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RESUMEN 
 

 

DETECCIÓN DE ACTIVIDADES HUMANAS CON SENSORES 

PORTABLES 
 

 
La recopilación de datos y estadísticas deportivas es un campo de 

investigación en continuo desarrollo. Actualmente, existe una gran demanda 
en el mercado de dispositivos portables capaces de recopilar información 
importante durante el desempeño de cualquier actividad. Esa información es 
procesada para obtener estadísticas o retroalimentación con la que mejorar 
la técnica deportiva de los usuarios.  

 

En este trabajo de fin de máster se va a diseñar e implementar un 

sistema capaz de distinguir entre distintas actividades realizadas durante el 

desempeño de un partido de tenis, siendo la finalidad última la correcta 

clasificación de un conjunto de golpes realizados. Además, el modelo ha de 

presentar robustez ante la variabilidad de las dimensiones, edad o sexo de 

cualquier sujeto que realice las actividades. Se desarrollará una base de 

datos propia con el fin de estar orientada al objetivo propuesto, y así poder 

incluir nuevos movimientos en ampliaciones futuras al trabajo. Para ello, se 

ha seleccionado y configurado dos nodos sensores que utilizan la tecnología 

inalámbrica de bajo consumo Bluetooth Low Energy para comunicarse con 

un PC que actúa como dispositivo central para recopilar la información 

recibida por los sensores. 

 

 Para conseguir estos objetivos, se han procesado los datos de los 

sensores mediante el cálculo de sus espectrogramas, de manera que 

aplicando técnicas novedosas de Deep Learning con entrenamiento semi-

supervisado se consiga llevar a cabo la extracción de características y 

clasificación de los espectrogramas obtenidos. El aprendizaje semi-

supervisado permite que la cantidad de datos etiquetados necesaria se 

reduzca considerablemente a cambio de obtener una gran cantidad de datos 

no etiquetados. La implementación de estas técnicas se ha llevado a cabo 

mediante el uso de TensorFlow con su API en Python.  

 

Una vez entrenados los sistemas clasificadores, se ha comprobado su 

funcionamiento sobre nuevos datos de test para así comprobar la correcta 

clasificación de las actividades sobre datos no vistos por el clasificador 

durante su entrenamiento. De este modo, se demuestra la capacidad 

generalizadora del modelo. 
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Capítulo 1 

Introducción 

 Motivación 

Este trabajo se enmarca en el proyecto de investigación: “Análisis 
semántico y comprensión del comportamiento del jugador en aplicaciones 
deportivas”, financiado por el MINECO (TIN2017-88841-R) y cofinanciado 
por fondos FEDER. Concedido en 2018 al grupo de investigación CVLab 
(departamento de ingeniería electrónica y comunicaciones).  

La recopilación de datos y estadísticas durante el desempeño de cualquier 
deporte es un tema de investigación en continuo desarrollo, ya que tanto 
personas aficionadas como profesionales buscan una manera de obtener 
información sobre su rendimiento o posibilidad de mejora. Debido a ello, se 
desarrolla este proyecto en el ámbito de reconocimiento de actividades 
realizadas en un partido de tenis, al que se añadirá en un futuro nuevas 
funcionalidades con las que poder mejorar el rendimiento deportivo de las 
personas. 

 Objetivos 

El objetivo de este proyecto es el llevar a cabo la clasificación de un 
conjunto de actividades humanas intentando solventar los problemas de 
generalización del modelo que se suelen encontrar en los sistemas habituales 
de reconocimiento de actividades humanas con sensores portables. Como ya 
se ha comentado en la motivación del proyecto, la finalidad principal es el 
desarrollo de un modelo clasificador que consiga distinguir un conjunto de 
golpes y movimientos que se pueden realizar durante un partido de tenis. 

Para ello, la solución propuesta aplica técnicas de Deep Learning con 
modelos convolucionales (CNNs) de aprendizaje semi-supervisado para 
extraer información de los espectrogramas de las señales recopiladas por dos 
nodos sensores portables. Estos sensores están colocados en la muñeca y 
cintura del sujeto, transmitiendo información de acelerómetro y giróscopo en 
sus tres ejes de coordenadas. 

Con la extracción de características de los espectrogramas utilizando 
CNNs se pretende que el modelo sea robusto ante las diferencias de tamaño, 
edad, o sexo de los distintos sujetos que realicen las actividades. La 
aplicación de CNNs para la extracción de características introduce 
invariancia ante la posición y deformaciones de éstas en el espectrograma. 
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De este modo, aunque un mismo movimiento realizado por diferentes 
usuarios presente frecuencias distintas en el espectrograma, las formas 
obtenidas serán las mismas, pero desplazadas en frecuencias, por lo que las 
CNN serán capaces de generar representaciones de características en su 
salida invariantes ante estas fuentes de variabilidad. 

Para la construcción del modelo se utilizarán las librerías de TensorFlow 
con la API desarrollada en Python, ya que es la versión más estable que 
presenta y con más documentación. De esta manera se abre la posibilidad de 
utilizar con software libre una gran cantidad de herramientas desarrolladas 
en Python. 

Para el entrenamiento y test del sistema de reconocimiento de actividades 
planteado se va a crear una base de datos propia. En ella habrá una gran 
cantidad de datos sin etiquetar para el entrenamiento del modelo 
convolucional que realizará la extracción de características, y unos pocos 
datos etiquetados para poder entrenar el clasificador supervisado que llevara 
a cabo el reconocimiento del conjunto de actividades. La base de datos la 
realizarán 8 personas distintas, 4 de cada sexo, para así poder obtener un 
modelo generalizado. Se habrá de seleccionar y configurar dos nodos sensores 
que cumplan con los principales requisitos de portabilidad y bajo consumo. 

De esta manera, los pasos a seguir para el cumplimiento de los objetivos 
planteados son los siguientes: 

• Estudio del estado del arte y aprendizaje sobre el uso las distintas 
herramientas utilizadas. 

• Búsqueda de posibles sensores, aprendizaje de su tecnología, y 
configuración de estos. 

• Generación de una base de datos con la que entrenar y testear el modelo. 

• Procesamiento de espectrogramas de las señales 

• Entrenamiento de redes convolucionales de manera no supervisada para 
extracción de características, y entrenamiento de clasificador de manera 
supervisada. Ajuste de hiperparámetros. 

• Análisis de resultados y conclusiones. 

 

 Herramientas utilizadas 

Para el desarrollo del proyecto, se ha hecho uso de las siguientes 
herramientas: 

• Herramientas y dispositivos de Texas Instruments: Sensores SensorTag 
CC2650, junto con debugger DevPack, CC2540 USB dongle, y 
software BTool, para la captación de datos y comunicación con el PC. 

• Code Composer Studio 8.1.0: para programación de los sensores con el 
debugger DevPack. 

• MATLAB R2017b: para el tratamiento de ficheros de texto en la lectura 
de datos enviados por el sensor. 
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• Spyder 3.2.8:  para programación en Python, donde se han construido 

las redes con librerías de TensorFlow y scikit-learn. Tarjeta gráfica 

de PC utilizado: NVIDIA GEFORCE GTX1050. Memoria RAM: 8GB. 

• Google Colaboratory: plataforma que te permite de manera gratuita 
un entorno de ejecución virtual, con 12GB de RAM y una tarjeta gráfica 
Tesla K80 GPU. Esta plataforma se ha utilizado para el entrenamiento 
de todas las redes.  

 Contexto y estado del arte 

El reconocimiento de actividades humanas (RAH) es un campo de 
investigación en continuo crecimiento desde la aparición de sensores capaces 
de captar información del entorno durante el desempeño de cualquier 
actividad. Desde la década de los noventa, se ha estado ampliando el estado 
del arte en este campo mediante el desarrollo de nuevas técnicas que 
permiten obtener una mayor precisión en la clasificación de actividades a 
partir de sensores.  

Muchas de estas técnicas utilizan el denominado aprendizaje automático o 
machine learning (ML) basado en modelos de clasificación, los cuales se 
obtienen mediante procesos de aprendizaje a partir de ejemplos. El 
entrenamiento de los clasificadores se lleva a cabo con una gran cantidad de 
ejemplos, ya sea mediante aprendizaje supervisado, o no supervisado. En el 
aprendizaje supervisado se entrena el clasificador mediante datos 
etiquetados, de manera que se le indica al clasificador la salida deseada ante 
unos datos de entrada determinados. En el caso del aprendizaje no 
supervisado, el clasificador va agrupando los datos que son similares entre sí 
en base a una medida de distancia (clustering). Una vez se dispone del 
clasificador entrenado, se realiza el test de dicho clasificador con nuevos 
datos con los que no haya tratado todavía, de manera que según los 
resultados que se obtienen con esos nuevos datos de test se comprueba la 
eficacia del modelo de clasificación obtenido. 

Hoy en día, el desarrollo de nuevos sensores de menor tamaño y menor 
consumo está permitiendo que la recopilación de datos mediante sensores 
portables o externos se realice de manera mucho más sencilla, y sin interferir 
en las actividades realizadas. La información obtenida por estos sensores es 
de gran interés en una amplia variedad de aplicaciones, como por ejemplo en 
aplicaciones médicas para el seguimiento de pacientes con enfermedades que 
necesitan monitorización [1], en la rehabilitación de enfermedades o lesiones 
mediante el seguimiento del progreso del paciente [2] [3] [4], en la 
recopilación de estadísticas deportivas para la visualización del progreso 
realizado [5], o en la mejora de la técnica en el desempeño de ciertos deportes 
[6] [7]. 

Aunque el objetivo último de diferentes investigaciones sea el mismo 
(clasificar las mismas actividades que llevan a cabo diversas personas), los 
métodos que se utilizan en cada investigación para llevarlo a cabo pueden ser 
distintos. Cada sistema de RAH puede utilizar distintos tipos de sensores, 
diversos métodos de extracción de características, variadas tipologías de 
clasificadores, o diferentes métodos de entrenamiento del clasificador. Sin 
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embargo, el diagrama de flujo que siguen habitualmente la estructura de 
todos ellos es el mismo [8] [9], tal y como se muestra en la Fig. 1.1.  

 Adquisición de datos  

El primer paso a la hora de realizar un sistema clasificador de actividades 
es la obtención de una base de datos con la que entrenar dicho clasificador. 
La opción más común en sistemas de RAH para una aplicación concreta es la 
elaboración de una base de datos propia, aunque también se pueden utilizar 
bases de datos ya realizadas en las que se encuentren una gran cantidad de 
datos. Para ello, se ha de seleccionar tanto el tipo de sensor utilizado como la 
localización del sensor en el cuerpo, ya que ambas opciones de diseño 
influyen en los resultados de la clasificación. 

Durante el estudio del estado del arte, se han encontrado gran variedad de 
sensores utilizados en distintas investigaciones. Una opción es la detección 
de actividades mediante el tratamiento de imágenes de video [10] con 
cámaras colocadas en el entorno donde se encuentra el sujeto. Sin embargo, 
esta opción sólo es apta para cierto tipo de aplicaciones ya que suelen ser 
caras y conllevan problemas de privacidad y de elevado coste computacional 
en el tratamiento de las imágenes. La opción más utilizada a la hora de 
seleccionar sensores para RAH es el uso de sensores portables, debido a que 
las tecnologías actuales de estos dispositivos presentan prestaciones de bajo 
consumo y pequeñas dimensiones [11]. Estas prestaciones los hacen idóneos 
para la recopilación de información durante largos periodos de tiempo, sin 
interferir en las actividades realizadas, y en cualquier entorno.  

Existen distintos tipos de sensores portables utilizados para sistemas de 
RAH, como acelerómetros, giróscopos, magnetómetros, sensores de 
temperatura, barómetros, localizadores, micrófonos, pulsómetros o 
electrocardiógrafos. Sin embargo, la mayoría de aplicaciones investigadas en 
el estado del arte utilizan únicamente acelerómetros y giróscopos ya que la 
información que proporcionan es suficientemente relevante para la 
clasificación de un gran número de actividades [12] [13] [14]. La localización 
en la que se ubican estos sensores en el cuerpo durante el desempeño de las 
actividades a clasificar es también un parámetro de diseño en investigación 
[15]. El cambio de la ubicación del sensor en el cuerpo hace que la 
información obtenida por los sensores varíe, de manera que los datos 
obtenidos pueden ser más o menos representativos de las actividades 
realizadas. 

En el uso de sensores portables, la recopilación de los datos obtenidos por 
los distintos sensores se realiza habitualmente mediante tecnologías 

Fig. 1.1.   Diagrama de bloques típico de un sistema de RAH 
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inalámbricas, utilizando como dispositivo maestro un móvil smartphone o un 
ordenador portátil conectado a distintos sensores esclavos a través de un 
protocolo de bajo consumo, como por ejemplo Bluethooth Low Energy (BLE), 
o ZigBee [4] [11].  

