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Resumen 

 

En nuestras vidas cotidianas es cada vez más frecuente el uso de aplicaciones 

específicamente diseñadas para su ejecución en dispositivos móviles. Si bien dichas 

aplicaciones proporcionan servicios útiles, existen muchos ejemplos de escenarios 

donde la incorporación de tecnologías semánticas podría mejorar la calidad de los 

servicios y la experiencia del usuario.  

El uso de información semántica específicamente representada y de un razonador 

semántico para inferir nuevo conocimiento implícito plantea ciertos retos cuando el 

hardware es un dispositivo móvil, con limitaciones en cuanto a capacidad de 

procesamiento, memoria, batería... 

En este proyecto se ha creado una plataforma inteligente para el razonamiento 

semántico en dispositivos móviles que permite decidir en tiempo de ejecución dónde 

procesar los datos: si en el propio dispositivo móvil o en un servidor externo. 

Para ello, se han utilizado algoritmos de aprendizaje automático que permiten 

predecir el coste del razonamiento de acuerdo a diferentes criterios y, finalmente, 

decidir el lugar del razonamiento teniendo en cuenta el hardware del dispositivo móvil. 
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1. Introducción 

1.1 Marco y objetivo del proyecto 

En los últimos años se ha incrementado considerablemente el desarrollo de 

tecnología móvil. El uso de smartphones está completamente integrado en la sociedad 

y, con ello, el uso de aplicaciones para dispositivos móviles (apps). Estas apps podrían 

mejorar la calidad de sus servicios y la experiencia del usuario mediante la 

incorporación de razonadores semánticos. Estos son capaces de descubrir conocimiento 

implícito en un conjunto de información agrupada en lo que se conoce como ontologías, 

lo que también facilitaría el intercambio y reutilización de información. Un tipo de 

aplicaciones que se beneficiaría del uso de razonadores serían las proveedoras de 

servicios según la ubicación del usuario. Podrían recomendar un transporte u otro 

partiendo de una información inicial sobre los medios y teniendo en cuenta la hora, 

ubicación o preferencias del usuario (p.ej. transporte público/privado). 

El principal entorno donde se ha desarrollado esta herramienta ha sido en PC ya 

que, por desgracia, el uso de razonadores en dispositivos móviles plantea ciertos retos 

debido a las limitaciones que supone tener menor capacidad computacional. 

El objetivo de este TFG es la creación de una plataforma inteligente para el 

razonamiento semántico en dispositivos móviles Android, que permita decidir en 

tiempo de ejecución dónde procesar los datos: si en el propio dispositivo móvil o en un 

servidor externo con más recursos. Para esta decisión se han utilizado varios algoritmos 

de aprendizaje automático (“Redes Neuronales Artificiales” y “Bosques Aleatorios”), 

que tienen en cuenta el consumo en tiempo, batería y memoria durante el razonamiento. 

Existen trabajos previos sobre la predicción de tiempo (en PC) y de batería (en 

móviles), aunque ambos consideran sólo los “Bosques Aleatorios”. Además, ninguno de 

ellos tiene en cuenta la memoria, ni utiliza varios criterios simultáneamente. 
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1.2 Organización de la memoria 

La memoria está organizada en los siguientes apartados: 

- Contexto tecnológico: explicación detallada de conceptos y métodos utilizados 

a lo largo del proyecto. 

- Diseño: se decide cuáles son las fases requeridas para una correcta 

implementación y se detallan las necesidades que estas deben cumplir. 

- Implementación y experimentación: se desarrollan las ideas expuestas en las 

etapas de diseño, elaborando distintas aplicaciones y algoritmos para conseguir 

el objetivo final. También se evalúan las pruebas realizadas en el proceso. 

- Conclusiones y trabajo futuro: se comenta la validez y el alcance de los 

resultados. También se hace referencia al trabajo futuro en este campo. 

- Referencias. 
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2. Contexto tecnológico 

A continuación se abordan con detalle algunos conceptos y métodos fundamentales 

en el desarrollo del proyecto. 

2.1 Ontologías y razonadores 

Las ontologías son agrupaciones de conocimiento dentro de un dominio de interés. 

En ellas se describen conceptos pertenecientes a este dominio y las relaciones que se 

forman entre ellos. Para su modelado se utilizan Lógicas de Descripción (DL), una 

familia de lenguajes para la representación de conocimiento. Supone uno de los 

principales fundamentos de OWL 2 Web Ontology Language (informalmente OWL 2), 

estandarizado por el World Wide Web Consortium (W3C) [1] y utilizado en las 

ontologías de este proyecto. Es totalmente compatible con Protégé [2], un software 

especializado para su edición. Para la manipulación de ontologías en aplicaciones Java 

se ha utilizado la biblioteca OWL API 3.4.1 [3]. 

Las DLs están equipadas por una semántica formal que permite intercambiar 

ontologías sin ambigüedad respecto a su significado. Además, tienen la capacidad de 

inferir conocimiento adicional sobre las ontologías, mecanismo conocido como 

razonamiento. Un razonador semántico es un software capaz de inferir conocimiento 

dentro de una ontología. Puede verificar si las afirmaciones y definiciones de una 

ontología son consistentes, así como reconocer qué conceptos se ajustan a las 

definiciones, entre otras posibles tareas de razonamiento. [4] Uno de los principales 

servicios que ofrecen los razonadores semánticos es la “clasificación”, utilizada en el 

desarrollo del proyecto. Esta tarea comprueba si una clase es subclase de otra, es decir, 

computa la jerarquía de clases de la ontología en cuestión. 

 

Las ontologías se componen de clases, propiedades, individuos y axiomas: 

- Las clases son las ideas básicas para representar el conocimiento de algún 

dominio. Se especifican las condiciones que un individuo debe satisfacer para 

pertenecer a una clase determinada. Pueden estar organizadas con una jerarquía 

de superclase-subclase, también conocido como taxonomía. Las subclases 

especializan a las superclases. 
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- Las propiedades representan relaciones. Hay dos tipos principales: Object 

properties y Datatype properties. Las primeras enlazan dos individuos y pueden 

ser funcionales, inversas, transitivas, simétricas, reflexivas… Las segundas 

relacionan individuos con valores de datos.  

- Los individuos son instancias de las clases. Representan objetos en el dominio 

en que estamos interesados, pudiendo dos nombres distintos referirse al mismo 

individuo. 

- Los axiomas son teoremas que describen relaciones que deben cumplir los  

elementos de la ontología. Por ejemplo: “Si A y B son de la clase C, entonces A 

no es subclase de B”. [5][6] 

 

En la Figura 1 hay un esquema que ejemplifica estos componentes: “Gemma” e 

“England” son individuos, “Person” y “Country” son clases y “hasPet” y 

“livesInCountry” propiedades.  

 

Figura 1. Representación de fragmento de una ontología [6] 

 

Una ontología consiste en un conjunto de axiomas que capturan conocimiento de 

una situación descrita. Estos axiomas se dividen comúnmente en dos grupos: axiomas 

asertivos (ABox) y terminológicos (TBox) [4]. 

- Axiomas ABox: almacenan conocimiento sobre los individuos nombrados, 

especialmente las clases a los que pertenecen y las relaciones que mantienen. 

Por ejemplo, “Fido(pet)” afirma que Fido es una mascota y 

“livesInCountry(Matthew, England)” afirma que Matthew vive en Inglaterra. 
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- Axiomas TBox: describen relaciones entre clases o entre propiedades. Dentro de 

este tipo de axiomas, destacan los General Concept Inclusion axioms (GCIs), 

que establecen que un concepto es subclase de otro. [7] Por ejemplo,      

“Mascota  ⊂  Animal”  quiere  decir  que  todas  las  mascotas  son  animales. 

 

Algunas referencias para obtener más información sobre ontologías y DLs son 

“Handbook on ontologies” y “The Description Logic Handbook”, respectivamente. 

