
Aplicación de realidad aumentada
para los objetos de un museo

Augmented reality application
for museum objects

Alfonso Delgado Vellosillo

Directora: Ana Cristina Murillo

Trabajo Fin de Grado
Ingenieŕıa informática

Computación

Departamento de Informática e Ingenieŕıa de Sistemas
Escuela de Ingenieŕıa y Arquitectura

Universidad de Zaragoza

Diciembre 2018





Resumen

En este Trabajo de Fin de Grado, se ha desarrollado una aplicación de reali-
dad aumentada para dispositivos móviles. Esta aplicación se ha desarrollado
para ser utilizada en el museo de informática del edificio Ada Byron, ubicado en
el campus Ŕıo Ebro de la Universidad de Zaragoza. La función de esta aplica-
ción consiste en reconocer los diferentes objetos que alberga el museo, y añadir
información sobre su visualización en el móvil en tiempo real.

Para el desarrollo de la aplicación, se plantearon dos tareas principales. La
primera era crear un sistema de reconocimiento de objetos lo suficientemente
rápido y robusto como para funcionar de forma correcta en un dispositivo móvil,
utilizando técnicas de visión por computador. La segunda tarea era la de crear
una visualización con información adicional relativa a los objetos detectados.

La mayor parte del trabajo se ha invertido en la creación del sistema de
detección y localización de objetos, dejando una visualización de información
más sencilla que pueda ejecutarse en móviles de gama media.

Para la creación de la aplicación prototipo, se han implementado tres módu-
los principales.

El primero es un módulo de reconocimiento de objetos basado en deep lear-
ning, que mediante el uso de redes neuronales convolucionales (CNNs), es capaz
de reconocer diferentes objetos en una imagen. Para el desarrollo de este módulo,
se ha utilizado TensorFlow, un entorno de desarrollo para la creación y el uso de
CNNs. Se compararan diferentes arquitecturas y opciones a la hora de construir
una CNN capaz de reconocer los objetos del museo, teniendo en cuenta tanto
su corrección en el reconocimiento como su facilidad para integrar dentro de la
aplicación móvil, y finalmente se decidió utilizar un modelo existente, Inception,
re-entrenado para los objetos seleccionados.

La función de este módulo dentro del sistema es la de determinar tres posibles
objetos que se encuentren en la imagen para luego localizar uno de ellos de forma
más robusta y precisa.

El segundo módulo, es un módulo de reconocimiento basado en el uso de ca-
racteŕısticas locales de imágenes (local features), cuya función es la de localizar
con más precisión en la imagen uno de los objetos reconocidos por el módulo
anterior. Este módulo se ha desarrollado utilizando la libreŕıa OpenCV, en un
entorno mixto entre Java (aplicación base) y C++ (módulo). Durante su crea-
ción se evaluaron dos tipos de detectores de caracteŕısticas (ORB y BRISK),
y finalmente, para su correcto funcionamiento en tiempo real se utilizaron los
puntos ORB.

El módulo de visualización implementado, utiliza como el módulo anterior la
libreŕıa OpenCV, y aporta una visualización sencilla de información relacionada
con el objeto detectado por los módulos anteriores.

Estos tres módulos han sido integrados en la aplicación presentada como
prototipo final, y se ha probado su correcto funcionamiento en el museo con
un conjunto de quince objetos seleccionados. No se ha podido incorporar todos
los objetos porque para cada objeto a añadir es necesario recopilar una gran
cantidad de imágenes diferentes (60-70) para re-entrenar la CNN.

Todos los objetivos se han cumplido satisfactoriamente, y se ha conseguido
una aplicación funcional y fácil de gestionar. Se ha planteado como trabajo
futuro, la mejora del módulo de visualización mediante el uso de herramientas

i



más complejas para realidad aumentada que se encuentran en desarrollo a d́ıa
de hoy, como es ARCore, pero que actualmente solo funcionan correctamente
en móviles de últimas generaciones.

ii



Índice general

Índice III

1. Introducción 1
1.1. Motivación y Contexto . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Objetivos y Tareas . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3. Resumen de la memoria . . . . . . . . . . . . . . . . . . . . . . . 4

2. Trabajo Relacionado 7
2.1. Reconocimiento con caracteŕısticas locales . . . . . . . . . . . . . 7

2.1.1. Caracteŕısticas locales . . . . . . . . . . . . . . . . . . . . 7
2.1.2. Correspondencias Robustas utilizando Homograf́ıa y Ma-

triz Fundamental . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Reconocimiento basado en deep learning . . . . . . . . . . . . . . 10

3. Diseño del Sistema Propuesto 13
3.1. Módulos del sistema . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2. Entorno de desarrollo del sistema . . . . . . . . . . . . . . . . . . 14

4. Módulo de reconocimiento basado en CNNs 17
4.1. Construcción de la CNN para reconocer los objetos del museo . . 17
4.2. Evaluación de la CNN entrenada . . . . . . . . . . . . . . . . . . 20
4.3. Integración de la CNN en la aplicación desarrollada: . . . . . . . 23

5. Módulo de reconocimiento basado en local features 25
5.1. Localización de objetos basado en local features . . . . . . . . . . 25
5.2. Uso de los emparejamientos para localizar un objeto . . . . . . . 26
5.3. Evaluación del módulo . . . . . . . . . . . . . . . . . . . . . . . . 29

6. Aplicación móvil 31
6.1. Aplicación desarrollada . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1. Base de datos y modelo de la aplicación final . . . . . . . 31
6.1.2. Funcionamiento del sistema . . . . . . . . . . . . . . . . . 32

6.2. Pruebas de integración . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.1. Pruebas realizadas . . . . . . . . . . . . . . . . . . . . . . 34
6.2.2. Discusión . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



ÍNDICE GENERAL iv

7. Conclusiones 38
7.1. Conclusiones técnicas . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2. Problemas encontrados . . . . . . . . . . . . . . . . . . . . . . . . 38
7.3. Trabajo futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Anexos 40

A. Resultados Reconocimiento Basado en Features 41

B. Base de datos de imágenes utilizadas. 49
B.1. Datos re-entrenamiento de la CNN . . . . . . . . . . . . . . . . . 49
B.2. Imágenes de referencia del módulo de reconocimiento con local

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.3. Imágenes para visualización aumentada . . . . . . . . . . . . . . 55

C. Manual para introducir nuevos objetos. 56

Bibliograf́ıa 58



Caṕıtulo 1

Introducción

1.1. Motivación y Contexto

La realidad aumentada (RA) consiste en añadir información generada de
forma virtual, a una imagen real, de tal forma que el resultado final es una
imagen que mezcla la realidad con una parte virtual. Esto, permite añadir una
capa de información virtual a lo percibimos de manera f́ısica del mundo real, y
que los usuarios puedan interactuar con esta información, añadiendo una ma-
yor profundidad a la realidad f́ısica. Es un campo en auge en los últimos años
debido a los grandes avances producidos en campos como la visión por compu-
tador o el renderizado de imágenes en tiempo real, y a su vez, a la progresiva
mejora del hardware disponible para este tipo de aplicaciones. El uso de móviles
y otros dispositivos espećıficos como headsets (Holo-lens o Magic Leap One),
están facilitado su desarrollo, potenciando la aparición de múltiples aplicacio-
nes de realidad aumentada, tanto en un entorno cotidiano o laboral, como en el
mundo del ocio virtual.

Podŕıamos decir que hay dos grandes grupos de aplicaciones de realidad
aumentada, las orientadas a dispositivos espećıficos como headsets o gafas de
RA, y las implementadas para dispositivos móviles de propósito más general.

Las primeras requieren de un hardware espećıfico, que es utilizado para una
visualización más realista y profunda de la que se puede obtener utilizando una
pantalla convencional y un ordenador. El segundo grupo de aplicaciones, utili-
zadas en plataformas móviles, es un un grupo mas heterogéneo, con una gran
diversidad de funciones, generalmente orientadas a reconocer objetos/lugares y
a proyectar información adicional sobre ellos para aportar alguna utilidad al
usuario. Estas últimas se ven restringidas por las limitaciones que supone el uso
de dispositivos móviles, ya que la potencia de estos es muy inferior a compa-
ración con los headsets y gafas espećıficamente desarrollados para la realidad
aumentada. Aún aśı, las aplicaciones móviles de realidad aumentada están mu-
cho más extendidas entre la población, ya que no requieren de la compra de un
hardware espećıfico para su uso. Un ejemplo de estas aplicaciones que se volvió
viral de forma reciente es Pokemon GO, la cual logró movilizar a miles de per-
sonas, es totalmente gratuita y se puede utilizar en la mayoŕıa de dispositivos
Android e iOS.

1



CAPÍTULO 1. INTRODUCCIÓN 2

Figura 1.1: Prototipo del proyecto. En el se puede observar el planteamiento
básico de la aplicación: apuntar con el móvil a los objetos del museo; el objeto
es reconocido y localizado; se añade una imagen u otra información aumentada
relacionada alineado con el objeto en la visión del mismo en el móvil.

En este proyecto, nos centramos en este segundo tipo de aplicaciones, para
desarrollar una aplicación robusta y dinámica, capaz de reconocer objetos de un
museo en tiempo real, con escalabilidad para objetos nuevos, o incluso a otros
ámbitos o museos. Además, el fácil funcionamiento de la aplicación debe hacer
que sea accesible a todos los usuarios y que pueda ser introducida de cara a
todo tipo de públicos. La Figura 1.1 muestra un esquema de lo que se propone
en esta aplicación. En ella, se puede observar que el planteamiento de la apli-
cación consiste en enfocar con el móvil a un objeto, encuadrándolo en el centro
de la pantalla, y a continuación reconociendo automáticamente de que objeto
se trata y localizando su posición en la imagen, se coloca información adicional
del objeto sobre la posición en la que sea detectado.

La motivación para desarrollar este proyecto fue crear una aplicación es-
pećıfica para identificar los objetos almacenados en el museo de informática de
la Universidad de Zaragoza1. Una motivación extra en este trabajo es la pro-
fundización en temas relacionados con la computación, como pueden ser el deep
learning y computer vision, que son dos campos más generales y de gran interés
hoy en d́ıa, con muchas y diversas aplicaciones en el campo de la computación,
y no solo orientados a la realidad aumentada. Por ello, se ha valorado muy po-
sitivamente en este trabajo, el poder trabajar con estos dos campos, y aśı poder
profundizar en ellos de cara a su aplicación en otros futuros proyectos y adquirir
experiencia en estos campos.

Productos existentes/similares relacionados. Actualmente, existen múlti-
ples aplicaciones relacionadas y con similares objetivos a este proyecto. La ma-
yoŕıa basan su funcionamiento en el reconocimiento en la escena de objetos de
una base de datos de elementos de referencia conocidos, sobre los cuales muestra
información superpuesta una vez son localizados en la escena que esta enfocan-
do el usuario con su móvil, para crear experiencias de realidad aumentada. Por

1http://mih.unizar.es

http://mih.unizar.es


CAPÍTULO 1. INTRODUCCIÓN 3

(a) (b) (c)

Figura 1.2: Ejemplos recientes de aplicaciones de RA en móviles. (a) Aplica-
ción Augment (fuente: https://www.augment.com/). (b) Aplicación AR City (fuente:
https://www.blippar.com). (c) Aplicación Smartify en funcionamiento en un mu-
seo. (fuente https://smartify.org/)

ejemplo, de cara a la realidad aumentada en museos, encontramos la aplicación
Smartfy, una aplicación desarrollada para ser utilizada en museos, capaz de re-
conocer un objeto y a continuación mostrar información de dicho objeto, como
una breve descripción y una imagen, tal y como se ve en la Figura 1.2 (c).

En la Figura 1.2 (a) y (b) vemos otros dos ejemplos de aplicaciones de reali-
dad aumentada recientes. La aplicación Augment es una aplicación basada en
la detección de imágenes, para luego poder añadir visualizaciones complejas en
3D de datos sobre el contenido de las imágenes reconocidas. Otra aplicación
que puede mostrar hasta donde puede llegar la realidad aumentada es AR City
(Figura 1.2 (b)). Esta aplicación añade información en tiempo real sobre loca-
lizaciones, rutas y demás elementos que pueden aparecer en el d́ıa a d́ıa en una
ciudad.

Además, existen muchas herramientas para desarrollo de aplicaciones de
realidad aumentada comoARCore 2 o ArKit 3 entre otros, que proporcionan
entornos muy completos con las funcionalidades básicas de detección de la in-
formación 3D del entorno incluidas.

Contexto de desarrollo del proyecto. Este proyecto se ha realizado en
colaboración con el grupo de investigación de robótica de la Universidad de
Zaragoza. El objetivo es crear una herramienta informativa para el museo de
informática del edificio Ada Byron, ubicado en el campus ŕıo Ebro, en Zaragoza.
El proyecto realizado, tiene aplicación directa, de cara a que cualquier visitante
o persona interesada en alguno de los objetos del museo, fuera capaz de iden-
tificarlos y obtener información de ellos, de forma rápida e interactiva, sin la
necesidad de añadir una descripción f́ısica, lo cuál es una gran ventaja en algu-
nos objetos en concreto, debido a la dificultad de añadir una descripción f́ısica al
objeto al no haber suficiente espacio en las vitrinas para colocar una redacción
de todos los objetos. Además, al ser información que se ha añadido de forma
virtual, esta pueden sen elementos multimedia, como v́ıdeos, o fotograf́ıas, en
vez de contener únicamente texto plano.