En el caso de querer utilizar una base de datos ajena, en [16] [17] [18] se 
muestran las distintas bases de datos más utilizadas para entrenar o validar 
clasificadores de RAH.  

La evaluación de los clasificadores que se desarrollen se ha de llevar a 
cabo mediante datos que el clasificador no haya utilizado durante el 
entrenamiento, de manera que se debe realizar una partición de la base de 
datos de la que se dispone antes de entrenar el clasificador. 

 En casos en los que se tenga un gran conjunto de datos, se realiza la 
separación de estos en tres subconjuntos: entrenamiento, validación y test. 
El modelo se entrena únicamente con los datos de entrenamiento. El 
conjunto de validación se utiliza para mejorar los resultados obtenidos con 
modelos entrenados mediante el ajuste de los hiperparámetros de diseño del 
modelo. El conjunto de test se utiliza únicamente una vez un modelo ha sido 
entrenado con el conjunto de hiperparámetros que generaron los mejores 
resultados posibles con el conjunto de validación. Este tipo de separación de 
la base de datos se utiliza principalmente para mejorar los resultados 
obtenidos evitando el sobreajuste del modelo a los datos de entrenamiento, 
así como para explorar el conjunto de hiperparámetros óptimos para el 
entrenamiento final del modelo. 

En el caso de disponer de pocos datos, debido a la posibilidad de sesgos en 
el reparto de los ejemplos en los distintos subconjuntos de datos, se suele 
utilizar validación cruzada, que consiste en dividir la base de datos en varios 
subconjuntos y entrenar tantos modelos como subconjuntos haya, utilizando 
en cada uno de esos modelos un subconjunto distinto de validación. 
Finalmente se promedia los resultados obtenidos con cada una de las redes 
de la validación cruzada. De esta manera los parámetros del modelo no se 
pueden ajustar a un conjunto de datos de evaluación concreto, evitando que 
los resultados presenten sobreajuste a un conjunto de datos particular. 

 Preprocesamiento y segmentación  

Una vez se dispone de una base de datos con la que poder entrenar un 
clasificador, es habitual encontrar en el estado del arte ciertos tipos de 
preprocesamiento de los datos.  

Los datos obtenidos del sensor suelen ser filtrados para reducir el ruido 
introducido en la medición del sensor [6]. También es común realizar un 
escalado de los datos, para que los rangos de medida de distintos tipos de 
sensores no influyan en la mayor ponderación de uno u otro durante el 
entrenamiento. En ocasiones, se lleva a cabo sincronización de las muestras 
de distintos sensores que presentan diferentes frecuencias de muestreo. Para 
la reconstrucción de datos perdidos durante el muestreo, se realiza una 
interpolación del valor en el instante anterior y posterior al dato perdido [6] 
[19].   
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La recopilación de datos de los sensores para RAH se realiza durante 
largos periodos de tiempo, obteniendo una gran cantidad de muestras de 
cada sensor. La extracción de características directamente sobre largos 
periodos de señales temporales, dificultaría enormemente la obtención de 
características discriminativas de las distintas actividades realizadas 
durante ese periodo. Por ello, en la mayoría de los casos se lleva a cabo una 
segmentación de la señal que permita obtener pequeños periodos de la señal 
donde pueda ocurrir una cierta actividad en lugar de varias. De este modo, se 
consigue extraer características más discriminativas de cada actividad para 
poder llevar a cabo su clasificación. En el caso de señales temporales, los dos 
métodos de segmentación principales son la segmentación por umbral, y la 
segmentación mediante ventanas temporales deslizantes [9]. La segmenta-
ción por umbral se utiliza principalmente en aplicaciones en las que se está 
buscando instantes temporales concretos de la señal, como instantes en los 
que hay máximos o mínimos locales, o instantes donde la energía de la señal 
supera un valor concreto.  

Un ejemplo es la segmentación realizada en [20], donde se lleva a cabo la 
segmentación de señales musicales para detectar el inicio de transición entre 
notas. Otro ejemplo es el encontrado en [7] donde se desea realizar 
clasificación de golpes de tenis, por lo que se lleva a cabo la extracción de 
ventanas temporales de únicamente los instantes donde se produce un golpe. 
En la Fig. 1.2 se muestran los dos ejemplos citados. 

 La segmentación por umbral no es el método más común, ya que en la 
mayoría de las aplicaciones produce la pérdida de información relevante para 
una correcta clasificación. La técnica de segmentación más utilizada en RAH 
es la segmentación mediante una ventana temporal deslizante. Este método 
extrae pequeños segmentos de la señal mediante una ventana temporal de 
anchura definida, deslizándola a lo largo de toda la señal. De este modo, se 
consigue tratar con pequeños intervalos de la señal, sin perder información 
alguna sobre los datos de entrada. Habitualmente el desplazamiento de la 
ventana a lo largo de la señal se realiza con una cierta superposición respecto 
de la ventana anterior (50% o más normalmente) para así evitar perder 
información en las transiciones de una ventana a otra y aumentar la 
redundancia de las muestras temporales extraídas. En la Fig. 1.3 se observa 
un ejemplo de segmentación con ventana deslizante para una aplicación de 

a) b) 

Fig. 1.2.  Segmentación por umbral.  a) Segmentación de una señal de audio.                        

b) Segmentación de señal para clasificación de golpes de tenis. 
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electromiografía desarrollada en [21]. Es común utilizar la técnica de 
enventanado de Hanning para evitar así las distorsiones producidas por las 
discontinuidades en los límites de la ventana. 

La anchura de la ventana deslizante es un parámetro de diseño típico en 
sistemas de RAH ya que influye en los resultados de la clasificación final 
realizada. En [22] se realiza un estudio sobre el impacto de la anchura de la 
ventana deslizante en los resultados obtenidos en la clasificación, donde se 
concluyó que una ventana de uno a dos segundos es el tamaño óptimo para 
conseguir una buena relación entre la precisión obtenida y la velocidad de 
segmentación de la señal completa. También se han realizado estudios 
acerca de la posibilidad de desarrollar un método de segmentación mediante 
una ventana deslizante de anchura adaptativa [23]. 

 Extracción de características  

La extracción y selección de características representativas de la señal es 
uno de los procesos más importantes a la hora de desarrollar un sistema de 
RAH. En el campo de ML a este proceso se le denomina la fase de feature 
engineering, consistente en una fase de feature extraction seguida de una fase 
de feature selection. Tras muchos años de investigación en este campo, se ha 
comprobado que el uso de estas características como datos de entrada a un 
clasificador mejora notablemente los resultados obtenidos en la clasificación 
respecto al uso directo de los valores muestreados por el sensor. En [24] se 
lleva a cabo la comparación de los resultados obtenidos en una aplicación que 
utiliza inicialmente los datos del sensor muestreados, y los obtenidos cuando 
se utilizan las características extraídas como datos de entrada. Además de 
mejorar los resultados obtenidos, la extracción de características permite 
llevar a cabo una reducción en la dimensionalidad del problema. 

  

Fig. 1.3.  Segmentación mediante ventana temporal deslizante 
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Extracción de características prediseñadas 

Este tipo de extracción consiste en el cálculo de un conjunto amplio de 
características en el dominio temporal y frecuencial que se consideren 
suficientemente representativas de la señal. Con las características 
seleccionadas se forman distintos grupos de ellas para comprobar así con 
cuál de ellos se obtiene un mejor resultado tras la clasificación.  En la Tabla I 
se muestran las características comúnmente utilizadas en el estado del arte 
de RAH [1], [6], [8], [15], [25]. 

Existen también distintas técnicas para comprimir un gran conjunto de 
características a un subconjunto transformado con características más 
representativas para la clasificación de los conjuntos de datos. Este tipo de 
técnicas consiguen reducir la dimensionalidad del problema, siendo las más 
comunes el análisis de componentes principales (PCA), análisis lineal 
discriminante (LDA), o el análisis de componentes independientes (ICA) [26]. 

Aunque el cálculo de características prediseñadas es el método más 
encontrado en el estado del arte, los modelos de RAH desarrollados de esta 
forma presentan grandes problemas de generalización [16] [18]. Esto se debe 
a que generalmente los investigadores consiguen diseñar un conjunto de 
características que les permita obtener unos buenos resultados, pero 
validando el modelo con la misma base de datos para la que se diseñaron 
dichas características. Sin embargo, esta situación se daría únicamente en 
un escenario de laboratorio ya que, en una aplicación real, las actividades 
serán realizadas por usuarios de distintas dimensiones respecto a las 
personas que recopilaron los datos utilizados para el entrenamiento. La 
diferencia corporal entre los sujetos introduce mucha variabilidad en la 
información recogida por los sensores, llegando a provocar que la varianza de 
la señal debido a las diferencias corporales sea mayor que la varianza 
detectable entre las diferentes actividades. Esta situación hace que los 
clasificadores presenten sobreaprendizaje sobre la muestra de ejemplos 
corporales de la base de datos, no siendo capaces de generalizar a nuevas 
señales procedentes de sujetos con dimensiones corporales distintas a las 
presentes en la base de datos. Por ello, la precisión obtenida en la 
clasificación de actividades en  una aplicación real es mucho menor que la 

TABLA I.   Características seleccionadas habitualmente en RAH 

Dominio temporal Dominio frecuencial (FT) 

 

Media 

Mediana 

Varianza 

Desviación estándar 

Mínimos y máximos 

Amplitud 

RMS 

Correlación  

Correlación cruzada 

 

Integral 

Derivada 

Cruces por cero 

Pico a pico 

Kurtosis 

Distancia euclídea 

SMA 

SVM 

DSVM 

 

Componente DC 

Suma de coeficientes 

Frecuencia dominante 

Energía espectral 

Pico de frecuencia 

Entropía espectral 

Potencia  
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obtenida con los usuarios con los que se realizó la base de datos [9] [16] en el 
caso de utilizar características prediseñadas. 

Extracción automática de características 

Actualmente, los investigadores están intentando llevar a cabo la 
extracción automática de características relevantes de los datos de entrada. 
De este modo, aunque el conjunto de datos de entrada cambie, el modelo 
seguiría obteniendo características suficientemente representativas de los 
datos para obtener unos buenos resultados en la clasificación. La técnica más 
habitual en RAH para extracción automática de características se basa en la 
aplicación de Deep Learning (DNN) a los datos de entrada, siendo las redes 
neuronales convoluciones (CNN) la más utilizadas [18].  

Las CNN son populares para procesamiento de imágenes ya que aprenden 
automáticamente los filtros necesarios para extracción de patrones [27] [28]. 
De este modo, las CNN aprenden características discriminativas de los datos 
de entrada, presentando invariancia ante la posición, escala y orientación de 
éstas. Esta cualidad las hace idóneas para muchas aplicaciones de 
reconocimiento de patrones en imágenes. 

Este tipo de redes también son utilizadas para extracción de 
características en señales temporales como las proporcionadas por sensores 
portables [29] [30] [31] [32] [33]. Para ello, se suele llevar a cabo una 
representación 2D de dichas señales como si de una imagen se tratara, de 
manera que las coordenadas x e y de dicha representación se asocien a 
índices de pixeles en una imagen [34].  

Existen distintas técnicas con las que transformar los datos de entrada 
para generar una representación 2D de los mismos e introducirlos así a la 
CNN. Como ejemplo, se puede utilizar directamente la señal temporal como 
una representación 2D [31],  apilar todas las señales de los distintos sensores 
y aplicarles la FFT [32] o realizar el cálculo del espectrograma de las señales 
[30] que permite extraer características de la evolución frecuencial a lo largo 
del tiempo. Otra forma menos utilizada para aplicar CNN a señales 
temporales es obtener cada dimensión de un sensor como un canal 
independiente (del mismo modo que se realiza en una imagen RGB) y aplicar 
convolución en 1D a cada canal [18].  

En la Fig. 1.4. se muestra un ejemplo de una CNN utilizada para extraer 
características de un señal de electrocardiograma [35]. Tal y como se ha 

Fig. 1.4.  Extracción de características mediante CNN 
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comentado en el párrafo anterior, se comienza transformando la señal de 
entrada a una representación 2D como una imagen. Después se aplica la 
CNN a esa imagen, consiguiendo a su salida un vector de características 
extraídas de los datos de entrada. Por último, las características son 
introducidas a un clasificador supervisado que realiza el reconocimiento de 
los patrones extraídos y los clasifica en una de las clases etiquetadas. 

Otro tipo de DNN utilizadas para extracción de características 
representativas de los datos de entrada son los Autoencoders. Este tipo de 
DNN va aprendiendo en sus capas ocultas una codificación de los datos de 
entrada mediante la replicación de la entrada en la salida de la red, 
utilizando datos sin etiquetar. Una vez entrenada la red, la codificación 
obtenida en la capa intermedia tiene información suficiente como para 
generar una salida de una clase determinada con la que se ha entrenado. De 
este modo, la capa intermedia del Autoencoder contiene una codificación 
representativa, y generalmente comprimida, del dato introducido a la red. 
Esta codificación es una representación similar al vector de características 
obtenido en las CNN, a partir del cual se puede entrenar al clasificador de 
salida. En la Fig. 1.5 se puede observar la estructura típica que tienen este 
tipo de redes. 