 

2.2 Redes Neuronales Artificiales 

“Una Red Neuronal Artificial es un modelo matemático inspirado en el 

comportamiento biológico de las neuronas y en la estructura del cerebro, y que es 

utilizada para resolver un amplio rango de problemas. […] Esta también puede ser vista 

como un sistema inteligente que lleva a cabo tareas de manera distinta a como lo hacen 

las computadoras actuales.”
 
[8] 

Este modelo es capaz de aprender a realizar tareas basadas en una experiencia 

inicial (conocida como entrenamiento) y de crear su propia organización de la 

información según lo aprendido. En la Figura 2 se muestra un modelo de RNA. 

 

 

Figura 2. Modelo de Red Neuronal Artificial [9] 

 

Está constituido por un conjunto de neuronas interconectadas agrupadas en distintas 

capas. Como su nombre indica, los valores son introducidos a la red por la “capa de 

entrada” y las salidas se obtienen de la “capa de salida”, siendo variable el número de 

“capas ocultas”. 
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La función de entrada a una RNA se calcula a partir del vector de entrada y los 

pesos, que son modificados a medida que la red va aprendiendo, para así controlar la 

influencia que tienen las entradas. 

Se ha utilizado un aprendizaje supervisado por corrección de error. Este consiste en 

ajustar los pesos de las conexiones de la red en función de la diferencia entre los valores 

deseados y los obtenidos a la salida de la red, es decir, en función del error cometido en 

la salida. [9] El aprendizaje divide los datos en dos conjuntos: el de entrenamiento (80% 

de la muestra) y el de test (20%).  Con el primero se fijan los pesos y, posteriormente, 

con el segundo se valida si la red neuronal es capaz de resolver los problemas para los 

que ha sido entrenada. 

Para entrenar la red es común utilizar el algoritmo de propagación hacia atrás 

(backpropagation), proceso en el que el error se propaga hacia atrás desde la capa de 

salida. De esta manera los pesos de las neuronas de las capas ocultas se van 

modificando durante el entrenamiento, lo cual influye en la función de activación de las 

neuronas (que se detallará un poco más adelante) y, en consecuencia, en la salida de la 

neurona. [9]  

Para realizar el entrenamiento, es necesario determinar algunos parámetros: 

- Tasa de aprendizaje: amortigua el cambio de los valores de los pesos. [10] 

- Momentum: evita mínimos locales en la propagación hacia atrás ya que 

introduce un sumando adicional en la actualización de los pesos, el cual tiene en 

cuenta el cambio que se hizo en la iteración anterior. Adquiere valores entre 0 y 

1. [11] 

- Función de activación: calcula el estado de actividad de una neurona; 

transformando la entrada en un valor de 0 (totalmente inactiva) a 1 (activa). [12] 

La función utilizada ha sido la sigmoide (Figura 3). 

                             

Figura 3. Función sigmoide [12] 
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En los últimos años, Google ha puesto de moda este tipo de Inteligencia Artificial 

con proyectos exitosos como AlphaZero o AlphaGo, los cuales consiguen ganar a los 

humanos jugando al ajedrez y al go, respectivamente. 

 

2.3 Bosques aleatorios 

Los bosques aleatorios (del inglés, “Random forests”) son una combinación de 

árboles de decisión. Un árbol de decisión es un modelo de predicción utilizado en 

diversos ámbitos, la Inteligencia Artificial entre ellos. Dado un conjunto de datos, se 

crean construcciones lógicas que representan una serie de condiciones. Estas ocurren de 

forma sucesiva y concluyen con la resolución de un problema. [13] 

En los bosques aleatorios cada árbol depende de los valores de un vector aleatorio 

probado independientemente y con la misma distribución para cada uno de estos. [14] 

En la figura 4 se muestra un ejemplo de Bosque aleatorio. 

 

                                  Figura 4. Modelo de Bosque aleatorio [15] 

 

Como en el caso de las RNA, el conjunto de datos debe dividirse en dos 

subconjuntos aleatoriamente: 80% de datos para el entrenamiento, 20% para el test. Este 

modelo ha sido implementado en R [16], lenguaje de programación con enfoque 

estadístico. Para ello ha sido necesario incluir las bibliotecas: “randomForest”, para 

hacer el entrenamiento y el test; “MASS”, para utilizar métodos estadísticos y 

“XLConnect” para cargar el conjunto de datos de un archivo Excel. 
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3.  Diseño 

Para llevar a cabo la implementación del sistema inteligente para la optimización 

del razonamiento semántico, es necesaria una etapa previa de diseño. En ella se deciden 

cuáles son las fases requeridas para un correcto desarrollo y se detallan las necesidades 

que estas deben cumplir. 

 

3.1 Elección y cálculo de las métricas de una ontología 

El motivo de querer conocer las métricas de una ontología es poder caracterizarla 

para posteriormente realizar predicciones en función de estas. Por ejemplo, si llevamos 

a cabo una consulta con un razonador sobre una ontología y obtenemos el tiempo que 

dura esta tarea, podemos establecer relaciones que ayudarán a aproximar este coste 

cuando sea otra la ontología de entrada. 

Por ello, el primer paso es decidir la manera óptima de caracterizarla. Tras un 

proceso de documentación, se ha llegado a la conclusión de utilizar las 51 métricas 

propuestas por el artículo de IJSWIS [7], como el número de axiomas TBox y ABox. En 

este artículo se elabora la predicción del tiempo que llevará a un razonador realizar 

determinada tarea en PC. Otro trabajo previo útil han sido los scripts para calcular las 

métricas utilizadas en el artículo nombrado. Para llevar a cabo la obtención de estas 

métricas se ha utilizado el software Android Studio, ya que debía ejecutarse en un 

dispositivo móvil porque se ha querido medir el tiempo que cuesta realizar esta tarea. 

 

3.2 Consultas mediante un razonador semántico 

En esta aplicación se introduce el uso de los razonadores. Se ha hecho una 

selección de los existentes y utilizado para realizar consultas sobre las ontologías. Para 

elegir qué tarea iban a llevar a cabo los razonadores, se ha tenido en cuenta que su 

duración debía ser suficiente porque mientras tanto se querían medir tiempo, batería y 

memoria consumidas. Por ello, se decidió realizar la “clasificación” de la ontología, 

tarea que comprueba la relación jerárquica entre conceptos, es decir,  para cada par de 

conceptos  decide si uno es una subclase de otro.  
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Basándonos en estos resultados, he realizado una comparación de qué razonador da 

mejores resultados y, por tanto, ha sido el utilizado para la posterior predicción de los 

costes. 

 

3.3  Aprendizaje automático 

Este algoritmo utiliza una técnica conocida como “aprendizaje automático” (del 

inglés, “machine learning”). Es una rama de la Inteligencia Artificial cuyo objetivo es 

desarrollar técnicas que permitan que las computadoras aprendan. Concretamente, trata 

de crear programas capaces de generalizar comportamientos. [17] 

Existen diversos tipos de algoritmos con este cometido, de los cuales en este 

proyecto se han utilizado dos: Redes Neuronales Artificiales (RNA) y Bosques 

Aleatorios. La utilización de estos algoritmos se ha necesitado para realizar la 

predicción de los costes del razonamiento. El algoritmo aprende a partir de los datos 

obtenidos con la aplicación del cálculo de métricas y la de los costes del razonador. Una 

vez entrenado, se ha realizado un test en el que realiza una predicción de las salidas 

(costes) a partir de unas entradas (métricas), y se mide el error de la predicción. Los 

parámetros de los algoritmos deben ajustarse hasta conseguir minimizar el error. 

 

3.4  Toma de decisiones 

Se ha desarrollado un algoritmo que decide dónde realizar el razonamiento (local o 

remoto) a partir de los resultados obtenidos con el algoritmo de aprendizaje automático. 

