. Universidad

[]
Al

[]
188 Zaragoza

1542

£

Trabajo Fin de Master

Microservicio basado en FHIR: Bot eHealth para
el seguimiento de la Medicacion de Pacientes

FHIR Compliant Microservice: an eHealth bot
for Patient-Caregiver Medication Management

Autor
John Lawrence Rogers V

Directores

Surya Roca Mainer, José Garcia Moros

Escuela de Ingenieria y Arquitectura / Universidad de Zaragoza

2018

Repositorio de la Universidad de Zaragoza - Zaguan
http://zaguan.unizar.es

MASTER

W
Q
=
W
~
o)
S
Qc
G
W
Q
=
W
W
Q
%)
)
<
<
=

Ingenieria y Arquitectura

.iil Escuela de DECLARACION DE
Universidad Zaragoza AUTORIA Y ORIGINALIDAD

(Este documento debe acompaiiar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Master (TFM) cuando sea depositado para su evaluacion).

p./pa. John Lawrence Rogers V

)

con ne de DNI Y4954774J en aplicacion de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)

Master , (Titulo del Trabajo)

Microservicio basado en FHIR: Bot eHealth para el seguimiento de la

Medicacion de Pacientes

’

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 20 de Septiembre 2018

e

Fdo: John Lawrence Rogers V

Acknowledgements

I would like to thank first and foremost the co-director and my tutor Surya
Roca Mainer, for whom without none of this would have been possible. Surya was
a source of inspiration for me throughout the difficulties in the project and kept my
sights focused when they were unclear. Together with all the guidance she provided
in person and the countless emails sent back and forth she ceaselessly aided me
where and whenever it was needed. For everything you have done, I thank you.

I also give thanks to my director José Garcia Moros, for his support and
gquidance. Most of all his patience as this project spanned countries and continents
m 1ts writing.

To my colleagues and friends in the laboratory thank you for being as friendly,
inwviting and supportive as you all were. It has been a pleasure to meet all of you
and thank you for your words of encouragement and aid.

Lastly to my family: My wife Rosa, for putting up with the hours spent in the
lab and at home throughout this project. And to my mother and father for being

there for me during my years abroad

Abstract

Debido al aumento en la poblacion de personas mayores y de
los riesgos médicos asociados a ello, junto con el incremento
del uso de dispositivos méviles, surge una gran oportunidad de
proporcionar ayuda instantdnea de manera facil y econémica
a esta comunidad vulnerable. Mas alla de los ancianos, su-
cede la misma situacién para las personas sin muchos recursos
y para la poblacién que vive en zonas remotas del mundo;
los dispositivos moviles estan en todas partes y pueden ser
utilizados por todo el mundo. Con el fin de aprovechar el
poder de este gran recurso, este proyecto tiene como objet-
ivo construir una plataforma de mensajeria eHealth para en-
viar informaciéon médica relacionada con medicamentos, no-
tificaciones fiables y administraciéon de medicamentos a estas
personas y a sus cuidadores. Para llevar esto a cabo, se ha
realizado una revision exhaustiva y se ha migrado la especific-
acion de medicacion local a un estandar internacionalmente
reconocido. Se ha disenado un chatbot para interactuar y ay-
udar a los pacientes y, al mismo tiempo que se ha realizado la
expansion de una libreria para mejorar la implementacién de
este chatbot y futuros chatbots en Python, se ha investigado
y desarrollado un novedoso protocolo para gestionar chatbots
multilingiies. Finalmente, se ha realizado un anélisis inicial
para la deteccién de medicamentos basado en el reconocimi-
ento 6ptico de caracteres y se han sentado las bases para el

desarrollo futuro.

Abstract

With the ever increasing elderly population and the medical
risks associated with them, as well as the exponential rise in
their smartphone connectivity, there is a great opportunity to
easily and cheaply provide instant aid to this vulnerable com-
munity. Beyond elderly the same is true for the impoverished
and those living in remote regions of the world; smartphones
are everywhere and entering everyone’s hands.

In order to harness the power of this great resource this pro-
ject aims to build onto the eHealth smartphone messaging
platform to provide medical information on medications, re-
liable notifications, and medication administration reporting
to these people and their caregivers. To do this a comprehens-
ive review and migration of the local medication specification
to an internationally recognized standard was undertaken.
A chatbot was designed to interact with and aid patients.
While a library was expanded for the better implementation
of this chatbot and future chatbots in Python. A novel pro-
tocol for handling multilingual chatbots was investigated and
developed. Lastly initial looks into optical character reader
based medication recognition was performed and the founda-

tion for future development was laid.

Contents

List of Figures

1 Introduction
1.1 Project Overview
1.2 Objectives
1.3 Materials and Technologies Used

1.4 Report Organization,

2 Applications for Medical Data
2.1 Data organization Standard
2.2 Security
2.3 Migration of CIMA database and adding FHIR Compliance

3 Medication Microservice
3.1 Selection of Project Building Blocks
3.1.1 Messaging Client Language
3.1.2 Platform Serving
3.2 Other microservices
3.2.1 Dispatcher microservice
3.2.2 Database Requests
3.3 Function

3.4 Flask application o

i

Page iii

CONTENTS

3.5 Serving the Flask App
3.6 The Docker Container
3.7 HTML hosted web services
3.8 Bot Functions and Conversation
3.9 OCR

4 User - Chatbot Communications

4.1 Multi-lingual support
4.1.1 The Sraitag
4.1.2 The Topictag.

4.2 Expansion
4.2.1 New list Extension
4.2.2 Generate Notifications Extensions

4.3 Notifications Logic and Language Processing

5 Results
5.1 FHIR Specification Application
5.2 Functionality
5.2.1 Manual Entry of Medications
5.2.2 Generate Notifications
5.3 A Full Interaction

6 Conclusions and Future work

6.1 Conclusions L.
6.2 Futurework
6.2.1 With FHIR
6.2.2 The Microservice

Bibliography

CONTENTS

Page iv

A Comparing Messaging clients

B Time Distribution of the Project

C The final build

D Extensions

55

57

59

62

List of Figures

1.1

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

4.1

Overview of the microservice detailing the various functions.

Representation of the components of a CIMA medication entry.

The translation from CIMA medication object in blue to the FHIR

medication object and it’s dependencies inred.

The full FHIR solution, from practitioner and patient to medication

ingredient. L

Detailed view of the full eHealth solution from phone to individual
IMICTOSEIVICES. o vttt e e
Structure of the Gunicorn - Flask - Application relationship.

Example of the web interface used for testing the chatbot function-

Web based utility for creating Prescription Sheet templates used in
the OCR.
Detailed flowchart showing the flow of a message from phone to the
microservice and back.o 00000
Decision tree of a segment of chatbot conversation. Shown is the

conversation for manually adding a new medication.

Representation of the logical flow of the translation capabilities of

the chatbot.

2

11

LIST OF FIGURES Page vi

5.1

5.2

2.3

5.4

2.5

Al

B.1

The web interface for the HAPI FHIR server, showing a sample of
the Medication entries. 43
Shows the selection of the “add medication” option followed by the
input of a code and confirmation that the found medication is correct. 45
Sample of a successfully entered medication. 46
Conversation between bot and user during the generate notification
function of the bot.o 47

Dialogue for filling the notification by asking frequency and which

Table detailing the different features of various messaging clients . . 55

Gantt Chart of the project from proposal to final presentation. . . . 58

Chapter 1

Introduction

Telemonitoring of patients plays an important role in aiding the elderly, people
with limited mobility, and people from remote regions where primary care facilities
are limited. Of all the keys to telemonitoring the control of medications stands out.
In the elderly and people with limited mobility, mistakes in the administration of
medications is one of the leading causes of hospitalization, accounting for over 6%
of hospitalizations (7). This highly avoidable problem is associated with patients
lacking proper information, memory related issues, and caregiver mistakes. Often
a patient receives a medication and is not aware of the proper dosage or even the

appearance of the medication.

In patients with five or more daily medications it can become quite confusing
as to which medication is used when and how. Memory can affect whether or not
the patient recalls having taken a medication. In the case that they forget to take
it, a missed dose is the result. For patients receiving antibiotics for an infection
or blood thinners for heart problems that can be very problematic. The opposite
case is where a patient forgets that they have taken a medication and repeats the
administration excessively. One of the most common medication related issues is
a result of that case. With the common Non-steroidal anti-inflammatory drugs

(NSAID) this can often lead to gastro-intestinal bleeding(2).

CHAPTER 1. INTRODUCTION Page 2

This project proposes and goes through the design of two core products: An
eHealth messenger service for the recording, monitoring, and provision of medic-
ation information paired with an internationally recognized standard of medical
data storage and organization to the Spanish medication and doctor database.
This is to be accomplished by integrating into a system of tools that compose a
patient - caregiver - chatbot platform. The tools known as microservices are each
fundamental programs designed to perform one aspect of the solution. They can

work independently yet interact with each other fully for combined needs.

1.1 Project Overview

The eHealth messenger that this project focuses on, from this point to be re-
ferred to as the Medication microservice, is a tool to be implemented into the
University of Zaragoza’s Signal based eHealth messenger solution. It is a tool to
interact with healthcare providers, patients and caregivers. It is to facilitate the
interaction between them by keeping a record of medications, ensuring that medic-
ations are received, taken, or administered properly. The Medication microservice
does this through an intuitive chat, a powerful notifications manager, and a com-
plete medication information storage system. A quick overview of the Medication

microservice is shown below in Figure 1.1

Add

Medications

Generate

Notifications

Medication
Microservice

View
Medications

Change

Notifications

Change

Medications

Figure 1.1: Overview of the microservice detailing the various functions.

Page 3 CHAPTER 1. INTRODUCTION

Above it can be seen that when a patient receives their prescription sheets
containing the codes from the Agencia FEspanola de Medicamentos y Productos
Sanitarios Centro de Informacion de Medicamentos (AEMPS CIMA) codes, they
have only to input the medication codes to make a record of having received them.
Once all of the codes are entered, and verified for correctness, the record is stored
on our secure, internationally standardized server. The doctor or caregiver can at
any time (if permitted by access rights) access the records to make sure that the
correct medications are listed, what the dosages, schedule etc are. The microservice
will automatically generate notifications if the user wishes. These can of course
be customized or entered completely manually if desired. The notifications utility
also makes a record of taken or missed medications and the time taken. It can
also be customized for any other relevant steps.