 Clasificación 

Durante la revisión del estado del arte, se han encontrado numerosos 
métodos de clasificación utilizados para RAH. En la Tabla II se muestran los 
clasificadores convencionalmente utilizados en aplicaciones de RAH [8] [9] 
[24], indicando los más usados dentro de cada tipología de clasificadores. 
Como se puede observar se utilizan tanto clasificadores con entrenamiento 
supervisado (k-NN, MLP, o SVM) como no supervisado (k-means o HMM).  

Tradicionalmente las investigaciones optaban en mayor medida por 
métodos de entrenamiento supervisados, ya que las actividades a clasificar 
estaban muy acotadas y no tenían gran complejidad. Sin embargo, para 
obtener un modelo que sea suficientemente generalizador en una aplicación 
real de RAH hace falta una gran cantidad de datos etiquetados para el 
entrenamiento, lo cual es un proceso lento y costoso. Por ello, se está optando 
por clasificadores que utilicen métodos de entrenamiento no supervisado o 
semi-supervisados, ya que es la manera en la que se pueden obtener grandes 

Fig. 1.5.  Estructura de un Autoencoder 
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bases de datos con suficiente información como para obtener un modelo 
general.  

Hoy en día las investigaciones en RAH se están centrando en el uso de 
DNNs para la clasificación de actividades humanas. Esto es debido a que, 
además de llevar a cabo las tareas de clasificación, es un extractor de 
características de los datos de entrada tal y como se ha comentado en la 
sección 1.4.3. Algunos tipos de DNN permiten entrenamiento semi-
supervisado de manera que aprenden características de alto nivel de una 
gran cantidad de datos de entrenamiento no etiquetados, y posteriormente 
aprende a llevar a cabo las labores de clasificación mediante unos pocos 
datos etiquetados. 

En el caso de aplicaciones en las que no se necesite procesamiento en 
tiempo real, lo más común es realizar procesamiento offline, siendo las redes 
neuronales basadas en Deep Learning los clasificadores más utilizados en la 
actualidad, tal y como se ha comentado anteriormente [16] [28]. Las técnicas 
Deep Learning son capaces de ir aprendiendo características de complejidad 
cada vez mayor conforme se va avanzando en sus capas de neuronas, por lo 
que no es necesario diseñar manualmente conjuntos de características 
específicos para la aplicación.  La clasificación la llevan a cabo en sus últimas 
capas una vez se han extraído patrones de alto nivel.  La gran cantidad de 
conexiones entre neuronas que presentan este tipo de redes introduce la 
necesidad de una cantidad muy grande de parámetros a calcular. Para ello es 
necesario el procesamiento de un gran número de datos de entrenamiento lo 
que conlleva un alto coste computacional.  

 Métricas de evaluación 

Existen distintas métricas para evaluar el correcto funcionamiento de los 
sistemas de clasificación desarrollados a partir de los resultados obtenidos. 

TABLA II.   Clasificadores más utilizados en sistemas de RAH 

Tipología de clasificador Clasificador 

Árboles de decisión C4.3 y ID3 

Bayesianos Naïve Bayes y Redes Bayesianas 

Basados en instancias k-nearest neighbors (k-nn), y k-means 

Redes neuronales 

Support Vector Machines (SVM),  

Multilayer Perceptron (MLP) y  

Deep Learning (DNN) 

Lógica difusa 
Fuzzy Basis Function y  

Fuzzy Inference System 

Métodos de regresión 
Multiple Linear Regresion (MLR), 

Alternating Logistic Regressions (ALR) 

Modelos de Markov 
Hidden Markov Models (HMM) y 

Conditional Random Fields (CRF) 

Conjunto de clasificadores Boosting y Bagging 
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Las métricas más habituales son: matrices de confusión, accuracy, recall,          
F-Measure, curvas ROC, e índice Kappa [8] [16].  

En el caso de clasificadores binarios, los cuales distinguen si un elemento 
pertenece a una clase o no, las métricas más representativas son curvas 
ROC, curvas Precision/Recall, y matriz de confusión.  

Para clasificadores multiclase, los cuales distinguen una de entre varias 
clases a su salida, la métrica más utilizada es el índice Kappa. El índice 
Kappa tiene un rango de valores de 0 a 1, siendo un valor superior a 0.7 el 
indicativo de un buen clasificador [36]. La matriz de confusión también 
aporta información relevante para distinguir el tipo de error presente entre 
clases. 

En la Tabla III se muestran distintas investigaciones sobre RAH 
indicando: número de actividades a clasificar, el tipo de sensor utilizado, el 
modo de extracción de características de los datos (automático o manual), los 
distintos clasificadores utilizados, y la mejor precisión obtenida con los 
distintos clasificadores. 

 Organización de la memoria 

El resto del proyecto se organiza de la siguiente manera a lo largo de la 
memoria: 

 

• Capítulo 2: En este capítulo se describe el proceso llevado a cabo para 
la creación de la base de datos. Se comienza explicando el motivo de la 
elección de los sensores utilizados y su configuración para poder recopilar 
los datos deseados desde un ordenador. Posteriormente se describe el 

TABLA III.   Listado de varios resultados de precisión (accuracy) en RAH 

Ref 
Número 

actividades 
Sensores 

Método de 

extracción de 

características 

Clasificador Precisión 

[5] 50 Acc, Giro Autom. CNN 92.14% 

[9] 12 Acc, Giro Manual 
DA, NB, SVM, 

HMM, JB, k-NN 

96% 

(SVM) 

[7] 5 Acc, Giro Manual LCSS y SVM 95% 

[15] 7 Acc, Giro Autom. CNN 99.93% 

[17] 6 Acc, Giro Autom. CNN 98.2% 

[24] 12 Acc Manual 
k-NN, RF, SVM, 

HMM, k-Means 

98.85% 

(k-NN) 

[29] 17 Acc Autom. CNN+LSTM 95.8% 

[31] 6 Acc, Giro Autom. CNN 95.75% 

[33] 18 Acc, Giro 
Autom., 

Manual 

CNN, SVM, INN, 

MV, DBN 

96% 

(CNN) 
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modo de lectura de los datos muestreados y el procesamiento realizado. 
Finalmente se expone el número de muestras que forman la base de 
datos completa, y la separación realizada de la misma en datos de 
entrenamiento y datos de test.  

 

• Capítulo 3: En el que se explicará los dos tipos de redes implementadas 
mediante las librerías de TensorFlow para poder llevar a cabo la 
clasificación de las actividades. La primera red está formada por un 
modelo convolucional que se ha entrenado con datos no etiquetados, y 
que lleva a cabo la extracción de características. La segunda red que 
lleva a cabo la labor de clasificación de las actividades está formada por 
capas fully-connected, utilizando como capa de entrada las salidas 
obtenidas por la primera red ya entrenada. Al final del capítulo se 
explican los tres modelos clasificadores desarrollados con estos dos tipos 
de redes. 

 

• Capítulo 4: Donde se exponen y analizan los resultados obtenidos con 
los distintos modelos clasificadores desarrollados. 

 

• Capítulo 5: Donde se exponen las conclusiones obtenidas en el proyecto, 
y las posibles ampliaciones del trabajo en un futuro. 
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Capítulo 2  

Creación de la base de datos 

 Elección del sensor 

Para recopilar información significativa de las actividades se van a 
utilizar dos nodos sensores, uno colocado en la muñeca del usuario y otro 
colocado en la cintura. La frecuencia de muestreo de éstos ha de ser de 20 Hz 
ya que es una frecuencia suficientemente elevada como para poder captar los 
movimientos realizados por una persona sin conllevar a un consumo elevado 
de la batería del sensor.   

Como ya se había comentado en la sección 1.4.1, los sensores más 
utilizados en reconocimiento de actividades humanas hasta la actualidad 
han sido los acelerómetros y giróscopos, ya que la información que 
proporcionan es suficiente para reconocer un gran número de actividades, y 
presentan un bajo coste.  

 Uno de los factores más importantes a la hora de la elección del sensor es 
el consumo, ya que debido al tipo de aplicación es necesario que la batería del 
sensor tenga una autonomía de varias horas para poder recopilar muchos 
datos durante largos periodos de tiempo.  Por ello es necesario un dispositivo 
que tenga una tecnología inalámbrica de bajo consumo, siendo Bluetooth Low 
Energy (BLE) la más utilizada para las frecuencias con las que trabajan los 
acelerómetros y giróscopos.  

En la Tabla IV se muestran algunas de las opciones encontradas en el 
mercado que cumplen con los requisitos expuestos. De acuerdo con las 
especificaciones comentadas en el párrafo anterior, en este proyecto se ha 
optado por utilizar el dispositivo SensorTag CC2650STK de Texas 

TABLA IV.   Distintos dispositivos portables comparados 

Fabricante Modelo 
Tecnología 

inalámbrica 
Precio 

Texas Instruments CC2650STK Bluetooth Low Energy 25,01 € 

Dialog Semiconductors 
SmartBond 

DA14583 
Bluetooth Low Energy 38,30 € 

mbientlab 
Wristband sensor 

research kit 
Bluetooth Low Energy 83,50€ 
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Instruments.  Esta elección es debida a su reducido precio, a que utiliza la 
tecnología inalámbrica de bajo consumo BLE con la que la batería del 
dispositivo puede llegar a durar de semanas a años dependiendo de la 
frecuencia de envío de datos, y a que es de capaz de reprogramarse mediante 
un debugger para obtener las frecuencias de muestreo deseadas. Además, 
Texas Instruments proporciona una página de soporte a usuarios (TI E2E 
Community), y una plataforma de iniciación para desarrolladores 
(SimpleLink Academy) donde se pueden encontrar distintos tutoriales para 
la comprensión de la tecnología BLE integrada dentro del dispositivo, o 
tutoriales de programación de éste. En la Fig. 2.1 se pueden observar los 
sensores SensorTag junto con las fundas utilizadas para fijarlos a la muñeca 
y a un cinturón.  

 Bluetooth Low Energy en SensorTag CC2650 

Como ya se ha comentado, el Bluetooth Low Energy (BLE) es un protocolo 
de comunicación inalámbrica de bajo consumo que permite comunicar una 
gran variedad de dispositivos. Al estar diseñado para que tenga un consumo 
bajo de energía, es común encontrar este protocolo en la mayoría de los 
dispositivos portables.  

En la Fig. 2.2 se puede observar un esquema de las capas que forman el 
protocolo BLE, obtenido de la guía de diseño BLE de Texas Instruments [37], 
donde se destacan las capas de mayor nivel Generic Access Profile (GAP) y 
Generic Attribute Pofile (GATT). La capa GAP es la encargada de hacer que 
un dispositivo BLE sea visible por el resto para poder realizar la conexión 
entre ellos. La capa GATT es la encargada de la comunicación bidireccional 
entre dos dispositivos de manera que permite la transferencia de información 
entre ambos. 

De esta manera, en una comunicación por BLE los dispositivos pueden 
tener distintos roles en cada una de estas capas. En la capa GAP un 
dispositivo puede tomar la función de dispositivo esclavo cuando éste 
advierte al resto de dispositivos BLE de la posibilidad de establecer una 
conexión con él, o puede tomar la función de dispositivo maestro si es él 
quien efectúa la solicitud de conexión con otros dispositivos esclavos visibles.  
En la capa GATT existen los roles de servidor y cliente dependientes del 

Fig. 2.1.  Imágenes de los SensorTag utilizados y de las fijaciones 
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papel que efectúan en la transmisión de información. El servidor GATT será 
aquel dispositivo que contiene la información que se envía, mientras que el 
cliente GATT es el dispositivo que recibe dicha información. De esta manera, 
tanto un dispositivo maestro como uno esclavo puede tomar el papel de 
servidor o cliente.  

Para poder realizar solicitudes y envío de información o instrucciones 
entre dos dispositivos BLE, la capa GATT dispone de unos recursos 
denominados servicios y características. Las características GATT son los 
valores que se desean leer o escribir sobre un dispositivo, como por ejemplo el 
valor de las medidas del sensor de movimiento. Estas características también 
tienen unos descriptores que indican información acerca de la característica. 
Los servicios GATT son conjuntos de características agrupadas habitual-
mente por bloques funcionales. Como ejemplo, un servicio englobaría la 
característica del valor del sensor de movimiento y otras características para 
la configuración de dicho sensor.  

