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RESUMEN

DETECCION DE ACTIVIDADES HUMANAS CON SENSORES
PORTABLES

La recopilacion de datos y estadisticas deportivas es un campo de
investigacion en continuo desarrollo. Actualmente, existe una gran demanda
en el mercado de dispositivos portables capaces de recopilar informacién
importante durante el desempeno de cualquier actividad. Esa informacion es
procesada para obtener estadisticas o retroalimentacion con la que mejorar
la técnica deportiva de los usuarios.

En este trabajo de fin de master se va a disefar e implementar un
sistema capaz de distinguir entre distintas actividades realizadas durante el
desempeno de un partido de tenis, siendo la finalidad dltima la correcta
clasificaciéon de un conjunto de golpes realizados. Ademas, el modelo ha de
presentar robustez ante la variabilidad de las dimensiones, edad o sexo de
cualquier sujeto que realice las actividades. Se desarrollara una base de
datos propia con el fin de estar orientada al objetivo propuesto, y asi poder
incluir nuevos movimientos en ampliaciones futuras al trabajo. Para ello, se
ha seleccionado y configurado dos nodos sensores que utilizan la tecnologia
malambrica de bajo consumo Bluetooth Low Energy para comunicarse con
un PC que actiia como dispositivo central para recopilar la informacién
recibida por los sensores.

Para conseguir estos objetivos, se han procesado los datos de los
sensores mediante el calculo de sus espectrogramas, de manera que
aplicando técnicas novedosas de Deep Learning con entrenamiento semi-
supervisado se consiga llevar a cabo la extraccion de caracteristicas y
clasificacion de los espectrogramas obtenidos. El aprendizaje semi-
supervisado permite que la cantidad de datos etiquetados necesaria se
reduzca considerablemente a cambio de obtener una gran cantidad de datos
no etiquetados. La implementaciéon de estas técnicas se ha llevado a cabo
mediante el uso de TensorFlow con su API en Python.

Una vez entrenados los sistemas clasificadores, se ha comprobado su
funcionamiento sobre nuevos datos de test para asi comprobar la correcta
clasificaciéon de las actividades sobre datos no vistos por el clasificador
durante su entrenamiento. De este modo, se demuestra la capacidad
generalizadora del modelo.
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Capitulo 1
Introduccion

1.1. Motivacion

Este trabajo se enmarca en el proyecto de investigacion: “Anaélisis
semantico y comprension del comportamiento del jugador en aplicaciones
deportivas”, financiado por el MINECO (TIN2017-88841-R) y cofinanciado
por fondos FEDER. Concedido en 2018 al grupo de investigacion CVLab
(departamento de ingenieria electrénica y comunicaciones).

La recopilacion de datos y estadisticas durante el desempenio de cualquier
deporte es un tema de investigacion en continuo desarrollo, ya que tanto
personas aficionadas como profesionales buscan una manera de obtener
informacion sobre su rendimiento o posibilidad de mejora. Debido a ello, se
desarrolla este proyecto en el ambito de reconocimiento de actividades
realizadas en un partido de tenis, al que se anadira en un futuro nuevas
funcionalidades con las que poder mejorar el rendimiento deportivo de las
personas.

1.2. Objetivos

El objetivo de este proyecto es el llevar a cabo la clasificacion de un
conjunto de actividades humanas intentando solventar los problemas de
generalizacion del modelo que se suelen encontrar en los sistemas habituales
de reconocimiento de actividades humanas con sensores portables. Como ya
se ha comentado en la motivacién del proyecto, la finalidad principal es el
desarrollo de un modelo clasificador que consiga distinguir un conjunto de
golpes y movimientos que se pueden realizar durante un partido de tenis.

Para ello, la soluciéon propuesta aplica técnicas de Deep Learning con
modelos convolucionales (CNNs) de aprendizaje semi-supervisado para
extraer informacion de los espectrogramas de las senales recopiladas por dos
nodos sensores portables. Estos sensores estan colocados en la muneca y
cintura del sujeto, transmitiendo informacién de acelerémetro y giréscopo en
sus tres ejes de coordenadas.

Con la extraccion de caracteristicas de los espectrogramas utilizando
CNNs se pretende que el modelo sea robusto ante las diferencias de tamano,
edad, o sexo de los distintos sujetos que realicen las actividades. La
aplicacion de CNNs para la extraccion de caracteristicas introduce
invariancia ante la posicion y deformaciones de éstas en el espectrograma.

1



Capitulo 1. Introduccion

De este modo, aunque un mismo movimiento realizado por diferentes
usuarios presente frecuencias distintas en el espectrograma, las formas
obtenidas seran las mismas, pero desplazadas en frecuencias, por lo que las
CNN seran capaces de generar representaciones de caracteristicas en su
salida invariantes ante estas fuentes de variabilidad.

Para la construccién del modelo se utilizaran las librerias de TensorFlow
con la API desarrollada en Python, ya que es la versiéon mas estable que
presenta y con mas documentacion. De esta manera se abre la posibilidad de
utilizar con software libre una gran cantidad de herramientas desarrolladas
en Python.

Para el entrenamiento y test del sistema de reconocimiento de actividades
planteado se va a crear una base de datos propia. En ella habra una gran
cantidad de datos sin etiquetar para el entrenamiento del modelo
convolucional que realizara la extracciéon de caracteristicas, y unos pocos
datos etiquetados para poder entrenar el clasificador supervisado que llevara
a cabo el reconocimiento del conjunto de actividades. La base de datos la
realizaran 8 personas distintas, 4 de cada sexo, para asi poder obtener un
modelo generalizado. Se habra de seleccionar y configurar dos nodos sensores
que cumplan con los principales requisitos de portabilidad y bajo consumo.

De esta manera, los pasos a seguir para el cumplimiento de los objetivos
planteados son los siguientes:

e Kstudio del estado del arte y aprendizaje sobre el uso las distintas
herramientas utilizadas.

e Busqueda de posibles sensores, aprendizaje de su tecnologia, y
configuraciéon de estos.

e Generacién de una base de datos con la que entrenar y testear el modelo.
e Procesamiento de espectrogramas de las senales

e Entrenamiento de redes convolucionales de manera no supervisada para
extraccién de caracteristicas, y entrenamiento de clasificador de manera
supervisada. Ajuste de hiperparametros.

e Analisis de resultados y conclusiones.

1.3. Herramientas utilizadas

Para el desarrollo del proyecto, se ha hecho uso de las siguientes
herramientas:

e Herramientas y dispositivos de Texas Instruments: Sensores SensorTag
CC2650, junto con debugger DevPack, CC2540 USB dongle, y
software BTool, para la captacién de datos y comunicaciéon con el PC.

e Code Composer Studio 8.1.0: para programacion de los sensores con el
debugger DevPack.

e MATLAB R2017b: para el tratamiento de ficheros de texto en la lectura
de datos enviados por el sensor.
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e Spyder 3.2.8: para programaciéon en Python, donde se han construido
las redes con librerias de TensorFlow y scikit-learn. Tarjeta grafica
de PC utilizado: NVIDIA GEFORCE GTX1050. Memoria RAM: 8GB.

e Google Colaboratory: plataforma que te permite de manera gratuita
un entorno de ejecucion virtual, con 12GB de RAM y una tarjeta grafica
Tesla K80 GPU. Esta plataforma se ha utilizado para el entrenamiento
de todas las redes.

1.4. Contexto y estado del arte

El reconocimiento de actividades humanas (RAH) es un campo de
investigacion en continuo crecimiento desde la aparicion de sensores capaces
de captar informacién del entorno durante el desempeno de cualquier
actividad. Desde la década de los noventa, se ha estado ampliando el estado
del arte en este campo mediante el desarrollo de nuevas técnicas que
permiten obtener una mayor precisiéon en la clasificacién de actividades a
partir de sensores.

Muchas de estas técnicas utilizan el denominado aprendizaje automatico o
machine learning (ML) basado en modelos de clasificacion, los cuales se
obtienen mediante procesos de aprendizaje a partir de ejemplos. El
entrenamiento de los clasificadores se lleva a cabo con una gran cantidad de
ejemplos, ya sea mediante aprendizaje supervisado, o no supervisado. En el
aprendizaje supervisado se entrena el clasificador mediante datos
etiquetados, de manera que se le indica al clasificador la salida deseada ante
unos datos de entrada determinados. En el caso del aprendizaje no
supervisado, el clasificador va agrupando los datos que son similares entre si
en base a una medida de distancia (clustering). Una vez se dispone del
clasificador entrenado, se realiza el test de dicho clasificador con nuevos
datos con los que no haya tratado todavia, de manera que segun los
resultados que se obtienen con esos nuevos datos de test se comprueba la
eficacia del modelo de clasificacién obtenido.

Hoy en dia, el desarrollo de nuevos sensores de menor tamafno y menor
consumo esta permitiendo que la recopilacion de datos mediante sensores
portables o externos se realice de manera mucho mas sencilla, y sin interferir
en las actividades realizadas. La informacién obtenida por estos sensores es
de gran interés en una amplia variedad de aplicaciones, como por ejemplo en
aplicaciones médicas para el seguimiento de pacientes con enfermedades que
necesitan monitorizacion [1], en la rehabilitacién de enfermedades o lesiones
mediante el seguimiento del progreso del paciente [2] [3] [4], en la
recopilacion de estadisticas deportivas para la visualizaciéon del progreso
realizado [5], 0 en la mejora de la técnica en el desempeno de ciertos deportes

[6] [7].

Aunque el objetivo ultimo de diferentes investigaciones sea el mismo
(clasificar las mismas actividades que llevan a cabo diversas personas), los
métodos que se utilizan en cada investigacion para llevarlo a cabo pueden ser
distintos. Cada sistema de RAH puede utilizar distintos tipos de sensores,
diversos métodos de extracciéon de caracteristicas, variadas tipologias de
clasificadores, o diferentes métodos de entrenamiento del clasificador. Sin

3



Capitulo 1. Introduccion

embargo, el diagrama de flujo que siguen habitualmente la estructura de
todos ellos es el mismo [8] [9], tal y como se muestra en la Fig. 1.1.

Extraccion de
caracteristicas

Adquisicién
de datos

Pre-procesamiento  Segmentacién Clasificacion

fi
f
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- .
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1‘
i

fr

i 1

fi

|

13

Iz
.

fi

[

ol

i

Fig. 1.1. Diagrama de bloques tipico de un sistema de RAH

1.4.1. Adquisicion de datos

El primer paso a la hora de realizar un sistema clasificador de actividades
es la obtencién de una base de datos con la que entrenar dicho clasificador.
La opciéon mas comun en sistemas de RAH para una aplicacion concreta es la
elaboracion de una base de datos propia, aunque también se pueden utilizar
bases de datos ya realizadas en las que se encuentren una gran cantidad de
datos. Para ello, se ha de seleccionar tanto el tipo de sensor utilizado como la
localizacién del sensor en el cuerpo, ya que ambas opciones de disefo
influyen en los resultados de la clasificacion.

Durante el estudio del estado del arte, se han encontrado gran variedad de
sensores utilizados en distintas investigaciones. Una opcion es la deteccion
de actividades mediante el tratamiento de imagenes de video [10] con
camaras colocadas en el entorno donde se encuentra el sujeto. Sin embargo,
esta opcion sbélo es apta para cierto tipo de aplicaciones ya que suelen ser
caras y conllevan problemas de privacidad y de elevado coste computacional
en el tratamiento de las imagenes. La opcién mas utilizada a la hora de
seleccionar sensores para RAH es el uso de sensores portables, debido a que
las tecnologias actuales de estos dispositivos presentan prestaciones de bajo
consumo y pequenas dimensiones [11]. Estas prestaciones los hacen idéneos
para la recopilacién de informacién durante largos periodos de tiempo, sin
interferir en las actividades realizadas, y en cualquier entorno.

Existen distintos tipos de sensores portables utilizados para sistemas de
RAH, como acelerometros, girdscopos, magnetometros, sensores de
temperatura, bardémetros, localizadores, microfonos, pulsémetros o
electrocardiografos. Sin embargo, la mayoria de aplicaciones investigadas en
el estado del arte utilizan Unicamente acelerémetros y girdéscopos ya que la
informaciéon que proporcionan es suficientemente relevante para la
clasificacion de un gran ntimero de actividades [12] [13] [14]. La localizacion
en la que se ubican estos sensores en el cuerpo durante el desempeno de las
actividades a clasificar es también un parametro de disefio en investigacién
[15]. El cambio de la ubicacion del sensor en el cuerpo hace que la
informacién obtenida por los sensores varie, de manera que los datos
obtenidos pueden ser mas o menos representativos de las actividades
realizadas.

En el uso de sensores portables, la recopilaciéon de los datos obtenidos por
los distintos sensores se realiza habitualmente mediante tecnologias
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malambricas, utilizando como dispositivo maestro un moévil smartphone o un
ordenador portatil conectado a distintos sensores esclavos a través de un
protocolo de bajo consumo, como por ejemplo Bluethooth Low Energy (BLE),
o ZigBee [4] [11].

En el caso de querer utilizar una base de datos ajena, en [16] [17] [18] se
muestran las distintas bases de datos mas utilizadas para entrenar o validar
clasificadores de RAH.

La evaluaciéon de los clasificadores que se desarrollen se ha de llevar a
cabo mediante datos que el clasificador no haya utilizado durante el
entrenamiento, de manera que se debe realizar una particiéon de la base de
datos de la que se dispone antes de entrenar el clasificador.