Como entorno de desarrollo se ha utilizado Android para el desarrollo ba-
se de la aplicación, debido a su gran accesibilidad y a su extensión entre los
usuarios. Además, para el desarrollo de los diferentes módulos que conforman el
sistema, se han utilizado dos libreŕıas: OpenCV para reconocimiento basado en

2https://developers.google.com/ar/
3https://developer.apple.com/arkit/

https://www.augment.com/
https://www.blippar.com
https://smartify.org/)
https://developers.google.com/ar/
https://developer.apple.com/arkit/


CAPÍTULO 1. INTRODUCCIÓN 4

local features, y TensorFlow para el reconocimiento de objetos utilizando deep
learning.

1.2. Objetivos y Tareas

Como se ha comentado anteriormente, el objetivo general de este proyecto
es realizar una aplicación móvil de realidad aumentada que reconozca diferen-
tes objetos del museo de informática alojado en el edificio Ada Byron. Una
vez reconocido un objeto, la aplicación muestra información relativa al objeto
reconocido.

Los principales problemas a abordar en este proyecto son:

La obtención de un sistema basado en la visión por computador lo suficien-
temente rápido y robusto como para tener una aplicación para dispositivos
móviles que reconozca los objetos de forma robusta y en tiempo real.

La representación de la información asociada a cada objeto reconocido de
forma gráfica en tiempo real, en función de la posición del objeto real.

Para llegar a estos objetivos, se plantearon las siguientes tareas a realizar
durante el proyecto:

Instalación del entorno de desarrollo y libreŕıas necesarias para el proyecto.

Desarrollo del módulo de reconocimiento de objetos.

Desarrollo del módulo de visualización, utilizando la información propor-
cionada por el módulo de reconocimiento.

Pruebas e integración de todos los módulos implementados.

Documentación del proyecto y desarrollo de la memoria.

Cronograma del desarrollo de las tareas. La distribución de las tareas y
objetivos a lo largo del tiempo está representado en el diagrama de la Figura
1.3.

1.3. Resumen de la memoria

La estructura del resto de caṕıtulos de esta memoria, es la siguiente:

1. Caṕıtulo 2. Trabajo relacionado: Información teórica sobre las técnicas
utilizadas en este proyecto y su aplicación práctica.

2. Caṕıtulo 3. Sistema propuesto: Breve descripción del funcionamiento del
sistema y de sus partes.

3. Caṕıtulo 4. Reconocimiento basado en deep learning : Explicación en pro-
fundidad del módulo que implementa una red neuronal para reconocimien-
to de objetos, y de las pruebas realizadas a dicho módulo.



CAPÍTULO 1. INTRODUCCIÓN 5

Figura 1.3: Diagrama de Gantt donde se representan las tareas realizadas a lo
largo del tiempo.



CAPÍTULO 1. INTRODUCCIÓN 6

4. Caṕıtulo 5. Reconocimiento basado en local features: Descripción en pro-
fundidad del módulo que implementa el reconocimiento de objetos basado
en computer vision, y de las pruebas realizadas a dicho módulo.

5. Caṕıtulo 6. Prototipo construido: Explicación en profundidad sobre el sis-
tema completo implementado, entrando en detalles técnicos de su imple-
mentación concreta y del uso de los módulos anteriormente explicados.

6. Caṕıtulo 7. Conclusiones: Conclusiones finales sobre el sistema propuesto
y los resultados obtenidos.

7. Anexos A, B, C con los resultados detallados de las pruebas realizadas
al módulo de reconocimiento basado en local features, la descripción en
detalle de la base de datos de imágenes utilizada y un manual para añadir
nuevos objetos a la aplicación, respectivamente.



Caṕıtulo 2

Trabajo Relacionado

Este caṕıtulo resume las técnicas principales utilizadas para el sistema de
detección y reconocimiento visual automático realizado en este proyecto. En la
literatura relacionada con reconocimiento visual automático encontramos dos
grandes grupos de soluciones: las técnicas basadas en caracteŕısticas locales de
imagen, y técnicas basadas en un análisis conjunto de toda la imagen. De este
segundo grupo cabe destacar por su gran avance en los últimos años, aquellas
basadas en modelos de deep learning.

2.1. Reconocimiento con caracteŕısticas locales

Las técnicas de reconocimiento basadas en la detección y búsqueda de co-
rrespondencias de caracteŕısticas locales, o local features, en las imágenes han
demostrado muy buenos resultados en reconocimiento visual en las últimas déca-
das. [1].

La detección de estas features en imágenes consiste en la búsqueda de pun-
tos que contengan ciertas caracteŕısticas representativas en la imagen. Poste-
riormente, es común comparar estos puntos caracteŕısticos extráıdos de una
imagen con los extráıdos de otra para, si las correspondencias son suficientes y
consistentes, determinar si ambas imágenes contienen el mismo objeto o escena.

2.1.1. Caracteŕısticas locales

En la literatura de visión por computador encontramos much́ısimas pro-
puestas para extracción de caracteŕısticas locales, con especial impacto en los
últimos años encontramos las propuestas de SIFT [1], o SURF [2], que fueron
de las primeras en resolver de manera efectiva problemas de invarianza a escala
y perspectiva, permitiendo sistemas más robustos y realistas. En particular, en
este trabajo nos interesan las caracteŕısticas que están orientadas a procesados
rápidos, es decir, reducir el tiempo de procesado en cada imagen, aunque a veces
sea a costa de bajar algo la precisión. En el trabajo Comparative Evaluation of
Binary Features [3], encontramos una comparativa de distintas caracteŕısticas
binarias, donde se resumen ventajas e inconvenientes de los algoritmos mas uti-
lizados. En este trabajo vamos a evaluar el uso de los dos detectores de puntos y
descriptores, más conocidos y utilizados en la literatura, ORB [4] y BRISK [5].

7



CAPÍTULO 2. TRABAJO RELACIONADO 8

Dado que ambos se basan en utilizar una representación binaria de los descrip-
tores, ofrecen un menor coste computacional, manteniendo un funcionamiento
robusto.

Tanto BRISK como ORB, se basan en en descriptores binarios pero tienen
varias diferencias. Además de estrategias un poco distintas para encontrar los
puntos de interés de una imagen, sobre todo se diferencian a la hora de calcular
el descriptor de cada uno de estos puntos, cambiando la forma en la que se
interpretan y detectan las esquinas de la imagen. El descriptor en ambos casos
será un vector de valores binarios. Cada valor binario se calcula verificando si
ciertos pares de puntos de cierto patrón son iguales o distintos. La Figura 2.1
muestra el patrón utilizado para seleccionar pares de puntos en cada algoritmo.

Figura 2.1: Patrón con los pares de puntos utilizados para calcular el descriptor
de ORB (derecha) y BRISK (izquierda) (fuente de imagen: [3])

2.1.2. Correspondencias Robustas utilizando Homograf́ıa
y Matriz Fundamental

Una vez realizada la extracción de las caracteŕısticas, se suele realizar una
búsqueda de correspondencias en dos fases.

En una primera se establecen las correspondencias (o emparejamien-
tos) iniciales, utilizando técnicas de búsqueda del vecino mas cercano, o nea-
rest neighbour. La opción básica consiste en simplemente buscar, para cada
descriptor de una imagen, cual de entre todos los descriptores que hay en la se-
gunda imagen es más parecido. Una versión mejorada verificando los dos vecinos
más cercanos es más frecuente y ha dado mejores resultados [1]. Esta técnica de
búsqueda del vecino más cercano sigue la siguiente fórmula para decidir si una
correspondencia es buena:

Correccion(i) = Emparejamiento1(i) < Emparejamiento2(i) ∗ 0,7. (2.1)

En la ecuación anterior, i representa uno de los posibles emparejamientos entre
un punto de una imagen, y otro punto de la otra imagen. Correccion de i repre-
senta si un emparejamiento se considera bueno o no, siendo sus posibles valores
0 (erróneo) o 1 (pasa la criba). Emparejamiento1 representa la distancia al des-
criptor del mejor emparejamiento del punto i con otro punto de la otra imagen,
y Emparejamiento2 representa la distancia al segundo mejor emparejamiento
del punto i con otro punto de la otra imagen. Si el mejor emparejamiento es lo
suficientemente mejor que el segundo (en este caso se ha puesto un ĺımite, que
es el valor del Emparejamiento2 multiplicado por 0,7), se considerará que el



CAPÍTULO 2. TRABAJO RELACIONADO 9

Emparejamiento1 es correcto.

Si es necesario un conjunto más fiable y robusto de correspondencias, es
común realizar una segunda fase, donde se realiza una verificación geométrica
utilizando restricciones conocidas entre dos imágenes. Estas restricciones en-
tre dos imágenes de una misma escena se conocen como Homograf́ıa y Matriz
Fundamental. Más detalles de estas dos construcciones en [6], a continuación
incluimos un breve resumen.

Homograf́ıa. La Homograf́ıa [6] es una matriz 3x3 que relaciona la proyección
en dos imágenes distintas de puntos que son co-planares en la escena real. Esta
matriz H codifica la posición relativa entre las dos fotos adquiridas de la misma
escena y relaciona las proyecciones de un punto en 3D en cada una de las dos
imágenes (x y x’) directamente:

x’H = x (2.2)

En el sistema construido, la homograf́ıa será utilizada para conocer las trans-
formación entre dos fotograf́ıas de un mismo objeto (plano), pudiendo aśı ubicar
puntos de una fotograf́ıa en la otra. Como se ha comentado, la homograf́ıa es
eficaz para relacionar geometŕıas planas, pero no sucede objetos o escenas ge-
nerales en 3D.

Matriz Fundamental. La matriz fundamental F [6], es una matriz de 3x3
que relaciona los puntos correspondientes en dos imágenes, al igual que la ho-
mograf́ıa, pero en un caso más general. Como se puede observar en la Figura
2.2, Utilizando coordenadas homogéneas, dada la representación de dos puntos
x y x’, que son puntos correspondientes en la primera y segunda imagen respec-
tivamente, Fx describe una recta, llamada ĺınea epipolar en la segunda imagen
donde se encuentra el punto x’, De esta forma, la expresión que relaciona todos
los pares de puntos de ambas imágenes mediante la matriz fundamenta F es:

x’TFx = 0 (2.3)

Correspondencias robustas. Tanto la homograf́ıa como la matriz funda-
mental, se pueden utilizar para verificar cuales de las correspondencias entre
los puntos emparejados son correctas. En ambos casos, dado un conjunto de
correspondencias iniciales, y realizando una estimación robusta de la H o la
F , podemos comprobar que pares de puntos emparejados se pueden considerar
correctos y cuales no, ya que los correctos serán consistentes con la estimación
de estas restricciones geométricas.

Realizando una estimación robusta (por ejemplo con RANSAC [6]) de la H
o la F , podemos ver que pares de puntos encajan con dicha restricción (inliers),
o no. Todos los inliers de una estimación corresponden con puntos que han sido
emparejados de forma correcta y que resultan consistentes con la geometŕıa de
la escena, mientras que el resto de puntos emparejados se descartan.



CAPÍTULO 2. TRABAJO RELACIONADO 10

Figura 2.2: Geometŕıa Epipolar. Se puede apreciar que un punto en una imagen,
es una recta en otra imagen tomada desde un origen diferente. De esta forma, la
matriz fundamental relaciona los puntos de una imagen con los de otra mediante
las ĺıneas epipolares. o y o’ se corresponden con los puntos desde los que se han
tomado las imágenes, x es el punto observado desde el origen o, x’ son los
puntos pertenecientes a la ĺınea creada por el punto x en el origen o’, y e y
e’ corresponden al mismo punto observado desde o y o’. (Fuente: Wikipedia -
Geometŕıa epipolar)

2.2. Reconocimiento basado en deep learning

El reconocimiento de imágenes basado en técnicas de deep learning estudiado
se basa en técnicas de aprendizaje supervisado, es decir, entrenar un modelo a
partir de imágenes de ejemplo etiquetadas.

La principal diferencia en el planteamiento de este tipo de reconocimiento
comparado con el reconocimiento basado en features es que en este segundo el
reconocimiento se basa en unos cuantos puntos caracteŕısticos a emparejar, y
utilizando deep learning el reconocimiento se hace a nivel de todos los ṕıxeles
de una imagen, y no utilizando sólo unos puntos concretos. Además, el mayor
coste computacional de la red neuronal se encuentra en su entrenamiento, pero
su uso posterior para predicciones es muy rápido, por lo que el uso de estas
redes presenta una mayor escalabilidad que el uso de local features.

Usando local features, normalmente, la comparación entre imágenes resulta
lineal con el número de imágenes del modelo (comparamos todas las features de
la imagen actual con todas las features extráıdas de las imágenes de referencia).
Y por lo tanto, también crece conforme añadimos mas clases o imágenes de
ejemplo. Sin embargo, en el caso de usar una red neuronal, necesitamos más
datos de ejemplo, y por lo tanto más tiempo a la hora de entrenar el modelo,
pero no tiene prácticamente coste adicional a la hora de su ejecución.

En el sistema propuesto en este trabajo, se ha utilizado un tipo concreto de
redes neuronales profundas, conocidas como redes convolucionales (convolutio-
nal neural networks), que son las más adecuadas para trabajar en clasificación
y reconocimiento de imágenes hoy en d́ıa. A continuación se resumen los con-
ceptos básicos relacionados con diferentes técnicas de reconocimiento basadas
en deep learning.