En la comunicación BLE, el dispositivo que actúa como cliente GATT 
puede solicitar leer el valor de una determinada característica al dispositivo 
servidor de manera que éste se la envíe. Sin embargo, este protocolo también 
permite el envío continuo del valor de una característica cada vez que se 
actualice, sin necesidad de que el cliente GATT haga una solicitud de lectura 
de la característica al servidor. Este tipo de lectura de datos se denomina 
notificaciones y se habilitan por medio de una característica GATT que el 
cliente modifica en el dispositivo servidor. Un ejemplo sería activar las 
notificaciones de un servicio GATT correspondiente a un sensor incorporado 
en un dispositivo servidor para que se envíe automáticamente cada valor 
sensado al cliente GATT al que esté conectado. 

 Tanto los servicios como las características son accesibles mediante un 
identificador único UUID de 128 bits proporcionado por la capa Attribute 
Protocol (ATT). Todas las características y servicios del SensorTag tienen un 
identificador base en el que solo cambian 16 bits entre ellos, siendo éste 
F000XXXX-0451-4000-B000-000000000000, y donde las X representan a los 
16 bits que varían. Además, Texas Instruments proporciona un identificador 
personalizado a cada característica del SensorTag para así poder acceder a 
ellas más fácilmente con las API desarrolladas por ellos. 

Fig. 2.2.  Arquitectura del protocolo Bluetooth Low Energy 
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 Configuración de los sensores 

Como ya se ha comentado, en este proyecto se han utilizado dos sensores 
SensorTag CC2650STK, uno colocado en una muñeca y otro en la cintura. 
Para poder configurar y recopilar los datos muestreados por los dos sensores 
al mismo tiempo desde un ordenador, se ha hecho uso del CC2540 USB 
Dongle de Texas Instruments (Fig. 2.3) que funciona como interfaz entre el 
protocolo Bluetooth Low Energy y un puerto serie. El control de este 
adaptador se lleva a cabo mediante un software proporcionado por Texas 
Instruments llamado BTool.  

Este software permite al dispositivo USB actuar como maestro GAP en la 
comunicación mientras que los SensorTag funcionan como dispositivos 
esclavos. En sistemas con sensores portables, como el de este proyecto, los 
sensores (dispositivos esclavos) actúan como servidores GATT, ya que son los 
que captan la información, mientras que el USB dongle (dispositivo maestro) 
actúa como cliente en la transmisión de datos por BLE, ya que es el que 
capta los datos solicitados al servidor.  

La aplicación BTool permite llevar a cabo distintas acciones en la 
comunicación, como seleccionar los parámetros de conexión deseados, o 
descubrir, leer y escribir características GATT de los dispositivos que actúan 
como servidores. La información acerca de los paquetes de datos recibidos o 
enviados queda almacenada en un Log que se puede guardar como fichero de 
texto.  

 Configuración del sensor de movimiento de los 

SensorTag 

Los SensorTag llevan incorporados un sensor de movimiento MPU9250, el 
cual proporciona información en los tres ejes de acelerómetro, giróscopo y 
magnetómetro. Para configurar dicho sensor, el firmware del SensorTag 
dispone de características GATT para ello. Esto permite que el dispositivo 
maestro pueda habilitar o deshabilitar cada sensor, cambiar el periodo de 
muestreo de estos (con ciertas restricciones), o cambiar el rango de medida 
del acelerómetro. Para ello se pueden configurar las características BLE 
disponibles del SensorTag a través de la aplicación BTool, sin necesidad de 
reprogramarlo con el debugger. 

Fig. 2.3.  Dispositivo CC2540 USB Dongle de Texas Instruments 
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En la Fig. 2.4, obtenida de la guía de usuario del SensorTag [38], se 
pueden observar las características que permiten leer o configurar el sensor 
de movimiento (están agrupadas en un servicio). En ella se indica la UUID 
de las características que forman el servicio del sensor de movimiento, 
marcándolas con un asterisco en caso de que sea una UUID reducida (solo los 
16 bits que cambian). 

Con la aplicación BTool se puede descubrir todas las características GATT 
de los dispositivos servidores conectados al USB dongle (dispositivo cliente). 
Buscando las UUID de la Fig. 2.4 en las características descubiertas, 
podemos obtener cuales son los handles que utiliza Texas Instruments para 
leer o escribir características GATT, tal y como se muestra en la Fig. 2.5. 
También se pueden ver en color rojo y naranja los descriptores del servicio y 
características respectivamente. 

A continuación, se muestra los valores a escribir en las características 
GATT para poder configurar cada SensorTag con un periodo de muestreo de 
50 ms (20 Hz), con notificaciones habilitadas, y con los sensores y rangos 
deseados. 

Configuración del periodo de muestreo 

El firmware incorporado por defecto en el SensorTag permite configurar 
los periodos de muestreo mediante características GATT únicamente en el 
rango de 100 milisegundos (ms) a 2.55 segundos, tal y como indica en la Fig. 
2.4. Puesto que se necesita obtener al menos una frecuencia de muestreo de 
20 Hz (50 ms) ha sido necesario modificar el código original de los SensorTag 
utilizando para ello el debugger DevPack de Texas Instruments [39]. De este 
modo se ha modificado el límite inferior del rango para que se reduzca a      
50 ms, manteniendo la resolución de 10 ms indicada en la Fig. 2.4.  

Fig. 2.4.  Características BLE del servicio del sensor de movimiento 

Fig. 2.5.  Características del sensor de movimiento en BTool 
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Para configurar el periodo de muestreo del sensor de movimiento a 50 ms 
con características GATT, hay que escribir el valor hexadecimal “0x0005” en 
la característica con handle “0x0041”. 

Habilitación de notificaciones 

La habilitación de las notificaciones de las lecturas del sensor de 
movimiento se realiza escribiendo “0x0001” en la característica con handle 
“0x003D” tal y como se muestra en las figuras 2.4 y 2.5. De este modo cada 
vez que se obtenga una muestra se enviará su valor directamente al 
dispositivo cliente GATT.  

Habilitación y configuración del acelerómetro y giróscopo 

En la Fig. 2.6 se muestra de forma más detallada el modo de configuración 
del sensor de movimiento mediante la característica GATT correspondiente. 

Puesto que el sensor de movimiento está compuesto por un acelerómetro, 
un giróscopo, y un magnetómetro, hay que habilitar solo los sensores 
deseados. Tal y como se describe en la Fig. 2.6 se habilita el acelerómetro y 
giróscopo escribiendo un 1 en los 6 bits menos significativos (0 al 5) de la 
característica con handle “0x003F”. El magnetómetro se deja inhabilitado 
escribiendo un 0 en el bit 6 del registro de la característica. 

La elección del rango del acelerómetro se realiza mediante los bits 8 y 9 
del valor de la característica de configuración. Puesto que la aplicación es 
para detección de actividades humanas que pueden conllevar aceleraciones 
altas, se escoge la escala más alta de 16 G. De este modo, se escribirá sobre 
la característica GATT con handle “0x003F” el valor “0x033F” para habilitar 
los sensores deseados, y seleccionar el rango del sensor indicado.  

Como se puede observar, el código original en el SensorTag no permite 
modificar el rango del giróscopo mediante características GATT. Su valor 
está configurado por defecto en ± 250 𝑑𝑒𝑔/𝑠 tal y como se describe en la guía 
de usuario del SensorTag [38]. Debido a que este rango tiene límites 
demasiado bajos para los valores que se alcanzarán en el desempeño de 
actividades humanas, los datos obtenidos saturarían en caso de dejar 
configurado ese rango del sensor. 

Buscando en el registro 27 del datasheet del sensor de movimiento 
MPU9250 [40], se puede comprobar como el rango del giróscopo puede 
configurarse con los valores de ±250, ±500, ±1000, 𝑦 ± 2000 𝑑𝑒𝑔/𝑠 . Para 

Fig. 2.6.  Uso de característica de configuración del sensor de movimiento 
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configurarlo, se modifica el código del SensorTag para que se escale el rango 
del giróscopo a ±2000 𝑑𝑒𝑔/𝑠 mediante las librerías que dispone para escribir 
sobre los registros del MPU9250. 

 Lectura y procesamiento de datos 

 Lectura de los datos obtenidos en el Log 

Tras conectar los dos SensorTag al dispositivo USB dongle mediante la 
aplicación BTool, y configurarlos según se ha descrito en el apartado 
anterior, se reciben las notificaciones de los datos muestreados por los dos 
SensorTag y se almacenan en formato de Log, tal y como se observa en la 
Fig. 2.7. Como se puede apreciar en la figura, cada mensaje recibido en el 
Log viene con: 

• El timestamp en el que se ha recibido. 

• El handle de conexión que indica la identificación del esclavo del que se 
ha recibido el mensaje. 

• El handle de la característica que corresponde con la que se indicaba en 
las figuras 2.4 y 2.5 como la que contiene los datos del sensor. 

• El valor de dicha característica el cual contiene los valores de cada eje de 
acelerómetro y giróscopo en formato hexadecimal little-endian de 16 bits, 
tal y como indicaba la Fig. 2.4. 

Una vez guardado en fichero de texto el Log obtenido durante el 
desempeño de actividades, se crea una tabla con todos los datos recibidos 
mediante el tratamiento del fichero en Matlab con un programa creado para 
dicha tarea.  

Este programa introduce en cada fila de una tabla los datos correspon-
dientes a las medidas seguidas de los dos SensorTag. Es decir, aunque las 
medidas tomadas por los dos SensorTag no pueden ser sincronizadas, como el 

Fig. 2.7.  Ejemplo de datos enviados por los sensores, en el Log de BTool 
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tiempo que hay entre ellas es de unos 10 ms se asume que se han tomado al 
mismo tiempo. De este modo, en cada medida registrada en la base de datos 
habrá 12 valores correspondientes a los 3 ejes del acelerómetro y 3 ejes de 
giróscopo de los dos SensorTag. Antes de introducirlos en la tabla los datos, 
hay que convertirlos de hexadecimal de 16 bits a las unidades deseadas. 
Como ejemplo, se muestra la transformación de los datos del acelerómetro a 
unidades de G en la Fig. 2.8. 

En caso de que en el fichero se encuentren dos medidas seguidas del 
mismo SensorTag (indicado por su handle de conexión), se asume la pérdida 
del dato de uno de los sensores, y se realiza una interpolación de los datos 
anterior y siguiente al valor perdido para aproximar el valor real.  

Para cada medida de los sensores introducida en la tabla, se le introduce 
la etiqueta de la actividad realizada. De este modo se podrán aplicar 
posteriormente las técnicas de machine learning con las que obtener un 
modelo clasificador de las actividades etiquetadas. También se introduce la 
etiqueta del usuario que ha realizado la actividad para así poder comprobar 
de qué sujeto es la medida tomada, o comprobar si el modelo generaliza bien 
para todos los usuarios. 

 Una vez obtenidos todos los datos del Log en una tabla, se transforma a 
formato csv para que sea fácilmente leíble por las librerías de cualquier 
lenguaje. En este caso, se utilizan las librerías de Pandas en Python para 
leer estos archivos con extensión csv. De este modo se crea una base de datos 
raw data con las medidas de los sensores recopiladas durante el desempeño 
de todas las actividades por cada usuario.  

La base de datos creada está formada por un pequeño conjunto de datos 
etiquetados, y una gran cantidad de datos sin etiquetar. El conjunto de datos 
no etiquetados se utilizará para realizar aprendizaje no supervisado con el 
que se consigue que el conjunto de datos etiquetados sea mucho menor. Los 
datos no etiquetados han sido recopilados durante periodos de una hora por 
sujeto, en los cuales se han llevado a cabo actividades aleatorias, o similares 
a las del conjunto de datos etiquetados. Los datos etiquetados constan de 7 
actividades cotidianas y 4 golpes de tenis. El tiempo de recopilación de datos 
de cada una de las actividades etiquetadas ha sido de 5 minutos por sujeto. 

Cada actividad está realizada por 8 sujetos distintos que presentan 
variabilidad en sus dimensiones físicas, peso, y sexo, tal y como se observa en 
la Tabla V. Las distintas características de los sujetos nos ayudarán a 
comprobar la robustez del modelo. 

Fig. 2.8.  Transformación de unidades de los datos del acelerómetro 
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 Procesamiento de los datos 

Para conseguir llevar a cabo el objetivo de este proyecto el cual implica 
obtener un modelo clasificador de actividades general para cualquier 
usuario, se ha llevado a cabo el procesamiento y segmentación de los datos de 
los sensores mediante el cálculo de los espectrogramas de la señal. 