En casos en los que se tenga un gran conjunto de datos, se realiza la
separacion de estos en tres subconjuntos: entrenamiento, validacion y test.
El modelo se entrena tuUnicamente con los datos de entrenamiento. El
conjunto de validacion se utiliza para mejorar los resultados obtenidos con
modelos entrenados mediante el ajuste de los hiperparametros de disefo del
modelo. El conjunto de test se utiliza tnicamente una vez un modelo ha sido
entrenado con el conjunto de hiperparametros que generaron los mejores
resultados posibles con el conjunto de validacion. Este tipo de separacion de
la base de datos se utiliza principalmente para mejorar los resultados
obtenidos evitando el sobreajuste del modelo a los datos de entrenamiento,
asi como para explorar el conjunto de hiperparametros 6ptimos para el
entrenamiento final del modelo.

En el caso de disponer de pocos datos, debido a la posibilidad de sesgos en
el reparto de los ejemplos en los distintos subconjuntos de datos, se suele
utilizar validacion cruzada, que consiste en dividir la base de datos en varios
subconjuntos y entrenar tantos modelos como subconjuntos haya, utilizando
en cada uno de esos modelos un subconjunto distinto de wvalidacion.
Finalmente se promedia los resultados obtenidos con cada una de las redes
de la validacion cruzada. De esta manera los parametros del modelo no se
pueden ajustar a un conjunto de datos de evaluaciéon concreto, evitando que
los resultados presenten sobreajuste a un conjunto de datos particular.

1.4.2. Preprocesamiento y segmentacion

Una vez se dispone de una base de datos con la que poder entrenar un
clasificador, es habitual encontrar en el estado del arte ciertos tipos de
preprocesamiento de los datos.

Los datos obtenidos del sensor suelen ser filtrados para reducir el ruido
introducido en la medicion del sensor [6]. También es comun realizar un
escalado de los datos, para que los rangos de medida de distintos tipos de
sensores no influyan en la mayor ponderacion de uno u otro durante el
entrenamiento. En ocasiones, se lleva a cabo sincronizacion de las muestras
de distintos sensores que presentan diferentes frecuencias de muestreo. Para
la reconstruccion de datos perdidos durante el muestreo, se realiza una
interpolacion del valor en el instante anterior y posterior al dato perdido [6]
[19].
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La recopilacion de datos de los sensores para RAH se realiza durante
largos periodos de tiempo, obteniendo una gran cantidad de muestras de
cada sensor. La extracciéon de caracteristicas directamente sobre largos
periodos de senales temporales, dificultaria enormemente la obtencion de
caracteristicas discriminativas de las distintas actividades realizadas
durante ese periodo. Por ello, en la mayoria de los casos se lleva a cabo una
segmentaciéon de la sefial que permita obtener pequenos periodos de la sefial
donde pueda ocurrir una cierta actividad en lugar de varias. De este modo, se
consigue extraer caracteristicas mas discriminativas de cada actividad para
poder llevar a cabo su clasificacion. En el caso de senales temporales, los dos
métodos de segmentacion principales son la segmentacion por umbral, y la
segmentaciéon mediante ventanas temporales deslizantes [9]. La segmenta-
ciéon por umbral se utiliza principalmente en aplicaciones en las que se esta
buscando instantes temporales concretos de la senal, como instantes en los
que hay maximos o minimos locales, o instantes donde la energia de la sefial
supera un valor concreto.

Un ejemplo es la segmentacion realizada en [20], donde se lleva a cabo la
segmentacién de senales musicales para detectar el inicio de transicién entre
notas. Otro ejemplo es el encontrado en [7] donde se desea realizar
clasificacion de golpes de tenis, por lo que se lleva a cabo la extraccion de
ventanas temporales de iinicamente los instantes donde se produce un golpe.
En la Fig. 1.2 se muestran los dos ejemplos citados.

Mag nitude with initial segmentation
1 1

Magnitude [a.u.]

Time [a.u.]

Magnitude with refined segmentation
1

Detection
function

Magnitude [a.u.]

Onset

o Time [a.u.]
localization

b)

Fig. 1.2. Segmentacion por umbral. a) Segmentacion de una sefial de audio.
b) Segmentacién de sefial para clasificacion de golpes de tenis.

La segmentacion por umbral no es el método mas comun, ya que en la
mayoria de las aplicaciones produce la pérdida de informacién relevante para
una correcta clasificacién. La técnica de segmentacion mas utilizada en RAH
es la segmentacion mediante una ventana temporal deslizante. Este método
extrae pequenos segmentos de la sefial mediante una ventana temporal de
anchura definida, deslizandola a lo largo de toda la sefial. De este modo, se
consigue tratar con pequenos intervalos de la sefal, sin perder informacién
alguna sobre los datos de entrada. Habitualmente el desplazamiento de la
ventana a lo largo de la senal se realiza con una cierta superposiciéon respecto
de la ventana anterior (50% o mas normalmente) para asi evitar perder
informacion en las transiciones de una ventana a otra y aumentar la
redundancia de las muestras temporales extraidas. En la Fig. 1.3 se observa
un ejemplo de segmentaciéon con ventana deslizante para una aplicaciéon de
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electromiografia desarrollada en [21]. Es comun wutilizar la técnica de
enventanado de Hanning para evitar asi las distorsiones producidas por las
discontinuidades en los limites de la ventana.

200 400 600 800 1000 1200 1400 1‘600 Sample:

-0

50 100 150 200 250

Segment n+1

= e ) 150 200 250

50% overlapping

Fig. 1.3. Segmentacion mediante ventana temporal deslizante

La anchura de la ventana deslizante es un parametro de disefo tipico en
sistemas de RAH ya que influye en los resultados de la clasificacion final
realizada. En [22] se realiza un estudio sobre el impacto de la anchura de la
ventana deslizante en los resultados obtenidos en la clasificaciéon, donde se
concluydé que una ventana de uno a dos segundos es el tamafio éptimo para
conseguir una buena relacion entre la precisiéon obtenida y la velocidad de
segmentaciéon de la senal completa. También se han realizado estudios
acerca de la posibilidad de desarrollar un método de segmentacion mediante
una ventana deslizante de anchura adaptativa [23].

1.4.3. Extraccion de caracteristicas

La extraccion y seleccién de caracteristicas representativas de la senal es
uno de los procesos mas importantes a la hora de desarrollar un sistema de
RAH. En el campo de ML a este proceso se le denomina la fase de feature
engineering, consistente en una fase de feature extraction seguida de una fase
de feature selection. Tras muchos anos de investigacién en este campo, se ha
comprobado que el uso de estas caracteristicas como datos de entrada a un
clasificador mejora notablemente los resultados obtenidos en la clasificacién
respecto al uso directo de los valores muestreados por el sensor. En [24] se
lleva a cabo la comparacién de los resultados obtenidos en una aplicacién que
utiliza inicialmente los datos del sensor muestreados, y los obtenidos cuando
se utilizan las caracteristicas extraidas como datos de entrada. Ademas de
mejorar los resultados obtenidos, la extraccién de caracteristicas permite
llevar a cabo una reduccién en la dimensionalidad del problema.
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Extraccion de caracteristicas predisenadas

Este tipo de extraccién consiste en el calculo de un conjunto amplio de
caracteristicas en el dominio temporal y frecuencial que se consideren
suficientemente representativas de la senal. Con las caracteristicas
seleccionadas se forman distintos grupos de ellas para comprobar asi con
cual de ellos se obtiene un mejor resultado tras la clasificaciéon. En la Tabla I
se muestran las caracteristicas cominmente utilizadas en el estado del arte

de RAH [1], [6], [8], [15], [25].

TABLA I. Caracteristicas seleccionadas habitualmente en RAH

Dominio temporal Dominio frecuencial (FT)
Media Integral Componente DC
Mediana Derivada Suma de coeficientes
Varianza Cruces por cero Frecuencia dominante
Desviacion estandar Pico a pico Energia espectral
Minimos y maximos Kurtosis Pico de frecuencia
Amplitud Distancia euclidea Entropia espectral
RMS SMA Potencia
Correlacion SVM
Correlacion cruzada DSVM

Existen también distintas técnicas para comprimir un gran conjunto de
caracteristicas a un subconjunto transformado con caracteristicas mas
representativas para la clasificacién de los conjuntos de datos. Este tipo de
técnicas consiguen reducir la dimensionalidad del problema, siendo las mas
comunes el analisis de componentes principales (PCA), analisis lineal
discriminante (LDA), o el analisis de componentes independientes (ICA) [26].

Aunque el calculo de caracteristicas prediseiadas es el método mas
encontrado en el estado del arte, los modelos de RAH desarrollados de esta
forma presentan grandes problemas de generalizacion [16] [18]. Esto se debe
a que generalmente los investigadores consiguen disenar un conjunto de
caracteristicas que les permita obtener unos buenos resultados, pero
validando el modelo con la misma base de datos para la que se disenaron
dichas caracteristicas. Sin embargo, esta situacién se daria Unicamente en
un escenario de laboratorio ya que, en una aplicacién real, las actividades
seran realizadas por usuarios de distintas dimensiones respecto a las
personas que recopilaron los datos utilizados para el entrenamiento. La
diferencia corporal entre los sujetos introduce mucha variabilidad en la
informacion recogida por los sensores, llegando a provocar que la varianza de
la senal debido a las diferencias corporales sea mayor que la varianza
detectable entre las diferentes actividades. Esta situacion hace que los
clasificadores presenten sobreaprendizaje sobre la muestra de ejemplos
corporales de la base de datos, no siendo capaces de generalizar a nuevas
senales procedentes de sujetos con dimensiones corporales distintas a las
presentes en la base de datos. Por ello, la precision obtenida en la
clasificacion de actividades en una aplicacién real es mucho menor que la
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obtenida con los usuarios con los que se realizo la base de datos [9] [16] en el
caso de utilizar caracteristicas predisenadas.

Extracciéon automatica de caracteristicas

Actualmente, los investigadores estan intentando llevar a cabo la
extraccion automatica de caracteristicas relevantes de los datos de entrada.
De este modo, aunque el conjunto de datos de entrada cambie, el modelo
seguiria obteniendo caracteristicas suficientemente representativas de los
datos para obtener unos buenos resultados en la clasificacién. La técnica mas
habitual en RAH para extracciéon automatica de caracteristicas se basa en la
aplicacion de Deep Learning (DNN) a los datos de entrada, siendo las redes
neuronales convoluciones (CNN) la mas utilizadas [18].

Las CNN son populares para procesamiento de imagenes ya que aprenden
automaticamente los filtros necesarios para extracciéon de patrones [27] [28].
De este modo, las CNN aprenden caracteristicas discriminativas de los datos
de entrada, presentando invariancia ante la posicién, escala y orientacién de
éstas. Esta cualidad las hace i1ddéneas para muchas aplicaciones de
reconocimiento de patrones en imagenes.

Este tipo de redes también son wutilizadas para extraccion de
caracteristicas en senales temporales como las proporcionadas por sensores
portables [29] [30] [31] [32] [33]. Para ello, se suele llevar a cabo una
representaciéon 2D de dichas sefiales como si de una imagen se tratara, de
manera que las coordenadas x e y de dicha representaciéon se asocien a
indices de pixeles en una imagen [34].

Existen distintas técnicas con las que transformar los datos de entrada
para generar una representaciéon 2D de los mismos e introducirlos asi a la
CNN. Como ejemplo, se puede utilizar directamente la senal temporal como
una representacion 2D [31], apilar todas las senales de los distintos sensores
y aplicarles la FF'T [32] o realizar el calculo del espectrograma de las senales
[30] que permite extraer caracteristicas de la evolucion frecuencial a lo largo
del tiempo. Otra forma menos utilizada para aplicar CNN a senales
temporales es obtener cada dimension de un sensor como un canal
independiente (del mismo modo que se realiza en una imagen RGB) y aplicar
convolucién en 1D a cada canal [18].
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En la Fig. 1.4. se muestra un ejemplo de una CNN utilizada para extraer
caracteristicas de un senal de electrocardiograma [35]. Tal y como se ha
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comentado en el parrafo anterior, se comienza transformando la senal de
entrada a una representacion 2D como una imagen. Después se aplica la
CNN a esa imagen, consiguiendo a su salida un vector de caracteristicas
extraidas de los datos de entrada. Por ultimo, las caracteristicas son
introducidas a un clasificador supervisado que realiza el reconocimiento de
los patrones extraidos y los clasifica en una de las clases etiquetadas.

Otro tipo de DNN utilizadas para extraccion de caracteristicas
representativas de los datos de entrada son los Autoencoders. Este tipo de
DNN va aprendiendo en sus capas ocultas una codificacion de los datos de
entrada mediante la replicacion de la entrada en la salida de la red,
utilizando datos sin etiquetar. Una vez entrenada la red, la codificacion
obtenida en la capa intermedia tiene informacién suficiente como para
generar una salida de una clase determinada con la que se ha entrenado. De
este modo, la capa intermedia del Autoencoder contiene una codificacion
representativa, y generalmente comprimida, del dato introducido a la red.
Esta codificacién es una representacién similar al vector de caracteristicas
obtenido en las CNN, a partir del cual se puede entrenar al clasificador de
salida. En la Fig. 1.5 se puede observar la estructura tipica que tienen este
tipo de redes.