Redes neuronales profundas - Deep learning. Las redes neuronales, son
un modelo computacional basado en el uso de pequeñas unidades denominadas
neuronas artificiales. Estas neuronas artificiales, reciben unos datos de entrada,
y generan otros datos datos de salida, en función de los recibidos. Aśı, para



CAPÍTULO 2. TRABAJO RELACIONADO 11

formar una red neuronal, nos encontramos con que como se ve el la Figura 2.3
(izquierda), las salidas de unas neuronas se conectan a las entradas de otras,
creando aśı capas de neuronas interconectadas ocultas (Hidden), y una capa
final (Output), donde se encuentran las salidas de la red.

Cada enlace entre 2 neuronas, se encuentra ponderado por un peso espećıfico,
cuya función es la de aumentar o inhibir la salida de dicha neurona, haciendo aśı
posible regular que neuronas son más influyentes o menos en el resultado final de
la red. A su vez, cada neurona contiene la denominada función de activación,
cuya utilidad es servir como umbral, que modifica el valor resultado o impone
un ĺımite que se debe sobrepasar antes de propagarse a otra neurona, de tal
forma que si la función de activación de una neurona no se activa, las salidas de
dicha neurona tampoco se activarán.

Figura 2.3: Una red neuronal simple (izquierda), frente una
red neuronal profunda(derecha). (fuente: https://planetachatbot.com/

deep-learning-facil-con-deepcognition-9af43b2319ba)

En los últimos años, están teniendo mucho auge y buenos resultados las redes
neuronales profundas, o deep neural networks [7], que de manera simplificada
podŕıamos decir que son una red convencional pero con muchas capas ocultas,
como en el esquema de la Figura 2.3 (derecha).

Uno de los problemas principales que plantea el uso de redes neuronales, es
la necesidad de una gran cantidad de datos, para realizar su entrenamiento. El
entrenamiento de una red neuronal es el proceso por el cual se ajustan los pesos
de las conexiones entre las neuronas, para obtener la salida deseada al introducir
nuevos datos al sistema. En este proceso se introducen datos etiquetados en la
red neuronal, que va ajustando sus pesos en función de si las salidas obtenidas
para las imágenes de entrenamiento son correctas o no.

En particular, en este proyecto se utilizan redes neuronales convolucionales
(CNN), detalladas a continuación.

Redes neuronales convolucionales - CNN Las redes neuronales convolu-
cionales, son un tipo de red neuronal. La operación básica de este tipo de redes
es la convolución sobre matrices bidimensionales, operación ampliamente utili-
zada en el manejo tradicional de imágenes. Esto es lo que las hace especialmente
útiles a la hora de clasificar imágenes, ya que se ha comprobado que realizan
operaciones similares a las que realizan muchos de los algoritmos tradicionales
de procesamiento de imágenes.

Como se puede ver en la Figura 2.4, normalmente, las primeras capas de
una CNN son capas convolucionales (Convolutional Layers), que aplican sus
operaciones sobre matrices de dos dimensiones, que representan secciones de la

https://planetachatbot.com/deep-learning-facil-con-deepcognition-9af43b2319ba
https://planetachatbot.com/deep-learning-facil-con-deepcognition-9af43b2319ba


CAPÍTULO 2. TRABAJO RELACIONADO 12

Figura 2.4: Composición de las capas de la CNN AlexNet [8]. Se pueden ver
las primeras capas que son Convolutional layers que trabajan con los datos
de la imagen, y las capas de pooling que reducen la magnitud de estos datos.
Finalmente, las últimas capas, son Dense layers, que generan la salida final del
modelo.

imagen, extrayendo de manera automática las caracteŕısticas de las imágenes
(según los patrones que se han aprendido durante el entrenamiento). Las capas
finales de la red, conectan todas las salidas de las capas convolucionales y por
ello se conocen como Dense Layers, y se encargan de la clasificación final de las
caracteŕısticas obtenidas anteriormente. Además de estas dos capas, estas redes
tienen otro tipo de capas intermedias, conocidas como Pooling Layers cuya
función es la de agrupar los dato de salida de la capa anterior, manteniendo su
información pero reduciendo su volumen, para que los datos que lleguen a las
siguientes capas y sean procesados en un menor tiempo.

En las CNN, los datos de entrenamiento necesarios son imágenes etiqueta-
das de los objetos que se quieren reconocer. Esto plantea el problema de que
para aumentar el número de clases se requieren, se necesitan imágenes de los
nuevos objetos a reconocer, y cuanto mayor sea el número de imágenes más
preciso será el sistema. Otro dato relevante sobre las imágenes a utilizar en los
entrenamientos, es que las imágenes deben tener cierto grado de variación, ya
que si las imágenes son muy similares entre śı, o el objeto se encuentra siempre
con el mismo fondo, el sistema al aprender caracteŕısticas de toda la imagen,
aprenderá caracteŕısticas no pertenecientes al objeto, reconociendo el fondo de
la imagen como objeto por ejemplo, o si las imágenes son muy similares entre śı,
el modelo no seŕıa capaz de reconocer un objeto en una imagen en la que haya
pequeñas variaciones con respecto a las imágenes usadas en el entrenamiento.
A esto se lo conoce como sobre ajuste.



Caṕıtulo 3

Diseño del Sistema
Propuesto

3.1. Módulos del sistema

Esta sección presenta una vista global de todos los módulos desarrollados,
que conforman la aplicación, y de como se interconectan entre śı para formar el
prototipo de aplicación móvil capaz de realizar un reconocimiento automático
de objetos y visualizar información relacionada con los objetos reconocidos en
tiempo real.

Figura 3.1: Componentes del sistema de visualización de realidad aumentada de
información de objetos. Cada módulo (en amarillo) tiene una parte del modelo
almacenado correspondiente (en rojo) con los datos de referencia necesarios para
ejecutarlo. Las flechas de color verde indican la sida de cada módulo, y a su vez
las flechas rojas indican las entradas a cada módulo.

Los componentes principales del sistema diseñado se conectan como
muestra la Figura 3.1. Los módulos desarrollados para el reconocimiento au-
tomático y la visualización en la aplicación de realidad aumentada son los si-

13



CAPÍTULO 3. DISEÑO DEL SISTEMA PROPUESTO 14

guientes:

Módulo de reconocimiento CNN (basado en deep learning).

Módulo de reconocimiento local features (basado en local features).

Módulo de visualización aumentada.

Además de estos tres módulos, el sistema está compuesto por otras tres
partes necesarias para su funcionamiento que se detallan a continuación:

Modelo CNN: Modelo reentrenado para los objetos del museo a reconocer,
utilizado en la primera fase del reconocimiento (reconocimiento CNN),
para procesar una imagen informando de a que tres objetos de referencia
es más similar.

Base de datos imágenes de referencia: Base de datos compuesta de tres
imágenes de cada objeto de referencia. Se almacenan tres imágenes de
cada objeto para tener una visión frontal y de los dos laterales desde los
que el objeto puede ser observado.

Información referente a objetos: Base de datos que almacena tres imáge-
nes con información adicional de algunos objetos de referencia, para ser
mostradas en el módulo de visualización aumentada, y el nombre de todos
los objetos.

El funcionamiento general del sistema al ejecutarse en el móvil se puede
resumir en el siguiente flujo de ejecución:

1. Inicializar la aplicación, cargando la información de referencia, siendo esta
el modelo reentrenado usado por la CNN, los descriptores ORB de las
imágenes de referencia, y la información de interés relacionada con los
diferentes objetos a clasificar.

2. Tomar una imagen a través de la cámara del dispositivo.

3. Clasificar la imagen tomada usando deep learning.

4. Localizar el objeto, usando visión por computador, de entre los candidatos
seleccionados en el paso anterior por el módulo de deep learning.

5. Visualizar la información en pantalla utilizando la localización del objeto
anteriormente calculada.

Los siguientes caṕıtulos describen en detalle cada uno de los diferentes módu-
los que conforman el sistema.

3.2. Entorno de desarrollo del sistema

Esta sección resume el entorno de desarrollo y las herramientas utilizadas
para desarrollar el proyecto, y explica porque se han seleccionado dichas herra-
mientas.

Para este proyecto se decidió realizar una aplicación móvil Android , para
lo cual se utilizó su entorno de desarrollo estándar, utilizando tanto Java



CAPÍTULO 3. DISEÑO DEL SISTEMA PROPUESTO 15

como C++. Se ha trabajado con el Android Strudio NDK, debido a la facilidad
que da para enlazar código creado con Java y C++. De esta forma, se pueden
crear funciones que utilicen elementos hardware del dispositivo Android, como la
cámara o el almacenamiento, de forma fácil utilizando Java, y a su vez enlazarlo
con funciones creadas en C++, donde resulta mas sencillo y eficaz programar, y
es capaz de dar soporte a tareas más complejas y costosas como procesamiento
de emparejamientos entre descriptores de imágenes, o el cálculo de las matrices
fundamentales y de homograf́ıa.

Este aspecto era fundamental, debido a que se queŕıan realizar tareas de
reconocimiento y localización de objetos, que implican algoritmos complejos de
visión por computador, para los cuales es necesario utilizar la libreŕıa OpenCV,
cuya versión de C++ es mucho más completa y eficiente que su versión de
Java. Una vez configurado el NDK de forma correcta, se comprobó su correcto
funcionamiento creando una aplicación básica de Java, la cual ejecutara una
función escrita en C++, y se procedió a añadir la libreŕıa OpenCV dentro de la
aplicación.

Una vez instalados y configurados todos los componentes básicos (obten-
ción de imágenes de la cámara, módulo de prueba de libreŕıa OpenCV sobre
C++), se realizó un primer prototipo ”vaćıo”de la aplicación para comprobar el
correcto funcionamiento y conexión entre la estructura base de la aplicación im-
plementada en Java, y el módulo de reconocimiento de imágenes basado en local
features, implementado en C++. En esta aplicación, la captura de imágenes de
la cámara se realiza mediante funciones de Android en Java, y utilizando la ver-
sión de Java de OpenCV para transformar la imagen a un formato reconocible
por OpenCV en C++, en concreto se transforma la imagen del formato bitmap
(Android), a una matriz de OpenCV. La imagen ya transformada es editada
mediante funciones implementadas en C++ utilizando OpenCV, y finalmente
se vuelve a transformar de forma inversa la imagen para mostrarla por pantalla
utilizando las libreŕıas del sistema Android, implementadas en Java. Todo este
comportamiento se puede apreciar en la Figura 3.2.



CAPÍTULO 3. DISEÑO DEL SISTEMA PROPUESTO 16

Figura 3.2: Proceso de adquisición y procesado de una imagen probado
en la estructura de base de la aplicación. La captura de una foto se arranca desde
Android, que realiza una petición a la cámara. La imagen se convierte para pasar
al módulo de reconocimiento basado en local features que está implementado en
C++, y cuando este termina, devuelve la imagen final a mostrar al módulo de
Android, donde se vuelve a convertir, para que se ejecute la visualización.



Caṕıtulo 4

Módulo de reconocimiento
de objetos basado en CNNs

Este caṕıtulo detalla el módulo desarrollado para el reconocimiento de obje-
tos mediante técnicas de deep learning, y evalúa la corrección de sus elementos
principales. La función de este módulo, es la de reconocer una imagen, y pro-
porcionar los tres objetos pertenecientes al conjunto de objetos de referencia,
con una mayor probabilidad de aparecer en la imagen.

4.1. Construcción de la CNN para reconocer los
objetos del museo

Por las ventajas de escalabilidad comentadas anteriormente, junto con los
buenos resultados demostrados en la literatura reciente, las técnicas basadas
en redes neuronales resultan las más eficaces para realizar un reconocimiento
inicial de que objetos hay en la imagen. En particular, este módulo está diseñado
para detectar que tres clases son las más similares a la imagen obtenida por la
cámara, para posteriormente utilizar esas tres clases como posibles candidatos
a comparar en el módulo de reconocimiento basado en local features.

Entorno de desarrollo de deep learning en Android. Para realizar el
reconocimiento de los diferentes objetos se ha utilizado el entorno de desarrollo
TensorFlow [9], el cuál provee de las herramientas necesarias para diseñar y
utilizar redes neuronales convolucionales. En este caso, se ha utilizado la versión
de TensorFlow espećıfica para Android [10]. Se ha utilizado para reentrenar una
red neuronal convolucional capaz de reconocer diferentes objetos, y que a su
vez pudiera funcionar sobre dispositivos Android. Para poder hacer funcionar
TensorFlow en un dispositivo Android se ha seguido el ejemplo de la aplicación
Android de clasificador de objetos de TensorFlow.

Selección de la arquitectura de CNN a utilizar. En el entorno de Ten-
sorFlow encontramos numerosas arquitecturas de CNNs para clasificación de
imágenes. De entre ellos, se han considerado las arquitecturas de Inception [11]
y de MobileNet [12], el primero de ellos se eligió debido a sus buenos resultados

17



CAPÍTULO 4. MÓDULO DE RECONOCIMIENTO BASADO EN CNNS 18

(a) (b)

Figura 4.1: Resultados de clasificación de imágenes con un modelo estándar
entrenado en ImageNet (a), y resultados más concretos que se consiguen con
nuestro modelo espećıfico para el museo (b). En ambos casos las capturas de
pantalla corresponden con una aplicación de prueba que carga dichos modelos
en Android.

y su uso extendido, y el segundo se eligió debido a que está orientado hacia
aplicaciones móviles, como la desarrollada.