Al tratar con espectrogramas en lugar de los datos en crudo de los 
sensores como entrada a un clasificador, se pretende conseguir que las 
diferencias en las características de cada usuario (edad, peso, altura, 
longitud de extremidades, fuerza…) no tengan influencia sobre los resultados 
obtenidos. Esto es debido a que, aunque distintos usuarios realicen una 
misma actividad a distintas frecuencias, la forma de la evolución temporal de 
las frecuencias observada en los espectrogramas será la misma durante el 
desempeño de la actividad. Es decir, el clasificador será capaz de distinguir 
las formas características de los espectrogramas de una actividad 
determinada independientemente de si está desplazada/estirada en 
frecuencias o en tiempo. En la Fig. 2.9 se observa un ejemplo del 
espectrograma obtenido por dos sujetos distintos corriendo. Como se puede 
comprobar, ambos presentan formas similares aunque las magnitudes de la 
potencia registradas por un sujeto sean mayores que las del otro. 

Fig. 2.9.  Ejemplos de espectrograma de actividad “correr” realizada por dos 

usuarios de distinto sexo y altura 

TABLA V.   Características de los sujetos que realizan la base de datos 

Sujeto Sexo Edad Altura (m) Peso (kg) Lateralidad 

1 M 23 1,74 73 Diestro 

2 M 24 1,90 80 Diestro 

3 M 21 1,82 76 Diestro 

4 M 30 1,68 70 Diestro 

5 F 23 1,60 65 Zurdo 

6 F 27 1,64 59 Diestro 

7 F 23 1,59 57 Diestro 

8 F 19 1,69 62 Diestro 
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La segmentación de la señal necesaria para el cálculo de los 
espectrogramas se lleva a cabo mediante una ventana deslizante a lo largo 
de todas las señales. Hay que tener en cuenta que la señal a segmentar ha de 
ser de una única actividad realizada por un usuario, ya que si no fuera así, 
no se podría asignar una etiqueta de actividad al espectrograma. De este 
modo, se realiza la segmentación en paralelo de las 12 señales provenientes 
de cada eje de los sensores, con los siguientes parámetros de las ventanas 
deslizantes: 

• La longitud de cada ventana es de 20 muestras, lo cual corresponde a 1 
segundo de recopilación de datos (con la frecuencia de muestreo de 20 
Hz). 

• La superposición entre ventanas es del 90% (18 muestras superpuestas) 

• En las ventanas se utiliza el enventanado de Hann para evitar que la 
transformada de Fourier discreta calculada en cada ventana del 
espectrograma tenga en cuenta las discontinuidades producidas en los 
bordes de la ventana (aliasing). 

Teniendo en cuenta las características seleccionadas de la segmentación 
de las señales, se seleccionan los siguientes parámetros para el cálculo de los 
espectrogramas: 

• El número de muestras de la señal que abarca un espectrograma son 40, 
que es el equivalente a 2 segundos de recopilación de datos de los 
sensores.  

• La superposición de las muestras tomadas para calcular un espectro-
grama respecto del anterior es del 90% (36 muestras superpuestas) 

• La resolución frecuencial de la transformada de Fourier calculada para 
cada ventana está fijada en la mitad de la frecuencia de muestreo de los 
sensores (10 Hz) para así cumplir con el teorema de Nyquist. De este 
modo, se calculan 11 valores de la transformada de Fourier discreta, 
contando con el valor calculado para 0 Hz. 

• La resolución temporal es igual al número de ventanas obtenidas, que 
depende de los parámetros escogidos: número de muestras por 
espectrograma, número de muestras por ventana, y superposición entre 
ventanas. En este caso el número de ventanas es igual a 11. 

 Con la selección de los parámetros descritos se obtienen espectrogramas 
de dimensión 11x11. En la Fig. 2.9 se muestran dos ejemplos de los 
espectrogramas obtenidos, visualizándolos en dos dimensiones, donde la 
tercera dimensión representada en tono de grises corresponde a la magnitud 
calculada en la transformada de Fourier discreta. En dicha representación 
cada “pixel” del espectrograma es el promedio de dos datos contiguos (por lo 
que se ha representado como imágenes 10x10). 
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 Base de datos 

 Base de datos completa 

En la Tabla VI se refleja el número de muestras que hay por cada eje de 
sensor en la base de datos completa. En la tabla se encuentra información 
tanto del número de muestras raw data recopiladas por cada eje de los 
sensores, como del número de espectrogramas obtenidos a partir de esos 
datos. Se ha representado el número de datos por eje, ya que cada uno de los 
12 ejes (3 acelerómetro y 3 giróscopo de cada SensorTag) corresponde a la 
medida en un mismo instante temporal, por lo que luego se introducirán 
conjuntamente al modelo clasificador.  

 Separación de la base de datos etiquetados 

Con el fin de poder evaluar el modelo clasificador desarrollado con datos 
que no hayan sido aprendidos por el mismo, se realiza una separación de la 
base de datos de espectrogramas de las actividades etiquetadas. De este 
modo, se ha obtenido el conjunto para entrenamiento y el conjunto para test. 
Puesto que en este proyecto uno de los objetivos principales es conseguir 
obtener un modelo robusto ante la variabilidad de los posibles sujetos que 
realicen las actividades, se han extraído dos conjuntos de test distintos.  

TABLA VI.   Nº de muestras de base de datos completa por cada eje de sensor.  

Actividad 
Nº muestras RawData    

por eje 
Nº espectrogramas por eje 

No etiquetada 577.097 144.201 

Andar 49.791 12.373 

Correr 42.679 10.605 

Saltar 48.387 12.022 

Agacharse/Incorporarse 48702 12.100 

Estar de pie 49.845 12.386 

Estar sentado 50.847 12.637 

Sentarse/Levantarse 48.654 12.089 

Golpe Drive 30.085 7.475 

Golpe Revés 30.203 7.504 

Golpe Mate 30.261 7.518 

Golpe Globo 30.135 7.488 

 1.036.686 258.398 
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En el primer conjunto de test se coge una parte de los datos de 7 de los 8 
usuarios que han realizado las actividades. Para ello, por cada usuario se 
extraen los 10 segundos de recopilación de datos que están situados en medio 
de la secuencia temporal de cada actividad. Estos 10 segundos son 
correspondientes a 200 muestras raw data con las que se extraen 41 
espectrogramas por actividad de cada usuario (teniendo en cuenta la 
superposición entre espectrogramas indicada en la sección 2.3.2). De este 
modo, se obtiene un conjunto de test de datos no vistos durante el 
entrenamiento, pero que pertenecen a las mismas personas que recopilaron 
los datos de entrenamiento. 

El segundo conjunto de test está formado por todos los datos recopilados 
de cada actividad por el usuario que no había sido contemplado en el 
conjunto los conjuntos de entrenamiento y test en el caso anterior. De este 
modo, se obtienen unos datos que no han sido vistos durante el 
entrenamiento, ni han sido recopilados por la misma persona que realizó el 
conjunto de datos de entrenamiento. Con este conjunto se comprueba cual 
sería la eficacia del modelo desarrollado en una situación real, de manera 
que se observará su capacidad generalizadora. El usuario seleccionado ha 
sido el usuario 1 de la Tabla V ya que como se puede observar sería el 
usuario medio de entre los que han recopilado los datos.  Al utilizar el 
usuario intermedio se pretende que los resultados obtenidos sean referentes 
a los que se obtendrían con la mayoría de las personas en una aplicación 
real. 

En la Tabla VII se ha reflejado número de espectrogramas que contiene el 
conjunto de entrenamiento y los dos conjuntos de test. 

TABLA VII.   Nº de espectrogramas de cada separación realizada de la base de 

datos etiquetada completa 

Actividad 
Nº de datos de 

entrenamiento 

Nº de datos de test 

de usuarios ya 

vistos por el modelo 

Nº de datos de test 

de usuario no visto 

por el modelo 

Andar 10.552 287 1.534 

Correr 8.807 246 1.552 

Saltar 10.300 287 1.435 

Agacharse/Incorporarse 10.272 287 1.541 

Estar de pie 10.573 287 1.526 

Estar sentado 10.772 287 1.578 

Sentarse/Levantarse 10.307 287 1.495 

Golpe Drive 5.802 164 1.509 

Golpe Revés 5.832 164 1.508 

Golpe Mate 5.834 164 1.520 

Golpe Globo 5.823 164 1.501 

 94.874 2.624 16.699 
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Capítulo 3  

Modelo clasificador 

Para llevar a cabo la clasificación de las actividades deseadas con la 
información proporcionada por los espectrogramas, se han implementado 
modelos clasificadores con aprendizaje semi-supervisado.  

 Este tipo de aprendizaje es muy útil ya que permite que un modelo 
aprenda características representativas de un conjunto de datos no 
etiquetados, y luego las utilice para aprender a clasificar datos del mismo 
tipo que sí están etiquetados. De esta manera se consigue reducir considera-
blemente la cantidad de datos etiquetados necesaria, utilizando en su lugar 
una gran cantidad de datos no etiquetados los cuales conllevan mucho menor 
esfuerzo de recopilación.  

Como se ha comentado, el aprendizaje semi-supervisado consta de dos 
fases. En la primera fase, se construye un modelo de aprendizaje no 
supervisado que sea capaz de aprender características representativas de los 
datos no etiquetados. Es conveniente que estos datos no etiquetados sean del 
mismo tipo que los etiquetados para que las características aprendidas sean 
representativas de los datos que se quieren clasificar. En la segunda fase, se 
utiliza el modelo entrenado en la primera fase para obtener las 
características aprendidas sobre los datos etiquetados, de manera que con 
ellas se entrene un modelo clasificador de manera supervisada. 

Como modelo de aprendizaje no supervisado se ha seleccionado el 
Autoencoder convolucional. Una vez entrenado el Autoencoder utilizando 
indistintamente los espectrogramas de cualquier sensor y actividad, se 
utilizarán las primeras capas entrenadas (encoder) para codificar cada una 
de las 12 señales provenientes de los dos sensores. Concatenando las 12 
codificaciones de los sensores se dispone de la información de entrada a un 
perceptrón multicapa (MLP). El MLP será entrenado de manera supervisada 
para llevar a cabo las clasificaciones de las actividades etiquetadas. 

 Autoencoder convolucional 

Los Autoencoders son un tipo de red neuronal artificial capaces de 
aprender representaciones eficientes de los datos de entrada, llamadas 
codificaciones, sin utilizar datos etiquetados. Por ello, estas redes pueden 
usarse como potentes extractores de características de los datos de entrada 
[41].  
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Este tipo de redes se entrenan aprendiendo a replicar sus entradas en sus 
salidas. La clave de su funcionamiento es que los datos de entrada se 
comprimen en las primeras capas ocultas (antes de la capa de intermedia) 
para volverse a descomprimir en las ultimas capas ocultas hasta su salida 
(después de la capa intermedia). De esta manera se suele decir que los 
Autoencoders están compuestos por una primera parte llamada encoder, y 
una segunda parte llamada decoder. En caso de que el autoencoder tenga 
más de una capa oculta, se le suele denominar Stacked Autoencoder o Deep 
Autoencoder. En la Fig. 1.5 del capítulo 1 puede observarse la estructura que 
presentan este tipo de redes.  

Una vez entrenado el Autoencoder, se puede utilizar la parte encoder como 
extractor de características para alimentar al MLP (capas fully-connected) 
entrenado con datos etiquetados de clasificación. 

En este proyecto se ha utilizado una variante de este tipo de redes, la cual 
se llama Autoencoder convolucional. Su estructura es la misma que el 
Autoencoder, pero cambiando las capas fully-connected (como las mostradas 
en la Fig. 1.5) por capas convolucionales. De esta manera, tratando los 
espectrogramas como imágenes, se consigue que las características 
encontradas en ellos sean reconocibles independientemente de la escala y 
posición de las mismas. Gracias a esta invariancia, es posible conseguir que 
el modelo generalice a cualquier usuario que realice las actividades, ya que 
no importará si las formas obtenidas en los espectrogramas están 
desplazadas/estiradas en frecuencia o tiempo, tal y como se ha comentado en 
la sección 2.3.2.  

En la Fig. 3.1 [42] se muestra un ejemplo de la estructura típica de un 
Autoencoder convolucional. Tras cada capa convolucional de la parte encoder 
de la red se van obteniendo mapas de características de mayor nivel de 
abstracción. En la parte decoder de la red se aplican capas deconvolucionales 
para así intentar reconstruir los datos de entrada a partir de los mapas de 
características obtenidos.  

Para el entrenamiento del Autoencoder se utilizarán los espectrogramas 
obtenidos con los datos no etiquetados. Tal y como se ha comentado al final 
de la sección 2.3.1, el conjunto de datos no etiquetados está formado por 
144.201 espectrogramas. Dado que se entrena un único autoencoder con 
todos los espectrogramas indistintamente de la señal de la que procedan, se 

Fig. 3.1.  Estructura de un Autoencoder convolucional 
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consigue configurar un módulo codificador universal de la señal que será 
replicado para las 12 señales. 

 Parámetros de diseño de la arquitectura 

El Autoencoder convolucional construido para llevar a cabo la extracción 
de características de los espectrogramas está formado por tres capas 
convolucionales y tres capas deconvolucionales, tal y como se ha 
representado en la Fig. 3.2.  