The final piece of the puzzle is in the exchange and storage of the medication
data. Specifications for the exchange of medical information are of utmost import-
ance when one begins to think about how crucial they are to the safety, health
and integrity of a medical solution. To do this the project will add an additional
standard to the Spanish medication network. The Fuast Healthcare Interoperability
Resources, FHIR specification is one such method that prides itself in interoper-
ability, its open nature, and ubiquity in the medical world and was chosen for this

task.

1.2 Objectives

This project began with three main objectives, to develop a microservice to aid
in the monitoring, administration, and record keeping of medications; to apply the
FHIR specification to the Spanish AEMPS CIMA database, and to create a Python

basis in which further AIML chatbot eHealth microservices can be implemented.

This microservice must be able to integrate into the existing microservice bot

CHAPTER 1. INTRODUCTION Page 4

framework. It must follow the same user experience format designed by the Uni-
versity of Zaragoza team. It should also provide the ability for expansion into
a more Natural Language Processing structure than is currently implemented. It
must be fully FHIR compliant and designed to be easily accessed and used by other
microservices. The AIML Python library must be expanded to conform with the
AIML 2.0 guidelines as far as is necessary for the chatbot and liberties may be
taken for the expansion of added functionalities beyond the scope of the AIML 2.0

guidelines.

1.3 Materials and Technologies Used

In order to pursue this project many technologies, tools and resources were

used.

o Python 3.6: This newer version (versus Python 2) was chosen because the
latter version is being progressively out phased, thought the earlier one does
have a more complete AIML library, the author found it prudent to use this
newer version and expand its AIML library. This was the primary language

used for the development of the chatbot and supporting functions.

o AIML: The basis for the AIML implementation in this project is pyAIML
authored by Cort Stratton(3). This is the language used to construct the

conversation flow for the chatbot. All the menus and operations are defined

through AIML script.

o Signal: A secure messaging app that with end to end encryption. It is
licensed under a free software license both the client and server (4)(5). A
custom Signal software is installed on the users phone so that the user can

send messages to the eHealth microservices.

Page 5 CHAPTER 1. INTRODUCTION

e Android OS: Marshmallow Running on a Samsung Galaxy S5 Mini. One

of the phone/OS combinations used in testing.

e AppleOS: Running on an Apple Iphone 7, another phone/OS combination

used for testing on Apple devices.

» Git:Version control was maintained on a git server, GitLab via the University

of Zaragoza.

o Flask: BSD licensed framework for small server applications. Flask provided
the framework for the final server, and a sandbox for testing early implement-

ations.

e Gunicorn: Licensed under MIT license, a pre-fork version of the Ruby
Unicorn server. This is used to spawn workers to run the aforementioned

Flask application and to serve the Flask application at a production level.

e Docker: Container platform for deployment of servers. Software used to

aid in the deployment and orchestration of the microservices.

o Ubuntu 16.4: A Debian based UNIX operating system, in which the mi-

croservices were installed on.

1.4 Report Organization

This report is structured in the following manner:

o Chapter 1 consists of an introduction, where the background for the project,

the objective, and materials are all detailed

o Chapter 2 gives a more detailed view of the state of the art in the field. Look-
ing into the different standards for data organization, the question of security,

and the task of migrating the Spanish medication information standard.

CHAPTER 1. INTRODUCTION Page 6

o Chapter 3 describes the development of the Bot, the expansion of the AIML

library, and early development of further functions of the microservice.

o Chapter 4 goes deeper into the expansion of the chatbot, how multilingual
support was handled and how the greater functionality of the chatbot was

achieved.

o Chapter 5 steps through the results of the previous sections and gives ex-

amples of the microservice in action.

o Chapter 6 discusses the final implementation and future expansion of the
project. It goes on to work out the successes and failures, and finishes with

results and conclusions made.

o Appendix A is a comparison of different popular messaging clients used in

the decision making process.

o Appendix B shows the distribution and allotment of time for the project

along with a Gantt chart of the project timeline.

o Appendix C has the configuration file for the Docker build as well as a list

of the package requirements.

o Appendix D lists the extensions added to the pyAIML library, along with

short descriptions of each.

Chapter 2

Applications for Medical Data

The first stage in the designing the microservice was to define the capability in
terms of medical data. A simple to use, well designed, and robust system for the

data is discussed in the following sections.

2.1 Data organization Standard

The FHIR structure was designed in an iterative and review method based
off of previous HL7 standards (6). This was to ensure that follies of previous
standards were not implemented again. In the successors to FHIR one of the major
problems was the massive amount of redundant and complex resources. FHIR'’s
aim is to reduce the overall number of resources, while decreasing complexity and
increasing interoperability. They accomplish this through the following guidelines,

quoted from Bender et al. who helped develop the FHIR standard (7).

e Resources should have a clear boundary, that matches one or more logical

transaction scopes.

e Resources should differ from each other in meaning, not just in usage (e.g.,

different ways to use a lab report should not result in different resources).

7

CHAPTER 2. APPLICATIONS FOR MEDICAL DATA Page 8

e Resources need to have a natural identity.

e Resources should be very common and used in many different business trans-

actions.

e Resources should not be specific or detailed enough to preclude support for a

wide range of business transactions.
e Resources should be mutually exclusive.

e Resources should use other resources, but they should be more than just com-

positions of other resources; each resource should introduce a novel content.

e Resources should be organized into a logical framework based on the com-

monality of the resource and what it links to (see resource framework below).

e Resources should be large enough to provide meaningful context; resources
that contain only a few attributes are likely too small to provide meaningful

business value.

All of the above has greatly reduced the complexity of the HL7 standard from
the previous version v3 to FHIR where now each resource has a broader scope,
but because of the care in implementation is rigid enough to maintain intuitive
consistency across uses. To illustrate this the principle example from this project
will be used below. The situation is a series of medications from a prescription
sheet is to be made.

“Doctor Smith prescribes his patient Jane Doe 10 different medications, he also
wants reports of when they were ordered, received, and taken.”

Based off of the third tenant of the standard “each should have a natural
identity” it is clear from this case that the following resources at least will be

needed:

o Person, to express the identity of each the patient and doctor.

Page 9 CHAPTER 2. APPLICATIONS FOR MEDICAL DATA

« Patient, to give the patient Person its appropriate role.
» Practitioner, to give the doctor Person its appropriate role.
o Medication, to represent each medication as a Medication only.

o Medication Statement, to represent that a Medication has been prescribed

/ ordered etc.

e Medication Administered record of a medication taken or not taken.

This is convenient that a Person resource can be re-used as Doctor, nurse, caregiver,
family member, patient or any other role. To define their role they are then
referenced by a Patient instance of a resource. That way a Person can exist as
a Patient as well as a Caregiver to another Person without having to be made a
duplicate entry.

From there it is a matter of finding the utilitarian resources like List, thirRefer-
ence, fhirDateTime, Ingredient etc. that are used to make sure that every piece of
data is stored in a clear and interoperable manner. These resources are not difficult
to find as the definition for Medication details quite clearly that it is dependant
on a fhirRefence to an Ingredient resource.

It may seem excessive to need so many separate resources referring to each
other for a single prescription sheet, but if one were to consider the scenario where
a patient gets a new prescription sheet from a doctor every month, with mostly

the same medications the amount of additional resources needed greatly decreases.

2.2 Security

All successful medical applications lie behind a complete security solution. This
platform is no different and traffic is sent over HT'TPS through the use of JSON
Web Tokens along with end to end encryption of messages to ensure there are no

security breaches.

CHAPTER 2. APPLICATIONS FOR MEDICAL DATA Page 10

The security process begins with the distribution of key - secret pairs. The
key and secret were generated using OpenSSL. This generates an RSA public and
private key which is used to decrypt the token and JSON encoded message. This
token is placed in the header of every interaction between the microservice and the
microservice hub known as Dispatcher, this key microservice is described in detail

in subsection 3.2.1. In quick summary it is the link between all microservices.

When the microservice receives a POST message the first thing it does is to
extract the token from the header and pass it to the JSON web token authen-
tication. This then compares it against a validation configuration. The token is
successfully decoded then the message is allowed through to be parsed for use in

the microservice.

2.3 Migration of CIMA database and adding FHIR

Compliance

This platform has chosen FHIR as the optimum method for organizing, and
relating data items in its servers. This resource is very powerful and strives towards
the interoperability of all medical records, however as of yet the local health service,
Aragon Salud which is a part of the greater health network of Spain, does not use
FHIR for its medication records. In use is the system CIMA, which is a fully
capable method of coding and referencing medications, but it does not have the
interoperability nor ubiquity that FHIR provides. It was then decided to develop

a tool to automatically translate the CIMA records to FHIR compliance.

The primary task in designing the CIMA to FHIR translator began with re-
cognizing which data was relevant to our study and how it should be referenced
and stored within the FHIR system. Below in Figure 2.1, is the structure of a

typical CIMA medication entry.

Page 11 CHAPTER 2. APPLICATIONS FOR MEDICAL DATA

Figure 2.1: Representation of the components of a CIMA medication entry.

As shown above the database also provides several dictionaries of locations,
substances, counter indicatives, the form of the pills as well as others not shown
which are all linked to the medication entry through references in the main med-
ication object. The FHIR databases model is similarly laid out except that it is
much more reliant on a larger network of references. The advantage to this is that
there is much lower chance of duplicate entries. The equivalent Medication object
is shown below in Figure 2.2 by the red classes and modules, to show its higher
dependence on relations.

A case where duplicate entries would occur in the CIMA method but not in
the FHIR standard is with laboratories. A laboratory could very well be at the
same time a laboratory, a clinical site, and a research facility. The FHIR method
allows the laboratory to exist and then to be referenced into different roles.

Below is shown the translation from the equivalent FHIR compliant object. As
can be seen much of the information is handled similarly but in the FHIR model
there is higher granularity in the objects. That is instead of the medication having
separate fields for active ingredients, the laboratory for that active ingredients and
the dosage etc, it instead only wants an ingredients reference object. This contains
a number of active ingredient objects, which each in turn have the two properties

referenced: substance (ingredients) and organization (laboratory).

CHAPTER 2. APPLICATIONS FOR MEDICAL DATA

Page 12

Figure 2.2: The translation from CIMA medication object in blue to the FHIR
medication object and it’s dependencies in red.

Finally below is shown the FHIR solution using FHIR objects. The right hand

side of the map shows the medication.