Si los valores de predicción del algoritmo superan determinado límite, el razonamiento 

deberá realizarse en remoto, y, en caso contrario, en local. Estos límites pueden cambiar 

en función de la capacidad del dispositivo móvil utilizado, por ello son parámetros que 

deben introducirse en el algoritmo de toma de decisión. Además, se ha tenido en cuenta 

el nivel de batería restante en el dispositivo. 
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4. Implementación y experimentación 

En esta etapa del proyecto se desarrollan las ideas expuestas en la etapa de diseño.  

A lo largo de este apartado se implementan varias aplicaciones, todas ellas necesarias 

para el desarrollo de la aplicación definitiva, el sistema inteligente completo. Además, 

se describen los experimentos realizados con un conjunto de ontologías. 

4.1 Aplicación para obtener las métricas de una 

ontología 

Se ha desarrollado una aplicación que, dada una o varias ontologías, obtiene las 

métricas que la caracterizan. Esta sección consta de tres subsecciones: la primera 

consiste en el trabajo previo realizado, le sigue el desarrollo de la aplicación y, por 

último, el análisis de los resultados. 

 

4.1.1 Identificación de métricas 

Las métricas escogidas son las propuestas por el artículo IJSWIS [7], en el cual se 

realiza la predicción del tiempo en PC.  Estas se pueden agrupar en 5 conjuntos, el 

primero incluye 3 métricas y todos los demás 12 cada uno: 

- Intensity Metrics (IM): tamaño de TBox, ABox y ratio. 

- Concept Complexity Assertions with GCIs applied (CCA) 

- Concept Complexity Assertions without GCIs applied (CCA_WO) 

- Object Property Complexity Assertions (OPCA) 

- Datatype Property Complexity Assertions (DPCA) 

 

Cada uno de los cuatro últimos conjuntos se puede dividir a su vez en dos 

subconjuntos:  

- Subconjunto 1: Agrega la estimación de la complejidad de cada elemento de la 

ontología.  

- Subconjunto 2: Considera que cada axioma observa a un elemento asociado y 

agrega los valores ponderados.  

Una vez obtenidas las estimaciones de complejidad y los testigos de cada elemento, 

estos valores son agregados para obtener los valores finales de las métricas.  
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En primer lugar, para cada uno de los conjuntos de estimaciones, se calcula su 

suma total, valor promedio, valores máximo y mínimo, desviación estándar y entropía 

de la distribución de complejidad. 

En segundo lugar, se obtienen los mismos valores agregados ponderados según los 

conteos de testigos de cada elemento considerado. 

 

4.1.2 Desarrollo de la aplicación 

En un primer periodo de prueba y hasta que se terminó de perfeccionar el código, el 

cálculo de métricas se llevó a cabo con un conjunto reducido de 9 ontologías. 

Posteriormente, en el estudio han participado 139 ontologías de tamaños variados. Estas 

ontologías las he obtenido de los workshops ORE 2013 [18] y ORE 2015
 
[19], bases de 

datos cuyos archivos son ontologías destinadas a usarse con razonadores.  

Dentro del lenguaje OWL 2 existen varios perfiles o sub-lenguajes que ofrecen 

diferentes ventajas dependiendo del ámbito de aplicación. En este estudio se ha 

utilizado el perfil OWL 2 EL, tal y como recomienda W3C para trabajar con ontologías 

con gran cantidad de clases y propiedades.
 
[1]  Los ORE 2013 y 2015 están organizados 

de forma que facilitan escoger este subconjunto de ontologías. Además, están separadas 

en función de la tarea que se quiera realizar con ellas, en mi caso la clasificación.  

Los resultados de la Tabla 1 siguen la categorización de ontologías en función de su 

tamaño según se propone en [20]. En ella se clasifican las 139 ontologías utilizadas 

dependiendo del número de axiomas que contienen. 

 

  
Pequeñas (<500) 

 

 
Medianas (500-5000) 

 
Grandes (>5000) 

 
Nº ontologías 

 

 
40 

 
50 

 
49 

 

Tabla 1. Clasificación de ontologías según su número de axiomas 

 

La realización del código para la obtención de métricas ha tenido como referencia 

los scripts de Carlos Bobed [21], perteneciente al Departamento de Informática e 

Ingeniería de Sistemas de la Universidad de Zaragoza. 

Se ha estudiado el desempeño de la aplicación en Android y se ha adaptado para un 

funcionamiento adecuado. En concreto, se ha descartado la parte del código en la que se 



 

12 

 

elabora un grafo de la ontología (para calcular la relación entre los axiomas TBox y 

Abox), ya que el cálculo de las métricas va a realizarse en dispositivos móviles. Esto se 

debe a que, por su capacidad computacional limitada, cuesta demasiado tiempo y 

memoria procesarlos y por ello no son eficientes en estos dispositivos. 

Para la implementación de la App he utilizado Android Studio
 
[22], IDE para el 

desarrollo de aplicaciones Android en un entorno de lenguaje Java. El dispositivo en el 

que se han realizado los experimentos ha sido un Xiaomi Redmi 4 con versión Android 

6.0.1 (Marshmallow), el cual dispone de 3 GB de RAM y un procesador Qualcomm 

Snapdragon 625. El nivel de API mínimo para poder utilizar la aplicación es 19, que 

equivale a la versión Android 4.4 (KitKat). 

 

Se ha diseñado una actividad que inicia el cálculo de métricas cuando se lanza la 

aplicación: 

protected void onCreate(Bundle savedInstanceState) { 

   super.onCreate(savedInstanceState); 

   setContentView(R.layout.activity_main); 

   MetricsCalculator(); 

} 

 

Además, ha sido necesario dar los siguientes permisos en el Archivo de Manifiesto 

para lectura/escritura de ficheros y para que la aplicación tenga acceso a Internet. 

<uses-permission 

   android:name="android.permission.READ_EXTERNAL_STORAGE" /> 

<uses-permission 

   android:name="android.permission.WRITE_EXTERNAL_STORAGE" /> 

<uses-permission 

   android:name="android.permission.INTERNET" /> 

<uses-permission 

   android:name="android.permission.ACCESS_NETWORK_STATE" /> 

 

La aplicación para la obtención de métricas contiene un código extenso. A 

continuación, se muestran algunos fragmentos. 

// Cálculo del número de axiomas y ratio 

TBoxAxioms = ontology.getTBoxAxioms(true).size(); 

ABoxAxioms = ontology.getABoxAxioms(true).size(); 

outResults.print(ontology.getAxiomCount() + "\t" + TBoxAxioms + "\t" + 

ABoxAxioms + "\t" + ABoxAxioms/TBoxAxioms + "\t"); 
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// Cálculo del resto de métricas 

complexityCalculator = new 

AssertionsComplexityMetricsCalculatorEL(ontology); 

complexityCalculator.calculateAllMetrics(); 

outResults.println( 

complexityCalculator.getClassComplexities().toString() + 

complexityCalculator.getClassComplexitiesWithoutGCI().toString() 

+ complexityCalculator.getObjectPropComplexities().toString() 

+ complexityCalculator.getDataPropComplexities().toString()); 

 

Como he comentado al principio del apartado, primero se ha tratado con un 

conjunto reducido de 9 ontologías de características diversas para sacar algunas 

conclusiones generales. Los archivos “.owl” se han almacenado dentro de la aplicación 

y el programa los llama uno a uno. 

Descartando una de las ontologías por dar problemas al parsear el fichero y 

teniendo en cuenta el criterio de tamaño explicado, podemos clasificar las 8 restantes 

en: 4 pequeñas (0-500 axiomas), 2 medianas (500-5000) y 2 grandes (+5000). 

Cabe decir que, mientras se intenta procesar la ontología de mayor tamaño (46940 

axiomas, 34.5 MB), el log de mensajes avisa de la falta de memoria, aunque finalmente 

consiga obtener sus métricas. De lo cual podemos conjeturar que, probablemente, con 

una ontología mayor no podría hacerlo. Esta restricción se debe a que se ha realizado en 

un dispositivo Android, ya que esta misma actividad desarrollada en PC no tiene este 

tipo de limitaciones. 