Los filtros (o kernels de convolución) de cada una de las capas 
convolucionales son de 2x2. Estos filtros son los pesos que se irán ajustando 
durante el entrenamiento para llevar a cabo el reconocimiento de patrones de 
los espectrogramas. Cada mapa de características de una capa convolucional 
comparte los mismos pesos de conexión a lo largo de todo el mapa (utiliza el 
mismo filtro a lo largo de toda la imagen de entrada de la capa). Este filtro es 
desplazado a lo largo y ancho de la imagen hasta convolucionarla 
completamente. Este valor de desplazamiento se denomina stride y suele ser 
igual para ambas direcciones de desplazamiento. 

Debido a la baja dimensionalidad de los espectrogramas (11x11) no se 
utilizan capas de pooling, ya que introducirían una fuerte pérdida de 
información. Las capas de pooling se diseñan para reducir considera-
blemente la dimensionalidad de la respuesta de salida de la capa 
convolucional, pero se aplican principalmente en imágenes con mucha más 
resolución. En su lugar, se va reduciendo la dimensionalidad de los mapas de 
características obtenidos aplicando strides (con valor mayor que uno) del 
filtro aplicado sobre la entrada de la capa. Tal y como se observa en la Fig. 
3.2, en las capas Conv1, Conv2, Deconv2 y Deconv3 se ha utilizado stride de 
dos por lo que la dimensión de los mapas de características se reduce a la 
mitad en el caso de la convolución, y se duplica en el caso de la 
deconvolución. Las capas Conv3 y Deconv1 tienen un stride de 1 por lo que 
no se modifica la dimensión de los mapas de características obtenidos. El 
número de mapas (equivalentes a canales de color filtrado) que se obtienen 
en cada capa se ha representado en la Fig. 3.2 como la tercera dimensión de 
las capas.  

Como función de activación de las capas convolucionales se escoge una de 
las funciones no saturables, siendo la función de activación ELU 
(Exponential Linear Unit) la que mejores resultados suele dar  [41]. 

Fig. 3.2.  Arquitectura del Autoencoder convolucional utilizado 
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Los pesos de los mapas de características de cada capa convolucional son 
inicializados según la estrategia de inicialización He initialization ya que es 
la que mejor suele funcionar con la función de activación ELU [41]. 

La función de coste utilizada es el error cuadrático medio (Mean Squared 
error, MSE), calculado mediante la diferencia entre la entrada introducida 
que queremos replicar y la reconstrucción obtenida a la salida de la red.  

El algoritmo de entrenamiento utilizado para ajustar los pesos de la red es 
el descenso por el gradiente junto con la técnica de optimización Adam, ya 
que esta técnica acelera el entrenamiento de la red al ser mucho más rápido 
que el descenso por el gradiente habitual [41].  

 Parámetros del entrenamiento  

Para entrenar el modelo con el algoritmo de entrenamiento indicado 
anteriormente, se ha seleccionado un factor de entrenamiento de 0.0001 con 
el cual el algoritmo llega a converger en un número de ciclos (epochs) 
razonable.  

Para mejorar los resultados obtenidos, y acelerar el entrenamiento, se ha 
realizado entrenamiento por mini-batch, de manera que el conjunto de datos 
de entrenamiento se ha ido introduciendo a la red por lotes, en vez de todo el 
conjunto al mismo tiempo. Cada vez que se introduce un lote a la red, se 
calcula el error obtenido y se ajustan sus pesos con el error promedio 
obtenido del lote. De este modo, el descenso por el gradiente es más eficiente 
al ir calculando el gradiente poco a poco, sin excesivas oscilaciones. El 
tamaño de los lotes seleccionado ha sido de 96 espectrogramas (8 de cada uno 
de los 12 ejes de los sensores).  

Antes de introducir cada lote de datos a la capa de entrada de la red, se 
normalizan con la media y desviación estándar de todos los datos de 
entrenamiento. De este modo se consigue centrar la distribución de los datos 
de entrenamiento con lo que el modelo aprende las escala óptima y media de 
las entradas introducidas a la capa de entrada. Este proceso mejora los 
resultados obtenidos, y consigue que el modelo sea menos sensible a la 
inicialización de los pesos. 

El número de ciclos ejecutados durante el entrenamiento es de 100, ya que 
es el valor a partir del cual el error MSE obtenido deja de mejorar y alcanza 
una zona plana.  

 Perceptrón multicapa MLP 

Tras entrenar el Autoencoder de manera no supervisada, se consigue 
obtener un extractor de características de los datos de entrada utilizando sus 
capas convolucionales (representadas en azul en la Fig. 3.2). Este extractor 
es replicado doce veces (una por eje de sensor), de manera que las 
características obtenidas de cada uno de ellos son introducidas 
conjuntamente a un clasificador supervisado.  
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El clasificador utilizado es el MLP. No es de interés la aplicación de 
clasificadores Deep ya que su uso está pensado para llevar a cabo tanto la 
labor de extracción de características como de clasificación. En nuestro caso, 
la extracción de características se ha conseguido utilizando un modelo 
entrenado de manera no supervisada, por lo que un simple MLP es capaz de 
aprender a realizar la clasificación de las actividades con mucha menos 
cantidad de parámetros a calcular. 

De esta manera, la arquitectura completa de los modelos clasificadores 
utilizados en este proyecto es la mostrada en la Fig. 3.3. De cada 
espectrograma proveniente de uno de los doce ejes de sensores se obtienen 
774 características. Al concatenar las características obtenidas de los doce 
ejes se obtiene un vector de 9288 características, de manera que ese es el 
número de neuronas que presenta la capa de entrada del MLP. De este 
modo, cada instancia de entrada al clasificador contendrá información de los 
doce ejes de los SensorTag tomada en un mismo instante temporal.  

En este proyecto se han desarrollado tres modelos clasificadores diferentes 
que llevan a cabo funcionalidades distintas. A continuación, se resume la 
finalidad de cada uno de ellos, y se explicará más ampliamente en las 
siguientes secciones: 

• Clasificador de actividades cotidianas: con el que se clasifican cada 
una de las 7 actividades cotidianas realizadas en la base de datos. 

• Filtro de golpes de tenis: mediante el cual se clasifica si un dato de 
entrada es alguno de los golpes de tenis llevados a cabo en la base de 
datos, o si es cualquier otro movimiento posible. 

• Clasificador de golpes de tenis: con el que se utilizan los datos 
filtrados como golpes de tenis por el anterior modelo para clasificarlos en 
alguno de los golpes de tenis recopilados en la base de datos.  

 

Fig. 3.3.  Arquitectura del modelo clasificador completo 
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 Modelo clasificador de actividades 

cotidianas 

En un primer paso se ha desarrollado un modelo con el que poder 
clasificar los datos en una de las siguientes 7 actividades cotidianas: andar, 
correr, saltar, agacharse/incorporarse, estar de pie, estar sentado, y 
sentarse/levantarse. La finalidad de este modelo es el poder comparar los 
resultados obtenidos con los observados en el estado del arte en la sección 
1.4.5, los cuales presentaban clases similares. Las actividades a clasificar 
han sido seleccionadas de manera que sean algún tipo de actividad que se 
podría llevar a cabo en una pista de tenis, ya sea entre golpes de tenis o en 
un descanso. De este modo, los datos de esas actividades también son útiles a 
la hora de entrenar el modelo que actúa como filtro de golpes de tenis. 

Tal y como se ha comentado, el MLP tendrá tantas neuronas en la capa de 
entrada como características obtenidas, es decir, 9288 neuronas. La capa de 
salida tendrá 7 neuronas ya que es el número de actividades que se desea 
clasificar, siendo la clase predicha aquella cuya neurona presente mayor 
valor a su salida. La estimación del número de neuronas ocultas es explicada 
en la sección 3.3.2.  

 Parámetros de diseño y de entrenamiento  

Los pesos de las conexiones de la red son inicializados mediante la técnica 
de He initialization. 

Tanto la capa de entrada, como la capa oculta de la red, están formadas 
por neuronas a las que se le aplica la función de activación ELU. En la Fig. 
3.4 se muestra un ejemplo de estas neuronas, donde cada neurona está 
formada realmente por la operación de multiplicación de pesos por las 
entradas y la suma del umbral (bias), más la aplicación de la función de 
activación ELU. 

La capa de salida de la red está formada por neuronas a las que se le 
aplica la función de activación Softmax, con la cual se obtiene en cada 
neurona de salida la probabilidad de que el dato de entrada pertenezca a esa 
clase.   

La función de coste utilizada es la entropía cruzada (Cross Entropy) ya que 
acelera el tiempo de convergencia al penalizar al modelo cuando obtiene una 
probabilidad baja para la clase objetivo. El algoritmo de entrenamiento 
utilizado es el descenso por el gradiente junto con la técnica de optimización 
Adam. El factor de entrenamiento utilizado es de 0.0001.   

Fig. 3.4.  Neuronas de capa de entrada y capa oculta 
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Para mejorar los resultados obtenidos, y acelerar el entrenamiento, se ha 
realizado entrenamiento por mini-batch. Antes de introducir cada lote de 
datos a la capa de entrada de la red, se normalizan con la media y desviación 
estándar de todos los datos de entrenamiento. 

El número de ciclos ejecutados durante el entrenamiento es de 120, ya que 
es el valor a partir del cual la precisión obtenida con el conjunto de 
validación deja de mejorar y alcanza una zona plana, tal y como se muestra 
en la Fig. 3.5.  

 Comparación de arquitecturas del clasificador 

La precisión obtenida en la red depende de la arquitectura escogida para 
la capa oculta. Variando el número de neuronas ocultas se puede aumentar o 
reducir la precisión obtenida. En caso de escoger menos neuronas de las 
necesarias para separar las distribuciones de datos de distintas clases, las 
clasificaciones erróneas aumentarán. En caso de seleccionar demasiadas 
neuronas ocultas, aumentamos considerablemente el número de parámetros 
a calcular en la red, y se aumenta el riesgo de sobreajustar la red a los datos 
de entrenamiento. 

Para la comparación de distintas arquitecturas, se ha llevado a cabo el 
entrenamiento de arquitecturas con distinto número de neuronas ocultas y 
se ha validado cada uno mediante 10 validaciones cruzadas. De este modo se 
consigue una mayor fiabilidad de los resultados obtenidos por cada 
arquitectura que si usáramos un solo conjunto de validación, ya que evitamos 
que la representatividad de los datos seleccionados para validación influya 
en la precisión obtenida.  

En la Fig. 3.6 se puede observar una gráfica con las distribuciones de 
precisión obtenidas para cada una de las arquitecturas en las 10 validaciones 
cruzadas. Como se puede observar, la red que mejor resultados presenta es la 
de 35 neuronas ocultas ya que es la que menor dispersión de precisiones 
obtenidas presenta (con lo que su comportamiento es más fiable) con una 
precisión obtenida aceptable. Las arquitecturas con mayor número de 
neuronas ocultas no presentan un aumento significativo de la precisión 
obtenida, pero aumentan fuertemente el número de parámetros de la red, 
por lo que no son de interés debido a su mayor tendencia a sobreajustarse. 

 

Fig. 3.5.  Ejemplo de curva de precisión durante entrenamiento de red 
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 Modelo filtrador de golpes de tenis 

Con el fin de mejorar los resultados obtenidos en el clasificador de golpes 
de tenis final, se ha implementado previamente un modelo que filtra los 
datos que son golpes de tenis de los que no. De este modo, se consigue 
descartar la mayoría de los datos no pertenecientes a ninguna de las clases 
de golpes de tenis entrenadas, introduciendo al clasificador de golpes de tenis 
únicamente los datos que hayan sido clasificados positivamente por este 
modelo. 

La capa de entrada del clasificador es de 9288 neuronas. En este modelo la 
capa de salida está formada por una única neurona binaria, de modo que el 
valor de salida será cercano a uno cuando el dato de entrada pertenezca a 
uno de los golpes de tenis, y un cero en caso de que sea cualquier otro tipo de 
actividad. Para seleccionar qué datos tienen un valor suficientemente 
cercano a 1 como para indicarlo como golpe de tenis, se establece un valor 
umbral como parámetro de diseño con el cual se puede modificar los 
resultados de precisión y recall obtenidos. 

En este caso no se realiza comparación de distintas arquitecturas variando 
el número de neuronas ocultas ya que, como se verá en la sección 4.2, las 
precisiones de clasificación obtenidas utilizando la arquitectura sin capa 
oculta son muy altas. Esto significa que añadir neuronas ocultas no 
mejoraría los resultados, sino que solo aumentaría el número de parámetros 
de la red. 

 Parámetros de diseño y de entrenamiento  

Los pesos de las conexiones de la red son inicializados mediante la técnica 
de He initialization. 

