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Resumen

En nuestras vidas cotidianas es cada vez mas frecuente el uso de aplicaciones
especificamente disefiadas para su ejecucion en dispositivos moviles. Si bien dichas
aplicaciones proporcionan servicios Utiles, existen muchos ejemplos de escenarios
donde la incorporacion de tecnologias semanticas podria mejorar la calidad de los
servicios Yy la experiencia del usuario.

El uso de informacion semantica especificamente representada y de un razonador
semantico para inferir nuevo conocimiento implicito plantea ciertos retos cuando el
hardware es un dispositivo movil, con limitaciones en cuanto a capacidad de
procesamiento, memoria, bateria...

En este proyecto se ha creado una plataforma inteligente para el razonamiento
semantico en dispositivos maéviles que permite decidir en tiempo de ejecucion donde
procesar los datos: si en el propio dispositivo mévil o en un servidor externo.

Para ello, se han utilizado algoritmos de aprendizaje automatico que permiten
predecir el coste del razonamiento de acuerdo a diferentes criterios y, finalmente,

decidir el lugar del razonamiento teniendo en cuenta el hardware del dispositivo mavil.
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1. Introduccion

1.1 Marcoy objetivo del proyecto

En los ultimos afios se ha incrementado considerablemente el desarrollo de
tecnologia mavil. El uso de smartphones estd completamente integrado en la sociedad
y, con ello, el uso de aplicaciones para dispositivos moviles (apps). Estas apps podrian
mejorar la calidad de sus servicios y la experiencia del usuario mediante la
incorporacion de razonadores semanticos. Estos son capaces de descubrir conocimiento
implicito en un conjunto de informacion agrupada en lo que se conoce como ontologias,
lo que también facilitaria el intercambio y reutilizacion de informacion. Un tipo de
aplicaciones que se beneficiaria del uso de razonadores serian las proveedoras de
servicios segun la ubicacion del usuario. Podrian recomendar un transporte u otro
partiendo de una informacién inicial sobre los medios y teniendo en cuenta la hora,
ubicacion o preferencias del usuario (p.ej. transporte publico/privado).

El principal entorno donde se ha desarrollado esta herramienta ha sido en PC ya
que, por desgracia, el uso de razonadores en dispositivos mdviles plantea ciertos retos
debido a las limitaciones que supone tener menor capacidad computacional.

El objetivo de este TFG es la creacion de una plataforma inteligente para el
razonamiento semantico en dispositivos mdviles Android, que permita decidir en
tiempo de ejecucion donde procesar los datos: si en el propio dispositivo movil o en un
servidor externo con mas recursos. Para esta decision se han utilizado varios algoritmos
de aprendizaje automatico (“Redes Neuronales Artificiales” y “Bosques Aleatorios”),
que tienen en cuenta el consumo en tiempo, bateria y memoria durante el razonamiento.

Existen trabajos previos sobre la prediccion de tiempo (en PC) y de bateria (en
moviles), aunque ambos consideran so6lo los “Bosques Aleatorios”. Ademas, ninguno de

ellos tiene en cuenta la memoria, ni utiliza varios criterios simultdaneamente.



1.2 Organizacion de la memoria

La memoria esta organizada en los siguientes apartados:

- Contexto tecnoldgico: explicacion detallada de conceptos y métodos utilizados
a lo largo del proyecto.

- Disefio: se decide cuales son las fases requeridas para una correcta
implementacion y se detallan las necesidades que estas deben cumplir.

- Implementacion y experimentacion: se desarrollan las ideas expuestas en las
etapas de disefio, elaborando distintas aplicaciones y algoritmos para conseguir
el objetivo final. También se evallan las pruebas realizadas en el proceso.

- Conclusiones y trabajo futuro: se comenta la validez y el alcance de los
resultados. También se hace referencia al trabajo futuro en este campo.

- Referencias.



2. Contexto tecnologico

A continuacion se abordan con detalle algunos conceptos y métodos fundamentales
en el desarrollo del proyecto.