 

Tras esta introducción en el cálculo de las métricas, el siguiente paso es realizar 

este proceso pero en un conjunto mayor: las 139 ontologías pertenecientes a los 

conjuntos ORE 2013 Y 2015. Como es un conjunto de gran tamaño, es inviable 

almacenar estos archivos dentro de la aplicación. Por ello, las he subido al servidor web 

gratuito webhost000 [23], y he dado permisos a la aplicación para poder acceder a 

Internet. La primera idea, por sencillez, fue utilizar Dropbox y Google Drive. Esta idea 

se descartó rápidamente, ya que los enlaces no siguen un patrón lógico (no hay 

correspondencia entre nombre del fichero y URL) y suponía escribir en el código todos 

los enlaces de las ontologías para acceder a ellos. En cambio, en webhost000, estos 

enlaces siguen el mismo formato para todas las ontologías:  

“https://mlanau.000webhostapp.com +  /nombreCarpeta/ + nombreOntologia” 

https://mlanau.000webhostapp.com/carpeta/nombreOntologia
https://mlanau.000webhostapp.com/
https://mlanau.000webhostapp.com/carpeta/nombreOntologia
https://mlanau.000webhostapp.com/carpeta/nombreOntologia
https://mlanau.000webhostapp.com/carpeta/nombreOntologia
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De esta manera, al programa se le pasa un fichero con los nombres de las 

ontologías, las va llamando una a una, calcula sus métricas y crea dos ficheros de texto: 

en uno almacena estos valores en forma de tabla, y en otro el tiempo que cuesta 

hallarlos. Estos ficheros se guardan en el almacenamiento externo del dispositivo 

Android. Para que todo ello pueda realizarse es necesario dar permisos de lectura y 

escritura de ficheros.  

 

A continuación, se muestra un fragmento de código de la actividad principal: 

// Cada elemento del vector ontologyNames contiene un String con el 

// nombre de una ontología, p.ej. "ore_ont_508.owl" 

IRI ontologyIRI = IRI.create("https://mlanau.000webhostapp.com/files/" 

+ ontologyNames[n]); 

 

// Se carga la ontología con la OWL API 

OWLOntologyManager om = OWLManager.createOWLOntologyManager(); 

OWLOntology ontology = 

om.loadOntologyFromOntologyDocument(ontologyIRI); 

 

startTime = System.nanoTime(); 

// Calcula las métricas 

// ...  

finishTime = System.nanoTime(); 

 

Log.i(TAG, "... has runned for " + (finishTime - startTime) / 1e9 + " 

seconds"); 

 

4.1.3 Análisis de los resultados 

Analizando los datos obtenidos en relación al tiempo, se observa que a partir de las 

ontologías de más de 2.500 axiomas, hay una tendencia ascendente en cuanto al tiempo 

que cuesta calcular sus métricas. Para ontologías con menos de 2.500 axiomas, este 

cálculo no llega en ningún caso a la décima de segundo, mientras para las de más de 

100.000 axiomas, esta cifra no baja de los 20 segundos. 

Se ha hecho una división de los datos teniendo en cuenta la duración del cálculo las 

métricas y se ha obtenido el promedio en cada subconjunto para observar la 

dependencia con el número de axiomas de la ontología. En la Tabla 2 pueden verse 

estos resultados. 
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Tiempo (s) 

 
  
 
 
 
  

Número de 
axiomas 

 
< 2.500 

 

 
0,026123724 

 
2.500 - 25.000 

 

 
0,433249145 

 
25.000 - 65.000 

 

 
3,121878496 

 
100.000 - 215.000 

 

 
43,46248782 

  

Tabla 2. Dependencia del número de axiomas de una ontología con el tiempo que cuesta 

calcular sus 51 métricas establecidas. 

 

Se aprecia que para las ontologías de más de 100.000 axiomas, la obtención de sus 

métricas en dispositivos móviles no es eficiente, por un excesivo coste temporal. En 

cambio, para valores inferiores a 65.000 axiomas, esta duración es breve. Por carencia 

de ontologías con axiomas entre 65.000 y 100.000 no se ha podido analizar ese 

intervalo. 

 

4.2 Aplicación para consultas con razonador 

Se ha desarrollado una aplicación que utiliza varios razonadores semánticos para 

realizar consultas sobre un conjunto de ontologías. El objetivo de esto es obtener el 

tiempo de ejecución, potencia y memoria utilizada durante las consultas. 

Esta sección, como la anterior, consta de 3 subsecciones: trabajo previo realizado, 

desarrollo de la aplicación y, finalmente, análisis de los resultados obtenidos. 

 

4.2.1 Elección de razonadores 

En primer lugar se debía elegir qué razonador utilizar para realizar la posterior 

predicción de los costes del razonamiento. Existen numerosos razonadores 

desarrollados para su uso en PC, pero no ocurre lo mismo con su uso en dispositivos 

Android. Por ello, he utilizado varios de los razonadores portados por el grupo de 

Sistemas de Información Distribuidos de la Universidad de Zaragoza [24]: HermiT, 

JFact y TrOWL. 
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- HermiT [25]: es un razonador implementado en Java que soporta 

completamente el lenguaje OWL 2. También está incluido en Protégé, el editor 

de ontologías más conocido. A diferencia de otros razonadores, HermiT 1.3.8 no 

puede ser convertido directamente a Dalvik, la máquina virtual utilizada en 

dispositivos Android. 

- JFact [26]: nació como el resultado de portar el razonador FaCT++ en lenguaje 

Java y soporta completamente OWL 2. JFact 1.2.1 puede ser importado 

directamente en un proyecto Android, ya que no necesita ninguna modificación 

para convertirlo a Dalvik. 

- TrOWL [27]: es una infraestructura de razonamiento para OWL 2. TrOWL 1.4 

puede ser convertido a Dalvik sin modificación alguna y ser importado en un 

proyecto Android directamente. Este razonador solo da resultados exactos para 

el perfil OWL 2 EL (el utilizado en el proyecto), mientras que para OWL 2 DL 

son aproximados. 

Además de los razonadores comentados he decidido probar con Mini-ME, un 

prototipo de razonador para dispositivos móviles. El objetivo de su desarrollo es superar 

los problemas de rendimiento que suceden con los razonadores diseñados para PC. 

- Mini-ME [28]: es compatible con el lenguaje OWL 2, está desarrollado en Java 

y se ejecuta en Android. 

 

4.2.2 Desarrollo de la aplicación 

Una vez seleccionados los razonadores con los que se harán las pruebas, el 

siguiente paso es comparar cual tiene un mejor funcionamiento en cuanto a tiempo, 

potencia y memoria. 

Como en el caso de las métricas, para la implementación de la app he utilizado 

Android Studio y se ha ejecutado en un Xiaomi Redmi 4. El nivel de API mínimo 

requerido es 21 (por el uso de propiedades implementadas a partir de ese nivel de API). 

En un mismo programa y haciendo pequeñas modificaciones para utilizar cada 

razonador, he realizado consultas en las ontologías midiendo los costes. Se ha creado 

una aplicación distinta a la de las métricas para evitar lo máximo posible errores de 

memoria, ya que cuando se probó a ejecutar ambas tareas en el mismo programa, en 

muchos casos surgieron este tipo de problemas y el proceso no llegaba a terminar. 
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En primer lugar, se tuvo que decidir qué tarea iba a realizar el  razonador. Como se 

ha comentado anteriormente, debía ser una consulta que durase lo suficiente para que 

las medidas que se iban a calcular fueran fiables. Por ese motivo, se decidió realizar la 

“clasificación” de la ontología. 

Como en la aplicación de las métricas, se ha seguido un desarrollo incremental: 

antes de pasar a un conjunto mayor de ontologías, las primeras pruebas se han realizado 

con una agrupación reducida (9 ontologías), para ver qué posibles fallos podían suceder. 

