el sistema físico de un exoesqueleto desarrollado para ayudar 

en la rehabilitación de miembros inferiores. El principal objetivo, será evaluar y conseguir que el 

par de asistencia que ejecute la plataforma robótica, se pueda regular en base al par externo 

que ofrezcan las extremidades de un paciente durante la acción de caminar, que compensará la 

falta de fuerza necesaria para realizar el ejercicio.  

Con este propósito, el clásico control de posición de los exoesqueletos, un control rígido, se 

sustituirá por un control flexible de par que permitirá adaptar el movimiento del exoesqueleto 

a fuerzas o pares externos. Éstos, pueden provenir del propio momento articular ejercido por el 

usuario o del par ejercido por un rehabilitador si se utiliza para ejercicios de rehabilitación 

motora.  Se utilizará un modelo biomecánico para estimar la activación muscular de pacientes 

con capacidad motora reducida y será aplicado para estimar el par motor que debe ejercer el 

exoesqueleto para completar el movimiento normal de la marcha. 

A partir de los controles de posición y fuerza que incorpora el exoesqueleto se desarrollará un 

nuevo esquema de control de par motor adaptativo. Éste se implementará en el exoesqueleto 

y se ajustarán los parámetros de control a los ejercicios a realizar para obtener un 

comportamiento estable y suave de la marcha humana normal. Se diseñarán y evaluarán 

diversas situaciones de asistencia del robot, para un sujeto de 60 Kg.  de acuerdo a su capacidad 

residual estimada a partir del modelo biomecánico.  

Como principal herramienta de trabajo se utilizará un exoesqueleto de seis grados de libertad 

que trabaja en el plano sagital y fue desarrollado para realizar ejercicios de rehabilitación de las 

extremidades inferiores. En concreto, se empleará la versión H1 [6,7] de un exoesqueleto 

desarrollado con este propósito y enmarcado en el proyecto HYPER, dentro del programa 

Consolider – Ingenio 2010 (ver apartado 1.1). El modelado de los sistemas de control se 

desarrollará y analizará utilizando el entorno de desarrollo y simulación Matlab – Simulink [8], 

ambos del grupo Mathworks. El modelo biomecánico se obtendrá con OpenSim [9] v.3.2, un 

software de análisis de movimiento humano para generar datos y simulaciones dinámicas 

músculo - esqueletales. 

El desarrollo ha sido realizado dentro del grupo de investigación de Robótica, Percepción y 

Tiempo Real (RoPeRT) del Instituto de Investigación de Ingeniería en Aragón (i3A), en el 

Laboratorio del Instituto. 

 

1.3  Organización de la memoria descriptiva 

Este documento está estructurado en seis capítulos que resumen los planteamientos teóricos y 

los resultados prácticos obtenidos durante el desarrollo del proyecto, además incluye los anexos 

correspondientes a los problemas surgidos, su resolución y los scripts de Matlab-Simulink 

empleados. El Capítulo 1, presenta la introducción y los objetivos del proyecto, así como un 

breve estado del arte con algunos ejemplos de exoesqueletos de rehabilitación de miembros 

inferiores. En el Capítulo 2, se describen los elementos hardware y detalles software de interés 
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del exoesqueleto H1 y las condiciones actuales del equipo. En el Capítulo 3, se introduce la 

biomecánica de la marcha normal humana y se explica la sintonización de los controladores de 

posición y par motor realizada en este trabajo, para poder desempeñar la acción de caminar, 

generando movimientos suaves con los controladores de posición y par. En el Capítulo 4, se 

desarrolla un modelo de control de par adaptativo a partir de la estimación de pares externos, 

orientado bajo el paradigma de asistencia bajo demanda (Assist-As-Needed, AAN), para un 

sujeto de 60 Kg. Posteriormente en el Capítulo 5, se realiza la identificación paramétrica 

posición-par del equipo, que se integra el control de par adaptativo del exoesqueleto.  De esta 

manera resulta más sencillo obtener las consignas de par para el control adaptativo de par, a 

partir únicamente de la definición de las trayectorias, el patrón de marcha o rehabilitación 

deseado. Finalmente, el Capítulo 6, presenta las conclusiones del proyecto y algunas de las 

posibles líneas de futuras para poder trabajar con el exoesqueleto en el campo de la 

rehabilitación motora, o para la marcha de una persona en la vida diaria. 
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CAPÍTULO 2 
 

 

Exoesqueleto H1 para miembros inferiores                                                                                                       
 

 

Este capítulo incluye una descripción general de la principal herramienta de trabajo del presente TFM, el 

exoesqueleto H1. Se describen los elementos hardware de los que consta el prototipo, así como las 

conexiones requeridas para el correcto funcionamiento del sistema y otros detalles software de interés. 

Seguidamente, se exponen las condiciones actuales del mismo para tener una mejor comprensión del 

posterior trabajo realizado. 

 

2.1 Prototipo H1 

La plataforma robótica H1 [6,7] es un exoesqueleto diseñado para rehabilitar la marcha normal humana 

en pacientes adultos. En concreto, es ideado para pacientes que presentan un déficit en la coordinación 

de la marcha ambulatoria tras sufrir un accidente cerebrovascular, pero que pueden estabilizar el tronco 

con cierto nivel de equilibrio. 

La terapia de rehabilitación de la marcha, debe realizarse mediante ejercicios de asistencia dentro de un 

entorno clínico y bajo la constante supervisión de personal médico capacitado. Este dispositivo (figura 

2.1) posee seis grados de libertad, lo que permite que las articulaciones de cadera, rodilla y tobillo de 

ambas piernas, puedan realizar ejercicios pasivos y activos de flexión y extensión en el plano sagital de la 

marcha (figura 3.2.b).  

Diferentes estrategias de control [6,7] son desarrolladas con idea de que el entrenamiento de la marcha 

asistido por el exoesqueleto H1 utilice el principio de terapia de asistencia bajo demanda, más conocido 

como paradigma Assist-As-Needed (AAN). Este método hace que el robot no asista de manera continuada 

todo el movimiento de rehabilitación, si no que aporte la asistencia necesaria demandada por el miembro 

inferior afectado. De esta manera, y a diferencia de la terapia de rehabilitación robótica de asistencia 

continuada, se fomenta la participación activa del paciente tanto en el aprendizaje del entrenamiento 

físico como en la restauración de las funciones locomotoras ambulatorias [10]. 
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2.1.1 Características hardware del prototipo H1 

El diseño de la estructura mecánica del exoesqueleto (figura 2.1.a) permite que se adapte cómodamente 

a la anatomía de cada paciente sin necesidad de tener que quitarse el dispositivo. Cada lado de la 

estructura bilateral y su reposapiés correspondiente, poseen varios eslabones ajustables de aluminio y 

acero inoxidable que permiten adaptar la longitud y posición del robot a cada paciente. Además, cuatro 

estructuras redondeadas con almohadillas de espuma y correas de velcro garantizan una mejor sujeción 

y acople del exoesqueleto a cada miembro inferior. Toda la arquitectura hardware de control junto con 

el sistema de alimentación del dispositivo, están ubicados en una mochila que portea el paciente a su 

espalda. 

La tecnología de actuación se elige en base a las características de potencia y par que cada articulación 

presenta durante el ciclo habitual de la marcha a una velocidad normal [6]. Está formada por seis 

actuadores, seis reductores de velocidad y seis controladores electrónicos, uno por cada articulación y 

grado de libertad. También se establecen límites mecánicos en los actuadores (figura 2.1.c) para no 

rebasar el máximo rango articular de los movimientos normales de flexión y extensión (tabla 2.1). Todo 

ello, con objeto de evitar que el paciente realice movimientos perjudiciales que le puedan provocar 

posteriores lesiones. 

Se escogen actuadores de corriente continua planos y sin escobillas ya que reúnen las características 

necesarias de potencia y portabilidad demandadas por los exoesqueletos. Como este tipo de motor por 

sí mismo no proporciona las características de par y velocidad que demandan las articulaciones, se acopla 

a su eje de salida un sistema reductor de velocidad Harmonic Drive [11]. De esta manera, se incrementa 

el par motor del actuador y se reduce su velocidad a la ideal desarrollada durante el ciclo normal de la 

marcha. El sistema de potencia que gobierna cada actuador es un servo drive de tipo PWM, el cual, 

además, usa la intensidad de corriente del actuador para calcular el par motor de salida del mismo [6,7].  

Cada articulación posee una sensórica (figura 2.1.c) que consta: de un potenciómetro usado como sensor 

de posición angular y de una galga extensiométrica usada como sensor de fuerza para medir el par de 

interacción producido entre el sujeto y el exoesqueleto. Como excepción, la articulación del tobillo 

también contiene sensores de fuerza en la plantilla de apoyo del pie para detectar las diferentes fases de 

apoyo y balanceo de la marcha.  

Los datos captados por los sensores son digitalizados mediante el módulo de adquisición JointCan de 

cada articulación. Posteriormente, ésta información es adquirida por dos módulos de adquisición (uno 

para cada lado del dispositivo) para después ser enviada al procesador (ver apartado 2.1.2) del 

exoesqueleto mediante protocolo busCAN. A su vez, estas dos placas también están conectadas a los 

controladores electrónicos de los motores, ya que son las encargadas de generar las señales analógicas 

de salida usadas por los controladores como referencia. 

La forma que tiene para comunicarse el terapeuta con el exoesqueleto, es mediante un SmartPhone vía 

Bluetooht a través de un módulo de adquisición del robot que contiene una IMU y un adaptador 

Bluetooht/CAN. El dispositivo móvil ejecuta una aplicación que permite al profesional médico: parar y 

arrancar el dispositivo, variar la velocidad de marcha y cambiar los diferentes modos de control del 

prototipo [6]. En este TFM, no se ha tenido en cuenta esta parte, debido a que en ningún momento se ha 

tenido ni acceso, ni disponibilidad de la misma.  
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 Máximo rango articular Actuadores 

Articulación Flexión Extensión Potencia 
Par 

Nominal 
Reducción Par máximo 

Cadera 100 ° -20 ° 90 W 390 mNm 100:1 39 Nm 
Rodilla -5 ° 100 ° 70 W 130 mNm 160:1 20.8 Nm 

Tobillo -15 ° 20 ° 70 W 130 mNm 160:1 20.8 Nm 
 

Tabla 2. 1 Datos más relevantes del hardware del prototipo H1 para este TFM. 

 

c) a) 

Figura 2. 1 Exoesqueleto a) Estructura del prototipo b) Mochila que portea la arquitectura de control: 
controladores, placas de adquisición y procesador, junto con el sistema de alimentación c) Actuador, 
sensores, placa JointCAN y límites mecánicos de la articulación de la cadera izquierda. 

b) 
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2.1.2 Características software del prototipo H1 

La estrategia de control de par adaptativo realizada en este TFM (ver Capítulo 4) para el exoesqueleto H1 

y las implementadas en el mismo de manera inicial, se han desarrollado mediante el programa Matlab y 

sus diferentes toolboxes. En ambos casos, el código necesario para el funcionamiento del prototipo se 

realiza mediante el programa Simulink y el uso de la toolbox xPC Target (versión 5.5). En el Anexo A, se 

explica de manera extensa el manejo de esta aplicación junto con la puesta en marcha del prototipo. 

Como procesador del exoesqueleto se usa un sistema embebido, en concreto, un ordenador industrial 

PC104. Éste, ejecuta en tiempo real mediante la toolbox xPC Target de Matlab los algoritmos de control 

diseñados previamente en Simulink. Para poder realizar un análisis offline u online de los datos generados 

en el prototipo H1, el PC104 se conecta mediante protocolo Ethernet a un ordenador convencional. 

Todo el proceso del software de control del dispositivo [6,7] se divide en dos partes principales: un control 

de alto nivel (High Level Control, HLC) y un control de bajo nivel (Hardware Abstraction Layer, HAL). 

Mediante el HLC, el dispositivo se encarga de implementar diferentes estrategias de control. Por otro 

lado, el HAL es responsable de gobernar los actuadores del dispositivo en base a la estrategia de control 

seleccionada. 

Aunque el actuador de cada articulación puede implementar tres tipos de controladores según el modo 

seleccionado: posición, admitancia o par motor, son dos las estrategias de control desarrolladas por este 

exoesqueleto y validadas en sujetos sanos llevando a cabo diferentes experimentos [6]. En concreto, el 

modo de control de posición implementa la clásica estrategia de control de trayectoria que aporta 

asistencia de manera continuada al paciente sin considerar el esfuerzo voluntario del mismo. Este tipo 

de control consiste en que, mediante una trayectoria predeterminada basada en la cinemática de la 

marcha de sujetos sanos (ver Capítulo 3), un controlador Proporcional Integral Derivativo (PID), en el caso 

que nos aplica, guía las piernas del paciente por dicha trayectoria prefijada. Por otro lado, el modo de 

control de admitancia implementa la estrategia de control de trayectoria adaptativa, ‘la idea es guiar la 

extremidad del paciente hacia una trayectoria de referencia permitiendo una desviación variable basada 

en la amplitud del par de interacción entre sujeto y exoesqueleto; cuando se incrementa el par, el robot 

proporcionalmente aplica una corrección a la trayectoria del paciente en un intento de adaptar el patrón 

de referencia de la marcha normal, a la propia marcha del sujeto’ [7]. En esta memoria descriptiva se ha 

diseñado una estrategia de control de par adaptativa, basada en el modo de control de par motor. Esta 

estrategia se desarrolla ampliamente en el Capítulo 4 con idea de poder rehabilitar las discapacidades 

motoras de los pacientes.  