2.1 Ontologias y razonadores

Las ontologias son agrupaciones de conocimiento dentro de un dominio de interés.
En ellas se describen conceptos pertenecientes a este dominio y las relaciones que se
forman entre ellos. Para su modelado se utilizan Logicas de Descripcion (DL), una
familia de lenguajes para la representacion de conocimiento. Supone uno de los
principales fundamentos de OWL 2 Web Ontology Language (informalmente OWL 2),
estandarizado por el World Wide Web Consortium (W3C) [1] y utilizado en las
ontologias de este proyecto. Es totalmente compatible con Protégé [2], un software
especializado para su edicién. Para la manipulacién de ontologias en aplicaciones Java
se ha utilizado la biblioteca OWL API 3.4.1 [3].

Las DLs estan equipadas por una semantica formal que permite intercambiar
ontologias sin ambigliedad respecto a su significado. Ademas, tienen la capacidad de
inferir conocimiento adicional sobre las ontologias, mecanismo conocido como
razonamiento. Un razonador semantico es un software capaz de inferir conocimiento
dentro de una ontologia. Puede verificar si las afirmaciones y definiciones de una
ontologia son consistentes, asi como reconocer qué conceptos se ajustan a las
definiciones, entre otras posibles tareas de razonamiento. [4] Uno de los principales
servicios que ofrecen los razonadores semanticos es la “clasificacion”, utilizada en el
desarrollo del proyecto. Esta tarea comprueba si una clase es subclase de otra, es decir,

computa la jerarquia de clases de la ontologia en cuestion.

Las ontologias se componen de clases, propiedades, individuos y axiomas:

- Las clases son las ideas basicas para representar el conocimiento de algun
dominio. Se especifican las condiciones que un individuo debe satisfacer para
pertenecer a una clase determinada. Pueden estar organizadas con una jerarquia
de superclase-subclase, también conocido como taxonomia. Las subclases

especializan a las superclases.



Las propiedades representan relaciones. Hay dos tipos principales: Object
properties y Datatype properties. Las primeras enlazan dos individuos y pueden
ser funcionales, inversas, transitivas, simétricas, reflexivas... Las segundas
relacionan individuos con valores de datos.

Los individuos son instancias de las clases. Representan objetos en el dominio
en que estamos interesados, pudiendo dos nombres distintos referirse al mismo
individuo.

Los axiomas son teoremas que describen relaciones que deben cumplir los
elementos de la ontologia. Por ejemplo: “Si Ay B son de la clase C, entonces A

no es subclase de B”. [5][6]

En la Figura 1 hay un esquema que ejemplifica estos componentes: “Gemma” e

“England” son individuos, “Person” y “Country” son clases y “hasPet” vy

“livesInCountry” propiedades.

<o [taly
England

Country

Pet

/\/

Figura 1. Representacion de fragmento de una ontologia [6]

Una ontologia consiste en un conjunto de axiomas que capturan conocimiento de

una situacién descrita. Estos axiomas se dividen cominmente en dos grupos: axiomas

asertivos (ABox) y terminoldgicos (TBox) [4].

Axiomas ABox: almacenan conocimiento sobre los individuos nombrados,
especialmente las clases a los que pertenecen y las relaciones que mantienen.
Por ejemplo, “Fido(pet)” afirma que Fido es wuna mascota y

“livesinCountry(Matthew, England)” afirma que Matthew vive en Inglaterra.



- Axiomas TBox: describen relaciones entre clases o entre propiedades. Dentro de
este tipo de axiomas, destacan los General Concept Inclusion axioms (GClIs),
que establecen que un concepto es subclase de otro. [7] Por ejemplo,

“Mascota © Animal” quiere decir que todas las mascotas son animales.

Algunas referencias para obtener méas informacion sobre ontologias y DLs son

“Handbook on ontologies” y “The Description Logic Handbook”, respectivamente.

2.2 Redes Neuronales Artificiales

“Una Red Neuronal Artificial es un modelo matemético inspirado en el
comportamiento biolégico de las neuronas y en la estructura del cerebro, y que es
utilizada para resolver un amplio rango de problemas. [...] Esta también puede ser vista
como un sistema inteligente que lleva a cabo tareas de manera distinta a como lo hacen
las computadoras actuales.” [8]

Este modelo es capaz de aprender a realizar tareas basadas en una experiencia
inicial (conocida como entrenamiento) y de crear su propia organizacién de la

informacion segun lo aprendido. En la Figura 2 se muestra un modelo de RNA.
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Figura 2. Modelo de Red Neuronal Artificial [9]

Esta constituido por un conjunto de neuronas interconectadas agrupadas en distintas
capas. Como su nombre indica, los valores son introducidos a la red por la “capa de
entrada” y las salidas se obtienen de la “capa de salida”, siendo variable el nimero de

“capas ocultas”.