The Patient is shown in green and is

referenced into the list of medication requests and the medication request itself.

The request intern references the medication object. The cross referencing ensures

that any relevant record can be called and an up to date record of the patient, or

medication contents will be found.

generalPractitioner

subject

subject

medicationReference

manufacturer

ingredient.itemReference

Figure 2.3: The full FHIR solution, from practitioner and patient to medication

ingredient.

Chapter 3

Medication Microservice

The AIML chatbot is based on the ALICE chatbot developed by Richard Wal-
lace (8). It is a XML style document where the tags define the structure of
conversation. The bot is initiated by parsing the AIML document, the kernel then
computes all of the recursion of the conversation. An example of this is shown

below where the script for a simplified version of the starting menu is shown.

<category>
<pattern>RECETAS</pattern>
<template>
<srai>MAIN MENU</srai>
</template>

</category>

<category>
<pattern>MAIN MENU</pattern>
<template>

1. Afiadir medicamentos a traves de su cédigo

2. Afiadir medicamentos con una foto de la hoja de tratamiento

3. Ver medicamentos actuales

4. Ver historial de medicamentos

13

CHAPTER 3. MEDICATION MICROSERVICE Page 14

5. Modificar un medicamento

6. Afiadir notificaciones para tomar medicamentos

7. Modificar algunas notificaciones

8. Ver notificaciones

</template>

</category>

This code above shows the basic structure of an AIML script. It also exemplifies
the standardized menu that all microservices use. The fundamental tag in the
AIML document is category. This tag encompasses each unit of conversation. The
particular category is called when the pattern is matched. In the above example
the keyword to initiate the Spanish menu is sent “RECETAS” and the corres-
ponding category is called. Within the template of the category is the srai tag
which is explained in greater detail in subsection 4.1.1 called the srai tag. In sum-
mary it references another category which brings up the whole Spanish translated
main menu. The apparent redundancy but strong benefits of this method will be

discussed in section 4.1.

3.1 Selection of Project Building Blocks

Throughout this project many tools, programs, and libraries were investigated.
Some were found more suitable than others, the following is a brief overview of
the selection process for some of the more fundamental pieces of the project, a
complete list of the chosen materials is found in the Materials and Technologies
used in section 1.3. These are the medical information standard, the messaging

client, and the microserver serving utilities.

Page 15 CHAPTER 3. MEDICATION MICROSERVICE

3.1.1 Messaging Client Language

This project has the great advantage in that a message based has already
been prototyped by a group at the University of Zaragoza. This bot uses the
platform Signal as its messenger client (5). Signal is a messenger platform similar
to Telegram, Whatsapp, Skype etc. that was chosen by the University of Zaragoza
team because of its GPL license(9), its high level of security and especially because
its code is open and available for the distribution of private servers. A full list and

comparison of Signal with similar messenger platforms is shown in Appendix A.

A hurdle for this project was that the team at Zaragoza wrote the bulk of
the bot in Java but desired that further work be also implemented in Python.
This is due to the recent increase in popularity of Python as a leading coding
language. Introduced in 1991, by 2013 it was the third most popular language
for OpenSource projects, only behind Java and C (10). And by now in 2018 it
has the largest amount of programming related traffic on Stackoverflow, a popular
question and answer board (11). Python’s enormous following also means that
it is quite well documented although its relative youth does mean that there are
some holes in its available libraries. This became a particular issue for the project

in programming of the bot.

The chatbot as mentioned earlier is based on the Artificial Intelligence Markup
Language, AIML. The best available AIML library for Python was only written
to comply with the AIML 1.0 standard not the current standard of AIML 2.0 this
is because the 2.0 standard, though superior is still in BETA phase and has been
for some time. Therefore, in order to be able to fully write the bot and all of its
functions the task of expanding the existing Python AIML library to meet most

of the AIML 2.0 guidelines was also pursued by this project.

CHAPTER 3. MEDICATION MICROSERVICE Page 16

3.1.2 Platform Serving

The platform is based on a series of microservices each dedicated to a specific
function. Below, Figure 3.1 shows the existing structure with the interaction
between microservices. The medication microservice is seen to fit in with an entire
array of microservices. The key microservice for communication is dispatcher which
handles all inter-communications and communication to the Signal app on the

phone.

Database

Media
Message

Medication

Delete User Dispatcher

Notification

Add User

Show
Options

Figure 3.1: Detailed view of the full eHealth solution from phone to individual
microservices.

A microservice is an independent program that runs inside of a virtual envir-
onment that is part of a bigger solution or service. These virtual environments
provide a clean slate to make sure that all program dependencies are met without
introducing compatibility errors with other microservices, or if one microservice
encounters an error or hangs it does not disrupt the workings of the greater eHealth
solution. It is always critical that an eHealth solution is maintained to be working
smoothly and cannot be brought to a stop by run-time errors. This method also

makes it adaptable to memory and processor allocation. These can be easily mon-

Page 17 CHAPTER 3. MEDICATION MICROSERVICE

itored and controlled so that easy or passive microservices are not monopolizing
valuable resources. This allows more memory or processor hungry tasks to always
have those resources available. These needs can later be adjusted as seen fit so
that as a microservice expands its scope it will never outgrow its virtual environ-
ment. A final reason that these virtual environments are so valuable is that they
are portable. They ship as a self contained image that can be built and loaded
into a new server in a matter of minutes.

Many solutions exist for these virtual environments: Apache Mesos (12) and
Docker (13) being the industry leaders. This project uses the Docker solution as
it was seen to be better suited for the modular sort of expansion that these mi-

croservices will experience. A comparison of the features is shown in Appendix A.

3.2 Other microservices

Various microservices have already been implemented by the University of Za-
ragoza team, the following are highlighted to describe so that their role in the

design of the new microservice.

3.2.1 Dispatcher microservice

The anchor of the platform is the dispatcher microservice. This microservice is
the brain that handles all intercommunication between other microservices, com-
municates with the database for user records and relates that information to the
individual microservices. A typical message to dispatcher is sent over HT'TPS and

formatted as follows:

{"user":"+11222333345", "message":

{"timestamp":1519907489750, "attachments" :null, "body" : "Lorem lipsum"}

Where the message is contained in the body section and if any pictures or

CHAPTER 3. MEDICATION MICROSERVICE Page 18

multimedia are sent in the attachments. The user identifier is the phone number

including the country code.

Notifications microservice

Another useful microservice for monitoring the intake of medications that works
well with the microservice here being developed, is the Notifications microservice.
This was developed in parallel with the Medications microservice so their para-
meters were influenced and shaped by the needs of the other. The notification
microservice receives the notification settings and is able to schedule messages to
be sent to the patient, caregiver or medical professional.

The microservice also has the ability to initialize another microservice so that
the other can be ready to receive the confirmation that the notification message
was received and acted upon, or in the case of that it is not a record can be kept
of a missed notification and appropriate action can be judged by the dependent
microservice.

In the case of the Medications microservice that is to remind a patient to take
the medication and request that the patient sends a confirmation that the correct
medications have been taken. If not the Medication microservice can decide, based
on user settings, if a new reminder should be made, a caregiver should be contacted

or in certain cases that the single reminder was sufficient.

3.2.2 Database Requests

A final microservice that the Medications microservice communicates with is
Database Request microservice. There are two main databases in the platform.
One is the FHIR database which is detailed in section 2.3. The other database is
used for more basic user information, such as the available microservices to a user,
the user’s role, name, etc. that are all important information for the microservices.

This microservice is always listening for POST messages to request, update, and

Page 19 CHAPTER 3. MEDICATION MICROSERVICE

create user information. The message to request a user is formatted as in the code

below which is POST-ed to the server URL.

{"url":"users/_find7criteria={\\"id_signall\\":\\"' + sessionID +

'\\"}","data“:null}‘

3.3 Function

Once the bot is defined in AIML it still needs to be instantiated, tell the
main server that it is listening, kept running, maintain separate profiles for all
users connected, and also respond to messages. The instantiation begins with the
execution of the bot. To announce that it is running the bot sends dispatcher the

following POST message:

{"client_id":"'Medicamentos'","message":"'recetas'",

"menu":true,"address":"'+self_url+'","canUse":["all"]}

Which tells dispatcher that it is running successfully, that it is available for use
by users, and what command is needed to begin a conversation.

These portions are all handled in the Python portion of the bot. In the struc-
ture of this project this file was called app.py. The first task of the app is to
contact the security server. After the token is created and all the security passes
have occurred the AIML kernel is called to learn from the AIML document all
the rules for the conversation. To do this an initial call is made for the kernel
to learn the some basic commands and where to find the full AIML documents.
These newly learned commands are then used to call the kernel to learn the full
conversation.

In earlier microservices temporary user data had to be stored on a separate
MongoDB database. The Python bot however does not need this. It is able to

store, in local memory a conversation for each user currently connected with the

CHAPTER 3. MEDICATION MICROSERVICE Page 20

bot brain. Fach user is an object containing information relating to the current
conversation topic, the last that tag, and a list of the last several messages that the
user sent. With these pieces of information the entire state of the conversation can
be held in temporary memory without the need for a static database. A benefit
of this is to avoid potential security breaches associated with storage.

The user identifier for each conversation is the users unique phone number that
was used in the setup process of Signal. Every message that pertains to a user
is headed with encryption, the token, and the phone number, so that it is always
certain that the right conversation elements are sent to the right user, stored in the
write database entry, and that to help prevent interception or man-in-the-middle

type interference.

3.4 Flask application

The program on its own is able to function on its own for basic usage but
for communication with the other microservices and simultaneous communication
with multiple users it must be instantiated, served, and hosted properly. The
server chosen for this task is FLASK a self proclaimed “micro server”(14). This
framework on its own is well suited for simple server applications and is not weighed
down by heavy development needs.

Next the Flask app that hosts request-response client is initiated. The primary
task of this app is the request-response client which is always listening for POST
signals to its server’s address:Port. Once dispatcher is aware that the app is run-
ning and a user tells dispatcher that it wants to access it, dispatcher sends a
POST to the app with a message containing the key word to start the conversa-
tion. This particular app was built with multi-language support, which will be
further detailed in the Multi-language section of the report, but for now when the

dispatcher sends the message “recetas” to the microservice, it initiates the Spanish

Page 21 CHAPTER 3. MEDICATION MICROSERVICE

bot conversation attached to the user ID/ mobile phone number of the user.