 

2.2 Condiciones actuales del prototipo H1 

De manera inicial los seis actuadores que posee el prototipo funcionaban correctamente, pero 

actualmente sólo funcionan los motores de la articulación de la cadera y de ambos tobillos. A excepción 

del actuador de la cadera izquierda, los actuadores funcionales tienen un comportamiento no lineal y 

presentan bastante rozamiento debido a problemáticas acontecidas en sus sistemas reductores. Todo 

ello sumado a la antigüedad del equipo y al poco mantenimiento del mismo, ha dado lugar a un desgaste 

mecánico grave y a la consecuente aparición de problemas mecánicos durante todo el desarrollo de este 

trabajo, dejando sólo un motor funcional.   
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Respecto a los sensores, destacar que la posición determinada por los potenciómetros y la medición de 

corriente por parte de los controladores electrónicos es correcta. Las galgas extensiométricas no 

interfieren en el desarrollo de este proyecto al no ser utilizadas, pero citar que no miden correctamente 

el par de iteración entre el exoesqueleto y el usuario.    

Por otro lado, el funcionamiento del procesador del prototipo no es completamente óptimo. Durante 

una sesión de trabajo el sistema embebido no cargó el ejecutable del modelo diseñado en Simulink.  Se 

decidió conectar un monitor y un teclado al sistema embebido (PC104), y se pudo averiguar que había 

un fallo en su disco de arranque. En el Anexo B, se muestran los diferentes pasos de cómo se solventó 

este problema permitiendo reiniciar el sistema de manera satisfactoria. Desde entonces, este incidente 

ocurre con bastante frecuencia, mayoritariamente cada vez que se enciende el equipo.  

 

2.3. Conclusiones 

El exoesqueleto H1 no se encuentra en condiciones óptimas de funcionamiento. Los problemas 

mecánicos ocurridos en los motores, a parte de encontrarse fuera del alcance de este TFM, no se han 

podido resolver completamente en el período que se ha desarrollado este trabajo. Por todo esto, las 

pruebas y el desarrollo de la estrategia de control descrita en esta memoria, se han realizado en el motor 

de la articulación de la cadera izquierda. 
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CAPÍTULO 3 
 

 

Biomecánica de la marcha humana normal.                                                                    
Controladores de posición y par motor                                                                    

para la articulación de la cadera 
 

 

Para estudiar e interpretar la marcha humana, se llevan a cabo dos tipos de análisis el cinético y el 

cinemático, ambos comparten el uso de sistemas de análisis de movimiento en tres dimensiones. Los datos 

facilitados por estos análisis son utilizados por distintos profesionales para justificar o evaluar diferentes 

tratamientos médicos y estudios. En este capítulo se trata únicamente el análisis cinemático, 

posteriormente, el análisis cinético se verá en el Capítulo 4 de este mismo documento.  

Como ya se ha explicado en el Capítulo 2, el desarrollo de este TFM se enfoca en la articulación de la 

cadera izquierda. Por este motivo, en el presente capítulo se hace énfasis en el análisis cinemático de la 

marcha normal de dicha articulación visto desde el plano sagital, el cual, comprende los movimientos de 

flexión y extensión. Seguidamente se explica la calibración del correspondiente actuador y la sintonización 

de sus controles de posición y par motor. 

 

3.1 Introducción a la biomecánica de la marcha humana normal 

El ciclo de la marcha humana normal o zancada se define como ‘el proceso de locomoción en el cual el 

cuerpo humano, en posición erguida, se mueve hacia delante, siendo su peso soportado, 

alternativamente, por ambas piernas’ [12]. Como origen del ciclo se suele tomar el momento en el que 

uno de los dos pies entra en contacto con el suelo. Es decir, el ciclo empezaría cuando, por ejemplo, el 

pie derecho tuviera contacto con el suelo y finalizaría en el siguiente apoyo del mismo. A su vez, el pie 

izquierdo experimentaría exactamente los mismos desplazamientos que el pie derecho, pero trasladados 

en el tiempo medio ciclo. A diferencia de la carrera o del salto donde el cuerpo experimenta suspensión 

durante un instante (fase aérea), en la marcha nunca deja de haber apoyo en el suelo. Durante un ciclo 

completo de la marcha se da una sucesión de apoyo bipodal (ambos pies están en contacto con el suelo) 

y de apoyo monopodal (un solo pie está en contacto con el suelo). Las principales fases que describen la 

locomoción humana son la fase de apoyo y la fase de balanceo u oscilación. La fase de apoyo se produce 
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cuando el pie está en contacto con el suelo, comienza con el contacto inicial del retropié o talón de 

referencia y finaliza con el despegue del antepié. Por el contrario, la fase de balanceo es cuando el pie no 

está en contacto con el suelo, se inicia en el levantamiento del antepié hasta el siguiente apoyo. La figura 

3.1. presenta un ciclo de la marcha completo, durante el cual, ambas fases son realizadas por cada pierna 

de manera alternada. Normalmente, la fase de apoyo abarca el 60% de todo el ciclo y la fase de balanceo 

constituye el 40% restante [12, 13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1 Análisis cinemático de la marcha normal en el plano sagital para la articulación de la 

cadera   

En la práctica clínica, se considera como posición neutral o posición de equilibrio de la cadera, la 

correspondiente al fémur vertical, es decir, 0° en el plano sagital [12]. El rango total de movimiento en la 

articulación de la cadera durante la marcha normal es de unos 40°, resultando un rango articular de entre 

10° de extensión y 30° de flexión (figura 3.2.b). La definición de los límites de la flexo-extensión del 

exoesqueleto H1 comprenden el rango articular límite de la cadera, el cual, abarca desde 20° de extensión 

hasta 100° de flexión (tabla 2.1). 

Tanto la fase de apoyo como la fase de balanceo influyen en los movimientos de las distintas partes del 

cuerpo. En concreto, durante una zancada normal en el plano sagital, la articulación de la cadera realiza  

Figura 3. 1. Estructura de un ciclo completo de la marcha humana normal. 
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a) b) 

c) 

Figura 3. 2. Cinemática de la articulación de la cadera a) Ángulos articulares en el plano sagital durante 

un ciclo de la marcha completo. Subfases de la fase de apoyo: CI= contacto inicial; AI= inicio apoyo; 

AM=apoyo medio; AF=final apoyo; OP= oscilación previa. Subfases de la fase de oscilación: OI=inicio 

oscilación; OM=oscilación media; OF=final oscilación. Los trazos discontinuos representan las bandas de 

dispersión (una desviación típica) b) Movimientos referentes a los tres grados de libertad de la 

articulación de la cadera (parte superior) y de la rodilla (parte inferior). Para ambas articulaciones, se 

observan los movimientos de flexión y extensión en el plano sagital, de abducción y aducción en el plano 

frontal y de rotación interna y externa en el plano transversal. c) Análisis funcional de la cadera en cada 

una de las fases que componen el ciclo de la marcha en el plano sagital. 
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un movimiento de extensión en la fase de apoyo y un movimiento de flexión en la fase de oscilación, 

produciéndose la inversión de forma gradual . La fase de apoyo se puede subdividir en cinco intervalos y 

la fase de balanceo en otras tres subfases o intervalos (figura 3.2.a y 3.2.c ). En el instante de contacto 

inicial (CI) del talón con el suelo, la cadera presenta una flexión de 30° con respecto a la vertical, la cual, 

se mantiene durante la subfase inicial de apoyo (AI). Después, se produce una extensión progresiva de la 

cadera en la subfase media de apoyo (AM) hasta alcanzar los 0° en la subfase final de apoyo (AF). En el 

50% del ciclo de la marcha, cuando el otro pie contacta con el suelo, la cadera presenta un movimiento 

de hiperextensión de 10°. Posteriormente, la dirección del movimiento se invierte con cierta rapidez, 

produciéndose un movimiento de flexión hasta llegar a su posición neutra (subfase previa a la oscilación, 

OP). Finalmente, en la subfase inicial y media de la oscilación (OI y OM respectivamente) la cadera parte 

desde su posición neutra hasta una flexión de aproximadamente 30° en la cual se mantiene. La subfase 

final de oscilación (OF) es la transición entre la oscilación y el apoyo, donde la flexión de la cadera cesa 

para empezar otra nueva zancada [12]. 

 

3.1.2 Obtención de la referencia del exoesqueleto en base al análisis cinemático de la marcha normal 

en el plano sagital 

El estudio cinemático del prototipo H1, se realiza mediante un sistema de captura de movimiento basado 

en cámaras de infrarrojos de alta velocidad y marcadores especiales adheridos a las extremidades 

inferiores de un paciente que presenta un ciclo normal de la marcha [6]. Las filmaciones simultáneas de 

las cámaras permiten reconstruir la localización tridimensional de los marcadores que reflejan la luz 

infrarroja. Esta información es procesada para conseguir la trayectoria tridimensional desarrollada por el 

sujeto y obtener los ángulos de las articulaciones a lo largo de la marcha. Dichos ángulos son usados como 

trayectoria de referencia en la programación del control de posición del exoesqueleto, los cuales, 

permiten generar un ciclo de la marcha similar al de la pierna real. Como la marcha humana es un proceso 

cíclico, sólo es necesario programar un patrón de referencia de los ángulos correspondientes a un solo 

paso.   

 

3.1.3 Puesta en marcha y calibración del sensor de posición en base al análisis cinemático 

Antes de poner en marcha el prototipo H1 por primera vez (ver Anexo A) y evitar un comportamiento no 

deseado del motor, es necesario realizar la calibración del potenciómetro del actuador de la cadera 

izquierda (figura 2.1.c). La calibración se hace en base a los ángulos límite de flexión y extensión que 

sopesa la articulación, los cuales, aparecen indicados en la tabla 2.1. De esta manera, se obtienen las 

medidas de posición dentro de los límites mecánicos del motor y a su vez, se respeta la cinemática de la 

cadera para evitar posibles fatalidades articulares al paciente 

Para calibrar el potenciómetro del actuador de la cadera izquierda, inicialmente, se carga en el sistema 

embebido el software del prototipo del modelo de Simulink con modo control de posición y sin alimentar 

los actuadores. Luego, se coloca el exoesqueleto en la posición de equilibrio y se calibra manualmente el 

potenciómetro hasta obtener el ángulo de giro deseado. Seguidamente, y del mismo modo, se realiza la 

calibración de las posiciones extremas de flexión y extensión indicadas por los límites mecánicos (figura 

3.3). Citar que, para la pierna derecha e izquierda del exoesqueleto, el movimiento del ángulo de giro 

positivo y negativo del potenciómetro son contrarios. Es decir, para la pierna izquierda el movimiento 
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positivo del potenciómetro se realiza en la dirección de las ajugas del reloj, mientras que el movimiento 

negativo del mismo se efectúa en sentido contrario.    

 

 

 

 

 

 

 

 

 

 

  

 

 

 

3.2 Controladores de posición y par motor para la articulación de la cadera  

El exoesqueleto H1, según el modo de control elegido, permite implementar un control de posición, 

admitancia o par en cada una de las articulaciones (ver Capítulo 2). El propósito final de este TFM, implica 

trabajar tanto con el control de posición como con el control de par motor del actuador de la cadera 

izquierda, siendo ambos implementados mediante un controlador digital PID.  

Los controladores PID ofrecen unas prestaciones muy aptas para la mayoría de los sistemas de control, 

por ello son los más utilizados en toda clase de industrias. Si se conoce el modelo matemático del proceso 

o planta es posible enfocar el uso del algoritmo PID analíticamente, en caso contrario, la sintonía 

experimental de estos controladores mediante unas pocas reglas empíricas, resulta de mucha utilidad.  