Al realizar esta clasificación en un dispositivo móvil he obtenido numerosos errores 

debidos a distintas causas. Es importante diferenciar los que sólo suceden en el móvil de 

los que también sucederían en PC, para conocer las limitaciones del dispositivo móvil. 

La Tabla 3 muestra el número de ontologías en las que no se ha llegado a realizar la 

clasificación, causado por distintos errores. En el caso del razonador Mini-ME, carece 

de sentido decir los errores que ocurrirían en PC por ser específico para dispositivos 

móviles. Aun así se han anotado los errores no causados por las limitaciones de estos 

dispositivos (memoria, tiempo). 

 

  
Sólo en móvil 

 

 
También en PC 

 

 

 

Correctas 
 

Falta de 

memoria 
 

 
Demasiado 

tiempo 

ejecución 
  

 
Sintaxis 

incorrecta 

 
Caracterís- 

tica no 

soportada 

 
Stack 

overflow 

 

HermiT 

 

 

2 

 

1 (37 s) 

 

1 

 

1 

  

4 

 

JFacT 

 

 

2 

  

1 

 

1 

  

5 

 

TrOWL 

 

 

1 

  

1 

   

7 

 

MiniME 

 

 

2 

  

1 

  

1 

 

5 

 

Tabla 3. Número de errores según el razonador producidos durante la clasificación 

 

Vemos que todos los razonadores han tenido algún problema para clasificar alguna 

ontología, siendo la limitación en memoria el error que más se repite. También vemos 
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que el razonador TrOWL es el que mejor resultados ha obtenido, aunque es un dato 

poco significativo debido al tamaño reducido del conjunto de ontologías. 

 

Seguidamente, se pasó a hacer las pruebas de los razonadores con un conjunto de 

ontologías mucho mayor, como en el caso de las métricas. Se trata de una fusión de los 

conjuntos ORE 2013 y ORE 2015, seleccionando el perfil EL, como se ha comentado 

anteriormente.  

Teniendo en cuenta los resultados obtenidos con el conjunto reducido, se puede 

predecir que las ontologías que sean mayores que un determinado tamaño darán 

problemas de ejecución en la aplicación.  En un principio, el límite de tamaño máximo 

fue el de la ontología que la aplicación no pudo ejecutar en ninguno de los 4 casos en la 

primera prueba (34.5 MB), pero cuando comencé las pruebas tuve que ir reduciendo aún 

más este margen, el cual finalmente rondó los 20 MB. De hecho, la idea inicial fue 

realizar la clasificación sólo con el conjunto ORE 2013, pero como se fue reduciendo 

por los descartes realizados, se optó por añadir también el conjunto ORE 2015, ya que 

cuanto mayor y más variada fuera la muestra de ontologías, mejores serían las 

predicciones. 

Esta aplicación ha sido más problemática que la anterior, debido a errores de 

memoria para realizar la clasificación de ontologías de las que se habían obtenido sus 

métricas. Por ello, muchas de las métricas halladas han quedado inutilizadas para poder 

predecir los costes del razonamiento y, finalmente, solo han podido utilizarse 102 

ontologías. 

Para realizar las consultas he subido los archivos “.owl” de las ontologías a 

000webhost, como en el caso de las métricas. El programa va descargando una a una 

cada ontología, crea el razonador, realiza su tarea y mide los costes. Estos son 

almacenados en un fichero “.txt” en forma de tabla.  

Los distintos costes que he medido han sido el tiempo que le cuesta realizar la 

clasificación, la potencia y la memoria que ocupa. 

 

A continuación se muestran algunos fragmentos del código implementado: 

- Se crea un razonador u otro dependiendo del parámetro de entrada 

reasoner_type. Para poder utilizarlos, se debe incluir en el proyecto sus 

correspondientes librerías. 
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switch (reasoner_type) { 

    case REASONER_JFACT:        

       return new JFactFactory().createNonBufferingReasoner(ontology); 

    case REASONER_HERMIT: 

       Configuration conf = new Configuration(); 

       conf.ignoreUnsupportedDatatypes = true; 

       return new Reasoner(conf, ontology); 

    case REASONER_MINIME: 

 MicroReasonerFactory reasonerFactory = new 

MicroReasonerFactory(); 

 OWLReasoner reasoner = 

reasonerFactory.createMicroReasoner(ontology); 

 return reasoner; 

    case REASONER_TROWL: 

       RELReasonerFactory relfactory = new RELReasonerFactory(); 

       RELReasoner reasoner = relfactory.createReasoner(ontology); 

       return reasoner; 

    default: 

       throw new IllegalArgumentException("No valid reasoner"); 

       } 

} 

 

- Clasificación de una ontología con el razonador JFacT: 

// Carga la ontología 

IRI ontologyIRI = IRI.create("https://mlanau.000webhostapp.com/files/" 

+ ontologyNames[n]); 

OWLOntologyManager manager = OWLManager.createOWLOntologyManager(); 

OWLOntology ontology = 

manager.loadOntologyFromOntologyDocument(ontologyIRI); 

 

// Crea un razonador para dicha ontología 

OWLReasoner reasoner = createOWLReasoner(ontology, REASONER_JFACT); 

 

// Realiza su clasificación 

reasoner.precomputeInferences(InferenceType.CLASS_HIERARCHY); 

 

Este procedimiento es el mismo para todos los razonadores probados excepto para 

Mini-ME, ya que su clasificación se realiza directamente cuando es creado. 

 

 

https://mlanau.000webhostapp.com/files/
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La obtención de los costes se ha realizado de la siguiente manera: 

- Tiempo [s]: Una variable toma el tiempo en el instante anterior de realizar la 

clasificación y otra lo toma justo después. Mediante la resta de ambas se obtiene 

el resultado. Este es en nanosegundos pero se ha pasado a segundos.  

Fragmento del código:  

startTime = System.nanoTime(); 

// tarea a medir 

// ... 

finishTime = System.nanoTime(); 

time = (finishTime-startTime) / 1e9; 

Log.i(TAG, " Time: " + time + " s"); 

 

La clase System puede utilizarse en cualquier versión de Android ya que está 

disponible desde el nivel de API 1. 

 

- Potencia [W]: Se ha realizado por software, a través de la clase BatteryManager 

[29]. He obtenido el valor de la corriente y la tensión en el instante que termina 

la tarea y realizando el producto de ambas resulta la potencia en Vatios.  

Antes de llegar a este resultado se han considerado varias opciones. Una de ellas 

fue calcular la energía consumida en vez de la potencia. Esto suponía tener en 

cuenta el tiempo que dura la tarea para obtener el consumo (Ws), lo cual se 

descartó para que las salidas no dependieran entre sí. Otra opción considerada 

fue la propuesta por un artículo sobre el cálculo de consumo energético en 

dispositivos móviles [30]: ir midiendo el valor de la tensión con un 

BroadcastReceiver por si se producen cambios durante la clasificación. Se 

decidió comprobar si esto realmente sucedía mediante una App para el manejo 

de la batería (AccuBattery [31]). Esta aplicación actualiza los valores en tensión 

de la batería cada pocos segundos, y se observó que, ejecutando la aplicación a 

la vez que la consulta, las variaciones de tensión eran mínimas (unos pocos mV). 

Por ello también se descartó esta opción. Además, la fórmula para el cálculo de 

la energía consumida que propone el artículo no es válida ya que utiliza el 

tiempo dividiendo en vez de multiplicando a la tensión y la corriente. 

Para que las medidas sean válidas se debe tener el dispositivo móvil 

desconectado de cualquier fuente de energía. 
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Fragmento del código: 

// tarea a medir 

// ... 

powerConsumption = new   

PowerConsumption(getApplicationContext()); 

double power = powerConsumption.getPower(); 

double current = powerConsumption.getCurrentNow(); 

double voltage = powerConsumption.getVoltage(); 

Log.i(TAG, "Power: " + power + " W   

 Current: " + current + " A   

 Voltage: " + voltage); 

 

 En la clase “powerConsumption”: 

// Cálculo corriente 

public double getCurrentNow(){ 

   //... 