Entrada

Entrada :
Representacion reproducida

comprimida

ra

ENCODER DECODER

Fig. 1.5. Estructura de un Autoencoder

1.4.4. Clasificacion

Durante la revision del estado del arte, se han encontrado numerosos
métodos de clasificacion utilizados para RAH. En la Tabla II se muestran los
clasificadores convencionalmente utilizados en aplicaciones de RAH [8] [9]
[24], indicando los mas usados dentro de cada tipologia de clasificadores.
Como se puede observar se utilizan tanto clasificadores con entrenamiento
supervisado (k-NN, MLP, o SVM) como no supervisado (k-means o HMM).

Tradicionalmente las investigaciones optaban en mayor medida por
métodos de entrenamiento supervisados, ya que las actividades a clasificar
estaban muy acotadas y no tenian gran complejidad. Sin embargo, para
obtener un modelo que sea suficientemente generalizador en una aplicacion
real de RAH hace falta una gran cantidad de datos etiquetados para el
entrenamiento, lo cual es un proceso lento y costoso. Por ello, se esta optando
por clasificadores que utilicen métodos de entrenamiento no supervisado o
semi-supervisados, ya que es la manera en la que se pueden obtener grandes
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bases de datos con suficiente informacién como para obtener un modelo
general.

Hoy en dia las investigaciones en RAH se estan centrando en el uso de
DNNSs para la clasificaciéon de actividades humanas. Esto es debido a que,
ademas de llevar a cabo las tareas de clasificacion, es un extractor de
caracteristicas de los datos de entrada tal y como se ha comentado en la
seccion 1.4.3. Algunos tipos de DNN permiten entrenamiento semi-
supervisado de manera que aprenden caracteristicas de alto nivel de una
gran cantidad de datos de entrenamiento no etiquetados, y posteriormente
aprende a llevar a cabo las labores de clasificacion mediante unos pocos
datos etiquetados.

TABLA II. Clasificadores mds utilizados en sistemas de RAH

Tipologia de clasificador Clasificador
Arboles de decision C4.3y1D3
Bayesianos Naive Bayes y Redes Bayesianas
Basados en instancias k-nearest neighbors (k-nn), y k-means
Support Vector Machines (SVM),
Redes neuronales Multilayer Perceptron (MLP) y

Deep Learning (DNN)

Fuzzy Basis Function y

Logica difusa Fuzzy Inference System

Multiple Linear Regresion (MLR),

Métodos de regresion Alternating Logistic Regressions (ALR)

Hidden Markov Models (HMM) y

Modelos de Markov Conditional Random Fields (CRF)

Conjunto de clasificadores Boosting y Bagging

En el caso de aplicaciones en las que no se necesite procesamiento en
tiempo real, lo mas comun es realizar procesamiento offline, siendo las redes
neuronales basadas en Deep Learning los clasificadores mas utilizados en la
actualidad, tal y como se ha comentado anteriormente [16] [28]. Las técnicas
Deep Learning son capaces de ir aprendiendo caracteristicas de complejidad
cada vez mayor conforme se va avanzando en sus capas de neuronas, por lo
que no es necesario disenar manualmente conjuntos de caracteristicas
especificos para la aplicacién. La clasificacién la llevan a cabo en sus tltimas
capas una vez se han extraido patrones de alto nivel. La gran cantidad de
conexiones entre neuronas que presentan este tipo de redes introduce la
necesidad de una cantidad muy grande de parametros a calcular. Para ello es
necesario el procesamiento de un gran numero de datos de entrenamiento lo
que conlleva un alto coste computacional.

1.4.5. Meétricas de evaluacion

Existen distintas métricas para evaluar el correcto funcionamiento de los
sistemas de clasificacion desarrollados a partir de los resultados obtenidos.

11
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Las métricas mas habituales son: matrices de confusién, accuracy, recall,
F-Measure, curvas ROC, e indice Kappa [8] [16].

En el caso de clasificadores binarios, los cuales distinguen si un elemento
pertenece a una clase o no, las métricas mas representativas son curvas
ROC, curvas Precision/Recall, y matriz de confusion.

Para clasificadores multiclase, los cuales distinguen una de entre varias
clases a su salida, la métrica mas utilizada es el indice Kappa. El indice
Kappa tiene un rango de valores de 0 a 1, siendo un valor superior a 0.7 el
indicativo de un buen clasificador [36]. La matriz de confusiéon también
aporta informacion relevante para distinguir el tipo de error presente entre
clases.

En la Tabla III se muestran distintas investigaciones sobre RAH
indicando: nimero de actividades a clasificar, el tipo de sensor utilizado, el
modo de extraccién de caracteristicas de los datos (automatico o manual), los
distintos clasificadores utilizados, y la mejor precisiéon obtenida con los
distintos clasificadores.

TABLA III. Listado de varios resultados de precision (accuracy) en RAH

NGMmero Método de
Ref L Sensores extraccién de Clasificador Precision
actividades .
caracteristicas
[5] 50 Acc, Giro Autom. CNN 92.14%
. DA, NB, SVM, 96%
[9] 12 Acc, Giro Manual HMM. JB. k-NN (SVM)
[7] 5 Acc, Giro Manual LCSSy SVM 95%
[15] 7 Acc, Giro Autom. CNN 99.93%
[17] 6 Acc, Giro Autom. CNN 98.2%
k-NN, RF, SVM, 98.85%
[24] 12 Acc Manual HMM., k-Means (k-NN)
[29] 17 Acc Autom. CNN+LSTM 95.8%
[31] 6 Acc, Giro Autom. CNN 95.75%
. Autom., CNN, SVM, INN, 96%
[33] 18 Ace, Giro Manual MV, DBN (CNN)

1.5. Organizacion de la memoria

El resto del proyecto se organiza de la siguiente manera a lo largo de la
memoria:

e Capitulo 2: En este capitulo se describe el proceso llevado a cabo para
la creacion de la base de datos. Se comienza explicando el motivo de la
eleccion de los sensores utilizados y su configuracion para poder recopilar
los datos deseados desde un ordenador. Posteriormente se describe el
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modo de lectura de los datos muestreados y el procesamiento realizado.
Finalmente se expone el numero de muestras que forman la base de
datos completa, y la separacion realizada de la misma en datos de
entrenamiento y datos de test.

e Capitulo 3: En el que se explicara los dos tipos de redes implementadas
mediante las librerias de TensorFlow para poder llevar a cabo la
clasificacion de las actividades. La primera red esta formada por un
modelo convolucional que se ha entrenado con datos no etiquetados, y
que lleva a cabo la extracciéon de caracteristicas. La segunda red que
lleva a cabo la labor de clasificacion de las actividades esta formada por
capas fully-connected, utilizando como capa de entrada las salidas
obtenidas por la primera red ya entrenada. Al final del capitulo se
explican los tres modelos clasificadores desarrollados con estos dos tipos
de redes.

e Capitulo 4: Donde se exponen y analizan los resultados obtenidos con
los distintos modelos clasificadores desarrollados.

o Capitulo 5: Donde se exponen las conclusiones obtenidas en el proyecto,
y las posibles ampliaciones del trabajo en un futuro.
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Capitulo 2
Creacion de la base de datos

2.1. Eleccion del sensor

Para recopilar informacion significativa de las actividades se van a
utilizar dos nodos sensores, uno colocado en la muneca del usuario y otro
colocado en la cintura. La frecuencia de muestreo de éstos ha de ser de 20 Hz
ya que es una frecuencia suficientemente elevada como para poder captar los
movimientos realizados por una persona sin conllevar a un consumo elevado
de la bateria del sensor.

Como ya se habia comentado en la seccién 1.4.1, los sensores mas
utilizados en reconocimiento de actividades humanas hasta la actualidad
han sido los acelerometros y girdscopos, ya que la informacion que
proporcionan es suficiente para reconocer un gran numero de actividades, y
presentan un bajo coste.

Uno de los factores mas importantes a la hora de la eleccion del sensor es
el consumo, ya que debido al tipo de aplicacién es necesario que la bateria del
sensor tenga una autonomia de varias horas para poder recopilar muchos
datos durante largos periodos de tiempo. Por ello es necesario un dispositivo
que tenga una tecnologia inalambrica de bajo consumo, siendo Bluetooth Low
Energy (BLE) la mas utilizada para las frecuencias con las que trabajan los
acelerémetros y giréscopos.

TABLA 1IV. Distintos dispositivos portables comparados

Fabricante Modelo _Tec,n olog_|a Precio
inalambrica
Texas Instruments CC2650STK Bluetooth Low Energy 25,01 €
. . SmartBond
Dialog Semiconductors DA14583 Bluetooth Low Energy 38,30 €
mbientlab Wristband sensor Bluetooth Low Energy 83,50€

research kit

En la Tabla IV se muestran algunas de las opciones encontradas en el
mercado que cumplen con los requisitos expuestos. De acuerdo con las
especificaciones comentadas en el parrafo anterior, en este proyecto se ha
optado por utilizar el dispositivo SensorTag CC2650STK de Texas
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Instruments. Esta eleccion es debida a su reducido precio, a que utiliza la
tecnologia inalambrica de bajo consumo BLE con la que la bateria del
dispositivo puede llegar a durar de semanas a anos dependiendo de la
frecuencia de envio de datos, y a que es de capaz de reprogramarse mediante
un debugger para obtener las frecuencias de muestreo deseadas. Ademas,
Texas Instruments proporciona una pagina de soporte a usuarios (71 E2E
Community), y una plataforma de 1iniciaciéon para desarrolladores
(SimpleLink Academy) donde se pueden encontrar distintos tutoriales para
la comprensiéon de la tecnologia BLE integrada dentro del dispositivo, o
tutoriales de programacion de éste. En la Fig. 2.1 se pueden observar los
sensores SensorTag junto con las fundas utilizadas para fijarlos a la muneca
y a un cinturon.

Fig. 2.1. Imdgenes de los SensorTag utilizados y de las fijaciones

2.1.1. Bluetooth Low Energy en SensorTag CC2650

Como ya se ha comentado, el Bluetooth Low Energy (BLE) es un protocolo
de comunicacién inalambrica de bajo consumo que permite comunicar una
gran variedad de dispositivos. Al estar disefiado para que tenga un consumo
bajo de energia, es comuUn encontrar este protocolo en la mayoria de los
dispositivos portables.

En la Fig. 2.2 se puede observar un esquema de las capas que forman el
protocolo BLE, obtenido de la guia de disefio BLE de Texas Instruments [37],
donde se destacan las capas de mayor nivel Generic Access Profile (GAP) y
Generic Attribute Pofile (GATT). La capa GAP es la encargada de hacer que
un dispositivo BLE sea visible por el resto para poder realizar la conexién
entre ellos. La capa GATT es la encargada de la comunicacion bidireccional
entre dos dispositivos de manera que permite la transferencia de informacién
entre ambos.

De esta manera, en una comunicacion por BLE los dispositivos pueden
tener distintos roles en cada una de estas capas. En la capa GAP un
dispositivo puede tomar la funcién de dispositivo esclavo cuando éste
advierte al resto de dispositivos BLE de la posibilidad de establecer una
conexién con él, o puede tomar la funciéon de dispositivo maestro si es él
quien efectiia la solicitud de conexion con otros dispositivos esclavos visibles.
En la capa GATT existen los roles de servidor y cliente dependientes del
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2.1. Eleccion del sensor

papel que efectiian en la transmisién de informacion. El servidor GATT sera
aquel dispositivo que contiene la informacién que se envia, mientras que el
cliente GATT es el dispositivo que recibe dicha informacién. De esta manera,
tanto un dispositivo maestro como uno esclavo puede tomar el papel de
servidor o cliente.

Host

Generic Access Generic Attribute
Profile (GAP) Profile (GATT)
Security Attribute Protocol
Manager (SM) (ATT)

Logical Link Control and Adaption
Protocol (L2CAP)

Controller

Host — Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

Fig. 2.2. Arquitectura del protocolo Bluetooth Low Energy

Para poder realizar solicitudes y envio de informacién o instrucciones
entre dos dispositivos BLE, la capa GATT dispone de unos recursos
denominados servicios y caracteristicas. Las caracteristicas GATT son los
valores que se desean leer o escribir sobre un dispositivo, como por ejemplo el
valor de las medidas del sensor de movimiento. Estas caracteristicas también
tienen unos descriptores que indican informacién acerca de la caracteristica.
Los servicios GATT son conjuntos de caracteristicas agrupadas habitual-
mente por bloques funcionales. Como ejemplo, un servicio englobaria la
caracteristica del valor del sensor de movimiento y otras caracteristicas para
la configuracion de dicho sensor.

En la comunicaciéon BLE, el dispositivo que actiia como cliente GATT
puede solicitar leer el valor de una determinada caracteristica al dispositivo
servidor de manera que éste se la envie. Sin embargo, este protocolo también
permite el envio continuo del valor de una caracteristica cada vez que se
actualice, sin necesidad de que el cliente GATT haga una solicitud de lectura
de la caracteristica al servidor. Este tipo de lectura de datos se denomina
notificaciones y se habilitan por medio de una caracteristica GATT que el
cliente modifica en el dispositivo servidor. Un ejemplo seria activar las
notificaciones de un servicio GATT correspondiente a un sensor incorporado
en un dispositivo servidor para que se envie automaticamente cada valor
sensado al cliente GATT al que esté conectado.