Este sistema dinámico de tiempo continuo (ecuación 3.1) tiene como propósito que el error (𝑒(𝑡)) en 

estado estacionario entre el valor de referencia o consigna (𝑦𝑟𝑒𝑓(𝑡)) y la señal de salida del proceso 

(𝑦(𝑡)), sea cero de manera asintótica en el tiempo. La señal a controlar (𝑢(𝑡)) es la suma de tres términos, 

una parte proporcional que actúa en el valor presente del error minimizándolo, una parte integral que 

reduce el error a cero en régimen permanente representando el promedio de los errores pasados y una 

parte derivativa que puede ser interpretada como una acción anticipativa, la cual, reduce la 

sobreoscilación e incrementa la estabilidad de la planta [14]. Para sintonizar este tipo de controladores 

(figura 3.4), analítica o empíricamente, según el conocimiento o no de la dinámica del proceso, se deben 

definir los parámetros de las ganancias proporcional (𝐾𝑃), integral (𝐾𝐼) y derivativa (𝐾𝐷) y así lograr un 

Figura 3. 3. Calibración de la posición del prototipo H1 (en azul). En la primera gráfica se muestra la 
posición neutra de la cadera (0°). En la segunda y tercera gráfica se observan los ángulos límite de los 
movimientos de flexión (100°) y extensión (-20°) respectivamente, según datos de la tabla 2.1. 
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comportamiento del sistema aceptable y robusto. Si este tipo de controlador es implementado usando 

un computador, microprocesadores, conversores ADC y DAC.. etc, el sistema de tiempo continuo debe 

ser aproximado por un sistema de tiempo discreto con una frecuencia elevada de muestreo (muestreo 

rápido; 𝑇 pequeño), obteniendo de esta manera un controlador digital PID. Para ello, el término integral 

analógico se puede aproximar a través de una sumatoria y el término derivativo analógico se puede 

aproximar mediante una función de primer orden, dónde 𝑛 indica el tiempo de muestreo actual y  𝑇 

es el período de muestreo del sistema (ecuación 3.2).  

 

 

 

 

 

 

 

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝜏 + 𝐾𝐷
𝑑

𝑑𝑡

𝑡

0
𝑒(𝑡)                                                              (3.1) 

𝑢(𝑛) = 𝐾𝑃𝑒(𝑛) + 𝐾𝑖 ∑ 𝑒(𝑖)𝑇 + 𝐾𝑑 
𝑒(𝑛)−𝑒 (𝑛−1)

𝑇

𝑛
𝑖=1                                                 (3.2) 

 

En la experimentación preliminar con los controladores de posición y par motor del exoesqueleto H1, 

según los parámetros de los PID digitales planteados en [6], y junto a la situación actual del equipo (ver 

Capítulo 2), no se obtiene el funcionamiento deseado (rapidez de respuesta, sin o con pequeña 

oscilación) de ambos controladores. Por esta razón, en los siguientes apartados, se procede a realizar el 

reajuste empírico de los parámetros proporcional, integral y derivativo del sistema dinámico de tiempo 

discreto. 

 

3.2.1 Control de posición  

El controlador de posición, se reajusta empíricamente mediante uno de los dos métodos desarrollados 

por Ziegler y Nichols (ZN) en los 1940s [15] y que todavía se usan de manera muy frecuente sin necesidad 

de conocer las ecuaciones de la planta. En concreto, la sintonización del controlador se realiza mediante 

el método de respuesta en frecuencia o método de oscilación. El cual, a través de datos experimentales 

extrae una aproximación de las características del proceso dinámico, para posteriormente determinar a 

partir de dichas propiedades, los parámetros 𝐾𝑃, 𝐾𝐼  y 𝐾𝐷 del controlador. 

Aplicando ZN, el proceso de los datos es obtenido conectando inicialmente un lazo realimentado con un 

control proporcional (𝐾𝐼 = 0 y 𝐾𝐷 = 0). La ganancia del controlador proporcional (𝐾𝑃) es aumentada 

hasta un valor crítico (𝐾𝐶) dónde el sistema alcanza una oscilación sostenida haciéndolo críticamente 

Figura 3. 4. Esquema general de un controlador PID en tiempo continuo. 
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estable. Se toma el valor de la ganancia crítica y del período crítico (𝑇𝐶), para calcular los parámetros 

aproximados de control mediante las fórmulas de sintonía de la tabla 3.1.  

 

 

Para obtener un ajuste fino de los parámetros y conseguir un comportamiento dinámico deseado, el 

procedimiento de ZN se complementa con el procedimiento experimental de ajuste de prueba y error. 

Es decir, partiendo de los parámetros obtenidos empíricamente mediante ZN, se realizan manualmente 

varias modificaciones sucesivas de los parámetros de control hasta conseguir los adecuados (figura 3.5). 

De esta manera, se obtiene la respuesta que mejor se ajusta a la referencia indicada del control de 

posición (figura 3.6). 

 

 

 

 

 

 

 

 

 

Figura 3. 5. Esquema del controlador de posición Simulink para la articulación de la cadera izquierda. 

Parámetros sintonizados: 𝐾𝑃 = 0.14, 𝐾𝐼 = 0.11 y 𝐾𝐷 = 0.015 , aplicando el procedimiento de ajuste 
de ZN, seguido de una corrección manual para evitar sobreoscilación y error estacionario. 

La figura 3.6, presenta la respuesta (azul grueso) del prototipo H1 (tras la sintonización del controlador 

de posición) ante la trayectoria de referencia (azul fino) de la cinemática que desempeña la cadera 

izquierda durante la marcha humana normal. Como origen del ciclo de la marcha se toma el pie derecho, 

por lo que la referencia de la cadera izquierda va retrasada medio ciclo en el tiempo. Por esto, el comienzo 

del paso izquierdo empieza en el 50%-60% del ciclo de la marcha, es decir, la cadera está en su posición 

neutra, los 0° (figura 3.2.a). En este comienzo, el actuador desarrolla un par (rojo) positivo hasta que el 

exoesqueleto simula un movimiento de flexión de aproximadamente 30° (fase de balanceo). En la 

transición entre la fase de oscilación y de apoyo, cuando empieza una nueva zancada, el motor presenta 

un par negativo (instante en el que el talón contactaría con el suelo) y el dispositivo una flexión de 30°. 

Desde este momento hasta alcanzar la posición correspondiente a una extensión de 5°, el exoesqueleto 

 𝑲𝑷 𝑲𝑰 𝑲𝑫 

𝑷 0.50 ∗ 𝐾𝐶  - - 
𝑷𝑰 0.45 ∗ 𝐾𝐶  0.54 ∗ 𝐾𝐶 𝑇𝐶⁄  - 

𝑷𝑰𝑫 0.59 ∗ 𝐾𝐶  1.18 ∗ 𝐾𝐶 𝑇𝐶⁄  0.074 ∗ 𝐾𝐶 𝑇𝐶⁄  

Tabla 3. 1. Fórmulas de sintonía del método de respuesta en frecuencia de ZN. 
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simula una extensión progresiva acompañada por una disminución gradual del par negativo del actuador 

junto a la asistencia de la gravedad.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Control de par motor 

Esta estrategia de control, a diferencia de la planteada en [6,7] no usa la trayectoria de referencia de la 

cinemática de la cadera, sino que toma como referencia el par generado por el motor durante el control 

de posición. La idea, es conseguir que el exoesqueleto realice el mismo movimiento de la marcha 

controlando esta vez el par motor del actuador. Posteriormente se justificará por qué este tipo de control 

de par se adapta mejor que el control de posición para una asistencia mediante exoesqueleto en un 

procedimiento de rehabilitación de discapacidades motoras (ver Capítulo 4). 

Se desarrolla un script en Matlab (ver Anexo C) para obtener la consigna de par partiendo del control de 

posición (independientemente del número de períodos o pasos de la señal). Se modifica la frecuencia de 

muestreo de cada uno de los pasos (3 seg.) de las señales originales de posición y par motor obtenidas 

en el control de posición (figura 7.a), para conseguir los 200 valores que necesita la matriz de referencia 

almacenada en la memoria del PC104. El software acumula uno de estos valores para la articulación cada 

15 mseg. (200 𝑥 15 𝑚𝑠𝑒𝑔. = 3 𝑠𝑒𝑔.). Tras diezmar las señales, se aplica un bucle que calcula el error 

cuadrático medio (ECM) entre la consigna de posición (𝑌𝑖) y la posición medida por el potenciómetro (𝑌̂𝑖) 

para las 200 iteraciones de cada paso diezmado (ecuación 3.3). Posteriormente, se trasladan 

circularmente las señales diezmadas (de posición y de par motor) tantas iteraciones como indica el 

Figura 3. 6.  Respuesta del exoesqueleto H1 durante los seis primeros pasos para el controlador de 
posición sintonizado. 
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mínimo EMC para cada período, con el objetivo de evitar cualquier tipo de desfase. De esta manera, se 

obtiene una gran similitud entre la trayectoria de posición de referencia y la señal de posición trasladada, 

además de conseguir ausencia de desfase entre las señales trasladas y las señales originales de posición 

y par motor (figura 7.b).  

                                                   𝐸𝐶𝑀 =
1

𝑛
∑ ( 𝑌̂𝑖 −  𝑌𝑖)2𝑛

𝑖=1                                            (3.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

La sintonización del controlador del par motor se realiza siguiendo los mismos procedimientos indicados 

en el control de posición. Para el cálculo de las ganancias 𝐾𝑃, 𝐾𝐼  y 𝐾𝐷 (figura 3.8), previamente se aplica 

el método de ZN y posteriormente se aplica una corrección manual de los parámetros. Los bloques switch 

de esta figura, tienen como función limitar el par motor. En este proyecto no se tienen en cuenta ya que 

se ha trabajado con un control de par motor puro.  

La figura 3.9, presenta la respuesta (azul grueso) del prototipo H1 (tras la sintonización del controlador 

de par) ante la trayectoria de referencia (azul fino) del par que desempeña el exoesqueleto durante la 

cinemática de la cadera izquierda en el proceso de la marcha humana normal. De la misma manera que 

ocurría en el control de posición, para una simulación de la flexión de la marcha humana, el motor aplicar 

par positivo, y para una extensión ocurre lo contrario, el par se vuelve negativo. El exoesqueleto 

reproduce de manera satisfactoria el movimiento de la trayectoria de posición.  
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Figura 3. 7. Obtención de la consigna de control de par a) La gráfica superior muestra el período de cada 
uno de los pasos de las señales originales de posición (azul) y par motor (rojo) para 6 pasos. La gráfica 
inferior muestra el período de las mismas señales, pero diezmadas a 200 valores. b) Referencia de la 
trayectoria de la cadera izquierda (magenta), señal de posición (azul) y par motor (rojo) trasladadas el 
valor del mínimo ECM. La señal de par obtenida (rojo), es la referencia que se usará en el control de par 
motor de la cadera izquierda. 
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Figura 3. 8. Esquema del controlador de par Simulink para la articulación de la cadera izquierda. 

Parámetros sintonizados: 𝐾𝑃 = 0.20, 𝐾𝐼 = 0.70 y 𝐾𝐷 = 0.022 , aplicando el procedimiento de ajuste 
de ZN, seguido de una corrección manual para evitar sobreoscilación y error estacionario.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3. 9. Respuesta del exoesqueleto H1 durante los seis primeros pasos para el controlador de par 
motor sintonizado. 
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3.3 Conclusiones 

Tras sintonizar los controles de posición y para motor para poder realizar de manera adecuada la 

función de la marcha normal humana, se procede a diseñar en el siguiente capítulo, el control de par 

adaptativo a pares externos para un paciente de 60 Kg. 
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CAPÍTULO 4 
 

 

Control de par adaptativo para la                          
articulación de la cadera                                                                                                       

 
 

En este capítulo, se indican los pasos del desarrollo del control de par adaptativo a pares externos. 

Partiendo del esquema general del mismo y para poder construir una idea sobre su alcance, se explican 

los distintos bloques que lo componen. Después, se muestran varias simulaciones de asistencia del robot 

para distintas capacidades residuales de par articular del miembro inferior de un paciente de 60 Kg. 

 

4.1 Concepto y esquema general del control de par adaptativo 

Para diseñar este control en la articulación de la cadera izquierda, se parte de la idea de que un simple 

control de posición no permite adaptarse a pares externos, ventaja que sí presenta un control de par 

motor. Por ello, este tipo de control se adapta mejor para poder realizar terapias de rehabilitación de la 

marcha en pacientes. De tal forma que el par de asistencia que ejecute el actuador del exoesqueleto, se 

pueda regular en base al par externo que ofrezca la cadera del paciente durante la acción de caminar.   

El objetivo de este control, es el de conseguir una recuperación gradual del movimiento de la cadera de 

un paciente durante la marcha normal humana, a través de la asistencia del exoesqueleto H1 y orientado 

bajo el paradigma AAN. Es decir, el diseño de este sistema de control permite aplicar al prototipo 

diferentes niveles de asistencia, en mayor o menor grado, según sea la capacidad latente contributiva del 

miembro inferior del paciente. Con esto, se pretende lograr una recuperación y un fortalecimiento de las 

discapacidades motoras del mismo. En este trabajo se ha adaptado a una persona de 60 Kg. 

En la figura 4.1 se muestra el esquema general de los distintos bloques que forman parte del control de 

par adaptativo diseñado. Posteriormente, se explica el desarrollo, funcionamiento e implicación de cada 

una de las partes.  

 Bloque de control de par adaptativo (ver apartado 4.2), es el encargado de generar el par de 

asistencia a desarrollar por el exoesqueleto según la terapia de rehabilitación demandada por la 

capacidad residual del sujeto. 