La funcion de entrada a una RNA se calcula a partir del vector de entrada y los
pesos, que son modificados a medida que la red va aprendiendo, para asi controlar la
influencia que tienen las entradas.
Se ha utilizado un aprendizaje supervisado por correccion de error. Este consiste en
ajustar los pesos de las conexiones de la red en funcion de la diferencia entre los valores
deseados y los obtenidos a la salida de la red, es decir, en funcién del error cometido en
la salida. [9] El aprendizaje divide los datos en dos conjuntos: el de entrenamiento (80%
de la muestra) y el de test (20%). Con el primero se fijan los pesos y, posteriormente,
con el segundo se valida si la red neuronal es capaz de resolver los problemas para los
que ha sido entrenada.
Para entrenar la red es comun utilizar el algoritmo de propagacion hacia atras
(backpropagation), proceso en el que el error se propaga hacia atras desde la capa de
salida. De esta manera los pesos de las neuronas de las capas ocultas se van
modificando durante el entrenamiento, lo cual influye en la funcion de activacion de las
neuronas (que se detallard un poco mas adelante) y, en consecuencia, en la salida de la
neurona. [9]
Para realizar el entrenamiento, es necesario determinar algunos parametros:
- Tasa de aprendizaje: amortigua el cambio de los valores de los pesos. [10]
- Momentum: evita minimos locales en la propagacion hacia atras ya que
introduce un sumando adicional en la actualizacion de los pesos, el cual tiene en
cuenta el cambio que se hizo en la iteracion anterior. Adquiere valores entre 0 y
1. [11]

- Funcion de activacion: calcula el estado de actividad de una neurong;
transformando la entrada en un valor de 0 (totalmente inactiva) a 1 (activa). [12]

La funcion utilizada ha sido la sigmoide (Figura 3).

1o sigmoid

-10 -5 0 5 10

Figura 3. Funcién sigmoide [12]



En los altimos afios, Google ha puesto de moda este tipo de Inteligencia Acrtificial
con proyectos exitosos como AlphaZero o AlphaGo, los cuales consiguen ganar a los
humanos jugando al ajedrez y al go, respectivamente.

2.3 Bosques aleatorios

Los bosques aleatorios (del inglés, “Random forests”) son una combinacién de
arboles de decision. Un arbol de decision es un modelo de prediccion utilizado en
diversos dmbitos, la Inteligencia Artificial entre ellos. Dado un conjunto de datos, se
crean construcciones logicas que representan una serie de condiciones. Estas ocurren de
forma sucesiva y concluyen con la resolucion de un problema. [13]

En los bosques aleatorios cada arbol depende de los valores de un vector aleatorio
probado independientemente y con la misma distribucion para cada uno de estos. [14]

En la figura 4 se muestra un ejemplo de Bosque aleatorio.
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Figura 4. Modelo de Bosque aleatorio [15]

Como en el caso de las RNA, el conjunto de datos debe dividirse en dos
subconjuntos aleatoriamente: 80% de datos para el entrenamiento, 20% para el test. Este
modelo ha sido implementado en R [16], lenguaje de programacion con enfoque
estadistico. Para ello ha sido necesario incluir las bibliotecas: “randomForest”, para
hacer el entrenamiento y el test; “MASS”, para utilizar métodos estadisticos y

“XLConnect” para cargar el conjunto de datos de un archivo Excel.



3. Diseno

Para llevar a cabo la implementacion del sistema inteligente para la optimizacion
del razonamiento semantico, es necesaria una etapa previa de disefio. En ella se deciden
cuéles son las fases requeridas para un correcto desarrollo y se detallan las necesidades

que estas deben cumplir.

3.1 Elecciony calculo de las métricas de una ontologia

El motivo de querer conocer las métricas de una ontologia es poder caracterizarla
para posteriormente realizar predicciones en funcion de estas. Por ejemplo, si llevamos
a cabo una consulta con un razonador sobre una ontologia y obtenemos el tiempo que
dura esta tarea, podemos establecer relaciones que ayudaran a aproximar este coste
cuando sea otra la ontologia de entrada.