Tanto los servicios como las caracteristicas son accesibles mediante un
identificador Unico UUID de 128 bits proporcionado por la capa Attribute
Protocol (ATT). Todas las caracteristicas y servicios del SensorTag tienen un
1dentificador base en el que solo cambian 16 bits entre ellos, siendo éste
FO00XXXX-0451-4000-B000-000000000000, y donde las X representan a los
16 bits que varian. Ademas, Texas Instruments proporciona un identificador
personalizado a cada caracteristica del SensorTag para asi poder acceder a
ellas mas facilmente con las API desarrolladas por ellos.
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2.2. Configuracion de los sensores

Como ya se ha comentado, en este proyecto se han utilizado dos sensores
SensorTag CC2650STK, uno colocado en una mufieca y otro en la cintura.
Para poder configurar y recopilar los datos muestreados por los dos sensores
al mismo tiempo desde un ordenador, se ha hecho uso del CC2540 USB
Dongle de Texas Instruments (Fig. 2.3) que funciona como interfaz entre el
protocolo Bluetooth Low Energy y un puerto serie. El control de este
adaptador se lleva a cabo mediante un software proporcionado por Texas
Instruments llamado BTool.

PCB Antenna

Balun

CC2540

e

S BB
T -
\/’ g Debug Interface

LDO VCC

Fig. 2.3. Dispositivo CC2540 USB Dongle de Texas Instruments

Este software permite al dispositivo USB actuar como maestro GAP en la
comunicacion mientras que los SensorTag funcionan como dispositivos
esclavos. En sistemas con sensores portables, como el de este proyecto, los
sensores (dispositivos esclavos) actiian como servidores GATT, ya que son los
que captan la informacién, mientras que el USB dongle (dispositivo maestro)
actia como cliente en la transmisién de datos por BLE, ya que es el que
capta los datos solicitados al servidor.

La aplicacion BTool permite llevar a cabo distintas acciones en la
comunicacion, como seleccionar los parametros de conexiéon deseados, o
descubrir, leer y escribir caracteristicas GATT de los dispositivos que actian
como servidores. La informacién acerca de los paquetes de datos recibidos o
enviados queda almacenada en un Log que se puede guardar como fichero de
texto.

2.2.1. Configuracion del sensor de movimiento de los
SensorTag

Los SensorTag llevan incorporados un sensor de movimiento MPU9250, el
cual proporciona informaciéon en los tres ejes de acelerometro, girdscopo y
magnetometro. Para configurar dicho sensor, el firmware del SensorTag
dispone de caracteristicas GATT para ello. Esto permite que el dispositivo
maestro pueda habilitar o deshabilitar cada sensor, cambiar el periodo de
muestreo de estos (con ciertas restricciones), o cambiar el rango de medida
del acelerometro. Para ello se pueden configurar las caracteristicas BLE
disponibles del SensorTag a través de la aplicacion BTool, sin necesidad de
reprogramarlo con el debugger.
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En la Fig. 2.4, obtenida de la guia de usuario del SensorTag [38], se
pueden observar las caracteristicas que permiten leer o configurar el sensor
de movimiento (estan agrupadas en un servicio). En ella se indica la UUID
de las caracteristicas que forman el servicio del sensor de movimiento,
marcandolas con un asterisco en caso de que sea una UUID reducida (solo los
16 bits que cambian).

Type UUID | Access (bsytu:s) Description
GyroX[0:7], GyroX[8:15], GyroY[0:7], GyraY[8:15], GyroZ[0:7], GyroZ[8:15],
Data AA81T* | RIN 18 AccX[0:7], AccX[8:15], AccY[0:7], AccY([8:15], AccZ[0:7], AccZ[8:15],
MagX[0:7], MagX[8:15], MagY[0:7], MagY[8:15], MagZ[0:7], MagZ[8:15]
Notification 2902 | RW 2 Write 0x0001 to enable notifications, 0x0000 to disable.

One bit for each gyro and accelerometer axis (6), magnetometer (1), wake-
Configuration = AA82™ | RIW 2 on-motion enable (1), accelerometer range (2). Write any bit combination
top enable the desired features. Writing 0x0000 powers the unit off.

Resolution 10 ms. Range 100 ms (0x0A) to 2.55 sec (OxFF). Default 1
second (0x64).

Period AAB3" | RIW 1

Fig. 2.4. Caracteristicas BLE del servicio del sensor de movimiento

Con la aplicacion BTool se puede descubrir todas las caracteristicas GATT
de los dispositivos servidores conectados al USB dongle (dispositivo cliente).
Buscando las UUID de la Fig. 2.4 en las caracteristicas descubiertas,
podemos obtener cuales son los handles que utiliza Texas Instruments para
leer o escribir caracteristicas GATT, tal y como se muestra en la Fig. 2.5.
También se pueden ver en color rojo y naranja los descriptores del servicio y
caracteristicas respectivamente.

A continuacidén, se muestra los valores a escribir en las caracteristicas
GATT para poder configurar cada SensorTag con un periodo de muestreo de
50 ms (20 Hz), con notificaciones habilitadas, y con los sensores y rangos
deseados.

Configuracion del periodo de muestreo

El firmware incorporado por defecto en el SensorTag permite configurar
los periodos de muestreo mediante caracteristicas GATT tnicamente en el
rango de 100 milisegundos (ms) a 2.55 segundos, tal y como indica en la Fig.
2.4. Puesto que se necesita obtener al menos una frecuencia de muestreo de
20 Hz (50 ms) ha sido necesario modificar el cédigo original de los SensorTag
utilizando para ello el debugger DevPack de Texas Instruments [39]. De este
modo se ha modificado el limite inferior del rango para que se reduzca a
50 ms, manteniendo la resoluciéon de 10 ms indicada en la Fig. 2.4.

Handle Uuid Uuid Description

0x003A  (x2800 GATT Primary Service Declaration
0x0038  (x2803 _ GATT Charactenstic Declaration
0x003C  (OxFOOQAA81D45140008000000000000000 Unknown

0x003D Ox2902- Client Characteristic Configuration
0x003E  (x2803 GATT Characteristic Declaration
0x003F  (OxFOOQRA82D45140008000000000000000 Unknown

0x0040 0x2803 GATT Characteristic Declaration
0x0041 OxF OOOA_iI)AS 140008000000000000000 Unknown

Fig. 2.5. Caracteristicas del sensor de movimiento en BTool
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Para configurar el periodo de muestreo del sensor de movimiento a 50 ms
con caracteristicas GATT, hay que escribir el valor hexadecimal “0x0005” en
la caracteristica con handle “0x0041”.

Habilitacion de notificaciones

La habilitacion de las notificaciones de las lecturas del sensor de
movimiento se realiza escribiendo “0x0001” en la caracteristica con handle
“0x003D” tal y como se muestra en las figuras 2.4 y 2.5. De este modo cada
vez que se obtenga una muestra se enviara su valor directamente al
dispositivo cliente GATT.

Habilitaciéon y configuracion del acelerometro y giréscopo

En la Fig. 2.6 se muestra de forma mas detallada el modo de configuracion
del sensor de movimiento mediante la caracteristica GATT correspondiente.

Puesto que el sensor de movimiento esta compuesto por un acelerémetro,
un girdéscopo, y un magnetéometro, hay que habilitar solo los sensores
deseados. Tal y como se describe en la Fig. 2.6 se habilita el acelerometro y
giréscopo escribiendo un 1 en los 6 bits menos significativos (0 al 5) de la
caracteristica con handle “0x003F”. El magnetéometro se deja inhabilitado
escribiendo un O en el bit 6 del registro de la caracteristica.

Bits Usage
Gyroscope z axis enable
Gyroscope y axis enable
Gyroscope x axis enable
Accelerometer z axis enable
Accelerometer y axis enable

Accelerometer x axis enable

o g s W N =2 O

Magnetometer enable (all axes)

7 Wake-On-Motion Enable

8:9 Accelerometer range (0=2G, 1=4G, 2=8G, 3=16G)
10:15 | Not used

Fig. 2.6. Uso de caracteristica de configuracion del sensor de movimiento

La eleccion del rango del acelerometro se realiza mediante los bits 8 y 9
del valor de la caracteristica de configuraciéon. Puesto que la aplicacion es
para deteccion de actividades humanas que pueden conllevar aceleraciones
altas, se escoge la escala mas alta de 16 G. De este modo, se escribira sobre
la caracteristica GATT con handle “0x003F” el valor “0x033F” para habilitar
los sensores deseados, y seleccionar el rango del sensor indicado.

Como se puede observar, el cddigo original en el SensorTag no permite
modificar el rango del giréscopo mediante caracteristicas GATT. Su valor
esta configurado por defecto en + 250 deg/s tal y como se describe en la guia
de usuario del SensorTag [38]. Debido a que este rango tiene limites
demasiado bajos para los valores que se alcanzaran en el desempenio de
actividades humanas, los datos obtenidos saturarian en caso de dejar
configurado ese rango del sensor.

Buscando en el registro 27 del datasheet del sensor de movimiento
MPU9250 [40], se puede comprobar como el rango del girdéscopo puede
configurarse con los valores de +250,4500,+1000,y + 2000 deg/s. Para
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configurarlo, se modifica el codigo del SensorTag para que se escale el rango
del giréscopo a £2000 deg/s mediante las librerias que dispone para escribir
sobre los registros del MPU9250.

2.3. Lectura y procesamiento de datos

2.3.1. Lectura de los datos obtenidos en el Log

Tras conectar los dos SensorTag al dispositivo USB dongle mediante la
aplicaciéon BTool, y configurarlos segin se ha descrito en el apartado
anterior, se reciben las notificaciones de los datos muestreados por los dos
SensorTag y se almacenan en formato de Log, tal y como se observa en la
Fig. 2.7. Como se puede apreciar en la figura, cada mensaje recibido en el
Log viene con:

e Kl timestamp en el que se ha recibido.

e Kl handle de conexiéon que indica la identificacién del esclavo del que se
ha recibido el mensaje.

e Kl handle de la caracteristica que corresponde con la que se indicaba en
las figuras 2.4 y 2.5 como la que contiene los datos del sensor.

e Kl valor de dicha caracteristica el cual contiene los valores de cada eje de
acelerometro y girdéscopo en formato hexadecimal little-endian de 16 bits,
tal y como indicaba la Fig. 2.4.

[85] : <Rx> - 12:58:07.€20 —» TIMESTAMP
~Type :
-EventCode
-Data Length : OxlA (2€) bytes(s

Event 0 ) (ATT_HandleValueNotificaticn
Status : 0x00 (0 {Success

ConnHandle 0) — HANDLE DE CADA ESCLAVO
Pdulen )

Handle €0)— HANDLE DE CARACTERISITCA GATT
Value 45:00:52:00:59:00:4E:00:F3:07:00:00:00:00:
[8€] : <Rx> - 12:58:07.€31

-Type t)

-EventCode Event

-Data Length A (2€) bytes(s)

Event 1B (13 “| (ATT_HandleValueNotification
Status 1 (Success)

ConnHandle

Pdulen

Handle

Value :FFfM1:00012:00:EE:FE:DF:07):00:00:00:00:

Fig. 2.7. Ejemplo de datos enviados por los sensores, en el Log de BTool

Una vez guardado en fichero de texto el Log obtenido durante el
desempeno de actividades, se crea una tabla con todos los datos recibidos
mediante el tratamiento del fichero en Matlab con un programa creado para
dicha tarea.

Este programa introduce en cada fila de una tabla los datos correspon-
dientes a las medidas seguidas de los dos SensorTag. Es decir, aunque las
medidas tomadas por los dos SensorTag no pueden ser sincronizadas, como el
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tiempo que hay entre ellas es de unos 10 ms se asume que se han tomado al
mismo tiempo. De este modo, en cada medida registrada en la base de datos
habra 12 valores correspondientes a los 3 ejes del acelerometro y 3 ejes de
giréscopo de los dos SensorTag. Antes de introducirlos en la tabla los datos,
hay que convertirlos de hexadecimal de 16 bits a las unidades deseadas.
Como ejemplo, se muestra la transformaciéon de los datos del acelerometro a
unidades de G en la Fig. 2.8.

) signed
16 bits 2 116 +16G
[+32767 — ——+ =1 +16G ]
65535 0 0 326G VALOR VALOR 326
. 1 1 o _ ) P L A
¢ MELS " 65535 int16
L -32768 - - -16G

Fig. 2.8. Transformacion de unidades de los datos del acelerémetro

En caso de que en el fichero se encuentren dos medidas seguidas del
mismo SensorTag (indicado por su handle de conexion), se asume la pérdida
del dato de uno de los sensores, y se realiza una interpolacién de los datos
anterior y siguiente al valor perdido para aproximar el valor real.

Para cada medida de los sensores introducida en la tabla, se le introduce
la etiqueta de la actividad realizada. De este modo se podran aplicar
posteriormente las técnicas de machine learning con las que obtener un
modelo clasificador de las actividades etiquetadas. También se introduce la
etiqueta del usuario que ha realizado la actividad para asi poder comprobar
de qué sujeto es la medida tomada, o comprobar si el modelo generaliza bien
para todos los usuarios.

Una vez obtenidos todos los datos del Log en una tabla, se transforma a
formato csv para que sea facilmente leible por las librerias de cualquier
lenguaje. En este caso, se utilizan las librerias de Pandas en Python para
leer estos archivos con extension csv. De este modo se crea una base de datos
raw data con las medidas de los sensores recopiladas durante el desempeno
de todas las actividades por cada usuario.

La base de datos creada esta formada por un pequeno conjunto de datos
etiquetados, y una gran cantidad de datos sin etiquetar. El conjunto de datos
no etiquetados se utilizara para realizar aprendizaje no supervisado con el
que se consigue que el conjunto de datos etiquetados sea mucho menor. Los
datos no etiquetados han sido recopilados durante periodos de una hora por
sujeto, en los cuales se han llevado a cabo actividades aleatorias, o similares
a las del conjunto de datos etiquetados. Los datos etiquetados constan de 7
actividades cotidianas y 4 golpes de tenis. El tiempo de recopilacion de datos
de cada una de las actividades etiquetadas ha sido de 5 minutos por sujeto.