                                                                                                                                 Capítulo 4 Control de par adaptativo para la articulación de la cadera 

 

24 
 

 

CONTROL DE PAR ADAPTATIVO 

MODELO BIOMECÁNICO EXOESQUELETO H1 

Figura 4. 1. Esquema general del control adaptativo de par motor 



Capítulo 4 Control de par adaptativo para la articulación de la cadera 

 

25 
 

 Bloque del modelo biomecánico (ver apartado 4.2.2 y anexo E), genera el par articular desarrollado 

por la cadera del supuesto paciente. El objetivo es conseguir unos resultados en simulación lo más 

coherentes con la realidad. 

 Bloque del exoesqueleto H1, el cual representa el sistema físico que va a ayudar al paciente en la 

rehabilitación de la marcha humana normal. Este bloque se detalla en profundidad en el Capítulo 2 

de este documento.  

El control de par permite controlar el movimiento del exoesqueleto en base a diferentes pares (figura 

4.1):  

1) par necesario para mover el exoesqueleto en vacío (𝜏𝑉𝐴𝐶Í𝑂), es decir el controlador ejerce el 

par en las articulaciones necesario para que la persona no tenga que ejercer fuerza alguna 

adicional a la correspondiente a su propio peso y dinámica (robot ingrávido). 

2) par ejercido por la propia persona (𝜏𝐴𝑅𝑇𝐼𝐶𝑈𝐿𝐴𝑅), a partir de su capacidad latente. Dado que se 

orienta a ejercicios de rehabilitación, la persona debe realizar esfuerzo de movimiento, no dejar 

que el robot realice todo el trabajo. Este par puede calcularse de diversas maneras: i) a partir 

de medidas de activación muscular (EMG), con las que calcular los pares articulares reales; ii) a 

partir de sensores de par que midan la fuerza de contacto ejercida por la persona sobre el 

exoesqueleto; iii) a partir de un modelo biomecánico que calcule los pares articulares ejercidos 

para un movimiento determinado. En este trabajo se ha optado por este último método, por 

dos motivos fundamentales: 

 los otros dos suponen un procesamiento adicional de las señales, fuera de los objetivos 

de este trabajo. 

 el uso de un modelo biomecánico permite evaluar el método de control, objetivo del 

trabajo, de una manera más sencilla para diferentes condiciones y capacidades 

latentes, desde una contribución nula del paciente a una contribución total. 

3) par de control para complementar el par ejercido por el paciente en la ejecución del 

movimiento (𝜏𝑆𝐴𝐿𝐼𝐷𝐴 = 𝜏𝐴𝑆𝐼𝑆𝑇𝐸𝑁𝐶𝐼𝐴 ; ver apartado 4.2 ). Si el paciente es capaz de realizar toda 

la fuerza necesaria, la única asistencia del controlador es para ejercer el par necesario explicado 

en el punto 1); si no es capaz de ejercer toda la fuerza, el controlador aplicará el par adicional 

necesario para la ejecución del ejercicio. 

 

4.2 Diseño del control de par adaptativo 

Con este controlador se establece un sistema que controla la trayectoria de posición de la marcha 

mediante un control de par motor, el cual, puede adaptarse a pares externos como se ha mencionado 

previamente.  El diseño realizado permite realizar dos tipos de ajuste del sistema: 

 la contribución del sujeto, permitiendo simular distintos grados de contribución (0% a 100%) 

 la asistencia del exoesqueleto, permitiendo simular distintos grados de contribución de cara a 

forzar en un ejercicio de rehabilitación una mayor participación del paciente en su 

rehabilitación, e incluso una asistencia negativa ((esto no se ha contemplado en este trabajo) 

del exoesqueleto con objeto de forzar más la participación del paciente, como se hace en 

ejercicios de rehabilitación habitualmente. 
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En el bloque de control de par adaptativo de la figura 4.1, destaca una parte inicial que permite 

seleccionar cual va a ser el par deseado a ejecutar por el motor del exoesqueleto. Posteriormente, este 

par seleccionado según la terapia de estudio, sirve como consigna de referencia al controlador de par 

motor del actuador (ver Capítulo 3), sintonizado para simular la cinemática de la flexo-extensión de la 

articulación de la cadera durante la acción de caminar en el prototipo H1 (ver Capítulo 2). 

En el sistema de control de par adaptativo intervienen tres tipos de pares de entrada (figura 4.1): 

 El par robot en vacío ( 𝜏𝑉𝐴𝐶Í𝑂 ) o par ejercido por el motor del exoesqueleto para moverse a sí 

mismo sin miembro inferior del paciente (ver Capítulo 3). 

 El par con peso ( 𝜏𝑃𝐸𝑆𝑂 ) o par ejercido por el motor del exoesqueleto para moverse a sí mismo y al 

peso de un miembro inferior de un paciente de 60 Kg (ver apartado 4.2.1).  

 El par o momento articular ( 𝜏𝐴𝑅𝑇𝐼𝐶𝑈𝐿𝐴𝑅 ) que realiza la articulación de la cadera de un paciente 

sano de 60 Kg., durante la trayectoria de la marcha sin tener en cuenta fuerzas externas. Es decir, 

debido a que el prototipo H1 no está en contacto con el suelo sino colgado de una estructura 

metálica, no se tiene en cuenta el momento de la fuerza de reacción en la articulación de la cadera, 

en el plano sagital, durante la fase de apoyo de la marcha (ver apartado 4.2.2)  La situación simula 

por tanto un ejercicio de flexión-extensión de cadera sin contacto con el suelo.  

Mediante las tres siguientes variables, el sistema de control de par permite al exoesqueleto realizar 

múltiples simulaciones de casos de asistencia para ayudar al paciente de 60 Kg. a completar el ciclo de 

la marcha, según se indique el nivel de contribución del mismo, el cual, dependerá de su capacidad 

residual (figura 4.1): 

 𝐾𝐻, simula la capacidad residual que puede tener el paciente de 60 Kg según el grado de lesión 

cerebrovascular sufrida. Este nivel de capacidad variará entre 0 < 𝐾𝐻 ≤ 1; si 𝐾𝐻 = 1 la capacidad del 

paciente será la de un paciente sano. 

 𝐾𝐸, simula la contribución del paciente dentro de su rango de capacidad residual. Este nivel 

de contribución variará entre 0 < 𝐾𝐸 ≤ 1; si 𝐾𝐸 = 1  el paciente contribuye con el 100% de su par 

residual para llevar a cabo el movimiento del ejercicio y el robot asistirá en consecuencia. 

 𝐾𝐴, permite variar la asistencia del exoesqueleto. El nivel de asistencia se establece entre                
0 < 𝐾𝐴 ≤ 1, entonces el exoesqueleto suministrará parte del par para hacer el movimiento y el 

paciente deberá ejercer el resto de la fuerza para completar el ejercicio; si 𝐾𝐴 = 1 y 𝐾𝐻 = 1 será el 

robot el que haga toda la asistencia del movimiento y la contribución del paciente será nula.  

El par de salida del sistema ( 𝜏𝑆𝐴𝐿𝐼𝐷𝐴 ) es controlado por el parámetro selector 𝐾𝑃, es decir, según el 

valor definido entre 𝐾𝑝 ∈ { 0, 1, 2, 3, 4 } se pueden obtener diferentes pares de salida según sea el 

objetivo de estudio a desarrollar con el prototipo H1: 

 Para 𝐾𝑃 = 0, 𝜏𝑆𝐴𝐿𝐼𝐷𝐴 =  𝜏𝐴𝑆𝐼𝑆𝑇𝐸𝑁𝐶𝐼𝐴 ; ver ecuación 4.1.  

 Para 𝐾𝑃 = 1, 𝜏𝑆𝐴𝐿𝐼𝐷𝐴 =  𝜏𝑃𝐸𝑆𝑂 

 Para 𝐾𝑃 = 2, 𝜏𝑆𝐴𝐿𝐼𝐷𝐴 =  𝜏𝑉𝐴𝐶Í𝑂 

 Para 𝐾𝑃 = 3, 𝜏𝑆𝐴𝐿𝐼𝐷𝐴 =  𝜏𝐴𝑆𝐼𝑆𝑇𝐸𝑁𝐶𝐼𝐴  + 𝜏𝑉𝐴𝐶Í𝑂 

 Para 𝐾𝑃 = 4, 𝜏𝑆𝐴𝐿𝐼𝐷𝐴 =  𝜏𝐴𝑅𝑇𝐼𝐶𝑈𝐿𝐴𝑅   

                            𝜏𝐴𝑆𝐼𝑆𝑇𝐸𝑁𝐶𝐼𝐴 = 𝜏𝑃𝐸𝑆𝑂 − 𝜏𝑉𝐴𝐶𝐼𝑂 − (1 − 𝐾𝐴) ∗ (𝐾𝐻 ∗ (𝐾𝐸 ∗ 𝜏𝐴𝑅𝑇𝐼𝐶𝑈𝐿𝐴𝑅))                       (4.1) 
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Para que el conjunto del paciente y del prototipo se muevan correctamente, es necesario sumar al par 

establecido por el nivel de asistencia, el par que ejerce el exoesqueleto en vacío para que este no caiga 

por su propio peso y pueda dañar al paciente.  

 

4.2.1 Obtención del 𝝉𝑷𝑬𝑺𝑶 

En la figura 4.2.b se muestra la distribución de diferentes pesos a lo largo del exoesqueleto para simular 

la masa corporal del miembro inferior izquierdo de un paciente de 60 Kg. La idea es poder identificar el 

comportamiento del par motor cuando el exoesqueleto es usado por un paciente (𝜏𝑃𝐸𝑆𝑂). 

La distribución del peso se basa en los diferentes porcentajes de peso corporal correspondientes a las 

distintas partes del cuerpo humano de la figura 4.2.a (bibliografía). Para el caso que nos atañe en este 

TFM, el peso corporal total que representa el miembro inferior entero de un usuario de 60kg y el peso 

corporal de cada una de las partes que lo componen es indicado en la tabla 4.1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PESO SUJETO PIERNA COMPLETA   
(16 %) 

MUSLO (10,1 %) PIERNA INFERIOR      
SIN PIE (5,9 %) 

PIERNA INFERIOR     
CON PIE (4,4 %) 

60 Kg 9,6 Kg 6,06 Kg 2,64 Kg 3,54 Kg 
 

Tabla 4. 1 Distribución de los pesos de las diferentes partes del miembro inferior de un paciente de 60 kg                

a) b) 

Figura 4. 2 a) Porcentajes de peso corporal correspondientes a diferentes partes del cuerpo humano                      
b) Simulación del peso corporal de un miembro inferior izquierdo mediante pesos en el prototipo H1 
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La respuesta del motor al control de posición sin peso (gráfica superior) y con peso (gráfica inferior) se 

aprecia en la figura 4.3. Se observa que la cinemática de la flexo-extensión de la cadera (en azul grueso)  

es alcanzada favorablemente por el controlador sintonizado en el Capítulo 3. Por otro lado, el par 

ejercido por el motor (en rojo) es mucho mayor que el realizado en el control de posición con el 

exoesqueleto en vacío debido, en este caso, a que el motor debe cargar con el peso del conjunto 

paciente - exoesqueleto.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 4. 3 Respuesta del control de posición (azul grueso) al peso del propio exoesqueleto (gráfica 
superior) y al conjunto de paciente – exoesqueleto (gráfica inferior).  
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Figura 4. 4 Respuesta del control de par motor (en rojo grueso) al peso del propio exoesqueleto (gráfica 
superior) y al conjunto de paciente – exoesqueleto (gráfica inferior). 

Control de posición sin peso. PID: 0.11 / 0.14 / 0.015 

Control de posición con peso. PID: 0.11 / 0.14 / 0.015 

Control de par motor sin peso. PID: 0.20 / 0.70 / 0.022 

Control de par motor con peso. PID: 0.20 / 0.70 / 0.022 
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Por otro lado, la respuesta del actuador al control de par motor sin peso (gráfica superior) y con peso 

(gráfica inferior) se aprecia en la figura 4.4. De la misma manera que ocurre en el caso anterior, la flexo-

extensión es realizada adecuadamente por el controlador de par motor sintonizado en el Capítulo 3. En 

el caso del conjunto paciente-exoesqueleto, debido al peso adicional, es más notoria la variabilidad del 

par, debido al deterioro mecánico sufrido por el conjunto motor-engranaje.  

Hay que comentar que las gráficas de las figuras 4.3 y 4.4, son anteriores a las gráficas de las figuras 3.6 

y 3.9 vistas hasta ahora. Es decir, las respuestas del control de posición y par motor con y sin peso, de 

las figuras 4.3 y 4.4 son obtenidas cuando varios rodamientos fuera de lugar provocaban un roce, el 

cual afectaba a la respuesta del par motor. El comportamiento actual del actuador de la cadera 

izquierda, tras repararse, se muestra en las figuras 3.6 y 3.9 del Capítulo 3, además de en la figura 4.5. 