La función de activación de la capa de entrada es la función ELU. En el 
caso de la neurona de salida se utiliza la función de activación sigmoidea, de 
manera que la salida de la neurona nos dará un valor entre 0 y 1 

Fig. 3.6.  Comparación arquitecturas modelo clasificador de actividades cotidianas 
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correspondiente con la probabilidad de pertenencia a uno de los golpes de 
tenis. 

La función de coste escogida es la entropía cruzada. Para el entrenamiento 
de la red se ha utilizado el descenso por el gradiente junto con el optimizador 
Adam, con un factor de entrenamiento de 0.0001. 

Se aplica entrenamiento por mini-batch, y se realiza la normalización de 
los datos de entrada mediante el cálculo de la media y desviación estándar de 
todo el conjunto de entrenamiento. El número de ciclos de entrenamiento 
realizados es 35.   

Para la selección de un valor de umbral correcto para la clasificación 
binaria de los golpes de tenis, se ha obtenido la curva Precision/Recall (PR) y 
la curva ROC (Fig. 3.7) con las salidas obtenidas al introducir los datos de 
entrenamiento. Observando la curva ROC se pone de manifiesto el buen 
funcionamiento del clasificador entrenado, ya que el área bajo la curva es 
prácticamente la unidad. Al observar la curva PR se identifica que con un 
valor umbral de 0.5 se consigue un valor similar en precisión y Recall. Sin 
embargo, para este modelo es preferible que todos los datos pertenecientes a 
golpes de tenis sean clasificados como tal, por lo que se da más importancia a 
obtener mayor valor de Recall. De este modo, se escoge un valor umbral de 
0.4 con el que se obtiene un Recall del 99.2%.  

Aunque con este valor umbral la tasa de falsos positivos no sea cero, el 
modelo clasificador de golpes de tenis también será capaz de desecharlos tal 
y como se verá a continuación.   

 Modelo clasificador de golpes de tenis 

El último modelo clasificador desarrollado con el cual se lleva a cabo el 
objetivo final de este proyecto es un modelo que se capaz de clasificar 
distintos tipos de golpes de tenis. En este caso, se han recopilado datos de 4 
golpes distintos de tenis: drive, revés, mate, y globo. Sin embargo, se podrían 
introducir nuevos golpes en la base de datos con los que entrenar el modelo. 

Fig. 3.7.  Curva Precision/Recall y curva ROC de filtro de golpes de tenis 
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La clasificación final de un dato en uno de los golpes de tenis o en la clase 
de rechazo (no tenis) se llevará a cabo mediante el uso de este modelo junto 
con el modelo filtrador. En la Fig. 3.8 se puede observar el diagrama de flujo 
del funcionamiento del sistema completo. De esta manera, los datos de 
entrada a este clasificador serán aquellos que ya hayan sido filtrados como 
golpes de tenis. 

Al igual que los otros modelos, la capa de entrada del MLP clasificador de 
golpes de tenis está formada por 9288 neuronas de entrada. La capa de 
salida está formada por 5 neuronas (4 para las clases de golpes de tenis, y 
una para la clase de rechazo). De esta manera se entrena el modelo con la 
base de datos completa indicando la etiqueta 1 en la clase de rechazo en caso 
de no ser ninguno de los golpes de tenis. De este modo, el modelo aprenderá a 
separar las distribuciones de datos de golpes de tenis de los datos que no lo 
son, de manera que cualquier otra posible actividad realizada durante un 
partido de tenis, y que no haya sido clasificada correctamente por el filtro, 
será indicada como clase de rechazo (no golpe tenis). Al igual que en el 
clasificador de actividades cotidianas, se realiza una comparación de 
distintas arquitecturas variando el número de neuronas ocultas. 

 Parámetros de diseño y de entrenamiento  

Los pesos de las conexiones de la red son inicializados mediante la técnica 
de He initialization. 

Tanto la capa de entrada, como la capa oculta de la red, están formadas 
por neuronas a las que se le aplica la función de activación ELU.  

En las neuronas de salida se utiliza la función de activación sigmoidea, 
obteniendo en la salida de las neuronas un valor entre 0 y 1 correspondiente 
con la probabilidad de pertenencia a la clase correspondiente a cada neurona. 
Estas probabilidades de salida son independientes (no es como la función 
Softmax) de manera que te indica la probabilidad individual de pertenecer a 
esa clase.  

De este modo como etiqueta predicha se seleccionará aquella neurona que 
presente mayor valor a su salida de entre las demás, siempre y cuando este 
valor supere un determinado valor umbral (Fig. 3.9).  En caso de una clase 
sea seleccionada como la de mayor probabilidad, pero no supere el valor 

Fig. 3.8.  Diagrama de bloques del sistema clasificador de golpes de tenis completo 
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umbral, se le asigna a la clase de rechazo, ya que es el caso en el que no te 
puedes fiar de las predicciones realizadas. Como valor umbral se ha 
seleccionado 0.05 (5%), lo que significa que nos fiamos mucho del modelo 
clasificador. El valor tan reducido del umbral se ha seleccionado tras 
comprobar que los resultados de clasificación se realizaban correctamente en 
la mayoría de los casos, aunque la probabilidad de salida fuera baja. 

La función de coste escogida es la entropía cruzada. Para el entrenamiento 
de la red se ha utilizado el descenso por el gradiente junto con el optimizador 
Adam, con un factor de entrenamiento de 0.0001. 

Se aplica entrenamiento por mini-batch, y se realiza la normalización de 
los datos de entrada mediante el cálculo de la media y desviación estándar de 
todo el conjunto de entrenamiento. El número de ciclos de entrenamiento 
realizados es 45.   

 Comparación de arquitecturas del clasificador 

Al igual que con el clasificador de actividades cotidianas, se ha llevado a 
cabo el entrenamiento de arquitecturas con distinto número de neuronas 
ocultas y se ha validado cada uno mediante 10 validaciones cruzadas.  

En la Fig. 3.10 se puede observar una gráfica con las distribuciones de 
precisión obtenidas para cada una de las arquitecturas. En este caso, la 
arquitectura que mejor comportamiento muestra es la de 18 neuronas 
ocultas, ya que es la red con menos neuronas que presenta una baja 
dispersión en las validaciones, y un valor alto de precisión obtenida. La red 
de 22 neuronas también presenta baja dispersión, pero no mejora mucho los 
resultados, aumentando considerablemente el número de conexiones. 

 

 

 

 

 

Fig. 3.9.  Selección de etiqueta predicha a partir de probabilidades de salida “y” 
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Fig. 3.10.  Comparación arquitecturas modelo clasificador de golpes de tenis 
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Capítulo 4  

Resultados de clasificación 

En este capítulo se van a exponer los resultados de clasificación obtenidos 
con los modelos descritos en el capítulo anterior. Para la evaluación del 
comportamiento general que tendrán estos modelos, se llevará a cabo la 
clasificación de los dos conjuntos de test que se habían comentado en la 
sección 2.4.2.  

 Resultados del modelo clasificador de 

actividades cotidianas 

Primero se realiza la clasificación de los datos de test tratando los 
espectrogramas individualmente, como si se tratara con imágenes. Con el fin 
de mejorar los resultados obtenidos, también se ha llevado a cabo una 
segunda clasificación en la que, teniendo en cuenta que las señales 
recopiladas son secuencias temporales, se asigna a cada dato la etiqueta más 
votada de entre sus 4 vecinos, tal y como se ilustra en la Fig. 4.1. 

 Clasificación sin votación 

En la Fig. 4.2 se puede observar la matriz de confusión obtenida con el 
conjunto de test de los datos separados del conjunto de entrenamiento. 
También se muestra el valor del índice Kappa obtenido, así como las 
métricas de precisión y recall promedio de cada clase. 

En la matriz de confusión se observa como la mayoría de las 
clasificaciones realzadas están en la diagonal principal por lo que se 
manifiesta el buen funcionamiento del clasificador. El índice Kappa obtenido 
también es indicativo del buen funcionamiento del clasificador al ser superior 
a 0.7, tal y como se ha explicado en la sección 1.4.5.  En cada fila de la matriz 

Fig. 4.1.  Clasificación por votación  
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se ha representado tanto el número de datos en cada clase predicha, como el 
porcentaje al que corresponden del total de datos de la clase verdadera.  

Para comprobar la capacidad de generalización que tiene el modelo, en la 
Fig. 4.3 se muestra las clasificaciones obtenidas de las actividades llevadas a 
cabo por un sujeto que no se incorporó a la base de datos de entrenamiento. 
Como se puede observar, en este caso el modelo no generaliza bien para un 
par de clases, pero observando los resultados obtenidos con los demás 
modelos (como se verá en las secciones siguientes), se intuye que ha sido 
producido por una mala ejecución de esas actividades. 

Fig. 4.3.  Matriz de confusión del clasificador de actividades cotidianas, con 

conjunto de test del sujeto no introducido  

Fig. 4.2.  Matriz de confusión del clasificador de actividades cotidianas, con 

conjunto de test de datos separados de los de entrenamiento  
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Como era de esperar, las clases que más se confunden son la clase 
“agacharse/incorporarse” con la clase “sentarse/levantarse” debido al 
parecido de las actividades, y la clase “estar de pie” con la clase “estar 
sentado” ya que, al ser actividades estáticas, el tratamiento frecuencial de las 
señales con los espectrogramas no aportará diferencias entre ellas. Para que 
la causa de este error no sea solo una suposición, y descartar que haya sido 
problema del entrenamiento del clasificador, en las figuras 4.4, 4.5 y 4.6 se 
representa la distribución de datos de entrada al clasificador con el conjunto 
de entrenamiento y los dos de test utilizando el método UMAP (Uniform 
Manifold Approximation and Projection) [43].   

En la Fig. 4.4, correspondiente a los datos de entrenamiento, se puede 
comprobar como las clases que han sido confundidas están superpuestas. De 
este modo, no es posible que el clasificador aprenda a separarlas 
completamente ya que las muestras de algunas clases están entremezcladas. 

En la Fig. 4.5 se ha representado el conjunto de test de datos separados de 
los de entrenamiento, utilizando la misma proyección obtenida con los datos 
de entrenamiento. En ella se puede comprobar como la distribución de datos 
es parecida a la de los datos de entrenamiento, con lo que se explica los 
buenos resultados obtenidos en la Fig. 4.2 a pesar de las confusiones en las 
clases entremezcladas. 

En la Fig. 4.6 se ha representado el conjunto de test del sujeto no 
introducido en el entrenamiento. En ella se observa cómo se cumple la 
suposición mencionada de que el sujeto de test ejecutó las actividades 
confundidas de manera irregular, ya que sus distribuciones están mucho más 
entremezcladas que lo casos mostrados en las figuras 4.4 y 4.5.  De este modo 
se explica la razón del aumento de la confusión entre clases que se había 
visto en la matriz de confusión de la Fig. 4.3.  

Fig. 4.4.  Distribución de características extraídas proyectadas en 2D, con el      

conjunto de datos de entrenamiento 



Capítulo 4.   Resultados de clasificación 
 

42 

 

Adicionalmente, en el Anexo A se han expuesto las proyecciones de datos 
obtenidas en el caso de que se hubiesen utilizado menos sensores, destacando 
así la importancia que tienen ciertos sensores para llevar a cabo una mejor 
clasificación. Para ello se han ido eliminando conjuntos de sensores enteros, o 
solo algún eje de estos.  

Fig. 4.5.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de test de datos separados de los de entrenamiento 

 

Fig. 4.6.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de test del sujeto no introducido durante el entrenamiento 
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 Clasificación con votación 

Tal y como se ha comentado al inicio de este capítulo, también se ha 
llevado a cabo la clasificación de las actividades teniendo en cuenta las 
predicciones realizadas sobre los datos contiguos en la secuencia temporal, 
con el fin de obtener mejores resultados en la clasificación.  

En las figuras 4.7 y 4.8 se muestran las nuevas matrices de confusión 
obtenidas, donde se puede apreciar la mejora de los resultados respecto a la 
clasificación sin votación mostrada en las figuras 4.2 y 4.3. 

Fig. 4.7.  Matriz de confusión del clasificador de actividades cotidianas, con 

conjunto de test de datos separados de los de entrenamiento, y votación 

 

Fig. 4.8.  Matriz de confusión del clasificador de actividades cotidianas, con 

conjunto de test del sujeto no introducido, y votación 
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 Resultados del modelo filtrador de golpes 

de tenis 

Tras comprobar que la clasificación realizada con votación de entre 4 
vecinos mejora los resultados obtenidos, en los siguientes modelos ya se van 
a exponer los resultados obtenidos al aplicar el proceso de votación. 

En la figura 4.9 se muestran los resultados obtenidos en la clasificación 
por el modelo filtrador de golpes de tenis con los dos conjuntos de test.  