Cada actividad esta realizada por 8 sujetos distintos que presentan
variabilidad en sus dimensiones fisicas, peso, y sexo, tal y como se observa en
la Tabla V. Las distintas caracteristicas de los sujetos nos ayudaran a
comprobar la robustez del modelo.
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TABLA V. Caracteristicas de los sujetos que realizan la base de datos

Sujeto Sexo Edad Altura (m) Peso (kg) Lateralidad
1 M 23 1,74 73 Diestro
2 M 24 1,90 80 Diestro
3 M 21 1,82 76 Diestro
4 M 30 1,68 70 Diestro
5 F 23 1,60 65 Zurdo
6 F 27 1,64 59 Diestro
7 F 23 1,59 57 Diestro
8 F 19 1,69 62 Diestro

2.3.2. Procesamiento de los datos

Para conseguir llevar a cabo el objetivo de este proyecto el cual implica
obtener un modelo clasificador de actividades general para cualquier
usuario, se ha llevado a cabo el procesamiento y segmentacion de los datos de
los sensores mediante el calculo de los espectrogramas de la senal.

Eﬂaectrogra ma Magnitud AcelerémetroX SensorTag0 Eﬁ)ectrogra ma Magnitud AcelerémetroX SensorTag0

8 07 8

=
=

Frequency [Hz]
S

Freguency [Hz]
=

=]
[¥]
¥

06 08 10 12 14 06 0E 10 12 14
Time [sec] Time [sec]
Fig. 2.9. Ejemplos de espectrograma de actividad “correr” realizada por dos
usuarios de distinto sexo y altura

Al tratar con espectrogramas en lugar de los datos en crudo de los
sensores como entrada a un clasificador, se pretende conseguir que las
diferencias en las caracteristicas de cada usuario (edad, peso, altura,
longitud de extremidades, fuerza...) no tengan influencia sobre los resultados
obtenidos. Esto es debido a que, aunque distintos usuarios realicen una
misma actividad a distintas frecuencias, la forma de la evolucién temporal de
las frecuencias observada en los espectrogramas sera la misma durante el
desempenio de la actividad. Es decir, el clasificador sera capaz de distinguir
las formas caracteristicas de los espectrogramas de una actividad
determinada independientemente de si1 esta desplazada/estirada en
frecuencias o en tiempo. En la Fig. 2.9 se observa un ejemplo del
espectrograma obtenido por dos sujetos distintos corriendo. Como se puede
comprobar, ambos presentan formas similares aunque las magnitudes de la
potencia registradas por un sujeto sean mayores que las del otro.
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La segmentacion de la senal necesaria para el calculo de los
espectrogramas se lleva a cabo mediante una ventana deslizante a lo largo
de todas las senales. Hay que tener en cuenta que la sefial a segmentar ha de
ser de una unica actividad realizada por un usuario, ya que si no fuera asi,
no se podria asignar una etiqueta de actividad al espectrograma. De este
modo, se realiza la segmentacion en paralelo de las 12 sefnales provenientes
de cada eje de los sensores, con los siguientes parametros de las ventanas
deslizantes:

e La longitud de cada ventana es de 20 muestras, lo cual corresponde a 1
segundo de recopilacion de datos (con la frecuencia de muestreo de 20

Hz).
e La superposicion entre ventanas es del 90% (18 muestras superpuestas)

e En las ventanas se utiliza el enventanado de Hann para evitar que la
transformada de Fourier discreta calculada en cada ventana del
espectrograma tenga en cuenta las discontinuidades producidas en los
bordes de la ventana (aliasing).

Teniendo en cuenta las caracteristicas seleccionadas de la segmentacion
de las senales, se seleccionan los siguientes parametros para el calculo de los
espectrogramas:

e El numero de muestras de la senal que abarca un espectrograma son 40,
que es el equivalente a 2 segundos de recopilaciéon de datos de los
sensores.

e La superposiciéon de las muestras tomadas para calcular un espectro-
grama respecto del anterior es del 90% (36 muestras superpuestas)

e La resoluciéon frecuencial de la transformada de Fourier calculada para
cada ventana esta fijada en la mitad de la frecuencia de muestreo de los
sensores (10 Hz) para asi cumplir con el teorema de Nyquist. De este
modo, se calculan 11 valores de la transformada de Fourier discreta,
contando con el valor calculado para 0 Hz.

e La resoluciéon temporal es igual al nimero de ventanas obtenidas, que
depende de los parametros escogidos: numero de muestras por
espectrograma, numero de muestras por ventana, y superposicion entre
ventanas. En este caso el nimero de ventanas es igual a 11.

Con la seleccion de los parametros descritos se obtienen espectrogramas
de dimension 11x11. En la Fig. 2.9 se muestran dos ejemplos de los
espectrogramas obtenidos, visualizandolos en dos dimensiones, donde la
tercera dimension representada en tono de grises corresponde a la magnitud
calculada en la transformada de Fourier discreta. En dicha representacion
cada “pixel” del espectrograma es el promedio de dos datos contiguos (por lo
que se ha representado como imagenes 10x10).
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2.4. Base de datos

2.4.1. Base de datos completa

En la Tabla VI se refleja el nimero de muestras que hay por cada eje de
sensor en la base de datos completa. En la tabla se encuentra informacién
tanto del nimero de muestras raw data recopiladas por cada eje de los
sensores, como del nimero de espectrogramas obtenidos a partir de esos
datos. Se ha representado el numero de datos por eje, ya que cada uno de los
12 ejes (3 acelerometro y 3 giréscopo de cada SensorTag) corresponde a la
medida en un mismo instante temporal, por lo que luego se introduciran
conjuntamente al modelo clasificador.

TABLA VI. N°de muestras de base de datos completa por cada eje de sensor.

Actividad N° muesr;[g?sejF;awData N° espectrogramas por eje

No etiquetada 577.097 144.201
Andar 49.791 12.373
Correr 42.679 10.605

Saltar 48.387 12.022
Agacharse/Incorporarse 48702 12.100
Estar de pie 49.845 12.386
Estar sentado 50.847 12.637
Sentarse/Levantarse 48.654 12.089
Golpe Drive 30.085 7.475
Golpe Revés 30.203 7.504
Golpe Mate 30.261 7.518
Golpe Globo 30.135 7.488

1.036.686 258.398

2.4.2. Separacion de la base de datos etiquetados

Con el fin de poder evaluar el modelo clasificador desarrollado con datos
que no hayan sido aprendidos por el mismo, se realiza una separacion de la
base de datos de espectrogramas de las actividades etiquetadas. De este
modo, se ha obtenido el conjunto para entrenamiento y el conjunto para test.
Puesto que en este proyecto uno de los objetivos principales es conseguir
obtener un modelo robusto ante la variabilidad de los posibles sujetos que
realicen las actividades, se han extraido dos conjuntos de test distintos.
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En el primer conjunto de test se coge una parte de los datos de 7 de los 8
usuarios que han realizado las actividades. Para ello, por cada usuario se
extraen los 10 segundos de recopilacién de datos que estan situados en medio
de la secuencia temporal de cada actividad. Estos 10 segundos son
correspondientes a 200 muestras raw data con las que se extraen 41
espectrogramas por actividad de cada usuario (teniendo en cuenta la
superposicién entre espectrogramas indicada en la seccion 2.3.2). De este
modo, se obtiene un conjunto de test de datos no vistos durante el
entrenamiento, pero que pertenecen a las mismas personas que recopilaron
los datos de entrenamiento.

El segundo conjunto de test esta formado por todos los datos recopilados
de cada actividad por el usuario que no habia sido contemplado en el
conjunto los conjuntos de entrenamiento y test en el caso anterior. De este
modo, se obtienen unos datos que no han sido vistos durante el
entrenamiento, ni han sido recopilados por la misma persona que realizé el
conjunto de datos de entrenamiento. Con este conjunto se comprueba cual
seria la eficacia del modelo desarrollado en una situacién real, de manera
que se observara su capacidad generalizadora. El usuario seleccionado ha
sido el usuario 1 de la Tabla V ya que como se puede observar seria el
usuario medio de entre los que han recopilado los datos. Al utilizar el
usuario intermedio se pretende que los resultados obtenidos sean referentes
a los que se obtendrian con la mayoria de las personas en una aplicacion
real.

En la Tabla VII se ha reflejado nimero de espectrogramas que contiene el
conjunto de entrenamiento y los dos conjuntos de test.

TABLA VII. N°de espectrogramas de cada separacion realizada de la base de
datos etiquetada completa

N° de datos de test | N°de datos de test
Actividad N° de dat(_)s de de usuarios ya de usuario no visto
entrenamiento vistos por el modelo por el modelo

Andar 10.552 287 1.534
Correr 8.807 246 1.552
Saltar 10.300 287 1.435
Agacharse/Incorporarse 10.272 287 1.541
Estar de pie 10.573 287 1.526
Estar sentado 10.772 287 1.578
Sentarse/Levantarse 10.307 287 1.495
Golpe Drive 5.802 164 1.509
Golpe Revés 5.832 164 1.508
Golpe Mate 5.834 164 1.520
Golpe Globo 5.823 164 1.501
94.874 2.624 16.699
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Para llevar a cabo la clasificaciéon de las actividades deseadas con la
informacién proporcionada por los espectrogramas, se han implementado
modelos clasificadores con aprendizaje semi-supervisado.

Este tipo de aprendizaje es muy util ya que permite que un modelo
aprenda caracteristicas representativas de un conjunto de datos no
etiquetados, y luego las utilice para aprender a clasificar datos del mismo
tipo que si estan etiquetados. De esta manera se consigue reducir considera-
blemente la cantidad de datos etiquetados necesaria, utilizando en su lugar
una gran cantidad de datos no etiquetados los cuales conllevan mucho menor
esfuerzo de recopilacion.

Como se ha comentado, el aprendizaje semi-supervisado consta de dos
fases. En la primera fase, se construye un modelo de aprendizaje no
supervisado que sea capaz de aprender caracteristicas representativas de los
datos no etiquetados. Es conveniente que estos datos no etiquetados sean del
mismo tipo que los etiquetados para que las caracteristicas aprendidas sean
representativas de los datos que se quieren clasificar. En la segunda fase, se
utiliza el modelo entrenado en la primera fase para obtener las
caracteristicas aprendidas sobre los datos etiquetados, de manera que con
ellas se entrene un modelo clasificador de manera supervisada.

Como modelo de aprendizaje no supervisado se ha seleccionado el
Autoencoder convolucional. Una vez entrenado el Autoencoder utilizando
indistintamente los espectrogramas de cualquier sensor y actividad, se
utilizaran las primeras capas entrenadas (encoder) para codificar cada una
de las 12 senales provenientes de los dos sensores. Concatenando las 12
codificaciones de los sensores se dispone de la informacién de entrada a un
perceptron multicapa (MLP). E1 MLP sera entrenado de manera supervisada
para llevar a cabo las clasificaciones de las actividades etiquetadas.

3.1. Autoencoder convolucional

Los Autoencoders son un tipo de red neuronal artificial capaces de
aprender representaciones eficientes de los datos de entrada, llamadas
codificaciones, sin utilizar datos etiquetados. Por ello, estas redes pueden
usarse como potentes extractores de caracteristicas de los datos de entrada
[41].
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Capitulo 3. Modelo clasificador

Este tipo de redes se entrenan aprendiendo a replicar sus entradas en sus
salidas. La clave de su funcionamiento es que los datos de entrada se
comprimen en las primeras capas ocultas (antes de la capa de intermedia)
para volverse a descomprimir en las ultimas capas ocultas hasta su salida
(después de la capa intermedia). De esta manera se suele decir que los
Autoencoders estan compuestos por una primera parte llamada encoder, y
una segunda parte llamada decoder. En caso de que el autoencoder tenga
mas de una capa oculta, se le suele denominar Stacked Autoencoder o Deep
Autoencoder. En la Fig. 1.5 del capitulo 1 puede observarse la estructura que
presentan este tipo de redes.

Una vez entrenado el Autoencoder, se puede utilizar la parte encoder como
extractor de caracteristicas para alimentar al MLP (capas fully-connected)
entrenado con datos etiquetados de clasificacion.

En este proyecto se ha utilizado una variante de este tipo de redes, la cual
se llama Autoencoder convolucional. Su estructura es la misma que el
Autoencoder, pero cambiando las capas fully-connected (como las mostradas
en la Fig. 1.5) por capas convolucionales. De esta manera, tratando los
espectrogramas como l1magenes, se consigue que las caracteristicas
encontradas en ellos sean reconocibles independientemente de la escala y
posicion de las mismas. Gracias a esta invariancia, es posible conseguir que
el modelo generalice a cualquier usuario que realice las actividades, ya que
no importara si las formas obtenidas en los espectrogramas estan
desplazadas/estiradas en frecuencia o tiempo, tal y como se ha comentado en
la seccion 2.3.2.
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Fig. 3.1. Estructura de un Autoencoder convolucional

En la Fig. 3.1 [42] se muestra un ejemplo de la estructura tipica de un
Autoencoder convolucional. Tras cada capa convolucional de la parte encoder
de la red se van obteniendo mapas de caracteristicas de mayor nivel de
abstraccion. En la parte decoder de la red se aplican capas deconvolucionales
para asi intentar reconstruir los datos de entrada a partir de los mapas de
caracteristicas obtenidos.