Por ello, el primer paso es decidir la manera Optima de caracterizarla. Tras un
proceso de documentacion, se ha llegado a la conclusién de utilizar las 51 métricas
propuestas por el articulo de IJSWIS [7], como el nimero de axiomas TBox y ABox. En
este articulo se elabora la prediccion del tiempo que llevard a un razonador realizar
determinada tarea en PC. Otro trabajo previo atil han sido los scripts para calcular las
métricas utilizadas en el articulo nombrado. Para llevar a cabo la obtencion de estas
métricas se ha utilizado el software Android Studio, ya que debia ejecutarse en un

dispositivo movil porque se ha querido medir el tiempo que cuesta realizar esta tarea.

3.2 Consultas mediante un razonador semantico

En esta aplicacion se introduce el uso de los razonadores. Se ha hecho una
seleccidon de los existentes y utilizado para realizar consultas sobre las ontologias. Para
elegir qué tarea iban a llevar a cabo los razonadores, se ha tenido en cuenta que su
duracion debia ser suficiente porque mientras tanto se querian medir tiempo, bateria y
memoria consumidas. Por ello, se decidi6 realizar la “clasificacion” de la ontologia,
tarea que comprueba la relacién jerarquica entre conceptos, es decir, para cada par de

conceptos decide si uno es una subclase de otro.



Basandonos en estos resultados, he realizado una comparacion de qué razonador da
mejores resultados y, por tanto, ha sido el utilizado para la posterior prediccion de los
costes.

3.3 Aprendizaje automatico

Este algoritmo utiliza una técnica conocida como “aprendizaje automatico” (del
inglés, “machine learning”). Es una rama de la Inteligencia Artificial cuyo objetivo es
desarrollar técnicas que permitan que las computadoras aprendan. Concretamente, trata
de crear programas capaces de generalizar comportamientos. [17]

Existen diversos tipos de algoritmos con este cometido, de los cuales en este
proyecto se han utilizado dos: Redes Neuronales Artificiales (RNA) y Bosques
Aleatorios. La utilizacion de estos algoritmos se ha necesitado para realizar la
prediccion de los costes del razonamiento. El algoritmo aprende a partir de los datos
obtenidos con la aplicacion del calculo de métricas y la de los costes del razonador. Una
vez entrenado, se ha realizado un test en el que realiza una prediccion de las salidas
(costes) a partir de unas entradas (métricas), y se mide el error de la prediccion. Los

parametros de los algoritmos deben ajustarse hasta conseguir minimizar el error.

3.4 Toma de decisiones

Se ha desarrollado un algoritmo que decide donde realizar el razonamiento (local o
remoto) a partir de los resultados obtenidos con el algoritmo de aprendizaje automatico.
Si los valores de prediccion del algoritmo superan determinado limite, el razonamiento
deberé realizarse en remoto, y, en caso contrario, en local. Estos limites pueden cambiar
en funcion de la capacidad del dispositivo movil utilizado, por ello son parametros que
deben introducirse en el algoritmo de toma de decision. Ademas, se ha tenido en cuenta

el nivel de bateria restante en el dispositivo.



4. Implementacion y experimentacion

En esta etapa del proyecto se desarrollan las ideas expuestas en la etapa de disefio.
A lo largo de este apartado se implementan varias aplicaciones, todas ellas necesarias
para el desarrollo de la aplicacion definitiva, el sistema inteligente completo. Ademas,

se describen los experimentos realizados con un conjunto de ontologias.

4.1 Aplicacion para obtener las métricas de una
ontologia

Se ha desarrollado una aplicacion que, dada una o varias ontologias, obtiene las
métricas que la caracterizan. Esta seccidén consta de tres subsecciones: la primera
consiste en el trabajo previo realizado, le sigue el desarrollo de la aplicacion y, por

ultimo, el analisis de los resultados.

4.1.1 ldentificacidn de métricas

Las métricas escogidas son las propuestas por el articulo 1IJSWIS [7], en el cual se
realiza la prediccion del tiempo en PC. Estas se pueden agrupar en 5 conjuntos, el
primero incluye 3 métricas y todos los demés 12 cada uno:

- Intensity Metrics (IM): tamafio de TBox, ABox y ratio.