   Integer currentNow =  

mBatteryManager.getIntProperty(BatteryManager.BATTERY 

_PROPERTY_CURRENT_NOW); 

   return currentNow/(1e6); 

} 

 

// Cálculo tensión 

public double getVoltage(){ 

   //... 

   int voltage = 

batteryStatus.getIntExtra(BatteryManager.EXTRA_VOLTAG 

E, -1); 

   return voltage/(1e3); 

} 

 

// Cálculo potencia 

public double getPower(){ 

   return (currentNow()*voltage()); 

} 

 

La clase BatteryManager se añadió en la primera versión de Android, pero ha 

sufrido numerosas modificaciones. Su uso en esta aplicación requiere un nivel 

de API superior a 21, lo que equivale a la versión Android 5.0 (Lollipop). 
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- Memoria [KB/MB]: Se ha obtenido la memoria ocupada (memoria total – 

memoria libre) antes y después de realizar la clasificación, calculando el 

resultado mediante la diferencia de ambas medidas. Justo antes de la tarea del 

razonador se llama al recolector de basura para mejorar la predicción del 

resultado. De todos modos, este es aproximado ya que no se puede evitar que 

durante la clasificación se libere memoria. El resultado se obtiene en bytes, pero 

es convertido a KB/MB dependiendo del razonador utilizado. 

Fragmento del código: 

System.gc(); 

Runtime runtime = Runtime.getRuntime(); 

memoryUsed1 = (runtime.totalMemory() - runtime.freeMemory()) / 

1024; 

// tarea a medir 

// ... 

memoryUsed2 = (runtime.totalMemory() - runtime.freeMemory()) / 

1024; 

Log.i(TAG, "The memory used is " + (memoryUsed2 - memoryUsed1) + 

" KB"); 

 

Recordemos que la clase Runtime puede utilizarse en cualquier versión de 

Android ya que está disponible desde el nivel de API 1. 

 

4.2.3 Análisis de los resultados y comparativa entre 

razonadores 

Durante la ejecución de la aplicación se genera un fichero de texto en el que se van 

escribiendo los costes de las ontologías en forma de tabla.  

Como se ha visto en la prueba con el conjunto reducido de ontologías, cada 

razonador tenía diferentes problemas para realizar la clasificación. De las 139 

ontologías disponibles, el número de ontologías que ha sido capaz de clasificar cada 

razonador se muestra en  la última columna de la Tabla 4. La mayor diferencia se 

observa con el razonador JFacT. 

Para comparar los costes en tiempo, potencia y memoria entre los 4 razonadores, se 

han tenido en cuenta sólo las ontologías que todos los razonadores han sabido clasificar, 
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es decir, 102 ontologías. En la Tabla 4 se muestran la media de estos costes para cada 

razonador. 

 

  

Tiempo (s) 

 

 

Potencia (W) 

 

Memoria 

 

Nº ontologías 

 

JFacT 

 

 

6.16 

 

1.216 

 

3.91 MB 

 

111 

 

Mini-ME 

 

 

3E-4 

 

1.206 

 

3.53 KB 

 

129 

 

TrOWL 

 

 

1.10 

 

1.513 

 

5.07 MB 

 

131 

 

HermiT 

 

 

3.05 

 

1.082 

 

15.53 MB 

 

124 

 

Tabla 4. Coste medio de la clasificación según el razonador (para 102 ontologías) y  

nº de ontologías que ha sabido clasificar cada razonador 

 

Se aprecia una gran diferencia en cuanto al tiempo y la memoria consumida con el 

razonador Mini-ME respecto a los demás, ya que es el único específicamente diseñado 

para su uso en dispositivos móviles, es decir, adaptado a sus limitaciones.  

El razonador HermiT ocupa una gran cantidad de memoria de media y, junto con el 

razonador JFacT, son los que más tiempo tardan en realizar la consulta. Además, 

HermiT y JFacT son los que menos ontologías han sabido clasificar. Por todo ello, se ha 

llegado a la conclusión que los razonadores que dan mejores resultados son TrOWL y 

Mini-ME. 

 

4.3 Algoritmo de aprendizaje automático 

Una vez adquiridas las métricas de la ontología y los costes que conlleva realizar su 

clasificación, se necesita la implementación de un algoritmo para predecir estos costes, 

dadas unas métricas de entrada. 

Como se ha comentado en la etapa de diseño, se trata de un algoritmo de 

“aprendizaje automático”. Existen distintos tipos de algoritmos que realizan esta 



 

24 

 

función, pero según hemos comprobado, su eficiencia varía de unos casos a otros. En el 

artículo de IJSWIS [7] en el que se realizan predicciones sobre conjuntos de ontologías 

se decide utilizar “Bosques aleatorios”. En el artículo “Trees vs neurons” [32] comparan 

el uso de Redes Neuronales Artificiales y de Bosques Aleatorios. La conclusión a la que 

llega es que en el caso de predicción de consumo energético en edificios es mejor el uso 

de Redes Neuronales. Es por ello que se ha decidido implementar ambos algoritmos y 

comparar cuál ofrece mejores predicciones. 

 

El razonador para el que se ha desarrollado el aprendizaje es TrOWL debido a que, 

aunque con Mini-ME se hayan obtenido buenos resultados, este razonador aún está en 

desarrollo. 

 

4.3.1 Redes Neuronales Artificiales 

El objetivo es predecir, con el mínimo error, el valor de las salidas (tiempo, 

potencia, memoria) partiendo del valor de las entradas (51 métricas).  

En primer lugar, se deben normalizar los datos que utilizará la RNA. Para la 

normalización de los datos, en algunas métricas no se ha utilizado su máximo real por 

tener valores muy superiores al resto; por ello, se ha escogido como máximo un número 

inferior. 

Para poder realizar las predicciones hay que entrenar la red neuronal. Para ello se 

ha utilizado el 80 % de la muestra de los datos normalizados. Se deben establecer varios 

parámetros como la tasa de aprendizaje, el momentum, el número máximo de 

iteraciones y la norma de aprendizaje. La norma de aprendizaje que he establecido para 

entrenar la red es Momentum Backpropagation (propagación hacia atrás con 

momentum). 

 

Después del entrenamiento, la red es capaz de deducir el valor de las salidas con un 

error de mayor o menor grado. Por ello, el siguiente paso es realizar un test para saber 

cuál es el error de estas predicciones. Para ello he utilizado el 20 % restante de la 

muestra de datos. El test calcula las salidas a partir de las entradas y compara estos 

resultados con las salidas deseadas. 
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De esta manera se va calculando y acumulando el error, el cual se muestra al final 

del proceso. Para calcular el error he utilizado el “Error cuadrático medio” [33] entre los 

valores deseados y los de la predicción. 

ECM = 
 

 
∑     –    

  
    

Este error es dependiente de los parámetros establecidos en el proceso de 

entrenamiento. Por ello, para minimizar el error lo máximo posible, he ido variando 

estos parámetros hasta conseguir un error muy pequeño. En la Tabla 5 se muestran los 

valores de error según diferentes parámetros. 

 

   
Momentum 

 
 

0.6 
 

 
0.7 

 
0.8 

 
 
 
  

Tasa de 
aprendizaje 

 
0.4 

 

 
0.2061299 

 
0.2592956 

 
0.3576868 

 
0.5 

 

 
0.3107389 

 
0.2614297 

 
0.3714283 

 
0.6 

 

 
0.4420598 

 
0.2485813 

 
0.1927562 

 

Tabla 5. Error en función de la tasa de aprendizaje y el momentum 

 

Debido a causas de aleatoriedad en el proceso, para los mismos parámetros no 

siempre resulta el mismo valor de error. Por ello, el programa realiza el cálculo 20 veces 

y después se obtiene la media para una mayor fiabilidad de los resultados. 