Tanto Inception, como MobileNet han sido entrenadas para reconocer las
1000 clases de objetos de un dataset público muy conocido para reconocimiento
de objetos, Imagenet [13].

Imagenet es una base de datos de imágenes que es utilizada muy frecuente-
mente en materia de visión por computador, como banco de pruebas. En esta
base de datos se encuentran almacenadas y etiquetadas una gran cantidad de
imágenes de objetos diferentes.

En ambos casos, se ha modificado levemente el modelo para poder entrenarlo
en el conjunto de clases de interés para nuestro trabajo, en lugar de las clases por
defecto que teńıan dichos modelos. Como se puede ver en la Figura 4.1 (a), los
modelos disponibles suelen ser genéricos, y reconocen objetos tipo como pueden
ser una televisión o un oso de peluche. Sin embargo, nuestro objetivo, como se
ve en la Figura 4.1 (b), es distinguir clases mucho más concretas, dejando a
un lado clases como ordenador, y utilizando como clases modelos concretos de
ordenadores (ZXSpectrum 2, Apple 2,...).

Realizando diferentes entrenamientos con estas dos arquitecturas, detallados
más adelante, se llegó a la conclusión de que la mejor opción de arquitectura
era Inception, debido a que la precisión del modelo usando dicha arquitectura
era mejor que utilizando MobileNet. Esto es fácilmente apreciable en las Figura
4.2 y Figura 4.3, donde se pueden apreciar los valores de la precisión en los
entrenamientos con ambas arquitecturas.

Entrenamiento de la CNN y base de datos de entrenamiento. Una
vez elegida la arquitectura de CNN a utilizar, como se ha comentado, no se



CAPÍTULO 4. MÓDULO DE RECONOCIMIENTO BASADO EN CNNS 19

Objeto No Imágenes Museo No Imágenes Internet
AmstradCPC 5 55

Apple2 14 46
Atari520ST 8 52
Atari800XL 5 55

Commodore64 7 53
Commodore Amiga 12 49

IBM PowerPC 20 42
Macintosh ED 13 47

ShackTRS 3 58
Sinclair QL 4 56

ZXSpectrum ULA 22 38
Toshiba 64k 6 54
ZXSpectrum 6 55

ZXSpectrum 2 11 49
ZXSpectrum 81 6 54

Tabla 4.1: Distribución de las diferentes imágenes recogidas para realizar los
reentrenamientos de la CNN.

ha entrenado un modelo desde cero, sino que se han reentrenado las últimas
capas de dichos modelos ya entrenados para la detección de objetos. Esta técni-
ca, conocida como fine tunning, permite reaprovechar el entrenamiento de un
modelo entrenado con una gran cantidad de imágenes de ejemplo etiquetadas,
utilizando únicamente imágenes de los nuevos objetos a reconocer. Esto evita la
necesidad de tener una gran cantidad de datos para poder entrenar un modelo
de este tipo desde cero.

Para realizar este fine-tuning se han utilizado funcionalidades estándar de
TensorFlow. El script utilizado requiere imágenes etiquetadas de cada objeto
que queremos reconocer. Para ello se ha recolectado una nueva base de datos,
que consiste en conjuntos de entre 60 y 70 imágenes diferentes por cada objeto
a reconocer. La Tabla 4.1 muestra un resumen de la base de datos de imágenes
recopilada. Entre estas imágenes se encuentran fotograf́ıas realizadas con dife-
rentes teléfonos móviles a los objetos en el museo, pero a su vez, la gran mayoŕıa
de las imágenes utilizadas en el entrenamiento, se han obtenido de internet como
se puede ver en la Tabla 4.1, para de esta forma evitar el sobre ajuste que se
podŕıa producir al entrenar con fotograf́ıas demasiado similares capturadas de
cada objeto en una misma escena/entorno, de tal forma que el modelo tomara
el fondo también como parte del objeto.

Se eligieron estos objetos para poder comprobar el funcionamiento de la
aplicación con una vitrina central completa, ya que once de los objetos se en-
cuentran en la misma vitrina, y se añadieron otros cuatro, dos pertenecientes
a vitrinas laterales y dos pertenecientes a diferentes vitrinas centrales, para aśı
poder probar su funcionamiento con una mayor variedad de vitrinas.

Además, cabe destacar que durante el reentrenamiento (fine-tuning) de la red
neuronal, es una técnica habitual modificar las imágenes existentes para tener
más ejemplos (image augmentation). La idea es generar imágenes ligeramente
diferentes, por operaciones geométricas o ruido, pero que siguen conteniendo



CAPÍTULO 4. MÓDULO DE RECONOCIMIENTO BASADO EN CNNS 20

claramente el mismo objeto, y por lo tanto, también nos sirven como ejemplo
para la red. Estas modificaciones utilizadas son, recortar los bordes, añadir brillo
y modificar la escala de la imagen de forma aleatoria.

Principales problemas en el desarrollo de este módulo. Durante el
desarrollo de este módulo, se intentó utilizar la libreŕıa Keras en el reentrena-
miento, una biblioteca que añade más opciones a la hora de realizar el reentre-
namiento de una red neuronal. Una de las opciones que se intentó aprovechar
con el uso de Keras era el data augmentation, que genera más imágenes pa-
ra realizar el entrenamiento, a partir de las imágenes ya existentes añadiendo
ciertos efectos a estas (blur, rotaciones, recortes...). Pese a que el script de
re-entrenamiento de Tensor Flow también aportaba algunas de esta opciones,
Keras aportaba más variedad y control sobre las diferentes opciones. Aunque
se consiguió entrenar correctamente un modelo utilizando Keras, tubo que ser
descartado debido a que este modelo no se pod́ıa ejecutar de forma correcta en
la aplicación móvil final, y finalmente se utilizo un modelo entrenado mediante
el script de reentrenamiento de TensorFlow.

Otro de los principales problemas encontrados en el desarrollo de este módu-
lo, fue el uso de un modelo reentrenado de TensorFlow en un sistema operativo
Android, debido a la gran variabilidad existente entre versiones a la hora de crear
modelos reentrenados, y la falta de documentación sobre estos, y los cambios
entre las diferentes versiones.

4.2. Evaluación de la CNN entrenada

Configuración del experimento. A la hora de evaluar el correcto funcio-
namiento de la red neuronal re-entrenada, se ha medido la eficacia de diferentes
opciones de re-entrenamiento. La calidad de un modelo la medimos utilizando
las siguientes métricas:

Precisión (Accuracy): La precisión de un sistema clasificador, se mide com-
probando para las diferentes entradas, cuantas de ellas son etiquetadas
como la clase a la que realmente pertenecen. Se busca ante todo conseguir
la mejor precisión posible para el sistema creado.

Cross Entropy Loss (CE): Esta medida es muy utilizada en sistemas de
clasificación cuya salida tiene una probabilidad entre cero y uno. Esta
medida indica cuanto se ha distanciado la probabilidad esperada, con la
generada para la salida del clasificador. Esta medida es clave durante el
entrenamiento, durante el cual se busca minimizar su valor, siendo cero su
valor en un sistema perfecto.

Como es habitual en cualquier entrenamiento de un clasificador, los datos se
separan en dos conjuntos, Training y Validation, que son generados en cada en-
trenamiento por el script de reentrenamiento, seleccionando imágenes aleatorias
pertenecientes a todas las imágenes etiquetadas de las diferentes clases.

Las variaciones de entrenamiento consideradas se han basado en mo-
dificar tres valores principalmente:

Num. Its.: El número de pasos de entrenamiento realizados. Este valor es
necesario ajustarlo debido a que un número muy pequeño de pasos genera



CAPÍTULO 4. MÓDULO DE RECONOCIMIENTO BASADO EN CNNS 21

un modelo poco preciso, pero con una cantidad de pasos demasiado alta el
modelo se puede sobre ajustar a los datos de entrenamiento y no funcionar
correctamente con otros datos. Se probaron desde valores pequeños como
400 pasos, donde la precisión del sistema aún es baja, hasta un número de
pasos muy grande como es 50.000, donde se ve que los ajustes realizados
en cada iteración no mejoran los resultados del sistema.

Augmentation: Variaciones como recortar márgenes de las imágenes, rotar
las o añadir brillos de forma aleatoria para añadir posibles efectos que se
den al utilizar el sistema.

Arquitectura: Comparación entre las dos arquitecturas explicadas ante-
riormente.

Para poder medir de forma correcta la eficacia del sistema, se han ejecutado
diez entrenamientos para valorar los cambios de cada opción. Esto es debido a
que los conjuntos de datos de entrenamiento y validación se generan de forma
aleatoria en cada entrenamiento. Al ser conjuntos de datos generados en cada
entrenamiento, es posible que condicionen los resultados del entrenamiento, por
lo que se tomó la decisión de promediar los resultados de varios entrenamientos
para aśı obtener unos valores más fiables de las métricas tomadas.

Resultados del experimento. Como conclusión de esta evaluación, se de-
cidió utilizar la arquitectura Inception frente a MobileNet, debido a que su
precisión es mayor. Además se fijó el valor para el número de pasos en 5000, ya
que a partir de este número de pasos, el sistema ya no mejoraba. Además, se
descartó el uso de augmentation, ya que los resultados obtenidos con estos efec-
tos empeoraban o no mejoraban con respecto a sus versiones sin ser utilizados,
como se puede observar en la Tabla 4.4. Esto puede ser debido a utilizar una
muestra de datos pequeña (60-70 imágenes por clase).

Sin embargo se puede apreciar como el sistema, en función del número de
pasos de entrenamiento, ya no se produce ninguna mejoŕıa en el sistema, al
utilizar un número de pasos muy elevado, como son 10000 o más. Esto es debido
a que la red ya se ha ajustado a los datos de entrenamiento, y con más pasos
de entrenamiento no se mejoran los resultados, ya que ya están completamente
ajustados a los datos de entrenamiento.

Cabe destacar, que todas las mediciones realizadas se basan únicamente en
la primera salida que da el clasificador, pero en el sistema final se utilizaran
las tres más probables. Esto hace que el sistema final implementado tenga una
mayor robustez que la que se puede apreciar en estas pruebas.

Estos datos han sido obtenidos mediante el uso de TensorBoard [14], una
herramienta de monitorización dentro de TensorFlow, la cuál permite visualizar
información sobre el entrenamiento de redes neuronales, y a su vez obtener una
gran cantidad de información sobre el grafo generado, para su posterior carga
en la aplicación. Para la creación de las tablas de esta sección, se han utilizado
puntos concretos de los gráficos extráıdos de TensorBoard.[14].



CAPÍTULO 4. MÓDULO DE RECONOCIMIENTO BASADO EN CNNS 22

Figura 4.2: Gráfica generada mediante TensorBoard, para monitorizar la preci-
sión durante un reentrenamiento del modelo utilizando la arquitectura Incep-
tion. Los valores naranjas corresponden a la precisión con los datos de training,
mientras que los valores azules pertenecen a los datos de validación.

Figura 4.3: Gráfica generada de forma similar a la de la Figura 4.2, utilizando
la arquitectura de MobileNet. Se puede apreciar que la precisión del sistema en
el conjunto de validación es menor que utilizando la arquitectura Inception.

Num. Its. Training Validation Training Validation
Accuracy Accuracy CE CE

400 0.86 0.77 0.87 1.05
5000 0.99 0.87 0.11 0.52
10000 1 0.87 0.05 0.48

Tabla 4.2: Resultados obtenidos utilizando la arquitectura Inception. En la pri-
mera columna se muestra el número de pasos de cada entrenamiento, y a con-
tinuación los resultados de precisión y CE. Esta arquitectura consigue alcanzar
una mayor precisión por lo que ha sido elegido frente a MobileNet para la cons-
trucción del prototipo.



CAPÍTULO 4. MÓDULO DE RECONOCIMIENTO BASADO EN CNNS 23

Num. Its. Training Validation Training Validation
Accuracy Accuracy CE CE

400 0.92 0.78 0.72 0.96
5000 1 0.81 0.04 0.54
10000 1 0.81 0.02 0.49

Tabla 4.3: Resultados obtenidos utilizando la arquitectura MobileNet. Esta tabla
sigue la misma distribución que la Tabla 4.2, y se puede observar como los
valores de precisión obtenidos utilizando MobileNet son menores que utilizando
la arquitectura Inception.

Parámetros Training Training Validation Training Validation
Num. Its. Augment. Accuracy Accuracy CE CE

400 Flip 0.86 0.74 0.91 1.1
400 Brillo 0.83 0.75 0.93 1.1
400 Recorte 0.85 0.75 0.88 1.01
400 Ninguna 0.86 0.77 0.87 1.056
5000 Ninguna 0.99 0.87 0.11 0.52
50000 Ninguna 1 0.87 0.11 0.51

Tabla 4.4: Resultados obtenidos tras probar el data augmentation con la arqui-
tectura Inception. Los valores de las 2 primeras columnas, indican las variaciones
realizadas en el entrenamiento (n. de iteraciones del entrenamiento y si se ha
realizado algún tipo de data augmentation.