Para el entrenamiento del Autoencoder se utilizaran los espectrogramas
obtenidos con los datos no etiquetados. Tal y como se ha comentado al final
de la seccién 2.3.1, el conjunto de datos no etiquetados esta formado por
144.201 espectrogramas. Dado que se entrena un unico autoencoder con
todos los espectrogramas indistintamente de la senal de la que procedan, se
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3.1. Autoencoder convolucional

consigue configurar un moédulo codificador universal de la sefnal que sera
replicado para las 12 senales.

3.1.1. Parametros de diseno de la arquitectura

El Autoencoder convolucional construido para llevar a cabo la extraccién
de caracteristicas de los espectrogramas esta formado por tres capas
convolucionales y tres capas deconvolucionales, tal y como se ha
representado en la Fig. 3.2.

6x6x32 6x6x32

11x11x1

11x11x1

3x3x86 3x3x64

Reconstruccién
de la entrada

Entrada

Conv3 DeConvl
DeConv2

Convl
DeConv3

Fig. 3.2. Arquitectura del Autoencoder convolucional utilizado

Los filtros (o kernels de convoluciéon) de cada una de las capas
convolucionales son de 2x2. Estos filtros son los pesos que se iran ajustando
durante el entrenamiento para llevar a cabo el reconocimiento de patrones de
los espectrogramas. Cada mapa de caracteristicas de una capa convolucional
comparte los mismos pesos de conexiéon a lo largo de todo el mapa (utiliza el
mismo filtro a lo largo de toda la imagen de entrada de la capa). Este filtro es
desplazado a lo largo y ancho de la imagen hasta convolucionarla
completamente. Este valor de desplazamiento se denomina stride y suele ser
1igual para ambas direcciones de desplazamiento.

Debido a la baja dimensionalidad de los espectrogramas (11x11) no se
utilizan capas de pooling, ya que introducirian una fuerte pérdida de
informacién. Las capas de pooling se diseian para reducir considera-
blemente la dimensionalidad de la respuesta de salida de la capa
convolucional, pero se aplican principalmente en imagenes con mucha mas
resolucién. En su lugar, se va reduciendo la dimensionalidad de los mapas de
caracteristicas obtenidos aplicando strides (con valor mayor que uno) del
filtro aplicado sobre la entrada de la capa. Tal y como se observa en la Fig.
3.2, en las capas Convl, Conv2, Deconv2 y Deconv3 se ha utilizado stride de
dos por lo que la dimensién de los mapas de caracteristicas se reduce a la
mitad en el caso de la convolucion, y se duplica en el caso de la
deconvolucion. Las capas Conv3 y Deconvl tienen un stride de 1 por lo que
no se modifica la dimensiéon de los mapas de caracteristicas obtenidos. El
numero de mapas (equivalentes a canales de color filtrado) que se obtienen
en cada capa se ha representado en la Fig. 3.2 como la tercera dimensién de
las capas.

Como funcién de activacién de las capas convolucionales se escoge una de
las funciones no saturables, siendo la funcién de activacion ELU
(Exponential Linear Unit) la que mejores resultados suele dar [41].
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Capitulo 3. Modelo clasificador

Los pesos de los mapas de caracteristicas de cada capa convolucional son
inicializados segun la estrategia de inicializacion He initialization ya que es
la que mejor suele funcionar con la funcion de activacion ELU [41].

La funcién de coste utilizada es el error cuadratico medio (Mean Squared
error, MSE), calculado mediante la diferencia entre la entrada introducida
que queremos replicar y la reconstruccion obtenida a la salida de la red.

El algoritmo de entrenamiento utilizado para ajustar los pesos de la red es
el descenso por el gradiente junto con la técnica de optimizacion Adam, ya
que esta técnica acelera el entrenamiento de la red al ser mucho mas rapido
que el descenso por el gradiente habitual [41].

3.1.2. Parametros del entrenamiento

Para entrenar el modelo con el algoritmo de entrenamiento indicado
anteriormente, se ha seleccionado un factor de entrenamiento de 0.0001 con
el cual el algoritmo llega a converger en un numero de ciclos (epochs)
razonable.

Para mejorar los resultados obtenidos, y acelerar el entrenamiento, se ha
realizado entrenamiento por mini-batch, de manera que el conjunto de datos
de entrenamiento se ha ido introduciendo a la red por lotes, en vez de todo el
conjunto al mismo tiempo. Cada vez que se introduce un lote a la red, se
calcula el error obtenido y se ajustan sus pesos con el error promedio
obtenido del lote. De este modo, el descenso por el gradiente es mas eficiente
al ir calculando el gradiente poco a poco, sin excesivas oscilaciones. El
tamano de los lotes seleccionado ha sido de 96 espectrogramas (8 de cada uno
de los 12 ejes de los sensores).

Antes de introducir cada lote de datos a la capa de entrada de la red, se
normalizan con la media y desviacion estandar de todos los datos de
entrenamiento. De este modo se consigue centrar la distribucién de los datos
de entrenamiento con lo que el modelo aprende las escala 6ptima y media de
las entradas introducidas a la capa de entrada. Este proceso mejora los
resultados obtenidos, y consigue que el modelo sea menos sensible a la
inicializaciéon de los pesos.

El nimero de ciclos ejecutados durante el entrenamiento es de 100, ya que
es el valor a partir del cual el error MSE obtenido deja de mejorar y alcanza
una zona plana.

3.2. Perceptron multicapa MLP

Tras entrenar el Autoencoder de manera no supervisada, se consigue
obtener un extractor de caracteristicas de los datos de entrada utilizando sus
capas convolucionales (representadas en azul en la Fig. 3.2). Este extractor
es replicado doce veces (una por eje de sensor), de manera que las
caracteristicas obtenidas de cada uno de ellos son introducidas
conjuntamente a un clasificador supervisado.

30



3.2. Perceptron multicapa MLP

El clasificador utilizado es el MLP. No es de interés la aplicaciéon de
clasificadores Deep ya que su uso esta pensado para llevar a cabo tanto la
labor de extraccién de caracteristicas como de clasificacién. En nuestro caso,
la extracciéon de caracteristicas se ha conseguido utilizando un modelo
entrenado de manera no supervisada, por lo que un simple MLP es capaz de
aprender a realizar la clasificacion de las actividades con mucha menos
cantidad de parametros a calcular.

De esta manera, la arquitectura completa de los modelos clasificadores
utilizados en este proyecto es la mostrada en la Fig. 3.3. De cada
espectrograma proveniente de uno de los doce ejes de sensores se obtienen
774 caracteristicas. Al concatenar las caracteristicas obtenidas de los doce
ejes se obtiene un vector de 9288 caracteristicas, de manera que ese es el
numero de neuronas que presenta la capa de entrada del MLP. De este
modo, cada instancia de entrada al clasificador contendra informacién de los
doce ejes de los SensorTag tomada en un mismo instante temporal.

11x11x1 774 9288 Capa entrada
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Fig. 3.3. Arquitectura del modelo clasificador completo

En este proyecto se han desarrollado tres modelos clasificadores diferentes
que llevan a cabo funcionalidades distintas. A continuacién, se resume la
finalidad de cada uno de ellos, y se explicara mas ampliamente en las
siguientes secciones:

e Clasificador de actividades cotidianas: con el que se clasifican cada
una de las 7 actividades cotidianas realizadas en la base de datos.

e Filtro de golpes de tenis: mediante el cual se clasifica si un dato de
entrada es alguno de los golpes de tenis llevados a cabo en la base de
datos, o si es cualquier otro movimiento posible.

e Clasificador de golpes de tenis: con el que se utilizan los datos
filtrados como golpes de tenis por el anterior modelo para clasificarlos en
alguno de los golpes de tenis recopilados en la base de datos.
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Capitulo 3. Modelo clasificador

3.3. Modelo clasificador de actividades
cotidianas

En un primer paso se ha desarrollado un modelo con el que poder
clasificar los datos en una de las siguientes 7 actividades cotidianas: andar,
correr, saltar, agacharse/incorporarse, estar de pie, estar sentado, y
sentarse/levantarse. La finalidad de este modelo es el poder comparar los
resultados obtenidos con los observados en el estado del arte en la seccion
1.4.5, los cuales presentaban clases similares. Las actividades a clasificar
han sido seleccionadas de manera que sean algun tipo de actividad que se
podria llevar a cabo en una pista de tenis, ya sea entre golpes de tenis o en
un descanso. De este modo, los datos de esas actividades también son utiles a
la hora de entrenar el modelo que actia como filtro de golpes de tenis.

Tal y como se ha comentado, el MLLP tendra tantas neuronas en la capa de
entrada como caracteristicas obtenidas, es decir, 9288 neuronas. La capa de
salida tendra 7 neuronas ya que es el nimero de actividades que se desea
clasificar, siendo la clase predicha aquella cuya neurona presente mayor
valor a su salida. La estimacion del nimero de neuronas ocultas es explicada
en la seccion 3.3.2.

3.3.1. Parametros de diseno y de entrenamiento

Los pesos de las conexiones de la red son inicializados mediante la técnica
de He initialization.

Tanto la capa de entrada, como la capa oculta de la red, estan formadas
por neuronas a las que se le aplica la funcién de activacion ELU. En la Fig.
3.4 se muestra un ejemplo de estas neuronas, donde cada neurona esta
formada realmente por la operaciéon de multiplicacion de pesos por las
entradas y la suma del umbral (bias), mas la aplicacién de la funcién de
activacion ELU.

X X1
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Fig. 3.4. Neuronas de capa de entrada y capa oculta

La capa de salida de la red esta formada por neuronas a las que se le
aplica la funcién de activacion Softmax, con la cual se obtiene en cada
neurona de salida la probabilidad de que el dato de entrada pertenezca a esa
clase.

La funciéon de coste utilizada es la entropia cruzada (Cross Entropy) ya que
acelera el tiempo de convergencia al penalizar al modelo cuando obtiene una
probabilidad baja para la clase objetivo. El algoritmo de entrenamiento
utilizado es el descenso por el gradiente junto con la técnica de optimizacion
Adam. El factor de entrenamiento utilizado es de 0.0001.
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3.3. Modelo clasificador de actividades cotidianas

Para mejorar los resultados obtenidos, y acelerar el entrenamiento, se ha
realizado entrenamiento por mini-batch. Antes de introducir cada lote de
datos a la capa de entrada de la red, se normalizan con la media y desviaciéon
estandar de todos los datos de entrenamiento.

El niimero de ciclos ejecutados durante el entrenamiento es de 120, ya que
es el valor a partir del cual la precision obtenida con el conjunto de
validacién deja de mejorar y alcanza una zona plana, tal y como se muestra
en la Fig. 3.5.
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Fig. 3.5. Ejemplo de curva de precision durante entrenamiento de red

3.3.2. Comparacion de arquitecturas del clasificador

La precision obtenida en la red depende de la arquitectura escogida para
la capa oculta. Variando el nimero de neuronas ocultas se puede aumentar o
reducir la precision obtenida. En caso de escoger menos neuronas de las
necesarias para separar las distribuciones de datos de distintas clases, las
clasificaciones erréneas aumentaran. En caso de seleccionar demasiadas
neuronas ocultas, aumentamos considerablemente el nimero de parametros
a calcular en la red, y se aumenta el riesgo de sobreajustar la red a los datos
de entrenamiento.

Para la comparacion de distintas arquitecturas, se ha llevado a cabo el
entrenamiento de arquitecturas con distinto nimero de neuronas ocultas y
se ha validado cada uno mediante 10 validaciones cruzadas. De este modo se
consigue una mayor fiabilidad de los resultados obtenidos por cada
arquitectura que si usaramos un solo conjunto de validacion, ya que evitamos
que la representatividad de los datos seleccionados para validacién influya
en la precision obtenida.

En la Fig. 3.6 se puede observar una grafica con las distribuciones de
precisién obtenidas para cada una de las arquitecturas en las 10 validaciones
cruzadas. Como se puede observar, la red que mejor resultados presenta es la
de 35 neuronas ocultas ya que es la que menor dispersiéon de precisiones
obtenidas presenta (con lo que su comportamiento es mas fiable) con una
precision obtenida aceptable. Las arquitecturas con mayor numero de
neuronas ocultas no presentan un aumento significativo de la precision
obtenida, pero aumentan fuertemente el nimero de parametros de la red,
por lo que no son de interés debido a su mayor tendencia a sobreajustarse.
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Fig. 3.6. Comparacion arquitecturas modelo clasificador de actividades cotidianas

3.4. Modelo filtrador de golpes de tenis

Con el fin de mejorar los resultados obtenidos en el clasificador de golpes
de tenis final, se ha implementado previamente un modelo que filtra los
datos que son golpes de tenis de los que no. De este modo, se consigue
descartar la mayoria de los datos no pertenecientes a ninguna de las clases
de golpes de tenis entrenadas, introduciendo al clasificador de golpes de tenis
unicamente los datos que hayan sido clasificados positivamente por este
modelo.

La capa de entrada del clasificador es de 9288 neuronas. En este modelo la
capa de salida esta formada por una Unica neurona binaria, de modo que el
valor de salida sera cercano a uno cuando el dato de entrada pertenezca a
uno de los golpes de tenis, y un cero en caso de que sea cualquier otro tipo de
actividad. Para seleccionar qué datos tienen un valor suficientemente
cercano a 1 como para indicarlo como golpe de tenis, se establece un valor
umbral como parametro de diseno con el cual se puede modificar los
resultados de precision y recall obtenidos.