Una vez minimizado el error, esos parámetros son los definitivos. En este caso, el 

error mínimo (0.1927562) se consigue para una tasa de aprendizaje de 0.6 y un 

momentum de 0.8. 

Este programa ha sido desarrollado en el lenguaje Java utilizando el entorno 

Eclipse [34] y posteriormente se ha portado a Android. Las ventajas de utilizar Eclipse 

han sido la comodidad de programar y realizar las numerosas pruebas del entrenamiento 

y test modificando los parámetros (tasa de aprendizaje y momentum). Una vez 

ajustados, se ha entrenado la red definitiva en Android y guardado en un archivo “.nnet” 

para poder utilizarla sin tener que volver a ejecutar el código de entrenamiento.  El 

problema de realizar el entrenamiento en Eclipse, guardar el archivo e importarlo desde 
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un proyecto Android es que para escribir en el fichero, el programa utiliza el mecanismo 

de "serialización". Este permite escribir objetos Java en un fichero, pero realmente lo 

que escribe es el "bytecode" de Java que no es directamente compatible con el de 

Android. 

Para trabajar con redes neuronales se ha incluido en el proyecto la biblioteca 

Neuroph [35]. Esta biblioteca tiene clases incompatibles con Android, y por ello ha 

habido que modificarla para poder utilizarla en dispositivos móviles. En concreto se han 

eliminado un par de atributos de la clase Listener que se heredan de la biblioteca gráfica 

para Java swing, no permitida en Android. 

 

A continuación, se muestran algunos fragmentos del código desarrollado: 

- Se definen el número de neuronas por capa, se crea la red neuronal y se definen 

los parámetros para el entrenamiento. 

String dataSetFileName = "DatosNormalizados.txt"; 

int inputsCount = 51; 

int outputsCount = 3; 

int hiddensCount = Math.round(inputsCount * outputsCount); 

String separator = ","; 

  

DataSet dataSet = 

TrainingSetImport.importFromFile(dataSetFileName, 

inputsCount, outputsCount, separator); 

  

// Crea red neuronal 

MultiLayerPerceptron neuralNet = new 

MultiLayerPerceptron(TransferFunctionType.SIGMOID, 

inputsCount, hiddensCount, outputsCount); 

  

// Introducción de parámetros 

MomentumBackpropagation learningRule = new 

MomentumBackpropagation(); 

learningRule.setLearningRate(0.6); 

learningRule.setMomentum(0.8); 

learningRule.setMaxIterations(1000000); 

neuralNet.setLearningRule(learningRule); 
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- Entrenamiento y test de la red 

// División del DataSet para entrenamiento y test 

DataSet [] dataSet8020 = 

trainingSet.createTrainingAndTestSubsets(80,20); 

 

// Entrenamiento (con el 80% de la muestra original)  

neuralNet.learn(dataSet8020[0]); 

 

// Test  (con el 20% restante)  

testCostesRazonador(neuralNet, dataSet8020[1]); 

 

- Fragmento del método testCostesRazonador: 

for (DataSetRow trainingElement : dset.getRows()) { 

counter+=1; 

 nnet.setInput(trainingElement.getInput()); 

 nnet.calculate(); 

 double[] networkOutput = nnet.getOutput(); 

 double[] desiredOutput = 

trainingElement.getDesiredOutput(); 

 //cálculo del numerador de la fórmula del ECM 

 errorNUM += difSquared(networkOutput, desiredOutput);  

} 

error = errorNUM/counter; 

 

- Fragmento del método difSquared: 

for(int i = 0; i < N; i++) 

 diff += Math.pow(networkOutput[i] - desiredOutput[i], 2); 

 

 

4.3.2 Bosques Aleatorios 

Como en el caso de las RNA, contamos con 51 métricas de entrada y queremos 

obtener el valor de las salidas (tiempo, potencia y memoria).  

Para realizar el entrenamiento se consideraron dos opciones: calcular de una vez las tres 

salidas (predicción multivariable) o, con un mismo conjunto de entrenamiento calcular 

las 3 salidas de una en una. La opción multivariable sería necesaria si los valores de 

salida tuvieran influencia entre ellos, pero se ha decidido escoger la otra opción por 

similitud a la RNA, ya que en este caso no se utilizan las salidas como variable de 



 

28 

 

entrada. Por ello se han creado 3 conjuntos de entrenamiento, uno para cada salida. 

Estos conjuntos son idénticos entre sí, exceptuando que se han eliminado las columnas 

con las salidas no utilizadas en cada caso. 

 

A continuación, se muestra parte del código desarrollado en R: 

# Semilla para el generador de números aleatorios 

set.seed(101) 

 

# Definición de los conjuntos de entrenamiento (80% de los datos) y 

# test (el resto) 

samp <- sample(nrow(dataset), 0.8 * nrow(dataset)) 

train <- dataset[samp, ] 

test <- dataset[-samp, ] 

 

# Se crea un conjunto de entrenamiento para cada salida 

train1 <- train[1:nrow(train), 1:(ncol(train) - 2)] 

train2 <- train[1:nrow(train), c(1:(ncol(train) - 3),ncol(train)-1)] 

train3 <- train[1:nrow(train), c(1:(ncol(train) - 3),ncol(train))] 

 

# Algoritmo de aprendizaje, para predecir Time, Power y Memory 

result1 <- randomForest(Time~., data=train1) 

result2 <- randomForest(Power~., data=train2) 

result3 <- randomForest(Memory~., data=train3) 

 

# Predicciones sobre el conjunto de test 

pred1 <- predict(result1, test) 

pred2 <- predict(result2, test) 

pred3 <- predict(result3, test) 

 

# Cálculo del Mean Squared Error 

error1 <- with(test, mean((Time - pred1)^2)) 

print(error1) 

error2 <- with(test, mean((Power - pred2)^2)) 

print(error2) 

error3 <- with(test, mean((Memory - pred3)^2)) 

print(error3) 

 

En la Tabla 6 se muestra el error obtenido para cada variable así como el error total. 
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Error 

 
 

Tiempo 
 

 
0.01312135 

 
Potencia 

 

 
0.07773907 

 
Memoria 

 

 
0.06839997 

 
Total 

 

 
0.15926039 

 

Tabla 6. Error en la predicción de cada variable y total 

 

Comparando ambos algoritmos de aprendizaje automático, vemos que el error es 

menor en los Bosques Aleatorios que en las RNA (0.15926039< 0.1927562), aunque 

con una diferencia mínima. 

 

4.4 Algoritmo de toma de decisiones 

El siguiente paso es implementar un algoritmo de toma de decisiones que diga si el 

razonamiento debe realizarse en remoto o en local, en función de las métricas obtenidas 

de una ontología. Para ello se utiliza un algoritmo de predicción (RNA) ya entrenado en 

el que se introducen unas entradas (métricas) y obtiene las salidas aproximadas (costes). 

A partir del valor de estas salidas toma la decisión de dónde se debería realizar el 

razonamiento. 

Para realizar la predicción, las métricas no pueden ser introducidas directamente en 

la red neuronal. Por este motivo, una vez obtenidas se deben normalizar utilizando los 

valores empleados en la normalización del conjunto de datos del entrenamiento y test. 

Si el valor de alguna métrica es superior al tomado como máximo en el conjunto de 

datos, su valor normalizado será 1. De la misma manera, si un valor es inferior al valor 

mínimo del conjunto, su valor normalizado será 0. 

Es necesario decidir cuáles son los valores límite para los cuales, si el resultado es 

menor, se aconsejará realizar el razonamiento en local, y si es mayor, en un dispositivo 

externo con más recursos. Estos valores son parámetros del algoritmo, que podrían 
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variar en función del dispositivo móvil en el que se quiera realizar el razonamiento 

(siempre entre 0 y 1 por ser cifras normalizadas). Por ejemplo, la capacidad del móvil 

podría influir en el tiempo y la memoria que cuesta, y para la potencia podría tenerse en 

cuenta el nivel de batería restante.  