4.3. Integración de la CNN en la aplicación desa-
rrollada:

Una vez con el modelo ya entrenado, se ha procedido a cargarlo en el módulo
de clasificación, reemplazando el archivo correspondiente al modelo por defecto
de TensorFlow con el fichero del modelo reentrenado. De esta forma el clasi-
ficador recibe una imagen de la cámara, la convierte al formato y resolución
adecuados, y se introduce al modelo la imagen modificada. Con la salida del
modelo se determina a que objetos se aproxima más el objeto reconocido en
la imagen tomada por la cámara. El clasificador no devuelve solo las clases a
la que cree que pertenece la imagen a clasificar, sino que también devuelve un
porcentaje que representa hasta que punto el clasificador cree que la imagen
pertenece a cada clase predicha. En los resultados devueltos por el clasificador
se encuentran las tres clases con las que mayor similitud tiene la imagen, aunque
puede devolver un número menor, ya que se ha fijado un umbral de similitud,
de tal forma que si el porcentaje de similitud para una clase es demasiado bajo,
esta queda descartada directamente de los resultados. En este caso, el ĺımite
colocado ha sido de un diez por ciento.

Cabe destacar que el número de resultados devueltos por el clasificador pue-
de ser mayor de tres, pero debido a que posteriormente, estos resultados se
utilizaran para determinar contra que objetos de referencia se utilizará el sis-
tema de reconocimiento implementado mediante OpenCV, tres objetos es el
máximo número soportable sin que el rendimiento se vea resentido demasiado.



CAPÍTULO 4. MÓDULO DE RECONOCIMIENTO BASADO EN CNNS 24

Además, si el objeto a detectar se encuentra centrado en la imagen, la clase
a la que pertenece siempre suele encontrarse la primera o entre las tres clases
con mayor probabilidad. Esto le da al sistema una mayor robustez, ya que pe-
queños cambios o un resultado anómalo podŕıan arruinar el funcionamiento de
todo el sistema si solo nos quedáramos con el mejor resultado devuelto por el
clasificador.



Caṕıtulo 5

Módulo de reconocimiento
de objetos basado en local
features

Este caṕıtulo detalla el módulo desarrollado para el reconocimiento de ob-
jetos utilizando técnicas de visión por computador, y evalúa los principales ele-
mentos de este. La función de este módulo es la de localizar en la imagen, uno
de los tres objetos que el módulo descrito en el caṕıtulo 4 le proporciona co-
mo posibles candidatos. Para localizarlo se realizaran emparejamientos entre las
imágenes tomadas por la cámara, con las imágenes de referencia de los diferentes
objetos almacenadas.

5.1. Localización de objetos basado en local fea-
tures

Adquisición de descriptores de la imagen: Para poder comparar dos
imágenes utilizando local features, el primer paso consiste en extraer los puntos
de interés y los descriptores de cada una de las imágenes a comparar. Para esto,
existen diferentes tipos de detectores de puntos y descriptores, y dado que en
este proyecto uno de los puntos clave es el procesamiento de imágenes en tiempo
real, se han comparado dos tipos de descriptores binarios:

ORB (Oriented Fast and Rotated BRIEF )

BRISK (Binary Robust Invariant Scalable Keypoints)

Se eligieron estos dos algoritmos, debido a que utilizaban descriptores bina-
rios, y esto hace que los tiempos de ejecución sean mucho menores que utilizando
otros algoritmos que usan otro tipo de descriptores, como podŕıan ser SURF o
SIFT. Aunque estos dos últimos algoritmos obtienen resultados mucho más pre-
cisos, no son viables para ser utilizados en tiempo real en una aplicación móvil.

Estos puntos de interés y sus descriptores, se extraen de un conjunto de
imágenes de referencia de cada objeto, y de las imágenes captadas por la cámara
del móvil. Una vez extráıdos estos puntos de interés y sus descriptores, se procede

25



CAPÍTULO 5. MÓDULO DE RECONOCIMIENTO BASADO EN LOCAL FEATURES26

a emparejar la imagen captada por la cámara del móvil con una de las imágenes
pertenecientes a el conjunto de imágenes de referencia de un objeto, usando los
puntos de referencia extráıdos anteriormente.

Emparejamiento de imágenes: Debido a que algunos de los emparejamien-
tos iniciales entre puntos de interés pueden ser erróneos, se deben hacer ciertos
cálculos para separar los emparejamientos erróneos de los correctos. Para deter-
minar si un emparejamiento entre dos puntos es correcto, se procede a calcular
para cada punto de interés de la imagen capturada por la cámara, los dos mejo-
res emparejamiento con la imagen del conjunto de referencia a comparar. Sólo se
considerará un emparejamiento bueno cuando este sea considerablemente mejor
que su segundo mejor emparejamiento, como se describe en el caṕıtulo 2. De
esta forma nos aseguramos de que, el punto de interés que vamos a emparejar,
se parece mucho solo a otro punto de interés de la otra imagen, y se eliminan la
mayoŕıa de los malos emparejamientos. Los resultados de estos emparejamientos
se pueden ver en la Figura 5.1.

Este proceso, se realiza para emparejar una imagen tomada por la cámara
del dispositivo, con un conjunto de imágenes de referencia, para determinar cuál
de los objetos que aparecen en las imágenes de referencia, se encuentra en la
imagen tomada por la cámara. La imagen que obtenga un mayor número de
emparejamientos correctos será la que se considerará de referencia.

Para almacenar las imágenes de referencia, se ha creado una pequeña base de
datos, que contiene tres imágenes de cada objeto de referencia: una de la vista
frontal, otra de la vista lateral izquierda y por último otra de la vista lateral
derecha. Para más información sobre estas imágenes, revisar el anexo B.

Cabe destacar, que para reducir el tiempo de procesamiento de las imágenes
tomadas por la cámara, y para evitar que se emparejaran puntos pertenecien-
tes a objetos adyacentes al objeto que se desea reconocer, se tomó la decisión
de recortar la zona centra de la imagen, y calcular los emparejamientos entre
imágenes utilizando únicamente esta zona recortada.

5.2. Uso de los emparejamientos para localizar
un objeto

Una vez calculados los emparejamientos entre los puntos de referencia de
dos imágenes, se realiza una segunda fase para eliminar cualquier empareja-
miento erróneo restante, donde se hace una verificación geométrica utilizando
restricciones conocidas entre las dos imágenes, que en este caso vienen dadas
por los emparejamientos entre los puntos de interés calculados anteriormente.

Para realizar esta verificación geométrica, se probaron dos técnicas diferen-
tes:

Homograf́ıa: Cálculo de una matriz 3x3, que proporciona las correspon-
dencias entre puntos pertenecientes a un plano, en dos imágenes diferentes.

Matriz Fundamental: Cálculo de una matriz 3x3 que como la homograf́ıa,
describe correspondencias entre puntos de dos imágenes, pero en este ca-
so tiene un propósito más general, ya que no tienen por que ser puntos
pertenecientes a un mismo plano (3D).



CAPÍTULO 5. MÓDULO DE RECONOCIMIENTO BASADO EN LOCAL FEATURES27

(a)

(b)

Figura 5.1: Puntos caracteŕısticos emparejados entre una imagen actual de una
vitrina y dos imágenes de referencia. (a) emparejamientos obtenidos usando
BRISK; (b) emparejamientos obtenidos usando ORB



CAPÍTULO 5. MÓDULO DE RECONOCIMIENTO BASADO EN LOCAL FEATURES28

Figura 5.2: Puntos caracteŕısticos emparejados (entre foto actual y foto del
modelo) de manera robusta utilizando la matriz fundamental y ORB. Se en-
cuadran todos los inliers, obteniendo aśı la posición donde se encuentra la zona
central del objeto.

En este caso, dado que muchos de los objetos a reconocer son objetos tridi-
mensionales, y no planos, se decidió utilizar el cálculo de la matriz fun-
damental, en lugar de utilizar el cálculo de la homograf́ıa.

Tanto utilizando la matriz de homograf́ıa como utilizando la matriz funda-
mental, el propósito de estas es el de verificar cuales de los emparejamientos
realizados, cumplen ciertas restricciones geométricas, para aśı determinar que
los puntos emparejados pertenecen al objeto a reconocer en la imagen. Los pun-
tos que cumplen las restricciones geométricas entre las dos imágenes a comparar,
se denominan inliers, y son los utilizados para determinar donde se encuentra
el objeto a reconocer. Los puntos emparejados que no cumplan las restricciones
geométricas son denominados outliers, y se descartan. Finalmente, para locali-
zar una sección de la imagen en la que el objeto se encuentre con seguridad, se
recuadran todos los inliers, creando aśı un cuadrilátero en la imagen, donde se
encontrará el objeto a reconocer, como se puede ver en la Figura 5.2.

También cabe destacar que se intentó llevar a cabo una aproximación ba-
sada en determinar una serie de rectángulos predefinidos en las imágenes de
referencia, para luego buscar las esquinas de dichos rectángulos en la imagen a
reconocer, pero debido a la variabilidad de los puntos ORB, se tuvo que descar-
tar ya que el resultado era muy impreciso.



CAPÍTULO 5. MÓDULO DE RECONOCIMIENTO BASADO EN LOCAL FEATURES29

5.3. Evaluación del módulo

Para evaluar este módulo, se han realizado comparaciones entre los diferen-
tes tipos de puntos caracteŕısticos, BRISK y ORB, midiendo los tiempos de
cada uno de los algoritmos, y el número de emparejamientos correctos genera-
dos, considerando que se ha detectado una imagen de forma correcta cuando
el número de emparejamientos correcto es igual o superior a trece. Se fijo este
valor como umbral ya que el número de emparejamientos no supera este umbral
cuándo se intentan emparejar dos imágenes que no contienen similitudes. Se ha
buscado con estas pruebas encontrar un tipo de puntos caracteŕısticos capaz
de ejecutarse en tiempo real en móviles, pero que a su vez fuera lo suficiente-
mente robusto para emparejar correctamente las imágenes con cierto grado de
variación con respecto a las imágenes de referencia.

EL objetivo de esta prueba es comprobar la precisión y el tiempo de ejecución
de comparaciones de imágenes utilizando puntos caracteŕısticos de tipo BRISK
y de tipo ORB. Este banco de pruebas también se ha utilizado para comparar
con cuantas imágenes de referencia era viable comparar de forma simultánea.
Para realizar dichas comparaciones, se ha seleccionado un conjunto de 25 imáge-
nes de test y otro de cinco imágenes de referencia, siendo las imágenes de test
imágenes reales de las vitrinas del museo, y las imágenes de referencia imáge-
nes recortadas en las cuales solo aparece el objeto en concreto (ZXSpectrum2,
Atari800XL, ZXSpectrum ULA, ZXSpectrum Disassembly y Commodore 64).
Se ha comprobado la efectividad de los diferentes tipos de puntos y descrip-
tores (ORB y BRISK) comprobando el número de emparejamientos correctos,
entre el conjunto de imágenes de test, y el de referencia, entendiendo por un
match correcto, aquellos que logran superar la fase de comparación de nearest
neighbour. Los resultados completos de estas pruebas se pueden ver en el anexo
A.

La Tabla 5.1 muestra un resumen de las pruebas realizadas para comparar
los algoritmos de ORB y BRISK. En ella, aparecen los resultados, utilizando
una, tres y cinco imágenes de referencia con las que comparar cada una de las 25
imágenes de test. Para cada una de estas tres variaciones, se muestran los datos
correspondientes al tiempo promedio de procesar una imagen, y el número total
de imágenes reconocidas de forma correcta.

No Img. Ref. T. ORB T. BRISK Prec. ORB Prec BRISK
1 6,04 segundos 11,76 segundos 23/25 25/25
3 13,16 segundos 43,4 segundos 20/25 22/25
5 19,5 segundos 66,3 segundos 16/25 18/25

Tabla 5.1: Resultados de las comparaciones entre BRISK y ORB. En la primera
columna se indica el número de imágenes de referencia, en los columnas si-
guientes lo tiempos de ejecución para ORB y BRISK respectivamente, y las dos
últimas columnas representan la precisión del sistema, en función del número
de imágenes reconocidas de forma correcta.

Como conclusión de este experimento, se ha decidido utilizar los puntos
caracteŕısticos de tipo ORB, dado que aunque la precisión de los puntos BRISK
es mejor, los tiempos de ejecución utilizando BRISK son demasiado altos de
cara a comparar varias (tres o más) imágenes de forma simultánea, mientras



CAPÍTULO 5. MÓDULO DE RECONOCIMIENTO BASADO EN LOCAL FEATURES30

que utilizando puntos de tipo ORB se reduce mucho el tiempo de cálculo, y los
resultados son similares, aunque BRISK por norma general suele generar más
puntos correctos y de mayor estabilidad, ya que los puntos ORB al tener una
componente aleatoria pueden variar su posición y valores. Además también se
ha determinado, que tres imágenes de referencia es un número aceptable para
realizar comparaciones



Caṕıtulo 6

Aplicación móvil para el
museo

Este caṕıtulo detalla el prototipo implementado del sistema descrito en los
caṕıtulos anteriores, aśı como todas las decisiones de diseño tomadas durante la
implementación de dicho prototipo.

6.1. Aplicación desarrollada

El prototipo implementado es una aplicación para el sistema operativo An-
droid. El prototipo es capaz de identificar diferentes objetos del museo de in-
formática [15] del edificio Ada Byron, (en Escuela de Ingenieŕıa y Arquitectura,
ubicada en el campus Ŕıo Ebro, de la Universidad de Zaragoza), y una vez
identificado el objeto, añadir información aumentada en tiempo real en la vi-
sualización de dicha imagen en el móvil.