Se puede observar en la gráfica superior el control de posición para el exoesqueleto ingrávido (misma 

gráfica que la figura 3.6) y en la gráfica inferior se muestra el control de posición para el conjunto 

exoesqueleto-paciente, el cual, muestra un par más oscilante que en la figura 4.3 y 4.4, debido a que el 

comportamiento dinámico del motor deteriorado ha cambiado respecto al sistema anterior. 

 

 

 

 

4.2.2 Análisis cinético de la marcha normal en el plano sagital para la articulación de la cadera. 

Obtención del 𝝉𝑨𝑹𝑻𝑰𝑪𝑼𝑳𝑨𝑹 mediante un modelo biomecánico computacional 

En el Capítulo 3, se comentó que, para estudiar en interpretar la marcha humana mediante un modelo 

biomecánico, es necesaria la combinación de los datos obtenidos en el análisis cinemático y en el 

análisis cinético o dinámico de la misma. En el apartado 3.1.2 se explica cómo se realizó el análisis 

cinemático de la marcha humana, mediante la utilización de un sistema de captura de movimiento 3D, 

marcadores y cámaras de infrarrojos. Lo ideal para realizar el análisis cinético completo para obtener un 

modelo biomecánico, sería obtener los datos de fuerza a través de una plataforma dinamométrica 

Figura 4. 5 Respuesta actual del control de posición (en azul  grueso) al peso del propio exoesqueleto 
(gráfica superior) y al conjunto de paciente – exoesqueleto (gráfica inferior). 

Control de posición actual sin peso. PID: 0.11 / 0.14 / 0.015 

Control de posición actual con peso. PID: 0.11 / 0.14 / 0.015 
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conectada a un sistema de captura de movimiento, y así, poder medir las fuerzas que los pies ejercen 

sobre el plano de apoyo. Estos datos junto con los obtenidos en cinemática permiten reconstruir las 

fuerzas, momentos o pares y la potencia que actúa sobre cada articulación durante la acción de 

caminar. 

En este TFM no se dispone del instrumental necesario para realizar un análisis cinético ideal, por ello, la 

alternativa es realizar una simulación dinámica de la marcha humana mediante un modelo biomecánico 

computacional. Hay fundamentalmente dos enfoques para el estudio de la biomecánica del cuerpo 

humano:  

 Cinética o dinámica directa: conociendo las fuerzas aplicadas a un sistema dinámico, el objetivo 

es determinar el movimiento resultante debido a esas fuerzas aplicadas. 

 Cinética o dinámica inversa: conociendo la trayectoria de posición del sistema dinámico, el 

objetivo es hallar las fuerzas de dicho movimiento. 

En el bloque del modelo biomecánico de la figura 4.1, se estiman los pares generados en la articulación 

de la cadera (𝜏𝐴𝑅𝑇𝐼𝐶𝑈𝐿𝐴𝑅) durante la marcha humana, mediante la dinámica inversa que necesita como 

dato la cinemática del movimiento. A través del software OpenSim versión 3.3 (un simulador que 

permite generar simulaciones dinámicas de un modelo musculo esqueletal) y de los datos reales de la 

cinemática de la cadera izquierda que se disponen, se resuelve el problema de la dinámica inversa. En el 

Anexo D se muestran los pasos a seguir para obtener los pares estimados de un paciente de 60 Kg 

mediante el software OpenSim de libre acceso desarrollado por la Universidad de Stanford. 

 

4.3 Simulación del control de par adaptativo 

La simulación del control de par adaptativo, se realiza mediante Simulink para los dos siguientes casos 

(los casos 1), 2) y 3) son explicados en el apartado 4.1): 

4) Caso ideal: 𝜏𝐴𝑅𝑇𝐼𝐶𝑈𝐿𝐴𝑅1 = 𝜏𝑃𝐸𝑆𝑂 − 𝜏𝑉𝐴𝐶Í𝑂. Es el par que ejercería una persona sin exoesqueleto 

para el movimiento, obtenida a partir de señales reales. 

5) Caso según modelo biomecánico: 𝜏𝐴𝑅𝑇𝐼𝐶𝑈𝐿𝐴𝑅2 ; par articular de la persona obtenido a través del 

software OpenSim.   

La figura 4.6 muestra el par obtenido en 5), en comparativa con las señales de par vacío y par peso. Se 

aprecia que la señal del modelo biomecánico (ver Anexo D), sí proporciona una amplitud con los valores 

demandados por la articulación de la cadera durante la marcha humana normal (ver tabla 2.1), pero no 

posee una similitud con la alcanzada en el par peso, lo que implica obtener datos en simulación 

erróneos.  Debido a esto y a su descompensación, se opta por trabajar con el caso 4) para evaluar el 

control de par adaptativo diseñado (ver Capítulo 5).  

El Anexo E contiene todas las simulaciones realizadas para el caso 4). Se aplican distintos porcentajes de 

asistencia para poder simular y comparar el par de ayuda necesario que un paciente de 60 Kg. necesita 

para completar el ciclo de la marcha humana normal. En la figura 4.7, se muestran las simulaciones de 

los dos casos de asistencia más extremos según el par articular de 4) (ver Anexo E). Según este caso 

ideal y para cuando el paciente posee el 80% de la capacidad residual de un paciente sano (𝐾𝐻 = 0.8), 

en la simulación 4, se observa que la contribución del paciente es la máxima (𝐾𝐸 = 1), con lo cual el 
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exoesqueleto sólo asiste al paciente mediante un 10% de ayuda (𝐾𝐴 = 0.1). Por otro lado, en la 

simulación 10, la contribución del paciente es del 20% sobre la capacidad residual que el sujeto posee 

(𝐾𝐸), por lo que en este caso el exoesqueleto ayuda al paciente en un 80% (𝐾𝐴) para alcanzar el ciclo de 

la marcha humana normal.  

 

 

 

 

 

 

 

 

 

 

 

         

 

      

 

 

 

 

        

  

 

 

 

 

 
Figura 4. 7 Simulación del par de asistencia (casos extremos) para el caso en el que el paciente posee el 
80% de la capacidad residual de un paciente sano en 4). 

 

Figura 4. 6 Simulación que muestra la comparativa del par biomecánico obtenido mediante el 
software OpenSim (en verde), el par necesario para mover el robot ingrávido (en amarillo) y el par 
ejercido por el motor para mover el conjunto paciente -  exoesqueleto (en azul); la referencia de 
posición se muestra en color rojo 

 

 

 

 

Control de par adaptativo con el modelo biomecánico 

Simulación 4: KH=0.8, KE=1, KA=0.1, KP=3 

       Simulación 10: KH=0.8, KE=0.2, KA=0.8, KP=3 
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Estas simulaciones permiten verificar que el funcionamiento del esquema de control es el deseado, 

para distintas asistencias del robot y contribuciones del paciente. 

 

4.4 Conclusiones 

El modelo de control de par adaptativo no se ha podido evaluar mediante los pares estimados de un 

paciente de 60 Kg., a través del software OpenSim. En sustitución del mismo, se ha obtenido el par 

articular humano mediante la diferencia de señales reales del exoesqueleto con peso y en vacío, 

mostrando un resultado positivo del funcionamiento del control de par adaptativo.  
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CAPÍTULO5 
 

 

Identificación paramétrica y experimentación del 
control de par adaptativo en el exoesqueleto H1 

 
 

Para conseguir que el control de par adaptativo desarrollado en el Capítulo 4, sea general y no haya que 

obtener los pares de consigna a partir del control de posición para diferentes trayectorias (amplitud del 

movimiento, frecuencia del paso) cada vez que se programa una trayectoria, se realiza una identificación 

del sistema, es decir, se obtiene su función de transferencia. De esta manera, una vez definida una 

trayectoria, se puede obtener a partir de dicha función las consignas de pares a aplicar al control 

adaptativo de par motor, sin necesidad de una experimentación previa. En este capítulo se desarrolla la 

identificación paramétrica posición-par para el sistema físico del exoesqueleto sin usuario (robot 

ingrávido) y para cuando el sistema es utilizado por un usuario (robot con el peso corporal de un miembro 

inferior de un sujeto de 60Kg.). Posteriormente, los modelos matemáticos obtenidos de ambos sistemas, 

se integran en el esquema de control de par adaptativo para poder realizar en tiempo real las distintas 

terapias de rehabilitación que puedan plantearse. 

 

5.1 Introducción a la identificación paramétrica 

En ingeniería y en particular en el área de control, es indispensable tener un modelo matemático analítico 

que represente el sistema físico con el que se está trabajando. De esta manera, se puede analizar, 

predecir, simular, diseñar y controlar dicho sistema bajo las condiciones deseadas o de interés. En 

ocasiones, las leyes físicas que rigen cada proceso hacen que las ecuaciones diferenciales del mismo no 

puedan ser obtenidas. En este caso, para conseguir la representación de los modelos matemáticos 

dinámicos de sistemas desconocidos, se emplea el método experimental de identificación de sistemas.  

La identificación paramétrica de sistemas dinámicos consiste en la deducción experimental, tanto de la 

estructura como de los parámetros de los modelos matemáticos, a partir de señales de entrada y de 

salida observadas del propio sistema. Dependiendo del proceso o aplicación, se pueden llevar a cabo 

métodos de identificación off-line ‘si se tiene la seguridad de que no habrá variaciones en la estructura 

del proceso ni en sus características dinámicas’, o métodos de identificación on-line ‘cuando el proceso 

puede variar su comportamiento dinámico con el tiempo’ [18]. Para el caso de sistemas de control 
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adaptativo, aplicado a sistemas en los que los parámetros pueden variar frecuentemente con el tiempo, 

se realiza la identificación paramétrica on-line. Básicamente el proceso de identificación paramétrica off-

line que se realiza aquí, estima un modelo definitivo del sistema, el cual, reproduce con bastante 

aproximación sus características dinámicas, sin tener ningún conocimiento físico previo del mismo. Es 

decir, se calculan los coeficientes y las órdenes de la función de transferencia del sistema objetivo. 

 

5.1.1 Identificación paramétrica del exoesqueleto H1 

Con motivo de realizar la simulación en tiempo real del diseño del control de par adaptativo del 

exoesqueleto (ver Capítulo 4), se plantea la necesidad de realizar el modelado de dos sistemas físicos 

reales: 

 Modelo matemático que represente el sistema físico del exoesqueleto en vacío (SFEV), es decir, 

cuando no está siendo utilizado por ningún usuario.  

 Modelo matemático que represente el sistema físico del exoesqueleto con peso (SFEP), simulando 

que sí hay miembro inferior de un sujeto de 60 Kg., en este caso. 

Para la estimación y obtención de las funciones de transferencia discretas de los sistemas físicos del 

exoesqueleto con y sin sujeto, se desarrolla un script Matlab-Simulink específico para realizar el proceso 

de identificación y obtener ambos modelos matemáticos.  

En el Anexo F, se desarrolla la identificación posición-par del exoesqueleto únicamente para el SFEV, 

además de un breve análisis del comportamiento del sistema mediante la posición de sus polos y ceros 

en el plano z y de su respuesta en frecuencia. Se hubiera seguido el mismo proceso para el SFEP, sin 

embargo, esto se realizó cuando el exoesqueleto se había deteriorado, por lo que no puedo obtenerse 

un modelo identificado para este caso.  

Inicialmente se realiza la identificación del sistema SFEV introduciendo como entrada la señal generada 

por el potenciómetro en el modo control de posición, obteniendo un bajo porcentaje de similitud inferior 

al 50%. Para lograr una buena estimación se requiere al menos entre un 70% y un 80% de semejanza 

entre el sistema real y el modelo estimado. Por ello, se añade como entrada adicional la referencia de 

posición del propio control, logrando el mejor resultado con un 72,33% de semejanza para el sistema del 

exoesqueleto en vacío.  

A partir de diagrama de Bode obtenido en el proceso de identificación, se deduce que el modelo se puede 

aproximar a un primer orden. Por lo que se ajusta a una función de primer orden. Las funciones de 

transferencia del modelo no simplificado y simplificado para SFEV, se muestran en las ecuaciones 5.1 y 

5.2 respectivamente: 

             
 0.04237z8−0.1251z7+0.07198 z6+0.06126z5+0.007682z4−0.116z3+0.05775z^2

𝑧8−0.9815𝑧7− 0.5893𝑧^6−0.1675𝑧5+0.2225𝑧4+0.4628 𝑧3+0.4431𝑧2+0.07962𝑧− 0.4697
                     (5.1) 

 

                                                                       
0.0007375

𝑧−0.999
                                                                  (5.2) 
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En la figura 5.1 Se puede comprobar que las salidas del modelo completo (azul) y del simplificado (rojo) 

presentan una gran similitud, y sus diagramas de Bode también (Anexo F), por lo que se valida el modelo 

simplificado.  