En este caso no se realiza comparacion de distintas arquitecturas variando
el nimero de neuronas ocultas ya que, como se vera en la seccion 4.2, las
precisiones de clasificacién obtenidas utilizando la arquitectura sin capa
oculta son muy altas. Esto significa que anadir neuronas ocultas no

mejoraria los resultados, sino que solo aumentaria el nimero de parametros
de la red.

3.4.1. Parametros de diseno y de entrenamiento

Los pesos de las conexiones de la red son inicializados mediante la técnica
de He initialization.

La funcién de activacién de la capa de entrada es la funciéon ELU. En el
caso de la neurona de salida se utiliza la funciéon de activacion sigmoidea, de
manera que la salida de la neurona nos dara un valor entre 0 y 1
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3.5. Modelo clasificador de golpes de tenis

correspondiente con la probabilidad de pertenencia a uno de los golpes de
tenis.

La funciéon de coste escogida es la entropia cruzada. Para el entrenamiento
de la red se ha utilizado el descenso por el gradiente junto con el optimizador
Adam, con un factor de entrenamiento de 0.0001.

Se aplica entrenamiento por mini-batch, y se realiza la normalizaciéon de
los datos de entrada mediante el calculo de la media y desviacion estandar de
todo el conjunto de entrenamiento. El ntimero de ciclos de entrenamiento
realizados es 35.

Para la seleccion de un valor de umbral correcto para la clasificacion
binaria de los golpes de tenis, se ha obtenido la curva Precision/Recall (PR) y
la curva ROC (Fig. 3.7) con las salidas obtenidas al introducir los datos de
entrenamiento. Observando la curva ROC se pone de manifiesto el buen
funcionamiento del clasificador entrenado, ya que el area bajo la curva es
practicamente la unidad. Al observar la curva PR se identifica que con un
valor umbral de 0.5 se consigue un valor similar en precisiéon y Recall. Sin
embargo, para este modelo es preferible que todos los datos pertenecientes a
golpes de tenis sean clasificados como tal, por lo que se da mas importancia a
obtener mayor valor de Recall. De este modo, se escoge un valor umbral de
0.4 con el que se obtiene un Recall del 99.2%.
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Fig. 3.7. Curva Precision/Recall y curva ROC de filtro de golpes de tenis

Aunque con este valor umbral la tasa de falsos positivos no sea cero, el
modelo clasificador de golpes de tenis también sera capaz de desecharlos tal
y como se vera a continuacion.

3.5. Modelo clasificador de golpes de tenis

El ultimo modelo clasificador desarrollado con el cual se lleva a cabo el
objetivo final de este proyecto es un modelo que se capaz de clasificar
distintos tipos de golpes de tenis. En este caso, se han recopilado datos de 4
golpes distintos de tenis: drive, revés, mate, y globo. Sin embargo, se podrian
introducir nuevos golpes en la base de datos con los que entrenar el modelo.
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Capitulo 3. Modelo clasificador

La clasificacion final de un dato en uno de los golpes de tenis o en la clase
de rechazo (no tenis) se llevara a cabo mediante el uso de este modelo junto
con el modelo filtrador. En la Fig. 3.8 se puede observar el diagrama de flujo
del funcionamiento del sistema completo. De esta manera, los datos de
entrada a este clasificador seran aquellos que ya hayan sido filtrados como

golpes de tenis.
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Fig. 3.8. Diagrama de bloques del sistema clasificador de golpes de tenis completo

Al igual que los otros modelos, la capa de entrada del MLP clasificador de
golpes de tenis esta formada por 9288 neuronas de entrada. La capa de
salida esta formada por 5 neuronas (4 para las clases de golpes de tenis, y
una para la clase de rechazo). De esta manera se entrena el modelo con la
base de datos completa indicando la etiqueta 1 en la clase de rechazo en caso
de no ser ninguno de los golpes de tenis. De este modo, el modelo aprendera a
separar las distribuciones de datos de golpes de tenis de los datos que no lo
son, de manera que cualquier otra posible actividad realizada durante un
partido de tenis, y que no haya sido clasificada correctamente por el filtro,
sera indicada como clase de rechazo (no golpe tenis). Al igual que en el
clasificador de actividades cotidianas, se realiza una comparaciéon de
distintas arquitecturas variando el nimero de neuronas ocultas.

3.5.1. Parametros de diseno y de entrenamiento

Los pesos de las conexiones de la red son inicializados mediante la técnica
de He initialization.

Tanto la capa de entrada, como la capa oculta de la red, estan formadas
por neuronas a las que se le aplica la funcién de activaciéon ELU.

En las neuronas de salida se utiliza la funciéon de activacién sigmoidea,
obteniendo en la salida de las neuronas un valor entre 0 y 1 correspondiente
con la probabilidad de pertenencia a la clase correspondiente a cada neurona.
Estas probabilidades de salida son independientes (no es como la funcién
Softmax) de manera que te indica la probabilidad individual de pertenecer a
esa clase.

De este modo como etiqueta predicha se seleccionara aquella neurona que
presente mayor valor a su salida de entre las demas, siempre y cuando este
valor supere un determinado valor umbral (Fig. 3.9). En caso de una clase
sea seleccionada como la de mayor probabilidad, pero no supere el valor
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umbral, se le asigna a la clase de rechazo, ya que es el caso en el que no te
puedes fiar de las predicciones realizadas. Como valor umbral se ha
seleccionado 0.05 (5%), lo que significa que nos fiamos mucho del modelo
clasificador. El valor tan reducido del umbral se ha seleccionado tras
comprobar que los resultados de clasificacién se realizaban correctamente en
la mayoria de los casos, aunque la probabilidad de salida fuera baja.
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Fig. 3.9. Seleccion de etiqueta predicha a partir de probabilidades de salida “y

La funcién de coste escogida es la entropia cruzada. Para el entrenamiento
de la red se ha utilizado el descenso por el gradiente junto con el optimizador
Adam, con un factor de entrenamiento de 0.0001.

Se aplica entrenamiento por mini-batch, y se realiza la normalizacion de
los datos de entrada mediante el calculo de la media y desviacion estandar de
todo el conjunto de entrenamiento. El nimero de ciclos de entrenamiento
realizados es 45.

3.5.2. Comparacion de arquitecturas del clasificador

Al igual que con el clasificador de actividades cotidianas, se ha llevado a
cabo el entrenamiento de arquitecturas con distinto nimero de neuronas
ocultas y se ha validado cada uno mediante 10 validaciones cruzadas.

En la Fig. 3.10 se puede observar una grafica con las distribuciones de
precision obtenidas para cada una de las arquitecturas. En este caso, la
arquitectura que mejor comportamiento muestra es la de 18 neuronas
ocultas, ya que es la red con menos neuronas que presenta una baja
dispersion en las validaciones, y un valor alto de precisiéon obtenida. La red
de 22 neuronas también presenta baja dispersion, pero no mejora mucho los
resultados, aumentando considerablemente el niumero de conexiones.
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Fig. 3.10.
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Capitulo 4
Resultados de clasificacion

En este capitulo se van a exponer los resultados de clasificacion obtenidos
con los modelos descritos en el capitulo anterior. Para la evaluaciéon del
comportamiento general que tendran estos modelos, se llevara a cabo la
clasificacion de los dos conjuntos de test que se habian comentado en la
seccion 2.4.2.

4.1. Resultados del modelo clasificador de
actividades cotidianas

Primero se realiza la clasificacion de los datos de test tratando los
espectrogramas individualmente, como si se tratara con imagenes. Con el fin
de mejorar los resultados obtenidos, también se ha llevado a cabo una
segunda clasificacion en la que, teniendo en cuenta que las senales
recopiladas son secuencias temporales, se asigna a cada dato la etiqueta mas
votada de entre sus 4 vecinos, tal y como se ilustra en la Fig. 4.1.

Dato,_, Prediccién ;_,
Dato;4 Prediccion ;_; orediceid
Datoa ¢Prediccion
- cci '
clasificar toe Prediccion ¢ mas votada? || Clasificacién,
Dato ¢4 Prediccion ;44
Dato ¢+, Predicciong,,

Fig. 4.1. Clasificacion por votacion
4.1.1. Clasificacion sin votacion

En la Fig. 4.2 se puede observar la matriz de confusiéon obtenida con el
conjunto de test de los datos separados del conjunto de entrenamiento.
También se muestra el valor del indice Kappa obtenido, asi como las
métricas de precision y recall promedio de cada clase.

En la matriz de confusién se observa como la mayoria de las
clasificaciones realzadas estan en la diagonal principal por lo que se
manifiesta el buen funcionamiento del clasificador. El indice Kappa obtenido
también es indicativo del buen funcionamiento del clasificador al ser superior
a 0.7, tal y como se ha explicado en la secciéon 1.4.5._ En cada fila de la matriz
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se ha representado tanto el nimero de datos en cada clase predicha, como el
porcentaje al que corresponden del total de datos de la clase verdadera.

Matriz de confusion
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Fig. 4.2. Matriz de confusion del clasificador de actividades cotidianas, con
conjunto de test de datos separados de los de entrenamiento

Para comprobar la capacidad de generalizacién que tiene el modelo, en la
Fig. 4.3 se muestra las clasificaciones obtenidas de las actividades llevadas a
cabo por un sujeto que no se incorporé a la base de datos de entrenamiento.
Como se puede observar, en este caso el modelo no generaliza bien para un
par de clases, pero observando los resultados obtenidos con los demas
modelos (como se vera en las secciones siguientes), se intuye que ha sido
producido por una mala ejecucion de esas actividades.
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Fig. 4.3. Matriz de confusion del clasificador de actividades cotidianas, con
conjunto de test del sujeto no introducido
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Como era de esperar, las clases que mas se confunden son la clase
“agacharse/incorporarse” con la clase “sentarse/levantarse” debido al
parecido de las actividades, y la clase “estar de pie” con la clase “estar
sentado” ya que, al ser actividades estaticas, el tratamiento frecuencial de las
senales con los espectrogramas no aportara diferencias entre ellas. Para que
la causa de este error no sea solo una suposicién, y descartar que haya sido
problema del entrenamiento del clasificador, en las figuras 4.4, 4.5 y 4.6 se
representa la distribucién de datos de entrada al clasificador con el conjunto
de entrenamiento y los dos de test utilizando el método UMAP (Uniform
Manifold Approximation and Projection) [43].

En la Fig. 4.4, correspondiente a los datos de entrenamiento, se puede
comprobar como las clases que han sido confundidas estan superpuestas. De
este modo, no es posible que el clasificador aprenda a separarlas
completamente ya que las muestras de algunas clases estan entremezcladas.

Sentarse
levantarse

Sentado
De_pie
Agacharse

incorporarse

Saltar

Correr

Andar

Fig. 4.4. Distribucion de caracteristicas extraidas proyectadas en 2D, con el
conjunto de datos de entrenamiento

En la Fig. 4.5 se ha representado el conjunto de test de datos separados de
los de entrenamiento, utilizando la misma proyeccion obtenida con los datos
de entrenamiento. En ella se puede comprobar como la distribucién de datos
es parecida a la de los datos de entrenamiento, con lo que se explica los
buenos resultados obtenidos en la Fig. 4.2 a pesar de las confusiones en las
clases entremezcladas.

En la Fig. 4.6 se ha representado el conjunto de test del sujeto no
introducido en el entrenamiento. En ella se observa céomo se cumple la
suposicion mencionada de que el sujeto de test ejecutd las actividades
confundidas de manera irregular, ya que sus distribuciones estan mucho mas
entremezcladas que lo casos mostrados en las figuras 4.4 y 4.5. De este modo
se explica la razén del aumento de la confusién entre clases que se habia
visto en la matriz de confusiéon de la Fig. 4.3.
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Fig. 4.5. Distribucion de caracteristicas extraidas proyectadas en 2D, con el
conjunto de test de datos separados de los de entrenamiento
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Fig. 4.6. Distribucion de caracteristicas extraidas proyectadas en 2D, con el
conjunto de test del sujeto no introducido durante el entrenamiento

Adicionalmente, en el Anexo A se han expuesto las proyecciones de datos
obtenidas en el caso de que se hubiesen utilizado menos sensores, destacando
asi la importancia que tienen ciertos sensores para llevar a cabo una mejor
clasificacion. Para ello se han ido eliminando conjuntos de sensores enteros, o

solo algun eje de estos.

42



4.1. Resultados del modelo clasificador de actividades cotidianas

4.1.2.

Clasificacion con votacion

Tal y como se ha comentado al inicio de este capitulo, también se ha
llevado a cabo la clasificaciéon de las actividades teniendo en cuenta las
predicciones realizadas sobre los datos contiguos en la secuencia temporal,
con el fin de obtener mejores resultados en la clasificacion.
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Fig. 4.7. Matriz de confusion del clasificador de actividades cotidianas, con
conjunto de test de datos separados de los de entrenamiento, y votacion

En las figuras 4.7 y 4.8 se muestran las nuevas matrices de confusion
obtenidas, donde se puede apreciar la mejora de los resultados respecto a la
clasificacion sin votaciéon mostrada en las figuras 4.2 y 4.3.
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Fig. 4.8. Matriz de confusion del clasificador de actividades cotidianas, con
conjunto de test del sujeto no introducido, y votacion
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4.2. Resultados del modelo filtrador de golpes
de tenis

Tras comprobar que la clasificaciéon realizada con votaciéon de entre 4
vecinos mejora los resultados obtenidos, en los siguientes modelos ya se van
a exponer los resultados obtenidos al aplicar el proceso de votacion.