Como se puede observar, debido al valor umbral escogido el valor de recall 
que se obtiene es muy alto, ya que casi todos los datos que son golpes de tenis 
son clasificados como tal. Aunque se clasifiquen varios datos que no son 
golpes de tenis como que sí lo son, el modelo clasificador de golpes de tenis 
también puede desecharlos por lo que es preferible obtener un recall alto. 

En la Fig. 4.9 b) se comprueba la buena generalización realizada por el 
modelo, ya que la clasificación realizada de los datos de un sujeto no visto 
durante el entrenamiento presenta mejores resultados incluso que el 
conjunto de test separado de los datos de entrenamiento.  

Una vez clasificados los datos, únicamente se introducirán al modelo 
clasificador de golpes de tenis los que se hayan predicho como “Dato_Tenis”. 
De este modo se introducirán 11 datos erróneos y 653 correctos en el caso del 
conjunto de test de datos separados de los de entrenamiento, y 40 datos 
erróneos y 6019 correctos en el caso del conjunto de test del usuario no 
introducido en el entrenamiento. 

 Resultados del modelo clasificador de 

golpes de tenis 

En las figuras 4.10 y 4.11 se puede observar los resultados obtenidos por el 
clasificador de golpes de tenis. En ellas únicamente se muestran los datos 
que han pasado el filtro aplicado con el anterior modelo. En el caso de la base 
de datos de test separada de los datos de entrenamiento (Fig. 4.10), se 
observa que la clasificación es prácticamente correcta en su totalidad.  

 

a) b) 

Fig. 4.9.  Matriz de confusión del modelo filtrador de golpes de tenis utilizando 

votación.  a) Conjunto de test de datos separados de los de entrenamiento.                

b) Conjunto de test del sujeto no introducido.  

 



4.3.   Resultados del modelo clasificador de golpes de tenis 

45 

 

En la Fig. 4.11 correspondiente con los datos del sujeto no introducido a la 
red, se ve como los pocos datos no pertenecientes a ninguno de los golpes de 
tenis (que habían sido clasificados incorrectamente por el modelo filtrador) se 
clasifican correctamente. El resto de las clases se clasifican con niveles de 
precisión por encima del 97%, exceptuando la clase globo que presenta una 
precisión del 91,6%.  La confusión de esta clase puede deberse a que dicho 
usuario no realizaba los golpes de manera correcta, confundiéndose así con 
otros movimientos. A pesar de ello, al obtener un índice Kappa del 95.55% se 
demuestra la robustez del modelo obtenido, superando así el objetivo 
planteado para el proyecto. 
 

 

  

Fig. 4.10.  Matriz de confusión del modelo clasificador de golpes de tenis, con 

conjunto de test de datos separados de los de entrenamiento, y votación 

Fig. 4.11.  Matriz de confusión del modelo clasificador de golpes de tenis, con 

conjunto de test del sujeto no introducido, y votación 
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Capítulo 5  

Conclusiones y líneas futuras 

En este capítulo se van a exponer las conclusiones obtenidas tras el 
desarrollo del proyecto. Se van a destacar los pasos seguidos para alcanzar 
los resultados obtenidos, y se comparan éstos con los objetivos que se habían 
marcado. Finalmente se expondrán las posibles líneas futuras de 
continuación al proyecto realizado.  

 Conclusiones 

En este proyecto se ha llevado a cabo el desarrollo de un sistema 
clasificador de golpes tenis el cual presente robustez ante las dimensiones 
corporales, peso, y sexo de los sujetos.  

Para ello, se ha comenzado realizando un estudio del estado del arte para 
comprobar que técnicas se usan habitualmente para sistemas de 
reconocimiento de actividades humanas, y cuáles de ellas presentan 
invariancia ante las posibles características de cualquier sujeto.   

Tras comprobar que no se dispone de una base de datos pública con la que 
poder llevar a cabo los objetivos deseados, se ha optado por el desarrollo de 
una base de datos propia. De este modo se abre la posibilidad de inclusión de 
nuevos movimientos de tenis con los que entrenar el modelo en una futura 
ampliación al proyecto. Para realizar la base de datos se ha llevado a cabo la 
selección y configuración de dos dispositivos portables de bajo consumo, de 
los que se ha obtenido información de su acelerómetro y giróscopo. 

Para tratar de eliminar la dependencia del rendimiento del modelo con las 
características físicas de los sujetos que realizaron la base de datos, se ha 
llevado a cabo el procesamiento de las secuencias temporales de datos de los 
sensores mediante el cálculo de espectrogramas, los cuales también 
proporcionan información de la evolución frecuencial en el tiempo.  

Para la labor de extracción de características y clasificación de los datos, 
se han desarrollado modelos neuronales con aprendizaje semi-supervisado a 
partir de las librerías de TensorFlow. Como extractor de características se ha 
entrenado una red “Autoencoder Convolucional” de manera no supervisada, 
consiguiendo reducir enormemente la cantidad de datos etiquetados 
necesarios a la hora de entrenar un clasificador. La red de clasificación 
seleccionada ha sido el Perceptrón Multicapa (MLP). De este modo, se han 
desarrollado tres modelos clasificadores distintos modificando la arquitectura 
del MLP. El primero de ellos se encarga de clasificar 7 actividades cotidianas 
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que también pueden ser realizadas durante un partido de tenis, y ha sido 
utilizado para comparar los resultados obtenidos con los vistos en el estado 
del arte. El segundo y tercer modelo se usan conjuntamente para obtener los 
mejores resultados posibles en la detección de uno de los 4 golpes de tenis 
entrenados. El segundo clasificador actúa como filtro para saber si un 
movimiento pertenece a una de las clases de golpes, mientras que el tercero 
lleva a cabo la clasificación de los datos filtrados en uno de los distintos 
golpes de tenis.  

Se ha comprobado como los resultados obtenidos con el clasificador de 
actividades cotidianas, en el caso del conjunto de test de datos separados de 
los de entrenamiento, están en niveles parecidos a los vistos en el estado del 
arte (Tabla III), obteniendo una precisión del 96,09%. Este tipo de conjunto 
de test es el utilizado habitualmente en las investigaciones encontradas. En 
el caso de los datos procedentes de una persona que no ha sido vista nunca 
en el entrenamiento del modelo, se ha obtenido una precisión del 82,38%, que 
es algo más reducido debido a las complicaciones comentadas, pero es lo 
suficientemente preciso como para presentar cierta robustez y cumplir con el 
objetivo propuesto. 

  En el sistema clasificador de golpes de tenis se ha obtenido una precisión 
total del 99,25% con la base de datos de test con personas que ya habían sido 
vistas por el modelo, y del 96,55% para el sujeto nuevo, con lo que se 
manifiesta el buen funcionamiento y robustez del sistema clasificador 
desarrollado, el cual era el objetivo principal de este proyecto. 

 Líneas futuras 

Como clara línea futura de ampliación a este proyecto, sería la captación 
de datos de manera on-line con la cual poder realizar la recopilación de 
estadísticas de golpes en tiempo real.  

También se plantea la posible ampliación de la base de datos para que el 
sistema clasificador sea capaz reconocer la mayoría de los movimientos 
realizados durante el desempeño de un partido de tenis. Sería conveniente, 
para una mejora de los resultados obtenidos, que la recopilación de datos 
fuera realizada por personas con amplios conocimientos sobre la técnica 
correcta de realizar los golpes de tenis, ya que en este proyecto los sujetos 
carecían de ella, lo que ha podido conducir a errores en la clasificación. 

Otra posible línea futura a largo plazo sería la sincronización de los datos 
obtenidos por los sensores con un sistema de captación de video colocado en 
el entorno capaz de hacer un seguimiento del esqueleto del jugador. De este 
modo, no sólo se podrían obtener estadísticas de golpes realizados, sino 
también añadir otro modelo con el que obtener estadísticas de la técnica de 
ejecución del movimiento realizado. Por lo tanto, el jugador podría obtener 
una retroalimentación de cada clase de golpe que realiza con la que mejorar 
su nivel de juego.  
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Anexo A 

Proyecciones 2D UMAP de 

características de los datos al 

utilizar menos sensores 

En este anexo se va a representar las proyecciones UMAP obtenidas de las 
características extraídas de los datos en el caso de reducir el número de 
sensores utilizados. Con ello, se consigue comprobar cómo de relevante es la 
información proporcionada por ciertos sensores para llevar a cabo una mejor 
clasificación. De este modo, se han realizado tres pruebas distintas en las que 
se han utilizado menos de 12 ejes de sensores.   

A.1.  Prueba 1 

En la primera prueba, se ha eliminado la información proporcionada por el 
SensorTag colocado en la cintura (sus 3 ejes de acelerómetro y sus 3 ejes de 
giróscopo) por lo que únicamente se dispone de la información proporcionada 
por el SensorTag colocado en la muñeca de los sujetos. De esta manera, se ha 
pasado de tener 9288 características (por cada instancia de entrenamiento) a 
4644 características. 

En la Fig. A.1 se muestra la proyección obtenida con los datos de 
entrenamiento. En ella observamos como las distintas clases presentan 
distribuciones mucho menos separadas unas de otras que en el caso de 
utilizar los 12 ejes (Fig. 4.4).  Sin embargo, se siguen intuyendo regiones de 
decisión claras entre la mayoría de las clases. Comparando esta figura con la 
Fig. 4.4 se observa como el SensorTag colocado en la cintura tiene especial 
relevancia para separar las clases “andar”, “correr” y “saltar” del resto, 
aunque también provoca que correr y saltar se confundan más.  

En las figuras A.2 y A.3 se han representado los dos conjuntos de test con 
la misma proyección obtenida con los datos de entrenamiento. Como se puede 
observar en las tres figuras mostradas, al quitar el SensorTag de la cintura 
también sigue estando presente la confusión entre las clases 
“Agacharse/Incorporarse” con “Sentarse/Levantarse”, y las clases “De pie” y 
“Sentado”. En este caso también se ve en las distribuciones de los conjuntos 
de test, como las clases andar y saltar tienen regiones muy próximas a las 
clases Sentarse/Levantarse y “Agacharse/Incorporarse”. 
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Fig. A.1.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de entrenamiento, en la Prueba 1 

 

Fig. A.2.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de test separado de los datos de entrenamiento, en la Prueba 1 
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A.2.  Prueba 2 

En la segunda prueba se ha realizado el caso inverso al anterior, 
eliminando la información proporcionada por el SensorTag colocado en la 
muñeca (sus 3 ejes de acelerómetro y sus 3 ejes de giróscopo), por lo que 
únicamente se dispone de la información proporcionada por el SensorTag 
colocado en la cintura de los sujetos. De esta manera, se ha pasado de tener 
9288 características (por cada instancia de entrenamiento) a 4644 
características. 

Al proyectar el espacio de 4644 dimensiones sobre 2D con UMAP (figuras 
A.4, A.5, y A.6), se confirma lo que se había descrito en la Prueba 1 al 
comparar sus resultados con los de la Fig. 4.4. La información que 
proporciona el SensorTag de la cintura con todos sus ejes es importante para 
diferenciar las clases andar, correr y saltar del resto, pero provoca que estas 
dos últimas se entremezclen más. Las clases que más confusión creaban 
entre ellas siguen sin ser más separables. 

 

 

Fig. A.3.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de test de sujeto no introducido durante el entrenamiento, en la         

Prueba 1 
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Fig. A.5.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de test separado de los datos de entrenamiento, en la Prueba 2 

 

 

Fig. A.4.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de entrenamiento, en la Prueba 2 
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A.3.  Prueba 3 

En la tercera prueba se utilizan únicamente los acelerómetros de ambos 
SensorTag. De esta manera, se ha pasado de tener 9288 características (por 
cada instancia de entrenamiento) a 4644 características. 

Al comparar la proyección del espacio de 4644 dimensiones sobre 2D con 
(figuras A.7, A.8, y A.9) con la Fig 4.4 donde se disponía de todos los 
sensores, se comprueba que la información más relevante es la 
proporcionada por los acelerómetros y no por los giróscopos, ya que las 
distribuciones son mucho más parecidas en este caso que en las otras dos 
pruebas anteriores.  También se aprecia cómo sin giróscopos las clases con 
más confusión se han separado un poco más. 

Al igual que ocurría en la Fig. 4.6, con el conjunto de datos de test del 
usuario no introducido durante el entrenamiento, la clase 
“Agacharse/Incorporarse” está más dispersa que en el caso del otro conjunto 
de test y el conjunto de entrenamiento por lo que obtendrá peores resultados. 

 

 

 

 

 

 

 

Fig. A.6.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de test de sujeto no introducido durante el entrenamiento, en la  

Prueba 2 
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Fig. A.7.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de entrenamiento, en la Prueba 3 

 

 

Fig. A.8.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de test separado de los datos de entrenamiento, en la Prueba 3 
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Fig. A.9.  Distribución de características extraídas proyectadas en 2D, con el 

conjunto de test de sujeto no introducido durante el entrenamiento, en la 

Prueba 3 
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