- Concept Complexity Assertions with GCls applied (CCA)

- Concept Complexity Assertions without GCls applied (CCA_WO)

- Object Property Complexity Assertions (OPCA)

- Datatype Property Complexity Assertions (DPCA)

Cada uno de los cuatro dltimos conjuntos se puede dividir a su vez en dos
subconjuntos:
- Subconjunto 1: Agrega la estimacion de la complejidad de cada elemento de la
ontologia.
- Subconjunto 2: Considera que cada axioma observa a un elemento asociado y
agrega los valores ponderados.
Una vez obtenidas las estimaciones de complejidad y los testigos de cada elemento,

estos valores son agregados para obtener los valores finales de las métricas.
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En primer lugar, para cada uno de los conjuntos de estimaciones, se calcula su
suma total, valor promedio, valores maximo y minimo, desviacion estandar y entropia
de la distribucion de complejidad.

En segundo lugar, se obtienen los mismos valores agregados ponderados segun los

conteos de testigos de cada elemento considerado.

4.1.2 Desarrollo de la aplicacion

En un primer periodo de prueba y hasta que se termind de perfeccionar el codigo, el
calculo de métricas se llevo a cabo con un conjunto reducido de 9 ontologias.
Posteriormente, en el estudio han participado 139 ontologias de tamafios variados. Estas
ontologias las he obtenido de los workshops ORE 2013 [18] y ORE 2015 [19], bases de
datos cuyos archivos son ontologias destinadas a usarse con razonadores.

Dentro del lenguaje OWL 2 existen varios perfiles o sub-lenguajes que ofrecen
diferentes ventajas dependiendo del ambito de aplicacion. En este estudio se ha
utilizado el perfil OWL 2 EL, tal y como recomienda W3C para trabajar con ontologias
con gran cantidad de clases y propiedades. [1] Los ORE 2013 y 2015 estan organizados
de forma que facilitan escoger este subconjunto de ontologias. Ademas, estan separadas
en funcion de la tarea que se quiera realizar con ellas, en mi caso la clasificacion.

Los resultados de la Tabla 1 siguen la categorizacion de ontologias en funcién de su
tamafio segun se propone en [20]. En ella se clasifican las 139 ontologias utilizadas

dependiendo del nimero de axiomas que contienen.

Pequefias (<500) | Medianas (500-5000) [ Grandes (>5000)
N° ontologias 40 50 49

Tabla 1. Clasificacion de ontologias segun su nimero de axiomas

La realizacion del codigo para la obtencion de métricas ha tenido como referencia
los scripts de Carlos Bobed [21], perteneciente al Departamento de Informaética e
Ingenieria de Sistemas de la Universidad de Zaragoza.

Se ha estudiado el desempefio de la aplicacion en Android y se ha adaptado para un

funcionamiento adecuado. En concreto, se ha descartado la parte del codigo en la que se
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elabora un grafo de la ontologia (para calcular la relacion entre los axiomas TBox y
Abox), ya que el célculo de las métricas va a realizarse en dispositivos moviles. Esto se
debe a que, por su capacidad computacional limitada, cuesta demasiado tiempo y
memoria procesarlos y por ello no son eficientes en estos dispositivos.

Para la implementacion de la App he utilizado Android Studio [22], IDE para el
desarrollo de aplicaciones Android en un entorno de lenguaje Java. El dispositivo en el
que se han realizado los experimentos ha sido un Xiaomi Redmi 4 con version Android
6.0.1 (Marshmallow), el cual dispone de 3 GB de RAM Yy un procesador Qualcomm
Snapdragon 625. El nivel de APl minimo para poder utilizar la aplicacion es 19, que

equivale a la version Android 4.4 (KitKat).

Se ha disefiado una actividad que inicia el calculo de métricas cuando se lanza la
aplicacion:
protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState);

setContentView (R.layout.activity main);

MetricsCalculator () ;

Ademas, ha sido necesario dar los siguientes permisos en el Archivo de Manifiesto

para lectura/escritura de ficheros y para que la aplicacion tenga acceso a Internet.
<uses-permission
android:name="android.permission.READ EXTERNAL STORAGE" />
<uses-permission
android:name="android.permission.WRITE EXTERNAL STORAGE" />
<uses-permission
android:name="android.permission.INTERNET" />
<uses-permission

android:name="android.permission.ACCESS NETWORK STATE" />

La aplicacion para la obtencion de métricas contiene un codigo extenso. A

continuacion, se muestran algunos fragmentos.