The bot then sends the appropriate Spanish language start menu so that the
user can perform the medication options. When the user makes a choice the
message is sent via Signal to the dispatcher, the dispatcher attaches a token, and
encrypts the message and sends it to the medications microservice, and the bot

responds accordingly.

3.5 Serving the Flask App

The Flask app is a simple application that is known to be poorly suited for
production servers but if placed inside a multithreading container it is more than
capable of handling chatbot tasks. The web server gateway used to give multith-
reading capabilities to the Flask application is Gunicorn. Below in Figure 3.2 is a

detailed view of the Gunicorn-Flask-Chatbot flow.

Gunicorn Server

[
Worker 1 Worker 2 Worker n

Flask Flask = an Flask

Figure 3.2: Structure of the Gunicorn - Flask - Application relationship.

Gunicorn is a HT'TP server utility based on WSGI for Python. It is capable
of spawning a multitude of workers on separate threads for handling simultaneous
server access. It is also the piece that links the localhost port that receives external
messages and hands them to the Flask application. This is done in the code below,
where Gunicorn is initiated, bound to the localhost at port 84. The next parameter
wsgi:app tells Gunicorn where to find the Flask app. The last two parameters are

for loading the security key and certificate files.

CHAPTER 3. MEDICATION MICROSERVICE Page 22

"gunicorn", "--bind", "0.0.0.0:84", "wsgi:app",
"——certfile","/etc/ssl/PrivateCerts/userver.crt",

"--keyfile","/etc/ssl/PrivateCerts/userver.key"]

3.6 The Docker Container

For reasons of portability, expandability and maintenance as detailed previ-
ously in the Introduction, Docker was chosen as the shipping container of the mi-
croservice. The Docker image is a Debian based Unix distribution called Ubuntu

version 16.4.

With the microservice running successfully in the Flask app, which is served by
Gunicorn the command pip freeze was run to get a list of all dependencies. This
list was saved as the requirements.txt file which is included in the Appendix C.
The Docker image runs a complete install of Python 3 as well as an installation
of all of the dependencies to be contained neatly inside its Docker container. This
is handled by the Docker makefile. By running the command pip install require-
ments.tzt all of the libraries could be installed to the Docker image.

A couple of the libraries had to be created or modified, such as the pyAIML
library which was greatly expanded on, as detailed in chapter 4. In order to install
in the Docker build-file they first had to be turned into complete Python packages.
They could then be added to the Docker makefile as single line instructions to
install. This is shown in the script at the end of Appendix C.

Once the Docker image is made it is trivial to upload it to the server. A utility
is provided by Docker that allows for pushing completed images. Once the image
is uploaded it is given a version number. The microservice administrator can then
decide to exchange the current active Docker image for the new one. This allows

for hosting both staging and production servers and easily exporting from one to

Page 23 CHAPTER 3. MEDICATION MICROSERVICE

the other depending on need.

The incentives to use Docker are that it is self contained, very stable, and has
no real access to the computer that is hosting it. These pieces make it extremely
secure, which is a boon for medical applications, but this does make changing
common parameters a bit of a hassle. One could change the source code for the
program, take care to make sure that any modified files are the last items in the
Docker build file, then rebuild the Docker image. But if the user changes even a
byte of an earlier file in the Docker build file then all of the following instructions in
the build have to be performed. A better method is to include a configuration file
in the Docker image that can be accessed through the Docker manager. This task
is not trivial as it is all dealing with memory addresses, but once the configuration
file has been found it is quite straight forward to change it. In this project the
configuration file contains the URL’s for the security server, messaging, dispatcher,

database, the message structure and many other important items.

3.7 HTML hosted web services

The secondary task of the Flask app is to host the HTML based utilities. These
were all written in HTML5 with CSS and JavaScript. The first utility written was
the message debug tool. This tool emulates the messages sent from dispatcher to
the Medications Microservice. This was important to help isolate errors to certain
functions of the microservice and to more easily follow the messages through the
platform. The web interface is shown below in Figure 3.3, and it is accessed by

making a secure HI'TPS connection to the localhost.

Submit Query

ot Says:

scribe el 1° cédigo del medicamento o elige una de las siguientes opciones
1. Acabar de introducir medicamentos

. Volver al ment anterior

Figure 3.3: Example of the web interface used for testing the chatbot functionality.

CHAPTER 3. MEDICATION MICROSERVICE Page 24

Also in the secondary task of the Flask app are some of the experimental
features that are implemented in the code but not activated in the final release
because they are incomplete or buggy. One of these is a template generator for
the OCR application in the bot. This application will be discussed further in
section 3.9, in a quick summary it was an partially successful attempt to extract
medication information from a picture of a prescription. The web utility for this
function is designed to be able to load in a redacted or template prescription sheet,
and then allow the app maintainer to manually configure the bounding boxes for
each field. Shown below in Figure 3.4 is an example of the template generator for
an Aragon Salud prescription sheet. The dialogue box to the right of the image
shows the coordinates of the vertices of the box, which can be adjusted using the
arrows for fine tuning. When the user presses submit, the coordinates are sent in
a POST message back to the application and saved in a JSON file for later use in
the OCR.

Point 1 X,Y coordinates:
54 138

Moverpunto 1: © . o o
Pagina Nombre: ‘

Aragon Salud

Point 2 X,Y coordinates:

264 501
Moverpunto2: = .

Submit Clear

Pagina

Figure 3.4: Web based utility for creating Prescription Sheet templates used in
the OCR.

Page 25 CHAPTER 3. MEDICATION MICROSERVICE

3.8 Bot Functions and Conversation

In the previous few sections the basic functionality of the bot and microservice
were detailed. These all mesh together to form a complete medication solution
which is shown in Figure 3.5. This graphic ties together all of the roles of each.
From right to left a message is sent by the user through the Signal application.
The message is received by the dispatcher microservice, which then decides which
microservice to send it to. dispatcher then reformats the header and sends a POST
message to the Medication microservice which then performs the security check
detailed in section 2.2 to decide if the message is secure and valid. It is then
decrypted and internally sent to the chatbot function. The chatbot in turn sends
an encrypted message to the dispatcher microservice which then communicates

with the Signal app on the user’s phone.

Chose
Token; User ID; Medication

Initiate Message:* Micro-Service
“Recetas”

Medication
Microservice

Dispatcher >

Token; User ID;
Message: Medication
Main Menu

AIML
chatbot

Figure 3.5: Detailed flowchart showing the flow of a message from phone to the
microservice and back.

Before the actual chatbot can be written it is important to have all of the
logic and flow of the dialogue decided on and figured out. For each of the main
functions of the chatbot a decision tree was made. The program was divided into

the following main decision trees:

e Main menu: The principle menu that the user sees when entering the

CHAPTER 3. MEDICATION MICROSERVICE Page 26

microservice. Displays the items listed below, as well as an option to exit.

e Add Medication: Function to manually add medications. Proceeds through

a series of prompts for all the necessary medication information.

e View Medication: tool to view current medications that the user has

active. This can be viewed by doctors, caregivers etc.

o Change Medication: Accommodation to allow for the correction of incor-

rectly entered medications.

o Generate Notifications: Function that reads in the active medications
and prompts the user to generate notifications. Proceeds through a series of

questions to configure the notifications properly.

o Change Notifications: Tool to change and view medication notifications.
Prompts for which notifications are erroneous and then proceeds through

the same prompts as the Generate Notification function.

Because it is the most representative function of the rest, the add medication
extension has been chosen to illustrate a typical AIML extension decision tree in
Figure 3.6. This tree is similar to that of other extensions. The complete list of
which and their roles is shown in Appendix D.

Create List, List reference,
CIMA code in ’ No Medication reference, Medication
? i 3
Database? - Re-entry NG - Add Request, and reference patient
Dosage

Is code Medication
&) Correct? Text
Dosage
Return to Menu Return to
previous prompt previous Prompt

Prompt
Description

v

Description
Menu

Figure 3.6: Decision tree of a segment of chatbot conversation. Shown is the

conversation for manually adding a new medication.

Input
CIMA code

previous
prompt Loop Back

Main Menu

Exit and
disconnect
user

The decision trees gave a clear understanding to the pathways, dialogue and

relations needed to make the chatbot. Transcribing to AIML is quite straightfor-

Page 27 CHAPTER 3. MEDICATION MICROSERVICE

ward from their but adding all of the needed functionality for this project was not

trivial. This is all explained in further detail in the next section.

3.9 OCR

The final piece to this microservice was an experimental application using an
Optical Character Reader (OCR) to parse a prescription sheet and save the med-
ication information much in the same way as the manual entry. This portion met
with limited success but has lain the foundation for implementation once some of
the issues are resolved. Many powerful OCR tools exist but the Tesseract OCR
was chosen due to its high level of documentation, integration into Python and
the GPL license (15).

OCR’s are very good at parsing characters and accurately creating strings
that reflect the written characters. Where they have room for improvement is in
recognizing page formats. In prescription sheets this is very important because
in many prescription sheet formats the columns indicate specific properties of the
medication. Initially histograms of a binary image were used to find specific lines
and columns in the text, but when multi-line prescription descriptions were used
this confused the engine. Another method was looked at to separate the columns
more accurately and that was using a predefined template.

The template is generated using the web utility shown in Figure 3.4. This
saves a JSON encoded template of coordinates for each field. This all worked very
well but still found errors attempting to consistently get all rows within different
columns matched. That is to say matching a medication code from the first column
consistently with the description in the second column. This feature requires only
a little more work to be fully functional but as such it was left out of the production

microservice.

Chapter 4

User - Chatbot Communications

The foundation for communications in this microservice is in the AIML chat-
bot. AIML as previously noted in subsection 3.1.1 and detailed a little in chapter 3
is a markup language used to define a conversation. The principle unit of a conver-
sation in AIML is the category tag. This tag contains the pattern which is used to
match the category to an input, and the template tag which defines the response.
The template is a special tag that can contains almost every other tag that is in

the AIML system.