6.1.1. Base de datos y modelo de la aplicación final

Para la versión final del prototipo construido, existen tres conjuntos de datos
utilizados por lo módulos anteriormente descritos:

1. Base de datos de imágenes utilizadas para reentrenar CNN. Este conjunto
de datos es descrito en mayor detalle en el caṕıtulo 4.

2. Base de datos de imágenes de referencia utilizadas en el módulo de reco-
nocimiento basado en features. Por cada objeto a reconocer se almacenan
tres imágenes de referencia. Más información sobre este conjunto de datos
en el anexo B.

3. Base de datos de información relativa a los objetos, compuesta por un
texto breve para todos los objetos y algunas imágenes (tres por objeto)
para una visualización adicional en algunos objetos, como se ve en la
Figura 6.2 (b).

Los objetos para los que se han recopilado datos y funciona actualmen-
te el prototipo son 15: AmstradCPC 464, Apple 2, Atari 520ST, Atari 800XL,

31



CAPÍTULO 6. APLICACIÓN MÓVIL 32

Commodore 64, Commodore Amiga, IBM PorwerPC 601, Macintosh ED, Radio
ShackTRS, Sinclair QL, The ZXSpectrum ULA (libro), Toshiba 64k, ZXSpec-
trum, ZXSpectrum2 y ZXSpectrum 81. No se han añadido más objetos debido
a la gran cantidad de imágenes necesarias por cada objeto nuevo a añadir.

6.1.2. Funcionamiento del sistema

Las fases principales de funcionamiento una vez que arranca el programa
son las siguientes:

1. Iniciar el reconocimiento, utilizando la CNN descrita en el caṕıtulo
4, para obtener tres candidatos, de entre los posibles objetos de la base
de datos, que son los más probables de aparecer en el imagen actual. Esta
fase lleva un tiempo aproximado de dos segundos por cada fotograma
procesado por la CNN, por lo que cada vez que se utiliza la CNN en
el prototipo la pantalla queda momentáneamente congelada. Para evitar
congelar la pantalla de forma continua, la CNN se utiliza a intervalos de
50 fotogramas cuando no hay ningún candidato reconocido.

2. De los tres candidatos obtenidos con la CNN, se refina la búsque-
da del objeto que aparece realmente en la imagen, mediante em-
parejamientos y verificaciones geométricas, para verificar que objeto
y donde está situado en la imagen. Inicialmente la comparación se realiza
con las tres imágenes almacenadas de los tres candidatos, lo que conlleva
un tiempo de procesado de aproximadamente dos segundos por cada foto-
grama, y una vez se ha localizado el objeto, en los siguientes fotogramas
se comparará con la imagen encontrada, lo que hace que estos fotogramas
puedan ser procesados en milisegundos. En caso de perder la última ima-
gen localizada, se comparará con las otras dos imágenes de referencia del
objeto, lo que hace que procesar un fotograma sea levemente más costoso
que el caso anterior, pero sin llegar a costar un segundo.

3. Una vez encontrado el objeto que aparece en la imagen y donde se encuen-
tra, se procede a emparejar, de forma constante, cada imagen que
llega desde la cámara del dispositivo con las imágenes de refe-
rencia del candidato seleccionado.

4. Finalmente, se añade la información correspondiente al objeto re-
conocido, en la posición donde se ha detectado el objeto. En el momento
en el que se deje de detectar el objeto, el sistema volverá al estado inicial.

De estas fases principales de ejecución de la aplicación, podemos distinguir
las que son de procesado de la imagen para reconocimiento, y las que son de
visualización.

En cuanto a las de procesado de la imagen, están representadas en la
máquina de estados de la Figura 6.1 Como se puede apreciar, el estado inicial
del sistema es cuando aún no ha detectado ningún objeto. Una vez iniciado
el reconocimiento, se pueden distinguir las tres fases principales del sistema,
detalladas a continuación.



CAPÍTULO 6. APLICACIÓN MÓVIL 33

Figura 6.1: Diagrama de estados de la ejecución de las fases de procesamiento
de imagen para reconocimiento de objetos automático.

Estado: búsqueda candidatos mediante CNN. El primer estado cuando
el sistema sale de reposo, consiste en tomar dos imágenes mediante el dispositivo
Android, y proceder a clasificarlas mediante la CNN implementada en el módulo
de reconocimiento inicial.

Los resultados de clasificación de estas dos imágenes se promedian, para
aśı tener un funcionamiento más robusto del sistema frente una imagen mal
clasificada. La forma de ponderar las medias de los candidatos, es sumando un
voto por cada vez que se detecte un candidato, como se ve en la ecuación 6.1.
En esta ecuación, n es el número de clases, y j toma valores entre uno y dos, ya
que se promedian dos fotogramas. La función aparece(i, j) indica si el candidato
i ha sido reconocido en la imagen j.

∨
i, (0 ≤ i < n)⇒ Ni =

2∑
j=1

aparece(i, j) (6.1)

Finalmente, se seleccionan los tres candidatos con valor Ni más alto.

No se utilizan los porcentajes de fiabilidad generados también por el clasifi-
cador, debido a que un resultado espúreo, puede obtener un porcentaje anormal-
mente alto, y por tanto aparecer por encima de otros candidatos, propiciando aśı
que el candidato correcto no se encuentre entre los tres seleccionados finalmente.

Estado: Evaluación de candidatos mediante local features. Una vez se
ha realizado la selección de los tres mejores candidatos en el estado anterior, para
confirmar que objeto aparece en la imagen, se realiza, durante 50 fotogramas,
comparaciones contra las tres imágenes de referencia almacenadas para cada
uno de los tres posibles objetos. Es decir, se hacen comparaciones mediante las
caracteŕısticas locales elegidas (en este caso se seleccionarón las caracteŕısticas
de tipo ORB) con un máximo de nueve imágenes. Cuando el resultado de esta
comparación supera cierto umbral de matches encontrados (entre la imagen de
la cámara y una de las nueve imágenes de referencia), se considera que el objeto
ha sido encontrado, y se finaliza esta fase de comparaciones iniciales.



CAPÍTULO 6. APLICACIÓN MÓVIL 34

Con uno de los tres candidatos ya confirmado, las siguientes iteraciones de
comparaciones se realizaran solo con las tres imágenes de el candidato confirma-
do. Además, se guarda cuál de las tres imágenes de referencia ha sido la que se
ha emparejado correctamente la última vez, y es la imagen que se utilizará para
hacer las comparaciones con las siguientes imágenes obtenidas de la cámara del
dispositivo.

En el caso de que en las siguientes imágenes obtenidas, no se encuentren
correspondencias suficientes con la última imagen de referencia emparejada,
se procede a comparar con las otras dos imágenes de referencia del candidato
confirmado. Y en caso de que no se detecte durante un periodo de tiempo
ninguna de las tres imágenes del candidato confirmado, se procede a limpiar la
lista de candidatos y a volver al estado inicial del sistema.

Además cabe destacar, que el emparejamiento de imágenes no se realiza en
todos los fotogramas capturados por la cámara, sino que se realiza cada pequeños
intervalos, y en los fotogramas donde no se ha realizado el emparejamiento, se
utiliza como posición del objeto en la imagen para la visualización, la última
posición reconocida del objeto.

Visualización: Dado que independientemente del estado del sistema, la apli-
cación debe mostrar algo por pantalla, los estados de visualización del sistema
se ejecutan de forma paralela al resto de estados del sistema. Estos estados,
dependen fundamentalmente de si se ha detectado un objeto, o si el sistema se
encuentra aún buscando objetos. Estas dos fases de visualización del sistema,
consisten básicamente en dos estados, que se pueden ver en la Figura 6.3 Estos
dos estados son:

Si objeto no localizado: mostrar delimitadores de búsqueda.

Si objeto localizado: mostrar información relacionada con el objeto.

6.2. Pruebas de integración de los módulos

6.2.1. Pruebas realizadas

Para comprobar el correcto funcionamiento del prototipo construido, se crea-
ron dos aplicaciones diferentes, la primera orientada a la depuración del sistema
implementado, y otra ya de cara a la visualización final.

La aplicación de depuración como se puede apreciar en Figura 6.4(a),
no añade ninguna información sobre el objeto detectado a parte de su
nombre, pero muestra la sección en la cuál están comprendidos los puntos
emparejados de forma correcta. De esta forma, se puede comprobar en
directo con los objetos reales del museo si el funcionamiento de los empa-
rejamientos es correcto, o por el contrario se están emparejando puntos no
pertenecientes al objeto a reconocer. Además añade un botón para poder
iniciar el reconocimiento del objeto en el momento deseado, para aśı po-
der depurar con mayor facilidad la aplicación en cada uno de los diferentes
objetos.



CAPÍTULO 6. APLICACIÓN MÓVIL 35

(a) (b)

Figura 6.2: Imágenes pertenecientes a la aplicación final. (a): Aún no se ha
reconocido ningún objeto y se muestran lo delimitadores de la zona a reconocer.
(b): Objeto localizado en la imagen. Se puede apreciar como se proyecta sobre
el objeto su nombre y una imagen relacionada con el objeto detectado.

Figura 6.3: Diagrama de estados detallado de las fases de visualización del sis-
tema.

La aplicación final contiene una visualización más depurada, en la cuál
se muestran las imágenes asociadas al objeto reconocido en el centro del
área donde ha sido detectado el objeto. En esta versión se ha elimina-
do el marco que señala la zona donde se encuentran los emparejamientos
correctos, y el botón que inicia el reconocimiento, haciendo que el recono-
cimiento se inicie de forma automática en intervalos de tiempo, y que a su
vez, cuando un objeto no haya sido detectado en un periodo de tiempo, se
descarte el objeto y se vuelvan a buscar nuevos candidatos. Este prototipo



CAPÍTULO 6. APLICACIÓN MÓVIL 36

(a) (b)

Figura 6.4: Captura de pantalla de la ejecución de las dos aplicaciones im-
plementadas. (a) Aplicación de depuración. En ella se pueden observar dos
rectángulos. El exterior es la zona de detección de objetos, y el interior muestra
la zona en la que se ha detectado el objeto. (b) Aplicación final con visualización
de información adicional.

se corresponde con la Figura 6.4 (b).

Las pruebas realizadas con estas aplicaciones han sido:

Reconocimiento de los quince objetos cargados a diferentes horas del d́ıa,
para comprobar hasta que punto puede afectar la variación de la ilumina-
ción en la detección de los objetos.

Comprobación del correcto funcionamiento de la aplicación con objetos de
vitrinas centrales, al cambiar el punto de vista desde el que son vistos (de
frente, lateral izquierdo o lateral derecho).

Pruebas realizadas apuntando a otros objetos para comprobar que el sis-
tema no confunde objetos a reconocer con otros fuera del sistema.

6.2.2. Discusión

Esta subsección presenta una breve discusión de los principales puntos fuertes
y débiles de la versión actual del prototipo.

Escalabilidad del sistema: Uno de los puntos fuertes de el sistema propuesto
es su escalabilidad de cara a añadir objetos nuevos.



CAPÍTULO 6. APLICACIÓN MÓVIL 37

El primer módulo implementado que se ejecuta, es la red neuronal convo-
lucional, que analizará la imagen completa, y seleccionará los tres objetos de
referencia más similares. El tiempo de ejecución de este proceso es independien-
te del número de clases que tenga la red, por lo que a la hora de ejecutar el
sistema propuesto con un número mayor de objetos a reconocer, el tiempo de
ejecución seŕıa el mismo que con menos objetos.

De esta forma, aunque la colección de objetos a reconocer aumentara y
se modificara la red neuronal para que funcionara con más clases, tampoco
afectaŕıa a el módulo de visión por computador implementado, ya que el número
de imágenes contra las que comparar seguirá siendo siempre como máximo nueve
imágenes.

Aunque cabe destacar, que para poder aumentar el número de clases de
la red neuronal convolucional, es necesario recopilar un conjunto de imágenes
diferentes del objeto a añadir, y luego re entrenar la red neuronal con este nuevo
conjunto de imágenes. Se puede ver una descripción de como añadir nuevas clases
en el anexo C.

Visualización de la Realidad Aumentada: Aunque finalmente se decidió
implementar el preprocesado de candidatos con TensorFlow, y de la libreŕıa
OpenCV de cara a hacer una sencilla visualización, también se barajó el uso
de la libreŕıa ARCore [16], que es capaz de reconocer planos y proyectar sobre
ellos modelos en tres dimensiones, y hacer un seguimiento de esos puntos en
tiempo real, para poder mantener el modelo de tres dimensiones actualizado
en función de la posición desde la que la cámara ve esos puntos. Aunque esta
aplicación tiene un gran potencial de cara a la realidad aumentada, finalmente
acabo descartándose su uso, ya que al ser una libreŕıa muy novedosa y de altas
prestaciones, requiere para su uso dispositivos muy nuevos y de gama alta. Este
requisito es muy restrictivo, y hace que solo se pueda utilizar un reducido y
selecto grupo de dispositivos Android, de los cuáles no se dispońıan durante la
realización de este proyecto.



Caṕıtulo 7

Conclusiones

7.1. Conclusiones técnicas

Los objetivos planteados para este proyecto, eran dos a grandes rasgos: crear
una aplicación para dispositivos móviles capaz de reconocer y localizar objetos
en tiempo real, y el visualizar información aumentada relacionada con el objeto
detectado, también en tiempo real.

Ambos objetivos han sido cumplidos en el prototipo construido, pero hay
que destacar que la mayoŕıa del trabajo se ha realizado en el cumplimiento del
primer objetivo.