// Cdlculo del numero de axiomas y ratio

TBoxAxioms = ontology.getTBoxAxioms (true) .size();

ABoxAxioms = ontology.getABoxAxioms (true) .size();

outResults.print (ontology.getAxiomCount () + "\t" + TBoxAxioms + "\t" +

ABoxAxioms + "\t" + ABoxAxioms/TBoxAxioms + "\t"):;
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// Calculo del resto de métricas

complexityCalculator = new
AssertionsComplexityMetricsCalculatorEL (ontology) ;

complexityCalculator.calculateAllMetrics();

outResults.println(
complexityCalculator.getClassComplexities () .toString () +
complexityCalculator.getClassComplexitiesWithoutGCI ().toString()
+ complexityCalculator.getObjectPropComplexities () .toString()
+ complexityCalculator.getDataPropComplexities () .toString());

Como he comentado al principio del apartado, primero se ha tratado con un
conjunto reducido de 9 ontologias de caracteristicas diversas para sacar algunas
conclusiones generales. Los archivos “.0wl” se han almacenado dentro de la aplicacion
y el programa los llama uno a uno.

Descartando una de las ontologias por dar problemas al parsear el fichero y
teniendo en cuenta el criterio de tamafio explicado, podemos clasificar las 8 restantes
en: 4 pequefas (0-500 axiomas), 2 medianas (500-5000) y 2 grandes (+5000).

Cabe decir que, mientras se intenta procesar la ontologia de mayor tamafio (46940
axiomas, 34.5 MB), el log de mensajes avisa de la falta de memoria, aunque finalmente
consiga obtener sus métricas. De lo cual podemos conjeturar que, probablemente, con
una ontologia mayor no podria hacerlo. Esta restriccion se debe a que se ha realizado en
un dispositivo Android, ya que esta misma actividad desarrollada en PC no tiene este

tipo de limitaciones.

Tras esta introduccion en el calculo de las métricas, el siguiente paso es realizar
este proceso pero en un conjunto mayor: las 139 ontologias pertenecientes a los
conjuntos ORE 2013 Y 2015. Como es un conjunto de gran tamarfio, es inviable
almacenar estos archivos dentro de la aplicacion. Por ello, las he subido al servidor web
gratuito webhost000 [23], y he dado permisos a la aplicacion para poder acceder a
Internet. La primera idea, por sencillez, fue utilizar Dropbox y Google Drive. Esta idea
se descartd rapidamente, ya que los enlaces no siguen un patron légico (no hay
correspondencia entre nombre del fichero y URL) y suponia escribir en el cédigo todos
los enlaces de las ontologias para acceder a ellos. En cambio, en webhost000, estos
enlaces siguen el mismo formato para todas las ontologias:

“https://mlanau.000webhostapp.com + /nombreCarpeta/ + nombreOntologia”
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De esta manera, al programa se le pasa un fichero con los nombres de las
ontologias, las va llamando una a una, calcula sus métricas y crea dos ficheros de texto:
en uno almacena estos valores en forma de tabla, y en otro el tiempo que cuesta
hallarlos. Estos ficheros se guardan en el almacenamiento externo del dispositivo
Android. Para que todo ello pueda realizarse es necesario dar permisos de lectura y

escritura de ficheros.

A continuacion, se muestra un fragmento de cdédigo de la actividad principal:

IRI ontologyIRI = IRI.create(

+ ontologyNames[n]) ;

OWLOntologyManager om = OWLManager.createOWLOntologyManager () ;
OWLOntology ontology =
om.loadOntologyFromOntologyDocument (ontologyIRI) ;

startTime = System.nanoTime() ;
finishTime = System.nanoTime () ;
Log. 1 (TAG, + (finishTime - startTime) / 1le9 +

)7

4.1.3 Analisis de los resultados

Analizando los datos obtenidos en relacion al tiempo, se observa que a partir de las
ontologias de mas de 2.500 axiomas, hay una tendencia ascendente en cuanto al tiempo
que cuesta calcular sus métricas. Para ontologias con menos de 2.500 axiomas, este
calculo no llega en ningln caso a la décima de segundo, mientras para las de mas de
100.000 axiomas, esta cifra no baja de los 20 segundos.

Se ha hecho una division de los datos teniendo en cuenta la duracién del célculo las
métricas y se ha obtenido el promedio en cada subconjunto para observar la
dependencia con el nimero de axiomas de la ontologia. En la Tabla 2 pueden verse

estos resultados.
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Tiempo (s)

< 2.500 0,026123724
> 2.500 - 25.000 0,433249145
Numero de
axiomas
25.000 - 65.000 3,121878496
100.000 - 215.000 43,46248782

Tabla 2. Dependencia del nimero de axiomas de una ontologia con el tiempo que cuesta

calcular sus 51 métricas establecidas.