 

 

 

 

 

 

 

 

 

 

 

 

 

La figura 5.2 se muestra la simulación real del par motor obtenido del modelo simplificado de posición – 

par identificado. 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 5. 2. Simulación real del modelo simplificado del sistema del exoesqueleto en vacío 

Figura 5. 1. Validación del modelo completo y del modelo simplificado. 
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5.2 Concepto del control de par adaptativo con identificación   

Para poder realizar la simulación real del control de par adaptativo a pares externos en el hardware del 

exoesqueleto, es necesario añadir a éste el bloque de identificación posición-par desarrollado para SFEV 

y sustituir el bloque del modelo biomecánico de la figura 4.1, es decir, 𝜏𝐴𝑅𝑇𝐼𝐶𝑈𝐿𝐴𝑅1 por 𝜏𝐴𝑅𝑇𝐼𝐶𝑈𝐿𝐴𝑅2 (ver 

apartado 4.3). De esta manera, se puede verificar la posición y par motor del exoesqueleto 

correspondientes a las simulaciones realizadas para diferentes porcentajes de par de asistencia en un 

paciente de 60 Kg (ver Capítulo 4). 

La experimentación con el exoesqueleto, es decir, la ejecución en tiempo real de las simulaciones 

realizadas mediante Simulink en el apartado 4.3, no han podido realizarse al no estar disponible el 

hardware del exoesqueleto por problemas técnicos en el PC104. 

 

5.3 Conclusiones 

Se ha desarrollado y simplificado la función de transferencia para el sistema del exoesqueleto en vacío, 

obteniendo un modelo simplificado de primer orden, mediante la identificación posición-par. De esta 

manera, el siguiente paso a realizar sería plantear el esquema completo con el sistema identificado con 

peso y así poder ejecutar en tiempo real el sistema de control de par adaptativo, cuando el equipo esté 

arreglado. 
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CAPÍTULO 6 
 

 

Conclusiones y líneas futuras 
 

 

El objetivo de este TFM era el de diseñar, implementar y evaluar, un control adaptativo de par motor en 

un exoesqueleto robotizado de miembros inferiores destinado a la rehabilitación motora bajo un 

paradigma de asistencia bajo demanda. Para ello había que sustituir el clásico control de posición rígido, 

por un control de par que permitiera adaptar el movimiento del exoesqueleto a fuerzas o pares externos.  

Estos, pueden provenir del propio par residual ejercido por el usuario o del ejercido por un rehabilitador 

si se utiliza el exoesqueleto para ejercicios de rehabilitación motora, dentro de un entorno clínico y bajo 

la constante supervisión de personal médico capacitado.  

En la primera parte del TFM, se ha realizado un exhaustivo trabajo de ajuste de los controladores de 

posición y de par del exoesqueleto. Ello fue necesario debido a que los valores de los parámetros que 

inicialmente tenían los controladores PID, no proporcionaban el comportamiento suave y rápido 

deseado, necesario para su posterior utilización en el controlador adaptativo de par, objetivo 

fundamental del TFM. El ajuste se realizó para el exoesqueleto en vacío y con un peso equivalente a una 

persona de 60 Kg. Ambos son necesarios para el control adaptativo de par propuesto.  

El control adaptativo de par diseñado, además de los controladores de par correctamente ajustados, 

necesita la estimación de par ejercido por la propia persona usuaria del exoesqueleto, a partir de su 

capacidad latente. Ésta se puede calcular de diversas formas: 1) a partir de medidas de activación 

muscular (EMG), de las que se pueden calcular los pares mediante modelos que relacionan los pares 

articulares con las señales EMG; 2) utilizando sensores de par que midan las fuerzas de interacción de la 

persona sobre el exoesqueleto; y 3) a partir de un modelo biomecánico que calcule los pares articulares 

ejercidos durante la cinemática de la marcha humana normal. En este trabajo, se ha optado por esta 

última opción para evaluar el método de control de una manera sencilla, para condiciones y capacidades 

latentes, desde una contribución parcial del paciente a una contribución casi total. Desafortunadamente, 

los pares estimados de un paciente de 60 Kg. mediante el software OpenSim de libre acceso desarrollado 

por la Universidad de Stanford, no han dado un resultado satisfactorio. En sustitución del mismo, se ha 

obtenido el par articular humano mediante un cálculo a partir de diferencia de señales reales de 

exoesqueleto con peso y en vacío. Se ha obtenido un resultado positivo del funcionamiento del control 

realizado para este caso ideal. Sin embargo, estos resultados no se han podido implementar finalmente 

en el exoesqueleto debido a un fallo en el sistema informático embarcado en dicha plataforma robótica.  
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Una línea de desarrollo futuro evidente sería actualizar tanto el software como el hardware del prototipo, 

para poder realizar el diseño de los seis controladores de ambos miembros inferiores a partir de lo 

conseguido en este TFM. Otra posible vía de desarrollo, sería aplicar un rediseño total del prototipo 

siguiendo el modelo del exoesqueleto H2 [18], aplicando un controlador híbrido que se adapta a la 

función residual del paciente durante la marcha. La experimentación del exoesqueleto con personas 

sanas y con pacientes, es una tarea fundamental para una validación completa del exoesqueleto y sus 

prestaciones, implicando en la utilización y ajuste posterior al personal especialista de rehabilitación. 
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ANEXO A  

 

Entorno de control de tiempo real                                                                    
 

 

Tanto en tiempo real como en tiempo no real, Simulink permite diseñar y simular modelos de sistemas de 

control sin necesidad de escribir un código fuente (en C, C++ o HDL). Simulink genera dicho código 

basándose en modelos gráficos de sistemas de control. De esta manera, se puede proceder a la 

depuración de posibles fallos antes de convertir estos sistemas a hardware.   

Los modelos ejecutados por Simulink en un ordenador estándar, no suelen ser compatibles para 

simulaciones en tiempo real y tampoco suelen poseer entradas/salidas de hardware para adquisición de 

señales y comunicaciones en tiempo real. Como solución a este problema y a su vez, poder trabajar con 

la plataforma robótica H1, se usa la herramienta de software xPC Target (versión 5.5) de Mathworks y 

una plataforma hardware que posea módulos de entradas/salidas adecuados para los requerimientos del 

funcionamiento en tiempo real. 

 

A.1 Aplicación xPC Target (versión 5.5) 

La toolbox xPC Target (versión 5.5) tiene como finalidad que modelos desarrollados mediante Simulink 

en un ordenador convencional, se ejecuten en tiempo real en un sistema embebido independiente 

conectado a un sistema físico a evaluar. Esto, es posible gracias a que esta aplicación cuenta con una gran 

cantidad de dispositivos con entradas/salidas de diferentes fabricantes. Dichos módulos tienen forma de 

bloques dentro del modelo de Simulink y son los que permiten la comunicación con el sistema físico real.  

Esta aplicación ofrece la posibilidad de implementar, visualizar y analizar sistemas en tiempo real usando 

el hardware de un ordenador estándar. Además, puede llevar a cabo procesos de obtención rápida de un 

prototipo o Rapid Prototyping (RP) y de simulación con hardware en el lazo o Hardware-in-the-loop (HIL)  

El entorno para construir aplicaciones en tiempo real con xPC Target (versión 5.5) consiste en un Host PC 

u ordenador convencional, un Target PC o equipo embebido independiente y un hardware real a evaluar 

(figura A.1). Aunque RP y HIL son procesos con propósitos diferentes, comparten el mismo procedimiento 

para obtener el código fuente correspondiente al modelo de un controlador o al modelo de una planta 

respectivamente. En ambos procesos, primero se diseña el modelo pertinente en Simulink instalado en 

el Host PC. Posteriormente, el Target PC ejecuta en tiempo real el modelo diseñado según el escenario 
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Figura A. 1 Entorno para construir aplicaciones en tiempo real para los procesos de obtención rápida de 
un prototipo (RP) y de simulación con hardware en el lazo Hardware-in-the-loop (HIL). 

 

 

 

de evaluación demandado: RP o HIL. Finalmente se realiza una simulación real del modelo diseñado en 

el hardware a evaluar, mostrando este último, las mismas características de frecuencia, velocidad y 

tiempo que el controlador o planta modelado.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.2 Proceso para la obtención rápida del prototipo del exoesqueleto H1 

Antes de realizar el proceso de construcción del modelo diseñado para poder trabajar en tiempo real, es 

importante saber cómo proceder dependiendo del sistema operativo que posea el Host PC.  

La versión 5.5 de la aplicación xPC Target está diseñada para Host PC’s que tienen sistemas operativos de 

32 bits. Permitiendo diferentes maneras de interacción entre el usuario y los equipos durante la ejecución 

en tiempo real del modelo diseñado. También es posible trabajar con esta versión en un sistema de 64 

bits, aunque el programa sólo admite interactuar con la aplicación en tiempo real mediante comandos. 

Otra opción muy interesante de trabajo y que garantiza mayor comodidad, es la creación de una máquina 

virtual con un sistema operativo de 32 bits en un disco duro externo o en el propio Host PC de 64 bits.   

En los siguientes apartados, se explica cómo obtener una aplicación en tiempo real del modelo diseñado 

para cuando el sistema operativo del Host PC es de 32 bits, o para el caso en el que el Host PC posea 64 

bits.    
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A.2.1 Proceso para la obtención del modelo según Host PC de 32 bits 

A.2.1.1 Instalación, configuración y conexión de los equipos (32 bits) 

El paquete xPC Target versión 5.5 demanda que el Host PC posea lo siguientes requerimientos software: 

 Matlab R2011a 

 Toolbox Simulink 

 Toolbox Simulink Coder 

 Toolbox xPC Target 

 Compilador de código C (Visual Studio 2010) 

Para construir la aplicación en tiempo real, se debe realizar la configuración de los equipos.  Basta con 

ejecutar el comando xpcexplr en la ventana de comandos de Matlab, dando acceso a la interfaz gráfica 

del explorador de la aplicación. Otra opción de configuración es mediante la introducción de comandos. 

Las figuras A.2 y A.3, muestran cómo configurar el Host PC y el Target PC de forma rápida y sencilla a 

través de la interfaz gráfica. La ventana de la interfaz se divide en dos mitades: en la mitad izquierda 

aparece un esquema indicando el Host PC y el Target PC por defecto (un solo equipo puede trabajar con 

varios Targets a la vez) y en la mitad derecha se observan los parámetros y opciones del equipo 

configurado. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura A. 2 Configuración del Host PC a través del explorador de la aplicación. 
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Figura A. 3. Configuración del Target PC a través del explorador de la aplicación. 

Figura A. 4 Conexión entre los equipos Host PC y Target PC. 
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La conexión entre el Host PC y el Target PC puede ser de dos tipos: conexión Ethernet o conexión puerto 

serie RS-232. En el caso que atañe este TFM, los equipos están conectados mediante un cable Ethernet 

usando el protocolo de comunicación TCP/IP. Para que la comunicación sea correcta, se deben configurar 

la dirección IP (fija asignada al Target PC) y la máscara de subred en las propiedades TCP/IP de la red de 

Windows del Host PC (figura A.4).  

La interacción entre el usuario y el Target PC durante la ejecución de la aplicación en tiempo real se puede 

realizar principalmente: 

 Mediante la interfaz gráfica del propio explorador de la toolbox xPC Target. 

 A través de la ventana de comandos de Matlab y mediante las instrucciones adecuadas. 

 Usando la Guide User Interface (GUI) de Matlab …etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tras instalar, configurar y conectar los equipos, se debe comprobar que las conexiones entre el Target 

PC y el sistema real son las adecuadas. Si todo está correcto, se procede a llevar a cabo el proceso de 

obtención rápida del prototipo (figura A.5). Previamente se crea el modelo en Simulink con la extensión 

mdl. Luego, tecleando Ctrl+b se construye y compila el modelo diseñado. Este proceso se inicia de manera 

automática con la generación del código C del modelo mediante la toolbox Simulink Coder. 

Posteriormente un compilador de código C (Visual Studio 2010) crea un archivo ejecutable del modelo 

con la extensión dlm. A este archivo se le llama aplicación en tiempo real y se descarga en el Target PC 

mediante conexión Ethernet. En este caso, un ordenador industrial PC104 se inicializa a través de la 

imagen del modelo, la cual, se encarga de encender su kernel de tiempo real. Entonces, es cuando la 

aplicación del modelo diseñado se ejecuta en el hardware físico real (plataforma robótica H1) durante el 

tiempo de ejecución establecido.  

Figura A. 5 Proceso de obtención rápida del prototipo 
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Se pueden adquirir señales y sintonizar parámetros antes, durante y después de la ejecución de la 

aplicación en tiempo real. Esto se consigue mediante la creación de osciloscopios en la ventana del 

explorador; según el tipo de osciloscopio elegido (tipo host, tipo target o tipo archivo) se obtiene una 

información u otra. En este trabajo, se han utilizado osciloscopios de tipo archivo que permiten recoger 

información durante el tiempo de ejecución en archivos ubicados en la memoria del Target PC.  

Posteriormente son descargados en forma de variable en el entorno de Matlab, con la finalidad de poder 

analizar offline las señales proporcionadas por el sistema real. 