Este primer objetivo, la localización y el reconocimiento de los objetos, se
ha alcanzado mediante el uso de técnicas de visión por computador combinadas
con técnicas de deep learning. Se realizaron varias comparaciones entre dife-
rentes aproximaciones, y finalmente se utilizaron un sistema de reconocimiento
basado en la CNN reentrenada con la arquitectura Inception para detectar de
manera eficiente los objetos más probables, y luego un sistema más detallado
de localización del objeto basado en caracteŕısticas locales de tipo ORB.

En cuanto al segundo objetivo general, se ha implementado una versión sen-
cilla de visualización debido a que la parte del reconocimiento y localización de
objetos ha sido en la que más se ha profundizado, ya que su correcto funcio-
namiento era indispensable para el resto de la aplicación. En ella, se añade en
tiempo real información adicional del objeto que se está viendo (el nombre del
objeto y diferentes imágenes relacionadas con el objeto reconocido). Este segun-
do apartado podŕıa mejorarse como se describe más adelante, en la sección de
trabajo futuro.

El resultado final de todo el proyecto, ha sido la aplicación prototipo desa-
rrollada para móviles Android, la cuál realiza de forma automática y en tiempo
real los 2 objetivos citados anteriormente, utilizando los objetos almacenados
en el museo del edificio Ada Byron como elementos a reconocer, y sobre los que
ha sido probada.

7.2. Problemas encontrados

A continuación se van a detallar algunos de los principales problemas encon-
trados durante el desarrollo de este proyecto.

38



CAPÍTULO 7. CONCLUSIONES 39

Uso de Android : Uno de los principales problemas con los que se ha lidiado
durante la construcción del sistema, ha sido el trabajo con el sistema operativo
Android. El tiempo de puesta en marcha de los entornos y la integración con
Android llevó más tiempo del esperado inicialmente.

Dado que los conocimientos iniciales sobre el manejo de elementos del sis-
tema de Android eran escasos, esto en un principio supuso un reto, debido a
que antes de poder profundizar en los módulos de visión y deep learning, era
necesario conseguir una aplicación base sobre la que trabajar, y esto planteó
algunos problemas, principalmente a la hora de depurar ciertas secciones del
sistema dependientes de Android, como son el formato y las dimensiones de
las imágenes obtenidas de la cámara, la carga de imágenes y su transformación
para poder ser utilizadas de forma correcta en OpenCV con las imágenes obte-
nidas de la cámara, y un largo etcétera de situaciones donde se requieren ciertos
conocimientos del sistema interno de Android.

Para lidiar con este tipo de problemas, la estrategia planteada para depurar
el módulo de reconocimiento basado en caracteŕısticas locales, era inicialmente
desarrollar el código en un ordenador con OpenCV y depurar el funcionamiento
de la funcionalidad deseada en ese entorno controlado, y una vez que se ha
comprobado el correcto funcionamiento en ese entorno, se migraba el código a
la aplicación, para resolver posibles problemas derivados del manejo de Android
con la certeza de que la funcionalidad estaba correctamente implementada, y
que cualquier error que apareciera estaba relacionado con el manejo de Android.

Uso e integración de versiones de nuevas libreŕıas: Otro de los prin-
cipales problemas que se han encontrado a la hora de trabajar con el sistema
operativo Android, ha sido el de la integración de diferentes libreŕıas, como son
OpenCV y TensorFlow. En el caso concreto de esta segunda, al ser una libreŕıa
relativamente nueva, existen diferentes versiones no estables, que se modifican
cada poco tiempo. Esto generó un problema, a la hora de reentrenar un modelo
de red neuronal convolucional, que fue que muchas de las diferentes versiones
de scripts proporcionados por TensorFlow para el reentrenamiento de modelos,
generaban modelos no compatibles con las últimas versiones de la aplicación An-
droid. Finalmente, si que se consiguió resolver este problema utilizando versiones
anteriores de TensorFlow.

Actualmente, TensorFlow ha planteado una forma de resolver este problema,
creando una versión reducida de su libreŕıa, denominada TensorFlow Lite, la
cuál trae las herramientas necesarias para trabajar con esta libreŕıa en el siste-
ma operativo Android, de forma más fácil y sencilla que utilizando la libreŕıa
completa, pero que a su vez tienes menos opciones y se encuentra más restringida
que la versión completa de la libreŕıa.

Requisitos de ARCore: Para mejorar la parte de la visualización de la
aplicación, se intentó utilizar la herramienta ARCore, la cual aporta muchas
ventajas como tracking automático de planos, o visualizaciones de objetos tri-
dimensionales complejas. Pero finalmente se decidió no utilizarse por sus altos
requisitos.

El problema que trae intŕınseco ARCore, es que al ser una herramienta desa-
rrollada muy recientemente, y con un gran potencial, requiere de dispositivos con
una gran capacidad de cálculo y con las últimas versiones del sistema operativo



Android. Está fue la principal limitación a la hora de utilizar esta herramienta
en el sistema presentado, ya que no se dispońıa de un dispositivo que cumpliera
con los requisitos de esta herramienta, y aunque se consiguió probar su funciona-
miento en un dispositivo simulado virtualmente, finalmente acabó desechándose
de cara al prototipo final presentado.

Otro de los problemas que presentaba el uso de ARCore, es que se trata
de una herramienta en continuo desarrollo, y que aún no cuenta con versiones
muy estables, lo que favorece la aparición de bugs, y posibles incompatibilidades
entre versiones, ya que las aplicaciones que utilicen esta herramienta, requieren
tener la última versión de ARCore instalada.

7.3. Trabajo futuro

De cara a un posible trabajo futuro, el apartado que requiere una mayor
profundización seŕıa el de la visualización, ya que el sistema propuesto se ha
orientado más a obtener una detección y localización robusta y en tiempo real.

Como se ha comentado, el prototipo construido utiliza una visualización
muy sencilla, mostrando únicamente imágenes relacionadas, que se colocan en
la posición donde el objeto está siendo detectado. La profundización en el uso
de herramientas como ARCore, proporcionaŕıan posibilidades más complejas y
elaboradas a la hora de hacer una visualización de información más elaborada.
Esto es debido a que esta herramienta, proporciona la capacidad de colocar
objetos tridimensionales sobre planos detectados, dando lugar a visualizaciones
más realistas y con más posibilidades.

Otro de los puntos que podŕıan resultar interesantes de cara al futuro de
la aplicación, es la creación de una herramienta para facilitar el añadir nuevas
clases al prototipo. Actualmente, por cada objeto añadido, se requieren tres
imágenes donde se vea el objeto de forma ńıtida, y aproximadamente sesen-
ta imágenes para añadir la clase a la CNN, mediante el reentrenamiento de
esta. Una herramienta que recibiera estas imágenes y se encargara de forma
automática de añadirlas a la aplicación facilitaŕıa mucho este aspecto de cara a
ser utilizada con más objetos o incluso en otros museos.

Además, otro posible ámbito de cara al trabajo futuro, seŕıa el de la opti-
mización de la aplicación, de cara a poder mejorar el número de fotogramas
por segundo al que la aplicación trabaja en sus momentos de mayor carga. Esto
podŕıa realizarse mediante la implementación de un sistema de tracking de los
puntos detectados (en el caso de no añadir ARCore, ya que esta herramienta ha-
ce tracking de planos de forma automática), para aśı reducir la carga de trabajo
una vez ya se haya localizado el objeto que se quiere detectar.



Apéndice A

Resultados Reconocimiento
Basado en Features

En este anexo, se detallan los resultados obtenidos durante las comparaciones
de ORB y BRISK. Este anexo detalla las pruebas realizadas con un conjunto
de 25 imágenes obtenidas de las vitrinas del museo, contra cinco imágenes de
referencia, que contienen únicamente el objeto a reconocer. En este caso, los
objetos a reconocer elegidos para las pruebas son:

ZXSpectrum 2.

Atari800XL.

Commodore 64.

ZXSpectrum ULA (libro).

Spectrum ROM disassembly (libro).

En la Tabla A.1 se muestra que objeto u objetos aparecen en cada una de
las 25 imágenes que componen el conjunto de datos.

Las siguientes tablas, muestran resultados detallados de las comparaciones
entre BRISK y ORB con las imágenes anteriormente explicadas. En los resulta-
dos se puede observar para cada imagen el tiempo de cálculo, si se ha emparejado
correctamente con la imagen de referencia que contiene, y el número de matches
obtenidos. Para considerar dos imágenes correctamente emparejadas, el número
de matches debe superar un umbral, que en este caso ha sido fijado en trece,
como se explica en el caṕıtulo 5.

41



APÉNDICE A. RESULTADOS RECONOCIMIENTO BASADO EN FEATURES42

Numero de imagen Objetos que aparecen
1 ZXSpectrum ULA y Spectrum ROM disassembly
2 ZXSpectrum ULA y Spectrum ROM disassembly
3 ZXSpectrum ULA y Spectrum ROM disassembly
4 ZXSpectrum ULA y Spectrum ROM disassembly
5 ZXSpectrum ULA y Spectrum ROM disassembly
6 Atari800XL
7 Atari800XL
8 Atari800XL
9 Atari800XL
10 Atari800XL
11 Commodore 64
12 ZXSpectrum 2
13 ZXSpectrum 2
14 ZXSpectrum 2
15 ZXSpectrum 2
16 ZXSpectrum 2
17 ZXSpectrum 2
18 ZXSpectrum 2
19 Commodore 64
20 Commodore 64
21 Commodore 64
22 Commodore 64
23 Commodore 64
24 ZXSpectrum ULA y Spectrum ROM disassembly
25 Atari800XL

Tabla A.1: Correspondencias entre cada una de las 25 imágenes utilizadas en
las siguientes pruebas, y los objetos a reconocer que aparecen en cada una de
ellas.



APÉNDICE A. RESULTADOS RECONOCIMIENTO BASADO EN FEATURES43

No Tiempo(segs) Resultado BRISK No matches
1 89 true positive 244
2 79 true positive 26
3 110 true positive 65
4 106 true positive 265
5 85 true positive 87
6 13 true positive 44
7 8 false negative 6
8 10 false negative 0
9 12 false negative 2
10 7 false negative 1
11 42 true positive 102
12 94 true positive 35
13 113 true positive 32
14 57 true positive 31
15 68 true positive 13
16 132 true positive 14
17 190 true positive 350
18 81 false negative 11
19 22 false negative 6
20 58 true positive 700
21 35 true positive 18
22 36 false negative 7
23 63 true positive 18
24 97 true positive 50
25 50 true positive 15

Medias: 66,28 18/25 85,8

Tabla A.2: Resultados obtenidos utilizando puntos caracteŕısticos de tipo
BRISK, comparando una imagen de test con 5 de referencia.



APÉNDICE A. RESULTADOS RECONOCIMIENTO BASADO EN FEATURES44

No Tiempo(segs) Resultado ORB No matches
1 19 true positive 15
2 21 false negative 6
3 19 true positive 42
4 19 true positive 61
5 19 true positive 27
6 15 true positive 145
7 16 true postive 54
8 14 false negative 3
9 14 false negative 4
10 14 false negative 3
11 12 true positive 112
12 22 true positive 90
13 22 true positive 35
14 22 true positive 18
15 22 false negative 4
16 22 false negative 8
17 21 true positive 481
18 21 true positive 13
19 23 false positive 13
20 22 true positive 673
21 21 true positive 16
22 21 false positive 14
23 23 true positive 20
24 19 true positive 45
25 24 false negative 7

Medias: 19,5 16/25 73,3

Tabla A.3: Resultados obtenidos utilizando puntos caracteŕısticos de tipo ORB,
comparando una imagen de test con 5 de referencia.



APÉNDICE A. RESULTADOS RECONOCIMIENTO BASADO EN FEATURES45

No Tiempo (segs) Resultado BRISK No matches
1 59 true positive 244
2 52 true positive 18
3 70 true positive 57
4 68 true positive 74
5 56 true positive 69
6 7 true negative 3
7 5 true negative 2
8 7 true negative 0
9 7 true negative 2
10 5 true negative 1
11 30 true positive 102
12 60 true positive 35
13 72 true positive 32
14 39 true positive 31
15 49 true positive 13
16 83 true positive 14
17 122 true positive 350
18 54 false negative 10
19 16 false negative 6
20 39 true positive 700
21 24 true positive 18
22 25 false negative 7
23 44 true positive 18
24 60 true positive 50
25 31 true negative 10

Medias: 43,36 22/25 73,64

Tabla A.4: Resultados obtenidos utilizando puntos caracteŕısticos de tipo
BRISK, comparando una imagen de test con 3 de referencia. En concreto las
imágenes de referencia son de los objetos ZXSpectrum ULA (libro), Spectrum
2 y Commodore 64.



APÉNDICE A. RESULTADOS RECONOCIMIENTO BASADO EN FEATURES46

No Tiempo (segs) Resultado ORB No matches
1 12 true positive 15
2 13 false negative 6
3 13 false negative 7
4 13 true positive 30
5 13 true positive 27
6 10 true negative 8
7 9 true negative 4
8 9 true negative 3
9 9 true negative 4
10 8 true negative 2
11 15 true positive 112
12 14 true positive 90
13 13 true positive 35
14 15 true positive 18
15 15 false negative 4
16 15 false negative 8
17 14 true positive 481
18 15 true positive 13
19 14 true positive 13
20 16 true positive 673
21 16 true positive 16
22 13 false positive 14
23 15 true positive 20
24 14 true positive 45
25 16 true negative 7

Medias: 13,16 20/25 66,2

Tabla A.5: Resultados obtenidos utilizando puntos caracteŕısticos de tipo ORB,
comparando una imagen de test con 3 de referencia. En concreto las imáge-
nes de referencia son de los objetos ZXSpectrum ULA (libro), Spectrum 2 y
Commodore 64.