Within the template tag the script can define and read variables with the get
and set tags. The think tag can be used inside the template but surrounding any
text and tags to suppress output. This is useful if a function is used that outputs
a value to another function and it is not desired that the output is returned in the

chatbot response. Below is a small sample of AIML script using the above tags:

<category>
<pattern>*</pattern>
<that>* MEDICATION<\THAT>
<template>
<think>

<set name = topic>Medication</set>

28

Page 29 CHAPTER 4. USER - CHATBOT COMMUNICATIONS

<set name = "currentMed" > <showmed><get name =

"currentRequestID"/></showmed></set>

</think>
<condition name = "currentMed">
<1i value = " none ">Could not find <input/> Are you sure the

code is correct?
found: <get name = "currentMed"/>. Is that correct?</1i>
</condition>
</template>

</category>

The above script also introduces some more advanced functions of AIML. The
first of which is the * in the pattern tag. This character tells the pattern that any
input is acceptable to access this category. This is useful as a fall back category
if no other pattern is satisfied. The next tag, that provides a limiting factor to
the pattern, in order for the pattern to be satisfied the last message that the
chatbot sent has to match the contents of the that tag. This tag can be omitted
if the category is not dependant on previous messages but that is quite useful for
conversation continuity. Within the think tags is another piece that is useful for
continuity. The topic tag. This will be described below in further detail along with
the srai tag which is not shown above. Finally above is the condition tag. This
is a sort of switch/case block where a variable is loaded with <condition name =
...> and then compared against values to return the desired output. This part is

outside the think which means its output will be included in the chatbot response.

4.1 Multi-lingual support

The author of this project is a native English speaker, but the program is

intended for a Spanish audience. Rather than attempt figure out all of the logic in

CHAPTER 4. USER - CHATBOT COMMUNICATIONS Page 30

Spanish, as is typically the route in writing AIML code, it was decided to design
a novel method for inter-lingual ready AIML. To understand how this was done it
is first important to understand a few key aspects and behaviours of AIML that

were instrumental in designing the translation capabilities.

4.1.1 The Srai tag

This tag doesn’t have an official acronym, but is known as symbolic reduction
or symbolic recursion. Four common terms for functions that can be done with

the srai tage are:(16)

Symbolic Reduction

Divide and Conquer

e Synonyms resolution

o Keywords detection

The third term, synonym resolution is perhaps the most relevant to the trans-
lation case. Translations are in some sense just fancy synonyms. In this case an
entire dictionary is kept where every single line is sras linked to its other language

counterpart. An example of this is shown below:

<category>
<pattern>1</pattern>
<template>
<think>
<set name = "topic">SPANISH</set>
</think>
<srai>DONE ADDING MEDICATIONS</srai>
</template>

</category>

Page 31 CHAPTER 4. USER - CHATBOT COMMUNICATIONS

<category>
<pattern>DONE ADDING MEDICATIONS</pattern>

<template>

Muy bien, todos los medicamentos est&n en nuestro sistema.

favor indica una de las siguientes opciones

1. Ver todos los medicamentos
<srai>ZERO OPTION</srai>
<think>
<set name = "topic">FULL MANUAL ENTRY</set>
</think>
</template>

</category>

Por

Above the first block of code shows the srai tag used to get the response from

the second block of code. Furthermore a third level of recursion is in the second

block which calls a third block, not shown, with a repeated menu element. The

final response from calling the first block is:

Muy bien, todos los medicamentos estan en nuestro sistema. Por favor indica

una de las siguientes opciones
1. Ver todos los medicamientos

0. Volver al menu anterior

4.1.2 The Topic tag

The srai tag is useful for linking in words and translations, but it can be very

confusing to maintain lists of translations for various languages, or to keep track

of what part of the conversation it is being used in. To solve this the topic tag

CHAPTER 4. USER - CHATBOT COMMUNICATIONS Page 32

was used. The topic tag is essentially an excluder. Any categories not listed
inside the topic tag of the current topic are completely excluded from the search.
This is advantageous as the AIML kernel has a top down parser and this tells
it to skip all other tags except those of interest. In the case of foreign language
support a language topic is made for every supported language. The computer can
then, based on the user ID which is also the phone number, determine the default
language to chose.

Once the dictionary topic is chosen and the correct translation has been used
the parser returns from the srai tag and parses any other tags inside the template
tags. At this point it is crucial to remember what is the current topic. It is still
the dictionary of the given language, therefore after every language related srai
a topic change must be done to make sure that the kernel stays on the current
logical topic, not the lexical one. This translation facility does add the complexity
of having to always remember what the current logical and lexical topics are but
if the diagram below is used to standardize the method of translation and logic

then it is quite straight forward.

Topic: A Topic: English
Category:
S G : Pattern: message
attern:message in current language
Template: Template = message
Think: Topic = Spanish\
1S';?Jlic 2 :ssage 1 Topic: Spanish
—t Category:
Pattern: message
Template = mensaje

Figure 4.1: Representation of the logical flow of the translation capabilities of the
chatbot.

In Figure 4.1 there are two topic colours, yellow and orange. The yellow topic
is the actual conversation. This contains the logical flow of conversation but none
of the actual words that are sent in the response. Instead the topic is changed

internally in each category of the conversation topic to the target language. In the

Page 33 CHAPTER 4. USER - CHATBOT COMMUNICATIONS

above case that is Spanish. With the topic set to Spanish the symbolic reduction
performed by srai finds the correct category within the Spanish topic whose pattern
matches the srai. This response “mensaje” is then bright back into the original
category in topic A and is added to the response. Finally the topic is reset to “A”

in order to continue the flow of conversation.

4.2 Expansion

The basic AIML library for Python 3 is restricted to the capabilities from the
AIML standard 1.0 developed by Cort Stratton and Paulo Villegas. This standard
is very capable for most conversational means, even including quite complex con-
versations. It does not, however, have facility to access Out Of Bounds functions.
This ability is key to a bot that has to interact with data. The AIML 2.0 standard
implemented many new abilities but this was by far the one most required in order
to develop the Medication microservice. Though eventually the entire AIML 2.0
specification is the goal, this function was the best place to start.

It was desired that the base pyAIML library was left as unchanged as possible,
so that as the main library updated it would be easy to implement a couple of
small changes to integrate the extensions. The first attempt at doing this was
overly complex and tried to add rules and exceptions to all of the different existing
tags, to show their relationships with extension tags. This was fraught with errors
and quickly abandoned. Instead the below method was chosen. This is where the
key piece to adding functionality arises. It was decided that the optimal method for
adding functionality would be to create a new kernel that would be called whenever
a tag failed to pass the initial check against acceptable tags. An external list of
the newly developed AIML 2.0 tags and other extension tags would be invoked.
The “self. _processExtension(elem, sessionID)” function was of key importance to

get correct. The elem variable is a Python list of all the tags and their contents

CHAPTER 4. USER - CHATBOT COMMUNICATIONS Page 34

recursively outside the current tag but in the current category. The first level of
recursion in the element is stored at position zero, but for the external processor it
was important to hand off the entire remaining recursion tree. This is because the
external functions have a much more limited access to the bot brain. For native
AIML tags the brain remembers the element tree, sessionID of a given conversation
The session ID is needed by external processes so that any communication with
the database or dispatcher originating from the extension processes have the user

related.

if elem[0] in _ExtValidation:
handlerResp = self._processExtension(elem, sessionID)
return handlerResp

else:
handlerFunc = self. elementProcessors[elem[0]]

return handlerFunc(elem, sessionID)

These two snippets of code are very helpful at explaining the overall working
of the pyAIML library, the above shows that the“Kernel” class is called by “self”
to start the _processExtension() function. That function is shown below and is a
modified version of the _elementProcessors() function from the pyAIML library.
The function receives the element tree, and checks its length, if less than three it
means that the tree is only an extension call. If it is of size 2x>1 then it is an
extension call contained within another unknown process. This process is then sent
back to the original process element function to decide whether it is an extension
or a native function. Beyond the desire to maintain the original functionality of
the library, this last piece was important to allow for the proper processing of the
think tags. This tag in AIML restricts the output of a function so that it is not
added to the response string. Therefore when an extension process is contained

within a think tag the processExtension function receives it, sees the think tag and

Page 35 CHAPTER 4. USER - CHATBOT COMMUNICATIONS

makes certain that the extension is processed silently.

def _processExtension(self, elem, sessionID):
response = ""
value = ""
if len(elem)<3:
fx = getattr(KernelExtension(), "ExtensionProcessors")
response += fx[elem[0]] (None, sessionID, self)
elif elem[2] [0] in self._elementProcessors:
for e in elem[2:]:
value += self._processElement(e, sessionID)
namel = elem[0]
fx = getattr(KernelExtension(), "ExtensionProcessors")
response += fx[namel] (value, sessionID, self)

return re sponse

The complete list of extensions is provided in Appendix D, some are of partic-
ular note, because they illustrate some of the greater functionality of the program
quite well. While others, such as br are simply formatting or mathematical func-
tions. The next few paragraphs will describe the function in detail of the newlist

and gennotification tags.

4.2.1 New list Extension

This custom AIML extension function serves to generate a new list associated
with the current patient. It is called when a user initiates a new medication
input. The lists are a collection of all medications input in that session, but can
also be edited so that previous lists can have medications added. This extension
was chosen to be explained because it does a good job representing the FHIR
implementation of a prescription sheet as well as a sort of generic framework for

all other FHIR interactions that the bot does.

CHAPTER 4. USER - CHATBOT COMMUNICATIONS Page 36

The first thing done by this function is to generate a new list. That list is
then assigned the status of current, meaning that it is an active current list of
medications. This is important because as the prescriptions expire it is needed
that this status be switched to “retired”. The mode shows that this list is not
finished and that it is a working copy. At this point the function is able to call
in the patient FHIR identification, based on the user ID/phone number. That

patient is then referenced into the list and the list is submitted to the server.

new_list = 1.List()

new_list.status = 'current'

new_list.mode = 'working'

search = pat.Patient.where(struct={"telecom": 'phone|' + sessionID})
subject = search.perform_resources(smart.server) [0]

sub_ref = ref.FHIRReference()

sub_ref.reference = subject.relativePath()

new_list.subject = sub_ref

new_list.source = sub_ref

post_ret = smart.server.post_json(new_list.relativeBase(),
new_list.as_json())

req_ret =

smart.server.request_json(post_ret.headers._store['location'] [1])

r = 1.List(jsondict=req_ret).id

The new list function is key to initiate the list but it still must be filled in with a
medication. This handled in a similar function where the medication code input
by the user is compared against the local database, and if found the list is loaded,
a reference is made to the medication via a Medication Request object and the

reference is saved into the list as a List Item.