 

A.2.1.2 Protocolo para poner en marcha el exoesqueleto (32 bits) 

Tras la instalación, configuración y conexión de los equipos (ver apartado A.2.1.1 de este anexo) se 

procede a la puesta en marcha del exoesqueleto mediante los siguientes pasos: 

1. Dentro del entorno de Matlab seleccionar el path de trabajo donde se crearán los archivos 

correspondientes de la aplicación en tiempo real. 

2. Encender el Target PC activando el interruptor negro (tipo rocker) de alimentación del PC104 situado 

en el lateral de la caja de conexiones y mantener el interruptor de los actuadores desactivado situado 

en la parte superior de la caja de conexiones.  

Si el monitor que está conectado al Target PC muestra la interface indicada en la figura A.6, el 

arranque es correcto. De lo contrario, actuar según lo indicado en el Anexo B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura A. 6. Interface de arranque del PC104 
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3. Ejecutar el comando xpctest en la ventana de comandos de Matlab para comprobar que la 

instalación, comunicaciones y el proceso de compilación de prueba funcionan correctamente (figura 

A. 7). En caso de cualquier fallo consultar.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Ejecutar el comando xpcexplr para acceder el explorador de la toolbox xPC Target y trabajar en su 

entorno (figura A.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura A. 7 Proceso para corroborar desde la ventana de comandos de Matlab que las conexiones entre 
ambos equipos son correctas. 

Figura A. 8. Interface que muestra la aplicación en tiempo real construida y compilada, el tiempo de 
ejecución deseado, el tiempo de muestreo y los osciloscopios tipo archivo con las señales requeridas para 
visualizar y analizar el control de posición de la cadera izquierda. 
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5. Conectar el Target PC, éste siempre debe estar conectado antes de cargar cualquier aplicación con 

extensión dlm. Para conectar el Target PC hay que clicar con el botón derecho sobre TargetPC1 en el 

panel izquierdo del explorador.  

6. Abrir el modelo del sistema de control del exoesqueleto y colocar el ratón sobre él para seleccionarlo. 

Hecho esto, pulsar en el teclado Ctrl+b para construir y compilar la aplicación en tiempo real del 

prototipo (este proceso lleva un par de minutos). Esta aplicación aparecerá por defecto cargada en 

el Target PC (figura A.8). 

7. En el explorador y dentro de las propiedades de la aplicación, indicar en segundos el tiempo de 

ejecución deseado y el tiempo de muestreo del modelo diseñado; 0.001 seg. es el tiempo de 

muestreo del exoesqueleto (figura A.8). 

8. Añadir los osciloscopios necesarios de tipo archivo y añadir dentro de ellos las señales que se quieren 

visualizar y analizar. Después conectar los osciloscopios.  (figura A.8). 

9. Asegurarse de que el exoesqueleto está en posición de equilibrio (ver Capítulo 3 apartado 3.1.3). 

Posteriormente alimentar los actuadores mediante el interruptor de tipo palanca (toggle) situado en 

la parte superior de la caja de conexiones.  

10. Ejecutar la aplicación en tiempo real clicando con el botón izquierdo sobre el icono de play. Entonces 

el exoesqueleto entra en funcionamiento durante el tiempo de ejecución previamente establecido. 

Si se desea parar antes de que finalice el tiempo de ejecución, clicar con el botón izquierdo sobre el 

icono de stop. 

11. Terminada la ejecución, desactivar el interruptor que alimenta los actuadores. 

12. A continuación, se exportan al espacio de trabajo de Matlab en forma de estructura, los archivos de 

datos generados durante la ejecución. Esto se realiza desde la opción export to workspace de los 

osciloscopios. 

13. Finalmente, se representan gráficamente las señales seleccionadas según propósito, con objeto de 

tener una mejor comprensión del comportamiento del sistema físico. De esta manera se puede 

realizar un completo análisis visual y paramétrico del exoesqueleto. 

 

A.2.2 Proceso para la obtención del modelo según Host PC de 64 bits 

A.2.2.1 Instalación, configuración y conexión de los equipos (64 bits) 

Cuando el entorno de trabajo posee un Host PC de 64 bits, la instalación y conexión de los equipos se 

realiza de la misma manera que la indicada en el apartado A.2.1.1 de este mismo anexo. Por el contrario, 

la configuración de los equipos se realiza mediante la ejecución de los siguientes comandos. (figura A.9). 

 

 

 

 

 

 

 Figura A. 9 Comandos para la configuración del equipos desde un Host PC de 64 bits. 
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A.2.2.2 Protocolo para poner en marcha el exoesqueleto (64 bits) 

1. El proceso es muy similar al indicado en el apartado A.2.1.2. Sólo hay una diferencia, que la 

interacción durante el tiempo de ejecución entre el usuario y la aplicación, únicamente se puede 

realizar mediante comandos. Para ello, es aconsejable guardar todas las líneas de comando en un 

único archivo script propio del entorno de Matlab.   

2. La figura A.10 muestra todos los comandos y los comentarios del código desarrollado para: construir 

y compilar el modelo, configurar el tiempo de ejecución y de muestreo, inicializar los osciloscopios y 

ejecutar la aplicación. Se usa como ejemplo el control de posición de la cadera izquierda. 

 

 

 

 

 

 

 

 

3. Cuando el tiempo de ejecución se termina, para extraer los datos de la simulación se deben ejecutar 

las siguientes líneas de código por cada osciloscopio (figura A.11). De esta manera, se obtiene en el 

espacio de trabajo del entorno de Matlab dos variables por cada osciloscopio: una contiene el tiempo 

de ejecución y la otra posee los datos de la señal a evaluar (figura A.12).  

 

 

 

 

 

 

 

 

 

 

 

 

Figura A. 10. Comandos para construir y compilar el modelo diseñado en Simulink, definir osciloscopios 
y ejecutar la aplicación. 

Figura A. 11 Comandos para extraer en el Host PC los datos de los ficheros creados en el Target PC durante 
la simulación del control de posición del exoesqueleto H1. 
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Figura A. 12 Comandos para obtener las variables y los tiempos de las mismas, en el espacio de trabajo 
de Matlab, para su posterior representación.  
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ANEXO B  

 

Protocolo de reinicio del sistema embebido PC104                                                                    
 

 

Este anexo muestra los diferentes pasos de cómo proceder para reiniciar el sistema embebido del 

exoesqueleto H1 cuando se presenta un error en su disco de arranque tras iniciar el sistema. 

 

B.1 Descripción y solución del problema  

A lo largo de la ejecución de este TFM, el sistema embebido PC104 falló repentinamente y dejó de 

funcionar de manera correcta. El problema no estaba claro debido a que sí se encendía el sistema, pero 

no cargaba los ejecutables con extensión dlm de los modelos diseñados en Simulink. 

Con motivo de solventar el incidente y averiguar el fallo desconocido del embebido, se decide conectar 

al mismo un monitor y un teclado. De esta manera, se pudo observar que una de las particiones de su 

disco de arranque estaba corrompida. La solución fue copiar sobre el disco duro estropeado, una imagen 

del disco duro de un PC104 no deteriorado a través de un sistema operativo externo. 

A continuación, se muestran los pasos a seguir para realizar correctamente el proceso de reinicio del 

sistema embebido y poder trabajar posteriormente con el exoesqueleto H1. Para ello se necesita: 

 Un USB que contenga la imagen del disco duro de un PC104 y un disco de arranque con una imagen 

ISO del sistema operativo Ubuntu versión 11.10. 

 Adaptadores especiales que permitan conectar al embebido: un monitor, un teclado y un pendrive.  

 

B.1.1 Protocolo de reinicio del PC104 ante un error en su disco duro.  

1. Conectar al sistema embebido un monitor y un teclado (figura B.1). 
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2. Activar el interruptor de alimentación del PC104 (figura B.2.a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Tras encender el equipo pueden observarse dos posibilidades. Por un lado, la interface del sistema 

embebido puede indicar un mensaje de error en el disco de arranque (figura B.3), cuya solución se 

muestra en las siguientes instrucciones de este anexo. Por otro lado, al encender el equipo puede 

aparecer la interface indicativa de un correcto funcionamiento del sistema embebido PC104 (figura 

B.8). En este caso, seguir con la puesta en marcha del exoesqueleto desarrollada en el Anexo A según 

los bits que posea el sistema operativo del Host PC (apartado A.2.1.2 para un sistema de 32 bits y/o 

apartado A.2.2.2 para un sistema 64 bits). 

 

 

Figura B. 1 Equipo y conexiones necesarias para la visualización del estado del PC104 a) Hardware: 
monitor y teclado  b) Conexiones y adaptadores del hardware utilizado, junto al USB que contiene la 
imagen del disco duro del PC104 y el sistema Ubuntu 11.10. 

Figura B. 2 Caja de conexiones que empalma los interruptores de alimentación del prototipo a) Interruptor 
negro tipo rocker situado en el lateral encargado de alimentar el sistema embebido b) Interruptor de tipo 
palanca (toggle) localizado en la parte superior que acciona (‘1’) y/o para (‘0’) los actuadores de corriente 
continua. 

a) b) 

b) a) 
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4. Introducir el USB en el adaptador (figura B.1.b) 

5. Pulsar Ctlr+Alt+Supr para inicializar el sistema operativo Ubuntu versión 11.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura B. 3 Interface del sistema embebido que muestra el error en el disco de arranque tras activar el 
interruptor de alimentación del mismo. 

Figura B. 4. Interfaces que muestran el proceso de inicialización del sistema operativo Ubuntu a) Interface 
de tiempo de espera de carga b) Interface de carga del sistema c) Interface de inicio del sistema operativo 
Ubuntu versión 11.10. 

a) b) 

c) 
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6. Pulsar Ctlr+Alt+F1 para acceder a la consola del sistema operativo Ubuntu (figura B.5). 

 

 

 

 

 

 

 

 

 

 

7. Introducir las siguientes instrucciones para realizar una copia bit a bit de la imagen del disco de 

arranque. 

sudo mount /dev/sda1 /mnt 

ls /mnt 

cd /cdrom 

ls 

sudo if=/cdrom/imageDiscoDuro.img of=/dev/sda 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura B. 5 Interface de la consola del sistema operativo Ubuntu, mediante la que se introducen las 
instrucciones pertinentes según el cometido a realizar. 

Figura B. 6 Interface que muestra las instrucciones necesarias para realizar bit a bit la copia del disco de 
arranque no deteriorado y el tiempo que conlleva dicho proceso. 
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8. Acabado el proceso, reiniciar el sistema mediante la instrucción ‘sudo reboot’. 

9. Quitar el USB y pulsar enter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. Sistema embebido reiniciado. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura B. 7 Interface que indica el cierre del sistema Ubuntu, por lo que ya se puede retirar el pendrive 

que lo contiene. Tras ello, se pulsa la tecla enter para finalizar el proceso. 

 

Figura B. 8   Interface indicativa del correcto funcionamiento del sistema embebido PC104. 

 



 

 

 

 

 

 

 

 



Apéndice C Obtención de la consigna de par motor 

 

59 
 

 

 

 

 

ANEXO C 
 

 

Obtención de la consigna de par motor                                                         
 

 

En documento contiene el script de Matlab creado para obtener la consigna de referencia del control de 

par motor del actuador de la cadera izquierda.  

 

C.1 Código para la obtención de la consigna de par motor 

A continuación, en las figuras C.1 y C.2, se muestran los comandos desarrollados para obtener la consigna 

de referencia de par motor a través del control de posición del exoesqueleto H1 ingrávido. 

 

 

 

 

 

 

  

 

Figura C. 1 Comandos para obtener la referencia de consigna del control de par del actuador de la cadera 
izquierda. 
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Figura C. 2 Continuación de los comandos desarrollados  para obtener la referencia de consigna del 
control de par del actuador de la cadera izquierda 
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ANEXO D 
 

 

Simulación dinámica de la marcha mediante OpenSim. 
Dinámica inversa                                                                   

 
 

En este documento, se muestra el protocolo a seguir para resolver el problema de la dinámica inversa 

usando datos experimentales mediante el software de simulación dinámica OpenSim (versión 3.3). En este 

caso, se parte de la posición en el tiempo de los ángulos articulares de la cadera izquierda para obtener 

los momentos o pares de dicha articulación durante la marcha normal humana.  

 

D.1 Introducción al entorno de simulación de OpenSim 3.3 

La herramienta software OpenSim permite modelar modelos músculo esqueléticos del cuerpo humano y 

realizar simulaciones dinámicas incorporando movimientos a estos modelos. También puede realizar 

análisis cinéticos y cinemáticos, comparativas de distintos patrones de la marcha normal y patológica, y 

graficar su comportamiento.   

Entre otras opciones, el entorno gráfico posibilita poder escoger dentro del modelo músculo esquelético, 

las coordenadas iniciales de las articulaciones y su orientación, especificar la geometría músculo 

esquelética y dentro del archivo genérico o modificado del movimiento a estudio, permite predecir las 

fuerzas que desarrollarían músculos y tendones junto con los momentos articulares para poder realizar 

su posterior análisis.  