APÉNDICE A. RESULTADOS RECONOCIMIENTO BASADO EN FEATURES47

No Tiempo (segs) Resultado BRISK No matches
1 16 true positive 244
2 14 true positive 18
3 19 true positive 57
4 18 true positive 74
5 15 true positive 69
6 2 true negative 0
7 2 true negative 2
8 1 true negative 0
9 2 true negative 2
10 1 true negative 1
11 2 true negative 4
12 17 true negative 12
13 20 true negative 12
14 11 true negative 7
15 20 true negative 7
16 25 true negative 7
17 31 true negative 7
18 15 true negative 7
19 6 true negative 6
20 12 true negative 6
21 7 true negative 1
22 8 true negative 7
23 13 true negative 7
24 17 true positive 50
25 10 true negative 4

Medias: 11,76 25/25 24,4

Tabla A.6: Resultados obtenidos utilizando puntos caracteŕısticos de tipo
BRISK, comparando una imagen de test con 1 de referencia. En este caso,
la imagen de referencia a comparar es ZXSpectrum ULA (libro).



APÉNDICE A. RESULTADOS RECONOCIMIENTO BASADO EN FEATURES48

No Tiempo (segs) Resultado ORB No matches
1 6 true positive 15
2 6 false negative 6
3 7 false negative 7
4 6 true positive 30
5 6 true positive 27
6 3 true negative 0
7 3 true negative 3
8 3 true negative 1
9 3 true negative 4
10 3 true negative 2
11 6 true negative 1
12 6 true negative 1
13 5 true negative 5
14 6 true negative 3
15 4 true negative 4
16 8 true negative 8
17 7 true negative 5
18 7 true negative 4
19 6 true negative 3
20 6 true negative 2
21 6 true negative 3
22 7 true negative 10
23 15 true negative 4
24 8 true positive 45
25 8 true negative 5

Medias: 6,04 23/25 7,92

Tabla A.7: Resultados obtenidos utilizando puntos caracteŕısticos de tipo ORB,
comparando una imagen de test con 1 de referencia. En este caso, la imagen de
referencia a comparar es ZXSpectrum ULA (libro).



Apéndice B

Base de datos de imágenes
utilizadas.

Este anexo detalla la información referente a la base de datos de imágenes
y información relacionada que se ha creado, y tiene tres partes principales:
1) Imágenes utilizadas para el re-entrenamiento de la CNN. 2) Imágenes de
referencia utilizadas en el módulo de reconocimiento basado en local features. 3)
Imágenes utilizadas para visualización aumentada.

B.1. Datos re-entrenamiento de la CNN

La Tabla B.1 detalla las imágenes utilizadas para el re-entrenamiento de
la CNN utilizada en el primer módulo del sistema, utilizando quince objetos
diferentes del museo.

Objeto No Imágenes Museo No Imágenes Internet

AmstradCPC 5 55

Apple2 14 46

Atari520ST 8 52

Atari800XL 5 55

Commodore64 7 53

Commodore Amiga 12 49

IBM PowerPC 20 42

Macintosh ED 13 47

ShackTRS 3 58

Sinclair QL 4 56

ZXSpectrum ULA 22 38

Toshiba 64k 6 54

ZXSpectrum 6 55

ZXSpectrum 2 11 49

ZXSpectrum 81 6 54

Tabla B.1: Distribución de las imágenes recopiladas para realizar los re-
entrenamientos de la CNN de reconocimiento.

49



APÉNDICE B. BASE DE DATOS DE IMÁGENES UTILIZADAS. 50

B.2. Imágenes de referencia del módulo de re-
conocimiento con local features

Por cada uno de los quince objetos reconocidos, se han almacenado tres
imágenes. Estas tres imágenes se corresponden a la vista frontal del objeto, la
vista desde el lateral derecho, y la vista desde el lateral izquierdo. En caso de que
alguno de los objetos no pueda ser observado desde tres perspectivas diferentes,
se completa el conjunto de tres imágenes con otras imágenes del objeto. Como
se puede apreciar, algunas de las imágenes han sido editadas para eliminar las
zonas en las cuales apareciera un objeto diferente al de referencia de la imagen.

Vista Frontal Lateral derecha Lateral izquierda

Figura B.1: Imágenes utilizadas para el reconocimiento del objeto Atari 800
XL.

Vista Frontal Lateral derecha Lateral izquierda

Figura B.2: Imágenes utilizadas para el reconocimiento del objeto Commodore
Amiga.



APÉNDICE B. BASE DE DATOS DE IMÁGENES UTILIZADAS. 51

Vista Frontal Lateral derecha Lateral derecha 2

Figura B.3: Imágenes utilizadas para el reconocimiento del objeto Amstrad CPC
464.

Vista Frontal Lateral derecha Lateral izquierda

Figura B.4: Imágenes utilizadas para el reconocimiento del objeto Atari 520.

Vista Frontal Lateral derecha Lateral izquierda

Figura B.5: Imágenes utilizadas para el reconocimiento del objeto Apple 2.



APÉNDICE B. BASE DE DATOS DE IMÁGENES UTILIZADAS. 52

Vista Frontal Lateral derecha Lateral izquierda

Figura B.6: Imágenes utilizadas para el reconocimiento del objeto Commodore
64.

Vista Frontal Lateral derecha Lateral izquierda

Figura B.7: Imágenes utilizadas para el reconocimiento del objeto IBM PowerPC
601.

Vista Frontal Lateral derecha Lateral izquierda

Figura B.8: Imágenes utilizadas para el reconocimiento del objeto Macintosh
ED.



APÉNDICE B. BASE DE DATOS DE IMÁGENES UTILIZADAS. 53

Vista Frontal Lateral derecha Lateral derecha completa

Figura B.9: Imágenes utilizadas para el reconocimiento del objeto Shack TRS.

Vista Frontal Lateral izquierda Lateral derecha

Figura B.10: Imágenes utilizadas para el reconocimiento del objeto Sinclair QL.

Vista Frontal Lateral derecha Lateral izquierda

Figura B.11: Imágenes utilizadas para el reconocimiento del objeto The ZXS-
pectrum ULA (libro).



APÉNDICE B. BASE DE DATOS DE IMÁGENES UTILIZADAS. 54

Vista Frontal Lateral derecha Lateral derecha completo

Figura B.12: Imágenes utilizadas para el reconocimiento del objeto Toshiba 64k.

Vista Frontal Lateral derecha Lateral izquierda

Figura B.13: Imágenes utilizadas para el reconocimiento del objeto ZXSpectrum.

Vista Frontal Lateral derecha Lateral izquierda

Figura B.14: Imágenes utilizadas para el reconocimiento del objeto ZXSpectrum
2.

Vista Frontal Lateral derecha Lateral izquierda

Figura B.15: Imágenes utilizadas para el reconocimiento del objeto ZXSpectrum
81.



APÉNDICE B. BASE DE DATOS DE IMÁGENES UTILIZADAS. 55

B.3. Imágenes para visualización aumentada

Para comprobar el correcto funcionamiento de la visualización aumentada
implementada, se recopilaron tres imágenes relacionadas con tres objetos dife-
rentes (ZXSpectrum ULA(libro), ZXSpectrum 2 y Commodore 64).

Figura B.16: Imágenes utilizadas para la visualización aumentada del objeto
ZXSpectrum 2.

Figura B.17: Imágenes utilizadas para la visualización aumentada del objeto
ZXSpectrum ULA (libro).

Figura B.18: Imágenes utilizadas para la visualización aumentada del objeto
Commodore 64.



Apéndice C

Manual para introducir
nuevos objetos.

Este anexo detalla los pasos a seguir para poder añadir nuevos objetos a
reconocer en la aplicación implementada. Este proceso, es relativamente sencillo
y es uno de los puntos fuertes de esta aplicación, ya que el uso de CNNs la hace
altamente escalable, y lo único que se debe realizar es añadir nuevas clases a
la CNN re-entrenada, y añadir las imágenes de referencia del objeto para luego
poder se reconocido por el módulo de reconocimiento basado en local features.

Los pasos a seguir para añadir un nuevo objeto son los siguientes:

1. Recolectar entre 60 y 70 imágenes del objeto. Para la recolección de estas
imágenes es fundamental que sean de diferentes fuentes, o que al menos el
objeto aparezca con fondos diferentes en la mayoŕıa de ellas, ya que sino
la CNN confundirá el fondo de la imagen con el objeto. En este caso, se
recomienda utilizar unas cuantas imágenes obtenidas de los objetos que
serán reconocidos de forma final, y el resto obtenerlas de Internet para
una mayor variación de iluminaciones, sombras, fondos, ...

2. Introducir estas imágenes en una carpeta con el nombre del objeto a re-
conocer, y añadir la carpeta al directorio donde están almacenadas las
carpetas que contienen el resto de los objetos.

3. Re-entrenar la CNN, utilizando el script de re-entrenamiento. Al modelo
generado se le debe aplicar un segundo script para adaptar el modelo ge-
nerado a su uso en la aplicación final. Finalmente, se debe copiar el modelo
a la carpeta assets del proyecto Android de la aplicación, re-emplazando
el modelo anterior.

4. Una vez hecho esto, se deben obtener tres imágenes donde se vea clara
y exclusivamente el objeto, en el ámbito donde va a ser reconocido. A
continuación, se deben copiar estas imágenes a la carpeta drawable del
proyecto Android de la aplicación.

5. Para añadir la visualización aumentada, se deben obtener tres imágenes
relacionadas con el objeto a añadir, y de la misma manera que antes,
copiarlas a carpeta drawable del proyecto Android de la aplicación.

56



APÉNDICE C. MANUAL PARA INTRODUCIR NUEVOS OBJETOS. 57

6. Con todos los pasos anteriores, solo se debe modificar el código de la
aplicación en las secciones de carga de imágenes, tanto de visualización
como de referencia, para cargar las nuevas imágenes, y asociarlas al nuevo
objeto añadido. Como último paso, se debe añadir a la lista de nombres
de objetos el nombre del nuevo objeto añadido.



Bibliograf́ıa

[1] David G Lowe. Object recognition from local scale-invariant features. In
IEEE Proc. of Int. Conf. on Computer Vision, volume 2, pages 1150–1157,
1999.

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-
up robust features (surf). Computer vision and image understanding,
110(3):346–359, 2008.

[3] Jared Heinly, Enrique Dunn, and Jan-Michael Frahm. Comparative evalua-
tion of binary features. In Computer Vision–ECCV 2012, pages 759–773.
Springer, 2012.

[4] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:
An efficient alternative to sift or surf. In Computer Vision (ICCV), IEEE
international conference on, pages 2564–2571. IEEE, 2011.

[5] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. Brisk: Binary
robust invariant scalable keypoints. In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 2548–2555. IEEE, 2011.

[6] Richard Hartley and Andrew Zisserman. Multiple view geometry in com-
puter vision. Cambridge university press, 2003.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning, vo-
lume 1. Cambridge: MIT press, 2016.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[9] TensorFLow. Main page of tensorflow https://www.tensorflow.org.

[10] TensorFLow. Mobile version of tensorflow https://www.tensorflow.org/

lite/tfmobile/android_build.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

58

https://www.tensorflow.org
https://www.tensorflow.org/lite/tfmobile/android_build
https://www.tensorflow.org/lite/tfmobile/android_build


BIBLIOGRAFÍA 59

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
248–255. Ieee, 2009.

[14] TensorFLow. Tensorboard: visualizing learning https://www.

tensorflow.org/guide/summaries_and_tensorboard.

[15] EINA. Página web oficial del museo de informática, alojado en el edificio
ada byron de la universidad de zaragoza. http://mih.unizar.es/.

[16] Google. Arcore https://developers.google.com/ar/.

https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
http://mih.unizar.es/
https://developers.google.com/ar/

	Índice
	Introducción
	Motivación y Contexto
	Objetivos y Tareas
	Resumen de la memoria

	Trabajo Relacionado
	Reconocimiento con características locales
	Características locales
	Correspondencias Robustas utilizando Homografía y Matriz Fundamental

	Reconocimiento basado en deep learning

	Diseño del Sistema Propuesto
	Módulos del sistema
	Entorno de desarrollo del sistema

	Módulo de reconocimiento basado en CNNs
	Construcción de la CNN para reconocer los objetos del museo
	Evaluación de la CNN entrenada
	Integración de la CNN en la aplicación desarrollada:

	Módulo de reconocimiento basado en local features
	Localización de objetos basado en local features
	Uso de los emparejamientos para localizar un objeto
	Evaluación del módulo

	Aplicación móvil
	Aplicación desarrollada
	Base de datos y modelo de la aplicación final
	Funcionamiento del sistema

	Pruebas de integración
	Pruebas realizadas
	Discusión


	Conclusiones
	Conclusiones técnicas
	Problemas encontrados
	Trabajo futuro

	Anexos
	Resultados Reconocimiento Basado en Features
	Base de datos de imágenes utilizadas.
	Datos re-entrenamiento de la CNN
	Imágenes de referencia del módulo de reconocimiento con local features
	Imágenes para visualización aumentada

	Manual para introducir nuevos objetos.
	Bibliografía