 

En mi caso, he decidido utilizar los siguientes parámetros:  

- t (tiempo) = 0.25: puesto que 1 equivale a 47 segundos, he considerado que un 

usuario podría esperar una cuarta parte de este máximo a que se realizara el 

razonamiento. 

- p (potencia) = 0.9: es un valor cercano a la unidad ya que también se ha decidido 

tener en cuenta el nivel de batería restante en el dispositivo móvil. Si tiene un 

valor inferior al 15% de la batería total, el sistema aconsejará que el 

razonamiento se ejecute en remoto. 

- m (memoria) = 0.95: se ha optado por un valor elevado ya que en vez de utilizar 

para la normalización de los datos el valor máximo de la muestra (82 MB) se 

utilizó uno inferior (18 MB). El motivo de esta decisión es conseguir una mayor 

precisión, es decir, un error inferior en la predicción debido a que en la muestra  

solo había dos valores superiores a 18 MB, muy alejados del resto. 

El algoritmo actual es muy sencillo pero ilustrativo. Para generalizarlo se 

necesitarían datos de más dispositivos móviles. El diseño de aplicación permite 

ejecutarlo en otros dispositivos de manera inmediata. 

 

A continuación, se muestra un fragmento del código desarrollado con redes 

neuronales: 

// Introducción de entradas: ontologyMetrics() devuelve un vector con 

// las métricas normalizadas a partir del fichero de las métricas 

double networkInput[] = ontologyMetrics(); 

System.out.println("Input: " + Arrays.toString(networkInput)); 

 

// Se carga la red entrenada del archivo "neuralnet.nnet", almacenado 

// en los recursos de la aplicación 

NeuralNetwork neuralNet = 

 load(getResources().openRawResource(R.raw.neuralnet)); 
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// Predicción de salidas 

double [] networkOutput = outputPrediction(neuralNet, networkInput); 

 

// toma de decisiones 

int battery = batteryLevel.getBatteryPercentage(); 

double t = 0.25 ; 

double p = 0.9 ; 

double m = 0.98 ; 

 

if (networkOutput[0] > t || networkOutput[1] > p || battery < 15 || 

networkOutput[2] > m) 

    System.out.println("Realizar en remoto"); 

else 

    System.out.println("Realizar en local"); 

 

- Obtención de salidas de la red: 

public double[] outputPrediction(NeuralNetwork nnet,  

     double [] input) { 

nnet.setInput(input); 

 nnet.calculate(); 

 double[] networkOutput = nnet.getOutput(); 

 System.out.println("Output: " + 

Arrays.toString(networkOutput)); 

 return networkOutput; 

} 

 

- Normalización de métricas: 

switch (n_metric) { 

    case 0: 

        min = 30; 

        max = 35531; 

        break; 

    // ... 

    case 50: 

        min = 0; 

  max = 6.46; 

        break; 

    // ... 

} 
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if(metricValue <= min) 

    normalMetric = 0; 

    else{ 

  if(metricValue >= max) 

      normalMetric = 1; 

  else 

      normalMetric = (metricValue-min)/(max-min); 

    } 

 

- Obtención del nivel de batería, en la clase BatteryLevel 

public int getBatteryPercentage() { 

// ... 

int level = 

   batteryStatus.getIntExtra(BatteryManager.EXTRA_LEVEL, -1); 

int scale = 

   batteryStatus.getIntExtra(BatteryManager.EXTRA_SCALE, -1); 

float batteryPct = level / (float) scale; 

return Math.round(batteryPct * 100); 

} 

 

El desarrollo de la toma de decisiones mediante Bosques Aleatorios es interesante 

ya que su nivel de precisión es ligeramente mayor que en las Redes Neuronales 

Artificiales. Sin embargo, queda pendiente como trabajo futuro, del cual se habla en la 

sección 5. 

 

4.5 Sistema Inteligente completo 

Para obtener el Sistema Inteligente completo en Android, se ha creado una 

aplicación que reúne todo lo explicado en la Sección 4: dada una ontología de entrada, 

calcula sus métricas y, en función de las salidas obtenidas con un algoritmo de 

predicción (RNA), decide dónde realizar el razonamiento. 

 

Esta aplicación final puede ejecutarse en dispositivos móviles con un nivel de API 

superior a 19 (versión Android 4.4). 
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Su funcionamiento es el siguiente: 

- Introducción de la ontología, para lo cual se dan dos opciones: almacenarla en la 

carpeta “Downloads” del  almacenamiento externo del dispositivo o cargarla 

mediante una URL. 

- Se calculan sus métricas, las cuales se escriben en un fichero llamado 

“MetricasOntologias.txt” que se guarda en “Downloads”. 

- La aplicación lee el fichero, normaliza estos valores y los introduce en un vector. 

- Este vector se utiliza como entrada en el algoritmo de predicción y obtiene tres 

salidas (tiempo, potencia y memoria). 

- Se toma la decisión de dónde realizar el razonamiento mediante la comparación 

del valor de las salidas y unos parámetros. Además, se tiene en cuenta la batería 

restante en el dispositivo. 
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5. Conclusiones y trabajo futuro 

Una vez finalizada la elaboración del proyecto, es el momento de evaluar algunos 

aspectos como el alcance de los resultados, las dificultades afrontadas, el aprendizaje 

adquirido... Además, de cara a un futuro, cabe comentar algunas ideas que sería 

interesante introducir para la mejora del proyecto. 

 

Como resultado de este trabajo, se ha obtenido una aplicación para dispositivos 

Android que recomienda el lugar óptimo para el razonamiento de una determinada 

ontología en función de sus características. Las distintas formas de uso del razonador 

tienen sus ventajas e inconvenientes. Por ejemplo, la ventaja principal de realizar el 

razonamiento externamente es que uno puede considerar un servidor tan potente como 

requiera la aplicación. Sin embargo, el problema que surge es que el envío masivo de 

datos a través de la red se ve limitado por la conectividad. En cambio, un razonador 

local puede ser utilizado sin conexión a la red, donde también se ve beneficiada la 

privacidad de datos, importante en algunos casos. [36] Algunas de las limitaciones de 

este tipo de razonamiento son las probadas en el proyecto, como por ejemplo, un 

excesivo tiempo de razonamiento. 

 

Durante la realización del proyecto he afrontado numerosas dificultades por ser un 

campo desconocido para mí. Desde la introducción en el ámbito de las ontologías, 

(utilizando Protégé para una mejor comprensión) hasta el aprendizaje sobre nuevos 

lenguajes de programación como Android y R. Además, este proyecto me ha permitido 

conocer algunos métodos de “machine learning”, como las Redes Neuronales 

Artificiales o los Bosques Aleatorios. Como base para la elaboración de este trabajo he 

tenido los conocimientos adquiridos durante el grado, en especial, la programación en 

lenguaje Java. 

 

Cabe decir que es la primera vez que me enfrento a la elaboración de un proyecto 

de estas dimensiones y que necesita tantas horas de dedicación. Esto ha requerido de 

una planificación y administración del tiempo, aunque siempre aproximada debido a 

algunas dudas en las que he empleado más tiempo del previsto. 
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En el proyecto hay algunos aspectos mejorables a tener en cuenta como trabajo 

futuro. Sería interesante hacer pruebas con ontologías DL además del perfil EL utilizado 

en la aplicación, así como experimentar con más razonadores. Otra idea es realizar 

pruebas con más dispositivos móviles para poder generalizar los resultados obtenidos. 

Otro aspecto a introducir en la aplicación final sería tener en cuenta los Bosques 

Aleatorios en la toma de decisiones. Una manera de hacerlo podría ser guardar el 

random forest ya entrenado en un archivo y posteriormente cargarlo en Android para 

que realice la predicción según la ontología introducida y, en consecuencia, se tome la 

decisión sobre el lugar de razonamiento. Sin embargo, el uso de R en Android presenta 

ciertas dificultades. 
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