Page 37 CHAPTER 4. USER - CHATBOT COMMUNICATIONS

4.2.2 Generate Notifications Extensions

The gennotification function is well suited to describe the notification protocol,
as well as the math and logic used to calculate the notification schedule from a
given input. A particular issue with any sort of input that is quite non-standard
like dates and frequency, is trying to frame the input in a standard way. To do

this some special structuring of the AIML had to be done, this is shown below.

<gennotification>{
"yearDates": ["<get name = "yearFreq"/>"],

"MonthDates": ["<get name = "monthFreq"/>"],

"WeekDays": ["<get name = "weekFreq"/>"],

"DayHours": ["<get name = "dayFreq"/>"],

"HourMins": ["<get name "hourFreq"/>"],
"RepNum":"<get name = "repeatNum"/>",

"StartDate":"<input/>",

"FhirID":
"<oneFhirID>
<get name = "currMedList"/>,
<get name = "medCounter"/>

</oneFhirID>"}

</gennotification>

This snippet of AIML contains two standard tags, the get and input tags. The
get tag is used to recall variables that have been saved in other sections of the
AIML. While input is used to get the last text input by the user. For this section
the last question that the user is asked is “When is the Start Date”, for which the
input tag extracts that string. The formatting of this section is very important, the
gennotifications custom tag requires that its input be in XML format. As seen by
the { } and key value pairs the XML format is hard coded in the AIML instead of

relying on users correctly typing out the arguments. The other custom tag in this

CHAPTER 4. USER - CHATBOT COMMUNICATIONS Page 38

section is the oneFhirlD tag. This tag sends the entire current active medication
list, and a counter number, to the oneFhirID processor function. That function
then selects the appropriate FHIR id from the list based on which iteration through
the list the code is on. The use of FHIR is helpful here in that only the FHIR id
needs to be passed around, instead of the entire medication object.

Once the XML is properly formatted and the correct medication is associated
with the notification, the XML is passed to the genNotification processor. There
the XML is parsed and the below logic is used to separate irregularly repeating
notifications into regular simple notifications that the notifications microservice
can understand. This logic works by a checklist. The parser determines what is
the largest unit of time referenced in the notification. That is if a notification is
three days per week, the largest unit is a week. If it is 3 pills in on the 1st and
15th days of every month then month is the largest unit. Once that is found the
start date is calculated by determining the unit and seeing if the event can happen
before the next unit starts or not. For example if a patient is to take a pill on
Monday, Wednesday and Thursday every week at 10:00 in the morning but it is
Wednesday the 10th at 17:00 when the notification is generated the generator must
know to put a notification for Thursday that starts on Thursday the 11th, but also
it needs to generate two separate notification initiators for Monday the 15th and
Wednesday the 17th. This is critical because if a prescription such as an antibiotic
must be taken for 10 iterations and the program were to count Wednesday the
10th as already having happened but it didn’t then the patient would stop the
Wednesday administration a week before the doctor had planned.

Finally the notifications are generated by a POST message generated with the

following code. There the body is the XML style notification information.

r = session.post(notifications_url,data=body,
headers={'Authorization': token, 'content-type':

'application/json'},verify=False)

Page 39 CHAPTER 4. USER - CHATBOT COMMUNICATIONS

Once all of these additional features were written the conversational logic had
to be established. The nature of the microservice means that some very smart
conversational rules have to be set. This is because as a user enters a list of
medications, goes to modify existing values, or wishes to enter in notification
information, the bot has to be able to loop through all of the relevant entries. This
is a problem for AIML because although it does have memory for the last several
conversation points, it has no built in functions for looping, counting, knowing
what previous topics were used. To overcome this some inventive systems of bot

based variables, extension functions and topic switching was employed.

4.3 Notifications Logic and Language Processing

With the bot functions all working effort was then taken to add to the capab-
ilities of the bot and to lay the foundation for future projects. One of these that is
a desired in later iterations of the eHealth Bot is that the user can communicate
fully in natural language to interact with the bot. During the development of the
Notifications Generation conversation sections especially it was logical to include
the ability to enable natural language processing. This is because reminders and
notifications have such a varying degree of types and a simple menu based selector
would either not have the ability to deal with complex reminders or would rely
on too large of a series of menus to accurately represent the desired notification.

Some example notification schedules that had to be accommodated

1 each day

e 3 every day

5 pills, 2 times a day, each day

o 3 pills a week on Monday, Tuesday and Saturday

CHAPTER 4. USER - CHATBOT COMMUNICATIONS Page 40

As can be seen these have a lot of variation in wording and need. In order to
interpret this a Python Library called dateparser which is quite robust at parsing
date text and returning the correct Python datetime object. A key piece to this was
for the Python bot to perform an initial parsing so that the library functions would
receive the words as they were desired. For the above examples the word EACH
was chosen as a separate the number value from the period that it is to repeat. This
is shown previously in the code in the section detailing the programming of the
notification functions. There those the number value is known as the time unit, and
the period is known as the period unit. This breakdown allows the bot to interpret
a variety of notification date structures with high accuracy. In the implemented
version of the bot this was not enabled because it was not consistent with the menu
based system that was part of the current user experience specifications of the
University of Zaragoza team. They do however desire that future implementations

will be able to use this and so it was left in a state that can be easily activated.

Some other pieces of natural language processing that had to be addressed
were multiple language support, misspelling and ensuring intuitiveness. The first
two of those were addressed in early implementations in this project as well. As
explained above in the AIML section it details that the bot is able to know the
language of the user and send the appropriate menus. That function only allows
for the bot to send multi-language menus, it has no utility for interpreting received
multi-language messages. In order to do this a preliminary tool was experimented
with to introduce a lookup table of common expressions that would be appropriate
given a certain situation. The lookup table is a function that runs on the Python
side of the bot. It intercepts the message before it reaches the AIML kernel. The
bot is already aware of the local language of the message so it is trivial to separate
the string into words and translate to English. The English messages are then sent
to the bot so that the bot can find the correct response. On the bot response end

however the translation happens in the AIML. This is because it is easier to write

Page 41 CHAPTER 4. USER - CHATBOT COMMUNICATIONS

translations for formatted text in AIML than it is to train rely on a computer based
translator for correct translations. The bot performs the same function as detailed
above in the AIML section. The topic is changed to the value of CurrentLanguage,
which in the current case would be Spanish, and a srai tag is used to substitute

in the correctly translated text.

Chapter 5

Results

The results of this project aim to show how it has accomplished the goals and
demonstrate its performance in a case-study type scenario. Due to time constraints
the real-world use results for the project have not been included. The project as
of writing is leaving its Beta phase and will very soon be placed into real world
use cases with a group of nurses and patients, under the custodianship of the team
at the University of Zaragoza. Instead, to supplement these real-world results, a
more technical summary of the FHIR migration and the achieved chat functionality
along with where they were successful or lacking. Following that, is a simulated

interaction will be presented.

5.1 FHIR Specification Application

The program written to automatically parse the CIMA database, convert their
structures and references to the FHIR specification was key to the implementation
of the Medication microservice. This self contained app parses through over 21,000
medication records, 3,700 ingredients, 3,700 laboratories and generates the correct
FHIR objects for all of them in around 8 hours on a 2014 era laptop with 8 gigabytes

of RAM. This does seem a little long but the existing database is entirely text based

42

Page 43 CHAPTER 5. RESULTS

and a custom parser had to be written and each reference and object is uploaded
via individual POST messages to the database.

The newly uploaded medications though do follow perfectly the FHIR specific-
ation and are accessible to all other microservices on the platform. The picture
below shows the total medication records, laboratories and other FHIR specific-
ation objects that have are in use by the platform. Medication objects make up
the vast majority of records, and this aims to highlight how important it is that
they are up to a standard that is recognized easily across microservices and by any

other new solution that may take over.

Result Body & Bundle contains 10 / 21565 entries
JSON bundi
Medication (21586 uncle
(12142 bytes)
Observation €EZD) D Updated
Organization @€ZZL) Medication/1171 2018-05-17
/_history/1 11:59:42
Substance € Medication/1172 2018-05-25
/_history/4 18:41:46
List @)
Medication/1173 2018-05-25
MedicationRequest /_history/2 18:35:13
) Medication/1174 2018-05-25
Media /. history/3 18:41:46
Patient €2 Medication/1175 2018-05-25

Figure 5.1: The web interface for the HAPI FHIR server, showing a sample of the
Medication entries.

5.2 Functionality

The individual bot functionalities were laid out in the objectives, but through-
out the development process certain aspects of them differed. In some cases they
have more functionalities and flexibility, in others certain unforeseen technical
difficulties required that aspects be adjusted. Below are listed four of the core
functionalities, with the desired outcome, some explanation of how they in fact

behave and a discussion of the success, compromise, or difficulties that each had.

CHAPTER 5. RESULTS Page 44

5.2.1 Manual Entry of Medications

The application works fully for inputting most medications. A few medications
were found however that used outdated medication codes or non-standard AEMPS
codes. These codes were of course not on the database that was imported from
AEMPS CIMA. To accommodate this while the databases that these few medic-
ations came from are tracked down a utility to override the code if not found was

made.

A decision was made here to only have the user who created the medication
have access to the custom medication. This was because it would be very unsafe for
a non-medical professional to be trusted in transcribing medical information that
would then be relied upon by other patients. Therefore when a custom medication
is made it is linked via a FHIR object reference to the identifier of the patient or

caregiver who created it.

5.2.2 Generate Notifications

The notification generating utility was written with the ability for near full
Natural Language processing of scheduling information, but was then modified to
conform with the other menus. This was decided to avoid confusing the user. The
functionality was left intact in the code so that it can be activated in the future if

needed.

The automatic generation of notifications was also experimented with and was
accomplished with high success. The generator is able to process the recommended
dosage period and extrapolate a suggested notification schedule. This feature is
not implemented in the production version but is also available for when it has

been tested more and optimized.

Page 45 CHAPTER 5. RESULTS

5.3 A Full Interaction

With the core functionalities fully explained, the following is a simulated con-
versation with concise explanations of each step in the interaction process. Shown
the following four figures are highlights of two of the main functions of the mi-
croservice. One is the addition of medications using the CIMA medication codes.
The other is applying notifications for the administration of those medications.

The two figures below, Figure 5.2 and Figure 5.3, show the conversation for
the addition of a CIMA medication. First the add medication option is selected
by the user. The bot then prompts the user for the CIMA medication code. If the
code is not found the bot would ask for confirmation that the code is correct. In
the case below the medication code is correct, 68025, corresponding with Liofara.
Although the medication was found the bot still needs to confirm that the found

medication is the intended medication by the user.