 

D.2 Simulación de la dinámica inversa para la articulación de la cadera izquierda 

durante la marcha normal 

Para determinar la cinética de las articulaciones, se utiliza la dinámica inversa con objeto de estimar los 

momentos de estas articulaciones durante el movimiento. Es decir, la dinámica es el estudio de las 

fuerzas y momentos que produce un movimiento.  
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En este apartado se muestra el protocolo a seguir para resolver el problema de la dinámica inversa en la 

cadera izquierda durante el movimiento de la marcha normal humana a través del software OpenSim 

versión 3.3.  

 

D.2.1 Protocolo para calcular el momento neto en la articulación de la cadera izquierda 

1. Cargar el modelo genérico músculo esquelético con extensión .osim 

Se carga el modelo genérico gait2392_simbody.osim de las extremidades inferiores. Este modelo 

biomecánico representa a un adulto de 1,80m y unos 75Kg de peso y está formado por unos 92 músculos 

(46 por cada pierna y 6 en el torso) y 13 segmentos rígidos representados por una línea roja que conecta 

un punto inicial y otro final (figura D.1). El color rojo indica que no hay activación muscular, por el 

contrario, cuando hay activaciones musculares estos segmentos se vuelven de color azul. 

2. Escalar el modelo biomecánico genérico a la antropometría del sujeto. 

Mediante la escalización se altera la antropometría del modelo a la del sujeto. En este TFM, el control 

adaptativo de par se adapta para un paciente de 60 Kg., por lo que se ajustan las características de este 

modelo a las deseadas mediante unos parámetros de masa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Cargar el movimiento con extensión .mot en el modelo escalado. 

La dinámica inversa, necesita como dato la cinemática del movimiento. Por ello, se modifica el archivo 

genérico normal.mot que contiene los datos reales del movimiento de la marcha humana normal, con los 

datos que se disponen del movimiento de la flexo-extensión de la articulación de la cadera izquierda. 

Figura D. 1 Modelo escalado a la antropometría de un sujeto de 60 Kg., partiendo del modelo genérico 
gait2392_simbody.osim 
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Posteriormente, se simula en el modelo biomecánico la trayectoria del movimiento de la marcha en el 

plano sagital. 

4. Obtención de la dinámica inversa del movimiento de la marcha norma. 

Para obtener los momentos articulares generados por los movimientos de flexión y extensión en el plano 

sagital durante la acción de caminar, se genera el archivo inverse_dynamics.sto. Tras ejecutar dicho 

archivo, se observa la activación muscular del modelo biomecánico en color azul (Figura D. 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D.2.2 Resultados de la cinemática y de la cinética de la marcha normal humana en la articulación de la 

cadera izquierda 

A continuación, se muestran los resultados de la trayectoria articular de la cadera izquierda y derecha 

(figura D.3) y sus respectivos momentos articulares (figura D.4). Posteriormente estos datos son 

exportados a un fichero de texto para posteriormente poder ser empleados en Matlab. 

 

 

 

 

 

Figura D. 2 Obtención del archivo inverse_dynamics.sto para obtener los momentos articulares y la 
activación muscular del modelo escalado indicada en azul 
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Figura D. 3 Trayectoria articular de la cadera izquierda y derecha durante un paso de la marcha normal 
humana 

Figura D. 4 Momentos articulares de la cadera izquierda durante un paso de la marcha normal humana 
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ANEXO E 
 

 

Simulación del control de par adaptativo                                                         
 

 

En este anexo se muestran en detalle todas las simulaciones realizadas para diferentes porcentajes de par 

de asistencia a desarrollar por el exoesqueleto en un paciente de 60kg para el caso de simulación ideal,  

 

E.1 Caso ideal 

Para el caso ideal: 𝜏𝐴𝑅𝑇𝐼𝐶𝑈𝐿𝐴𝑅1 = 𝜏𝑃𝐸𝑆𝑂 − 𝜏𝑉𝐴𝐶Í𝑂 , se aplican los siguientes porcentajes de asistencia, 

dónde: 

 𝐾𝐻, simula la capacidad residual que puede tener el paciente de 60 Kg según el grado de lesión 

cerebrovascular sufrida. Este nivel de capacidad variará entre 0 < 𝐾𝐻 ≤ 1; si 𝐾𝐻 = 1 la capacidad del 

paciente será la de un paciente sano. 

 𝐾𝐸, simula la contribución del paciente dentro de su rango de capacidad residual. Este nivel 

de contribución variará entre 0 < 𝐾𝐸 ≤ 1; si 𝐾𝐸 = 1  el paciente contribuye con el 100% de su par 

residual para llevar a cabo el movimiento del ejercicio y el robot asistirá en consecuencia. 

 𝐾𝐴, permite variar la asistencia del exoesqueleto. El nivel de asistencia se establece entre                
0 < 𝐾𝐴  ≤ 1, entonces el exoesqueleto suministrará parte del par para hacer el movimiento y el 

paciente deberá ejercer el resto de la fuerza para completar el ejercicio; si 𝐾𝐴 = 1 y 𝐾𝐻 = 1 será el 

robot el que haga toda la asistencia del movimiento y la contribución del paciente será nula.  

 

CASO IDEAL                   

  KH KE KA KP  KH KE KA KP 

Simulación 1 0.8 1 1 3 Simulación 13 0.2 1 1 3 

Simulación 2 0.8 1 0.8 3 Simulación 14 0.2 1 0.8 3 

Simulación 3 0.8 1 0.5 3 Simulación 15 0.2 1 0.5 3 

Simulación 4 0.8 1 0.1 3 Simulación 16 0.2 1 0.1 3 

Simulación 5 0.8 0.8 1 3 Simulación 17 0.2 0.8 1 3 

Simulación 6 0.8 0.8 0.8 3 Simulación 18 0.2 0.8 0.8 3 
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Simulación 7 0.8 0.8 0.5 3 Simulación 19 0.2 0.8 0.5 3 

Simulación 8 0.8 0.8 0.1 3 Simulación 20 0.2 0.8 0.1 3 

Simulación 9 0.8 0.2 1 3 Simulación 21 0.2 0.2 1 3 

Simulación 10 0.8 0.2 0.8 3 Simulación 22 0.2 0.2 0.8 3 

Simulación 11 0.8 0.2 0.5 3 Simulación 23 0.2 0.2 0.5 3 

Simulación 12 0.8 0.2 0.1 3 Simulación 24 0.2 0.2 0.1 3 

 

Simulación 1: KH=0.8, KE=1, KA=1, KP=3 

 

Simulación 2: KH=0.8, KE=1, KA=0.8, KP=3 

 

Simulación 3: KH=0.8, KE=1, KA=0.5, KP=3 
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Simulación 4: KH=0.8, KE=1, KA=0.1, KP=3 

 

 

Simulación 5: KH=0.8, KE=0.8, KA=1, KP=3 

 

Simulación 6: KH=0.8, KE=0.8, KA=0.8, KP=3 

 

Simulación 7: KH=0.8, KE=0.8, KA=0.5, KP=3 
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Simulación 8: KH=0.8, KE=0.8 KA=0.1, KP=3 

 

 

Simulación 9: KH=0.8, KE=0.2, KA=1, KP=3 

 

Simulación 10: KH=0.8, KE=0.2, KA=0.8, KP=3 

 

Simulación 11: KH=0.8, KE=0.2, KA=0.5, KP=3 
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Simulación 12: KH=0.8, KE=0.2 KA=0.1, KP=3 

 

Simulación 13: KH=0.2, KE=1, KA=1, KP=3 

 

Simulación 14: KH=0.2, KE=1, KA=0.8, KP=3 

 

Simulación 15: KH=0.2, KE=1, KA=0.5, KP=3 
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Simulación 16: KH=0.2, KE=1, KA=0.1, KP=3 

 

Simulación 17: KH=0.2, KE=0.8, KA=1, KP=3 

 

Simulación 18: KH=0.2, KE=0.8, KA=0.8, KP=3 

 

Simulación 19: KH=0.2, KE=0.8, KA=0.5, KP=3 
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Simulación 20: KH=0.2, KE=0.8 KA=0.1, KP=3 

 

Simulación 21: KH=0.2, KE=0.2, KA=1, KP=3 

 

Simulación 22: KH=0.2, KE=0.2, KA=0.8, KP=3 

 

Simulación 23: KH=0.2, KE=0.2, KA=0.5, KP=3 
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Simulación 24: KH=0.2, KE=0.2 KA=0.1, KP=3 
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ANEXO F 
 

 

Proceso de identificación paramétrica 
 

 

En este anexo, se muestra todo el proceso de obtención de la identificación paramétrica para el sistema 

del exoesqueleto en vacío (robot ingrávido).  

 

F.1 Obtención del proceso de identificación paramétrica 

Para realizar el análisis del sistema físico del exoesqueleto sin sujeto (SFEV), se requiere de un modelo 

matemático que lo represente. A continuación, se muestran los pasos desarrollados en un script de 

Matlab-Simulink para realizar el proceso de identificación. 

 Adquisición de los datos de entrada-salida del sistema 

 Tratamiento previo de los datos registrados 

 Estimación del modelo y obtención de sus parámetros 

 Evaluación del modelo 

 

F.1.1  Adquisición de los datos de entrada-salida del sistema 

Para la obtención de los datos de entrada y salida en un proceso de identificación, lo ideal es excitar al 

sistema con una señal de entrada cuadrada aperiódica de múltiples frecuencias aleatorias. Con motivo 

de que el exoesqueleto ejecute dicha trayectoria, lo ideal sería programar en la parte de control de alto 

nivel mediante Simulink, un script que permitiera realizar al sistema dicha señal de excitación persistente 

durante un intervalo de tiempo adecuado y respetando el rango de posiciones de trabajo que soporta la 

cadera durante la marcha humana. Pero para evitar movimientos bruscos, con los correspondientes 

pares elevados que se producirían con una señal cuadrada, y contribuiría al deterioro mecánico del 

equipo, se opta por utilizar como señal de entrada del sistema una señal sinusoidal aperiódica de 

múltiples frecuencias aleatorias. De igual manera que se hubiera realizado para la señal anterior, su 

generación se realiza programando una nueva trayectoria en el control de posición del exoesqueleto. Con 

esta nueva señal de entrada el sistema físico no sufre cambios bruscos de posición ni de par, por lo que 

la identificación paramétrica del sistema del exoesqueleto sin y con usuario, se realizará con esta señal 

de entrada.  
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F.1.2 Tratamiento previo de los datos registrados. 

En este punto se procesan y corrigen los datos de las señales de entrada y salida, con motivo de facilitar 

y mejorar el proceso de identificación. Es decir, se eliminan las perturbaciones de alta frecuencia, los 

datos erróneos y se tratan los niveles de continua de los datos registrados.  

F.1.3  Estimación del modelo y obtención de sus parámetros 

Con los datos de entrada y salida preparados, se procede a estimar el modelo con el que se va a trabajar. 

Se estiman diferentes modelos usando modelos polinomiales de estructura ARX. Posteriormente se 

escoge el modelo de estructura ARX que mejor porcentaje de semejanza presenta con la salida real, en 

torno a una estimación de entre un 70% a un 80% 

F.1.4 Evaluación del modelo 

La evaluación del modelo se lleva a cabo mediante simulación a través de Matlab-Simulink, realizando la 

comparación entre la salida real del par electromagnético del actuador de la cadera y de los modelos 

ajustados, ingresando las funciones de transferencia discretas obtenidas. 

Otra forma realizar la evaluación del modelo es mediante la visualización de polos y ceros que permiten 

la simplificación del modelo. El análisis de la respuesta en frecuencia del modelo y de la señal real 

proporciona una información muy rica para la obtención del mejor modelo. 

 

F.2 Análisis del proceso de identificación paramétrica. 

En este apartado se desarrollan los apartados anteriores para obtener los modelos identificados de los 

sistemas SFEP y  SFEV.   

F2.1 Identificación paramétrica del exoesqueleto H1 mediante dos señales de entrada. 

 Similitud del sistema (72,33%) 
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 Parámetros del sistema completo: 

                                
 0.04237z8−0.1251z7+0.07198 z6+0.06126z5+0.007682z4−0.116z3+0.05775z^2

𝑧8−0.9815𝑧7− 0.5893𝑧^6−0.1675𝑧5+0.2225𝑧4+0.4628 𝑧3+0.4431𝑧2+0.07962𝑧− 0.4697
 

 

 Evaluación del sistema: Mapa de polos y ceros 

 

 

F2.2 Identificación paramétrica simplificada del exoesqueleto H1 mediante dos señales de entrada 

 Parámetros del sistema simplificado: 

                                                                      
0.0007375

𝑧−0.999
                                                                   

 

 Evaluación del sistema completo (izquierda) y simplificado (dereha) mediante Diagrama de bode: 
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