En la figura 4.9 se muestran los resultados obtenidos en la clasificacion
por el modelo filtrador de golpes de tenis con los dos conjuntos de test.

g 8
H 1959 9 5 10632
Q []
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clases predichas clases predichas
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Fig. 4.9. Matriz de confusién del modelo filtrador de golpes de tenis utilizando
votacion. a) Conjunto de test de datos separados de los de entrenamiento.
b) Conjunto de test del sujeto no introducido.

Como se puede observar, debido al valor umbral escogido el valor de recall
que se obtiene es muy alto, ya que casi todos los datos que son golpes de tenis
son clasificados como tal. Aunque se clasifiquen varios datos que no son
golpes de tenis como que si lo son, el modelo clasificador de golpes de tenis
también puede desecharlos por lo que es preferible obtener un recall alto.

En la Fig. 4.9 b) se comprueba la buena generalizacion realizada por el
modelo, ya que la clasificacién realizada de los datos de un sujeto no visto
durante el entrenamiento presenta mejores resultados incluso que el
conjunto de test separado de los datos de entrenamiento.

Una vez clasificados los datos, tnicamente se introduciran al modelo
clasificador de golpes de tenis los que se hayan predicho como “Dato_Tenis”.
De este modo se introduciran 11 datos erréneos y 653 correctos en el caso del
conjunto de test de datos separados de los de entrenamiento, y 40 datos
erréneos y 6019 correctos en el caso del conjunto de test del usuario no
introducido en el entrenamiento.

4.3. Resultados del modelo clasificador de
golpes de tenis

En las figuras 4.10 y 4.11 se puede observar los resultados obtenidos por el
clasificador de golpes de tenis. En ellas iinicamente se muestran los datos
que han pasado el filtro aplicado con el anterior modelo. En el caso de la base
de datos de test separada de los datos de entrenamiento (Fig. 4.10), se
observa que la clasificacion es practicamente correcta en su totalidad.
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Fig. 4.10. Matriz de confusion del modelo clasificador de golpes de tenis, con
conjunto de test de datos separados de los de entrenamiento, y votacion

En la Fig. 4.11 correspondiente con los datos del sujeto no introducido a la
red, se ve como los pocos datos no pertenecientes a ninguno de los golpes de
tenis (que habian sido clasificados incorrectamente por el modelo filtrador) se
clasifican correctamente. El resto de las clases se clasifican con niveles de
precisiéon por encima del 97%, exceptuando la clase globo que presenta una
precision del 91,6%. La confusion de esta clase puede deberse a que dicho
usuario no realizaba los golpes de manera correcta, confundiéndose asi con
otros movimientos. A pesar de ello, al obtener un indice Kappa del 95.55% se
demuestra la robustez del modelo obtenido, superando asi el objetivo

planteado para el proyecto.
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Fig. 4.11. Matriz de confusion del modelo clasificador de golpes de tenis, con
conjunto de test del sujeto no introducido, y votacion
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Capitulo 5
Conclusiones y lineas futuras

En este capitulo se van a exponer las conclusiones obtenidas tras el
desarrollo del proyecto. Se van a destacar los pasos seguidos para alcanzar
los resultados obtenidos, y se comparan éstos con los objetivos que se habian
marcado. Finalmente se expondran las posibles lineas futuras de
continuacién al proyecto realizado.

5.1. Conclusiones

En este proyecto se ha llevado a cabo el desarrollo de un sistema
clasificador de golpes tenis el cual presente robustez ante las dimensiones
corporales, peso, y sexo de los sujetos.

Para ello, se ha comenzado realizando un estudio del estado del arte para
comprobar que técnicas se usan habitualmente para sistemas de
reconocimiento de actividades humanas, y cudles de ellas presentan
invariancia ante las posibles caracteristicas de cualquier sujeto.

Tras comprobar que no se dispone de una base de datos publica con la que
poder llevar a cabo los objetivos deseados, se ha optado por el desarrollo de
una base de datos propia. De este modo se abre la posibilidad de inclusién de
nuevos movimientos de tenis con los que entrenar el modelo en una futura
ampliacion al proyecto. Para realizar la base de datos se ha llevado a cabo la
seleccion y configuraciéon de dos dispositivos portables de bajo consumo, de
los que se ha obtenido informacién de su acelerémetro y giréscopo.

Para tratar de eliminar la dependencia del rendimiento del modelo con las
caracteristicas fisicas de los sujetos que realizaron la base de datos, se ha
llevado a cabo el procesamiento de las secuencias temporales de datos de los
sensores mediante el calculo de espectrogramas, los cuales también
proporcionan informacion de la evolucion frecuencial en el tiempo.

Para la labor de extraccién de caracteristicas y clasificaciéon de los datos,
se han desarrollado modelos neuronales con aprendizaje semi-supervisado a
partir de las librerias de TensorFlow. Como extractor de caracteristicas se ha
entrenado una red “Autoencoder Convolucional” de manera no supervisada,
consiguiendo reducir enormemente la cantidad de datos etiquetados
necesarios a la hora de entrenar un clasificador. La red de clasificacién
seleccionada ha sido el Perceptron Multicapa (MLP). De este modo, se han
desarrollado tres modelos clasificadores distintos modificando la arquitectura
del MLP. El primero de ellos se encarga de clasificar 7 actividades cotidianas
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que también pueden ser realizadas durante un partido de tenis, y ha sido
utilizado para comparar los resultados obtenidos con los vistos en el estado
del arte. El segundo y tercer modelo se usan conjuntamente para obtener los
mejores resultados posibles en la deteccién de uno de los 4 golpes de tenis
entrenados. El segundo clasificador actia como filtro para saber si un
movimiento pertenece a una de las clases de golpes, mientras que el tercero
lleva a cabo la clasificacién de los datos filtrados en uno de los distintos
golpes de tenis.

Se ha comprobado como los resultados obtenidos con el clasificador de
actividades cotidianas, en el caso del conjunto de test de datos separados de
los de entrenamiento, estan en niveles parecidos a los vistos en el estado del
arte (Tabla III), obteniendo una precision del 96,09%. Este tipo de conjunto
de test es el utilizado habitualmente en las investigaciones encontradas. En
el caso de los datos procedentes de una persona que no ha sido vista nunca
en el entrenamiento del modelo, se ha obtenido una precisién del 82,38%, que
es algo mas reducido debido a las complicaciones comentadas, pero es lo
suficientemente preciso como para presentar cierta robustez y cumplir con el
objetivo propuesto.

En el sistema clasificador de golpes de tenis se ha obtenido una precisién
total del 99,25% con la base de datos de test con personas que ya habian sido
vistas por el modelo, y del 96,55% para el sujeto nuevo, con lo que se
manifiesta el buen funcionamiento y robustez del sistema -clasificador
desarrollado, el cual era el objetivo principal de este proyecto.

5.2. Lineas futuras

Como clara linea futura de ampliaciéon a este proyecto, seria la captacion
de datos de manera on-line con la cual poder realizar la recopilaciéon de
estadisticas de golpes en tiempo real.

También se plantea la posible ampliacién de la base de datos para que el
sistema clasificador sea capaz reconocer la mayoria de los movimientos
realizados durante el desemperfio de un partido de tenis. Seria conveniente,
para una mejora de los resultados obtenidos, que la recopilacién de datos
fuera realizada por personas con amplios conocimientos sobre la técnica
correcta de realizar los golpes de tenis, ya que en este proyecto los sujetos
carecian de ella, lo que ha podido conducir a errores en la clasificacion.

Otra posible linea futura a largo plazo seria la sincronizacion de los datos
obtenidos por los sensores con un sistema de captacion de video colocado en
el entorno capaz de hacer un seguimiento del esqueleto del jugador. De este
modo, no s6lo se podrian obtener estadisticas de golpes realizados, sino
también anadir otro modelo con el que obtener estadisticas de la técnica de
ejecucion del movimiento realizado. Por lo tanto, el jugador podria obtener
una retroalimentacion de cada clase de golpe que realiza con la que mejorar
su nivel de juego.
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Anexo A

Proyecciones 2D UMAP de
caracteristicas de los datos al
utilizar menos sensores

En este anexo se va a representar las proyecciones UMAP obtenidas de las
caracteristicas extraidas de los datos en el caso de reducir el nimero de
sensores utilizados. Con ello, se consigue comprobar como de relevante es la
informacion proporcionada por ciertos sensores para llevar a cabo una mejor
clasificacion. De este modo, se han realizado tres pruebas distintas en las que
se han utilizado menos de 12 ejes de sensores.

A.1. Pruebal

En la primera prueba, se ha eliminado la informacién proporcionada por el
SensorTag colocado en la cintura (sus 3 ejes de acelerémetro y sus 3 ejes de
girdscopo) por lo que inicamente se dispone de la informacién proporcionada
por el SensorTag colocado en la munieca de los sujetos. De esta manera, se ha
pasado de tener 9288 caracteristicas (por cada instancia de entrenamiento) a
4644 caracteristicas.

En la Fig. A.1 se muestra la proyeccion obtenida con los datos de
entrenamiento. En ella observamos como las distintas clases presentan
distribuciones mucho menos separadas unas de otras que en el caso de
utilizar los 12 ejes (Fig. 4.4). Sin embargo, se siguen intuyendo regiones de
decision claras entre la mayoria de las clases. Comparando esta figura con la
Fig. 4.4 se observa como el SensorTag colocado en la cintura tiene especial
relevancia para separar las clases “andar”, “correr” y “saltar” del resto,
aunque también provoca que correr y saltar se confundan mas.

En las figuras A.2 y A.3 se han representado los dos conjuntos de test con
la misma proyeccion obtenida con los datos de entrenamiento. Como se puede
observar en las tres figuras mostradas, al quitar el SensorTag de la cintura
también sigue estando presente la confusiéon entre las clases
“Agacharse/Incorporarse” con “Sentarse/Levantarse”, y las clases “De pie” y
“Sentado”. En este caso también se ve en las distribuciones de los conjuntos
de test, como las clases andar y saltar tienen regiones muy préximas a las
clases Sentarse/Levantarse y “Agacharse/Incorporarse”.
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Fig. A.1. Distribucion de caracteristicas extraidas proyectadas en 2D, con el
conjunto de entrenamiento, en la Prueba 1
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Fig. A.2. Distribucion de caracteristicas extraidas proyectadas en 2D, con el
conjunto de test separado de los datos de entrenamiento, en la Prueba 1
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Fig. A.3. Distribucion de caracteristicas extraidas proyectadas en 2D, con el
conjunto de test de sujeto no introducido durante el entrenamiento, en la
Prueba 1

A.2. Prueba 2

En la segunda prueba se ha realizado el caso inverso al anterior,
eliminando la informacién proporcionada por el SensorTag colocado en la
muneca (sus 3 ejes de acelerometro y sus 3 ejes de girdscopo), por lo que
Unicamente se dispone de la informaciéon proporcionada por el SensorTag
colocado en la cintura de los sujetos. De esta manera, se ha pasado de tener
9288 caracteristicas (por cada instancia de entrenamiento) a 4644
caracteristicas.

Al proyectar el espacio de 4644 dimensiones sobre 2D con UMAP (figuras
A.4, A5, y A.6), se confirma lo que se habia descrito en la Prueba 1 al
comparar sus resultados con los de la Fig. 4.4. La informacién que
proporciona el SensorTag de la cintura con todos sus ejes es importante para
diferenciar las clases andar, correr y saltar del resto, pero provoca que estas
dos ultimas se entremezclen mas. Las clases que mas confusién creaban
entre ellas siguen sin ser mas separables.
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Fig. A.4. Distribucién de caracteristicas extraidas proyectadas en 2D, con el
conjunto de entrenamiento, en la Prueba 2
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Fig. A.5. Distribucion de caracteristicas extraidas proyectadas en 2D, con el
conjunto de test separado de los datos de entrenamiento, en la Prueba 2
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Fig. A.6. Distribucion de caracteristicas extraidas proyectadas en 2D, con el
conjunto de test de sujeto no introducido durante el entrenamiento, en la
Prueba 2

A.3. Prueba 3

En la tercera prueba se utilizan Unicamente los acelerometros de ambos
SensorTag. De esta manera, se ha pasado de tener 9288 caracteristicas (por
cada instancia de entrenamiento) a 4644 caracteristicas.

Al comparar la proyeccion del espacio de 4644 dimensiones sobre 2D con
(figuras A.7, A.8, y A.9) con la Fig 4.4 donde se disponia de todos los
sensores, se comprueba que la informacion mas relevante es la
proporcionada por los aceleréometros y no por los girdscopos, ya que las
distribuciones son mucho mas parecidas en este caso que en las otras dos
pruebas anteriores. También se aprecia como sin girdéscopos las clases con
mas confusion se han separado un poco mas.

Al igual que ocurria en la Fig. 4.6, con el conjunto de datos de test del
usuario no Introducido durante el entrenamiento, la clase
“Agacharse/Incorporarse” esta mas dispersa que en el caso del otro conjunto
de test y el conjunto de entrenamiento por lo que obtendra peores resultados.
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Fig. A.7. Distribucion de caracteristicas extraidas proyectadas en 2D, con el
conjunto de entrenamiento, en la Prueba 3
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Fig. A.8. Distribucién de caracteristicas extraidas proyectadas en 2D, con el
conjunto de test separado de los datos de entrenamiento, en la Prueba 3
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Fig. A.9. Distribucién de caracteristicas extraidas proyectadas en 2D, con el
conjunto de test de sujeto no introducido durante el entrenamiento, en la
Prueba 3
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