Qoo LA NT M5%m11:20PM

< @ Bot Ehealthz w

Por favor escriba el codigo corecto o
elige de las siguentes opciones.

0. Volver al menu anterior
8 MIN

65023
8 MIN @@

He encontrado ENALAPRIL KERN
PHARMA 5 mg COMPRIMIDOS EFG,
60 comprimidos , es correcto?

1.Si
2.No
8 MIN

1
8 MIN @

Escribe el 2° cédigo del medicamento v
o elige una de las siguientes opciones

@blgnalmessage (o IRV c

Figure 5.2: Shows the selection of the “add medication” option followed by the
input of a code and confirmation that the found medication is correct.

CHAPTER 5. RESULTS Page 46

Behind the scenes in the above code the microservice has already generated
all of the FHIR objects necessary to assemble the prescription sheet. All of the
objects are marked with the tag "working” so that they are not considered "active”
but are available for editing and viewing. Once a medication is fully added and
confirmed the corresponding objects become "active”. The front end for this is

shown below in Figure 5.3.

@OOEEHA HNT . 5%m11:21 PM

< @ Bot Ehealthz ‘:

9 MIN

1
9MIN @

Escribe el 2° cédigo del medicamento
o elige una de las siguientes opciones
1. Acabar de introducir
medicamentos

0. Volver al menu anterior
9 MIN

1
9MIN @

Muy bien, todos los medicamentos
estan en nuestro sistema. Por favor
indica una de las siguientes opciones

1. Ver todos los medicamentos

0. Volver al menu anterior
9 MIN v

@ISignaJmessage Q¢ Q

Figure 5.3: Sample of a successfully entered medication.

Finally a medication is confirmed and the user has the option to continue
entering as many medications as needed or to return to the main menu to perform
other actions. Not shown in these two figures is the manual entry of medication,
but it performs much the same way, with an option to return to the previous
question to fix any erroneous entries.

The other major function of the chatbot is the entry of notifications. This

begins with the user entering the generate notifications menu option and then

Page 47 CHAPTER 5. RESULTS

receiving a list of all active medications. The user must then choose the medica-
tions they want to add notifications for. This is shown below in Figure 5.4, where

number 4 Liofora is chosen for adding a notification.

PELICULA , 84 (3 x 28) comprimidos
2. LIOFORA DIARIO 3 mg / 0,02 mg
COMPRIMIDOS RECUBIERTOS CON
PELICULA , 84 (3 x 28) comprimidos
3. LIOFORA DIARIO 3 mg / 0,02 mg
COMPRIMIDOS RECUBIERTOS CON
PELICULA , 84 (3 x 28) comprimidos
4. LIOFORA DIARIO 3 mg / 0,02 mg
COMPRIMIDOS RECUBIERTOS CON
PELICULA , 84 (3 x 28) comprimidos
5. ENALAPRIL KERN PHARMA 5 mg
COMPRIMIDOS EFG, 60 comprimidos

Por favor indica los numeros de los
medicamientos seperado por un
comma: 1,5,12 o eligie de las
siguientes opciones

0. Volver al menu anterior
5MIN

52 v
5MIN @@

@lSignaImessage (o RV G

Figure 5.4: Conversation between bot and user during the generate notification
function of the bot.

The bot then asks for the administration frequency in various steps, starting
from most general, to most specific. Here the user has entered twice a week,
then on certain days etc. Below in Figure 5.5 the final questions are shown and
upon answering the start date question the notification is generated. If there were
further medications to generate notifications for the bot would then prompt the
information for the next desired medication. In this case, because there are no

further medications the bot returns to the main menu.

CHAPTER 5. RESULTS Page 48

@OOEEHA WNT 458%m11:20 PM

< @ Bot Ehealthz e

Por favor escribe la posologia del
siguiente medicamento, por ejemplo:

1 cada dia o elige de las siguientes
opciones

2. LIOFORA DIARIO 3 mg / 0,02 mg
COMPRIMIDOS RECUBIERTOS CON

PELICULA , 84 (3 x 28) comprimidos
5 MIN

2 cada semana
5MIN ©

Escribe los dias de la semana
separados por coma (Lunes,
Miércoles, Sdbado ... etc) o elige de

las siguientes opciones

1. Volver a la pregunta anterior
0. Volver al menu anterior
5MIN

v

Lunes, jueves
K AAINL a2

©Eigna[message [0 RV o

Figure 5.5: Dialogue for filling the notification by asking frequency and which
days.

Chapter 6

Conclusions and Future work

6.1 Conclusions

This project was able to attain all of the objectives set forth as well as per-
form preliminary investigation into further work that would better the usability of
the microservice. That is it has designed an eHealth solution for the monitoring
and administering of medications, it has also thoroughly investigated the Spanish
AEMPS CIMA medication specification and translated it to the internationally
recognized FHIR specification. It has furthered these aims by also developing the
foundation for an OCR tool to be used for automatically generating medication in-
formation for the patients. To accomplish these main goals the following subtasks

were also completed:

A study of the AEMPS CIMA specification in which there is no available

documentation.
» A review of medication specifications, followed by an in depth study of FHIR.

« Expand the pyAIML library to allow for AIML 2.0 tags as well as adding all

the extensions necessary for this microservice.

o Develop Multi-lingual chatbot logic in AIML.

49

CHAPTER 6. CONCLUSIONS AND FUTURE WORK Page 50

o Develop a working secure chatbot that can be successfully hosted as a mi-

croservice allowing for multiple connections at once.

o Implementation of online browser based tools for administrative tasks on the

microservice.

6.2 Future work

As with any project there were goals that could not be accomplished and ideas
that were developed later on that would beneficial to add to the project but were
not included in the original scope. It is important in a full deployment project to
recognize when to stop adding features and to finish the features desired by the
project outline. Some of the features and ideas that did not make the final version

of the microservice are included below for future implementation.

6.2.1 With FHIR

The CIMA database provides more information than is currently needed by
any existing microservice, so it was not deemed important to fully transfer each
record in its entirety. A perfect example of this is that on the CIMA database
pictures of the packaging and the medication itself are recorded. These pictures
would make a great addition to the FHIR database and pave the way for some
other new functionality that will be discussed in the Medication microservice’s
future work.

Concurrently the stand-alone application that parses the CIMA database is
entirely command line driven, requires an instance of Python on the local machine,
and is a little cumbersome to use. Future work for this would involve making an
HTML web interface to maintain the database transfer and an automatic bot that

manages the day to day checking of the database to make sure that all records

Page 51 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

are up to date. These two functionalities would greatly improve the usability and

reliability of the FHIR translator.

6.2.2 The Microservice

The microservice is far from complete in that there are many medication based
functionalities that will be desired. These are often found through the trial period,
but during the development some of these became apparent but were chosen to not
be pursued in the immediate future for the desire of releasing a complete solution
instead of a mix and matched sampling of all the capabilities of the platform.

As mentioned previously there is an untapped resource in the pictures provided
by the Spanish CIMA database. These pictures can be easily entered into the FHIR
database model that is currently being used with the platform. Once on the FHIR
database it is merely a matter of configuring a mircroservice to request the images
in order to use them in a variety of applications. Some of the most exciting paths
for this are for care of elderly and sufferers of dementia. Using template matching
a microservice could be designed to validate that a patient is taking the correct
medications, automatically confirm that a medication has been taken. As well it
could confirm with patients, doctors and caregivers the correct dosage, appearance
and form of medications.

As mentioned previously, the OCR functionality was never completed but it
was started and advanced to a near BETA level. Future work in this would involve
improving the consistency of the row separator of a prescription sheet. Once that
has been achieved this function will be complete.

Another utility of the platform that was largely left unused by this microservice
is the separation of roles. The platform allows for the assignation of caregiver,
doctor and patient roles. It is important to implement these so that the per-
mitted actions of each role can be defined within the microservice. The current

microservice only allows for the patient and doctor style role. This is because

CHAPTER 6. CONCLUSIONS AND FUTURE WORK Page 52

there is a lot more overlap between these two. A doctor should have access to the
medications and the ability to change them if entered incorrectly. Where as the
implementation of a caregiver type role would be more of a passive role that can
view only the things that the patient has deemed necessary for them to see. This
might be for one patient a simple binary response about whether the medications
for that day have been taken, up to a complete summary of all medications cur-
rently, and historically taken along with charts about the usage and how often the

patient remembers to take them.

Bibliography

~

10.

K. Patel et al., BMC' Clinical Pharmacology 7, DOI: 10.1186/1472-6904-7-8

(2007) (cit. on p. 1).

M. Pirmohamed et al., BMJ 329, 15-19 (2004) (cit. on p. 1).

C. Stratton, pyAIML, 5th Aug. 2017, (http://pyaiml.sourceforge.net/)
(cit. on p. 4).

K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, D. Stebila, presented
at the, pp. 451-466, DOI: 10.1109/EuroSP.2017.27 (cit. on p. 4).

O. W. Systems, contributors, Signal (cit. on pp. 4, 15).

FHIR, HL7.0rg, 2011 (cit. on p. 7).

D. Bender, K. Sartipi, HL7 FHIR: An agile and RESTful approach to health-

care information exchange, June 2013 (cit. on p. 7).
R. Wallace, A.L.I.C.E, ALICE A.I. Foundation, 1995 (cit. on p. 13).

GNU General Public License, version 3, Free Software Foundation, 29th June

2007, (http://www.gnu.org/licenses/gpl.html) (cit. on p. 15).

T. F. Bissyande, F. Thung, D. Lo, L. Jiang, L. Reveillere, presented at the
2013 TEEE 37th Annual Computer Software and Applications Conference,
pp. 303-312, 1SBN: 978-0-7695-4986-6, DOI: 10 . 1109/ COMPSAC . 2013 . 55,
(2018; http://ieeexplore. ieee . org/lpdocs/epic03/wrapper . htm?

arnumber=6649842) (cit. on p. 15).

93

https://doi.org/10.1186/1472-6904-7-8
http://pyaiml.sourceforge.net/
https://doi.org/10.1109/EuroSP.2017.27
http://www.gnu.org/licenses/gpl.html
https://doi.org/10.1109/COMPSAC.2013.55
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6649842
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6649842

BIBLIOGRAPHY Page 54

11.

12.

15.

14.

15.

16.

D. Robinson, The Incredible Growth of Python | Stack Overflow, en-US, Sept.
2017, (2018; https://stackoverflow.blog/2017/09/06/ incredible-

growth-python/) (cit. on p. 15).
T. A. S. Foundation, Apache: MESOS (cit. on p. 17).

R. Docker, B. Knight, W. Davies, D. Presley, DOCKFER: Orchestral Works

(cit. on p. 17).
Flask User’s Guide, Pallot’s Team, 2010 (cit. on p. 20).

R. Smith, presented at the Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007), vol. 2, pp. 629-633, DOI1: 10.1109/

ICDAR.2007.4376991 (cit. on p. 27).

R. Wallace, The Elements of AIML Style (cit. on p. 30).

https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://doi.org/10.1109/ICDAR.2007.4376991
https://doi.org/10.1109/ICDAR.2007.4376991

Appendix A

Comparing Messaging clients

Below is a table detailing the differences in features of various messenger plat-
forms. Below it can be seen that in features that were important to this project

Signal was the clear choice at the time of beginning.

Whatsapp Telegram Signal Skype Viber
Encryption by
default O
Source code
available O O
generate &
keep a private D D D D
Encrypted
Metadata D D D D
Secondary
Factor O O |
Identification

Figure A.1: Table detailing the different features of various messaging clients

These requirements are of particular import because of the nature of this pro-
ject. The first, third, fourth and fifth requirements are all security based. Medical
data and the security of patient information is of the utmost importance when
designing an eHealth solution. Secondary factor identification was desired but it
was not a deal breaker when deciding on a platform. The second criteria, that the
source code is available, is incredibly important because that gives the developer

the ability to truly customize the application without having to worry about com-

95

APPENDIX A. COMPARING MESSAGING CLIENTS Page 56

plex corporate licensing and a more robust development community to aid in the

development process.

Appendix B

Time Distribution of the Project

The project spanned a year from its inception in December 2017 to its present-
ation in December 2018. This time can be separated into the main segments as
detailed below in figure Figure B.1. The figure shows the projected timeline in
a Gantt chart. Much time was allotted at the beginning for learning the system.
Then predictions on the time frame for programming each of the functions of the
microservices were used to a lot the development stages. The final stages involved

the compilation of the finding of the project, and writing the report.

After the initial planning was done and the project was begun it was found
however that there were large portions of the project that were not accounted for.
Chief among these was the implementation of the AIML 2.0 library into python
and the difficulties encountered with the desired OCR functionality. These task

true time burden are shown at the bottom of the Gantt chart.

57

APPENDIX B. TIME DISTRIBUTION OF THE PROJECT Page 58

2017 2018 2019

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Microservice (96%)
558, 2.0 oD

4d ‘ Background and Research (100%)
4d l Define project goals (100%)

Build Base microservice (100%)
2d o

3d ' Configure Signal (100%)
4d || Build testing Server (100%)
15d . JWT and encryption (100%)
10d () Write Base chatbot (100%)

Medication Tasks (100%)
55.2d c———

7d (J Prewrite AIML chat (100%)
20d ([l) Define FHIR/CIMA Fields (100%)
28.2d () Write AIML (100%)

OCR Tasks (70%)
84d csE—————

28d - Section Document (100%)
23d ([Parse Sections (100%)
33d - Seperate by rows (24%)

q Notification Tasks (100%)
D

20d ([AIML (100%)
44d - Notification Generator (100%)

CIMA to FHIR deployment (100%)
59.6d com—

24.8d () Parse CIMA (100%)
24.9d - Develop python Objects (100%)
9.9d . Upload to FHIR server (100%)

Web Tools (100%)
159.4d

53.1d () Bot utilities (100%)
53.2d _ Database utilities (100%)
53.1d ([OCR Utilities (100%)

 Writing (100%)

14d ([Define Section (100%)

41d ([Write (100%)

18d ([Review (100%)
23d - Presentation (100%)

Figure B.1: Gantt Chart of the project from proposal to final presentation.

Appendix C

The final build

The following is simply a list of the dependencies that the microservice uses in-

side of docker. Below that is the docker build script used to build the microservice.

These are provided for posterity, as a sort of installation and running guide.

asnlcrypto==0.24.0
certifi==2018.4.16
cffi==1.11.5
chardet==3.0.4
click==6.7
cloudpickle==0.5.3
cryptography==2.2.2
cycler==0.10.0
dask==0.18.0
dateparser==0.7.0
decorator==4.3.0
fhirclient==3.2.0
Flask==1.0.2
Flask-JWT==0.3.2

gunicorn==19.8.1

idna==2.6
imutils==0.4.6
isodate==0.6.0
itsdangerous==0.24
Jinja2==2.10
kiwisolver==1.0.1
1xml==4.2.1
MarkupSafe==1.0
matplotlib==2.2.2
netifaces==0.10.6
networkx==2.1
numpy==1.14.3
oauthlib==2.1.0
Pillow==5.1.0

pycparser==2.18

29

APPENDIX C. THE FINAL BUILD

Page 60

PyJWT==1.4.2
pyOpenSSL==18.0.0
pyparsing==2.2.0
python-dateutil==2.7.3
pytz==2018.4
PyWavelets==0.5.2
regex==2018.6.9
requests==2.18.4

scikit-image==0.14.0

Dockertfile

scipy==1.1.0
six==1.11.0
socketio==0.1.3
to0lz==0.9.0
tzlocal==1.5.1
Unidecode==1.0.22
urllib3==1.22
uWSGI==2.0.17

Werkzeug==0.14.1

This is the installation file for the microservice in Docker. In the Install Python

Requirements section the custom and modified libraries are shown to be installed

with the -e suffix to the pip3 install command. The final section preceded with

Entry point shows the command that Docker issues to start the microservice inside

the Gunicorn.

#Download base image ubuntu 16.04
FROM ubuntu:16.04

RUN apt-get update

RUN apt-get install -y uwsgi

RUN apt-get install -y python3

RUN apt-get install -y python3-pip

RUN apt-get install -y libgtk2.0-dev

RUN pip3 install --upgrade pip
RUN apt-get install -y python3-tk
Set port

EXPOSE 5084

#Install Python requirements:

Page 61 APPENDIX C. THE FINAL BUILD

WORKDIR /root

RUN 1s

ADD requirements.txt requirements.txt

RUN pip3 install -r requirements.txt

ADD /security /security

RUN pip3 install -e ../security

ADD /develop /develop

RUN pip3 install -e ../develop/OCRimg

RUN pip3 install -e ../develop/uservicetools
RUN pip3 install -e ../develop/fhirtools

RUN pip3 install -e ../develop/requests-oauthlib

RUN pip3 install -e ../develop/extaiml

ADD userver.crt /etc/ssl/PrivateCerts/userver.crt

ADD userver.key /etc/ssl/PrivateCerts/userver.key

ADD wsgi.py wsgi.py

ADD app.py app.py

ADD /WebApp /WebApp

ADD /static /static

ADD userver.conf userver.conf

ADD hapi.conf hapi.conf

ENTRYPOINT ["gunicorn", "--bind", "0.0.0.0:84", "wsgi:app",\
"--certfile","/etc/ssl/PrivateCerts/userver.crt",\

"--keyfile","/etc/ssl/PrivateCerts/userver.key"]

Appendix D

Extensions

e showmed: Depending on arguments to this extension it displays either a
single medication as referenced by the FHIR identification sent to it, or it

returns the entire list of active medications associated with the user.
o oob: AIML 2.0 tag for adding out of band functions.

e microservice: tag that runs a script that announces the microservice as run-

ning. /

o posologia: Able to parse the dosage that is input into computer friendly

information.

o description: Used in the manual entry of a medication, it is the tag that
tells the microservice to save the input description to the custom FHIR

medication object

o newlist: Generates a new FHIR List object, that is referenced to the user.
The list is given the status of working until it is confirmed by the user to be

filled completely.

o newrequest: Initiate the FHIR medication request object for the input of a

new prescription.

62

Page 63 APPENDIX D. EXTENSIONS

e addone

o EntInErr: Provides a tool to flag a medication as entered in error. All

medication entries are permanently saved on the data base

o addtolist: Adds the medication request reference to the list of medications.

« mancode: Begin the process of manually entering medication. Takes medic-

ation code as string of numbers.

o manname: Manually enter the name of medication.

« mandose: Manually enter the dose of a medication.

o readcurrentMed: Get the up to date information about the current focused
medication. This is an internal function used when cycling through a list of

medications.

o picture: Calls the function that processes base64 encoded image files.

o br: workaround to allow for multi-line messages. Depending on platform the

newline is handled differently and this function corrects compatibility issues.

e allcurrmeds: Returns reference codes for all current active medications for

the patient.

o setperiodunit: Parses the users notification frequency and returns the largest

unit of time given. Example: 4 per week, the period unit is week.

« showcurrnoti: Get current notification that is being modified:

o count: Counter to keep track of medication in list.

o counteradv: When medication in list is finished advances counter to next

medication.

APPENDIX D. EXTENSIONS Page 64

« onemed: Focus on single medication from medication list.

» setcurrfreq: Set the frequency of a notification.

» gennotification: Generate a notification by sending the notification paramet-

ers to the notifications microservice.

o oneFhirID: Takes a medication CIMA code and finds the correct unique

FHIR id to reference the medication correctly.

	List of Figures
	Introduction
	Project Overview
	Objectives
	Materials and Technologies Used
	Report Organization

	Applications for Medical Data
	Data organization Standard
	Security
	Migration of CIMA database and adding FHIR Compliance

	Medication Microservice
	Selection of Project Building Blocks
	Messaging Client Language
	Platform Serving

	Other microservices
	Dispatcher microservice
	Database Requests

	Function
	Flask application
	Serving the Flask App
	The Docker Container
	HTML hosted web services
	Bot Functions and Conversation
	OCR

	User - Chatbot Communications
	Multi-lingual support
	The Srai tag
	The Topic tag

	Expansion
	New list Extension
	Generate Notifications Extensions

	Notifications Logic and Language Processing

	Results
	FHIR Specification Application
	Functionality
	Manual Entry of Medications
	Generate Notifications

	A Full Interaction

	Conclusions and Future work
	Conclusions
	Future work
	With FHIR
	The Microservice

	Bibliography
	Comparing Messaging clients
	Time Distribution of the Project
	The final build
	Extensions