Se aprecia que para las ontologias de méas de 100.000 axiomas, la obtencion de sus
métricas en dispositivos moviles no es eficiente, por un excesivo coste temporal. En
cambio, para valores inferiores a 65.000 axiomas, esta duracion es breve. Por carencia
de ontologias con axiomas entre 65.000 y 100.000 no se ha podido analizar ese

intervalo.

4.2 Aplicacion para consultas con razonador

Se ha desarrollado una aplicacion que utiliza varios razonadores semanticos para
realizar consultas sobre un conjunto de ontologias. El objetivo de esto es obtener el
tiempo de ejecucion, potencia y memoria utilizada durante las consultas.

Esta seccion, como la anterior, consta de 3 subsecciones: trabajo previo realizado,

desarrollo de la aplicacién y, finalmente, analisis de los resultados obtenidos.

4.2.1 Eleccion de razonadores

En primer lugar se debia elegir qué razonador utilizar para realizar la posterior
prediccion de los costes del razonamiento. Existen numerosos razonadores
desarrollados para su uso en PC, pero no ocurre lo mismo con su uso en dispositivos
Android. Por ello, he utilizado varios de los razonadores portados por el grupo de
Sistemas de Informacién Distribuidos de la Universidad de Zaragoza [24]: HermiT,
JFacty TrOWL.
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- HermiT [25]: es un razonador implementado en Java que soporta
completamente el lenguaje OWL 2. También estéd incluido en Protégé, el editor
de ontologias mas conocido. A diferencia de otros razonadores, HermiT 1.3.8 no
puede ser convertido directamente a Dalvik, la maquina virtual utilizada en
dispositivos Android.

- JFact [26]: naci6é como el resultado de portar el razonador FaCT++ en lenguaje
Java y soporta completamente OWL 2. JFact 1.2.1 puede ser importado
directamente en un proyecto Android, ya que no necesita ninguna modificacién
para convertirlo a Dalvik.

- TrOWL [27]: es una infraestructura de razonamiento para OWL 2. TrOWL 1.4
puede ser convertido a Dalvik sin modificacion alguna y ser importado en un
proyecto Android directamente. Este razonador solo da resultados exactos para
el perfil OWL 2 EL (el utilizado en el proyecto), mientras que para OWL 2 DL
son aproximados.

Ademas de los razonadores comentados he decidido probar con Mini-ME, un
prototipo de razonador para dispositivos moviles. El objetivo de su desarrollo es superar
los problemas de rendimiento que suceden con los razonadores disefiados para PC.

- Mini-ME [28]: es compatible con el lenguaje OWL 2, esta desarrollado en Java

y se ejecuta en Android.

4.2.2 Desarrollo de la aplicacion

Una vez seleccionados los razonadores con los que se hardn las pruebas, el
siguiente paso es comparar cual tiene un mejor funcionamiento en cuanto a tiempo,
potencia y memoria.

Como en el caso de las métricas, para la implementacion de la app he utilizado
Android Studio y se ha ejecutado en un Xiaomi Redmi 4. El nivel de API minimo
requerido es 21 (por el uso de propiedades implementadas a partir de ese nivel de API).

En un mismo programa y haciendo pequefias modificaciones para utilizar cada
razonador, he realizado consultas en las ontologias midiendo los costes. Se ha creado
una aplicacion distinta a la de las métricas para evitar lo maximo posible errores de
memoria, ya que cuando se prob6 a ejecutar ambas tareas en el mismo programa, en

muchos casos surgieron este tipo de problemas y el proceso no llegaba a terminar.
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En primer lugar, se tuvo que decidir qué tarea iba a realizar el razonador. Como se
ha comentado anteriormente, debia ser una consulta que durase lo suficiente para que
las medidas que se iban a calcular fueran fiables. Por ese motivo, se decidi6 realizar la
“clasificacion” de la ontologia.

Como en la aplicaciéon de las métricas, se ha seguido un desarrollo incremental:
antes de pasar a un conjunto mayor de ontologias, las primeras pruebas se han realizado
con una agrupacion reducida (9 ontologias), para ver qué posibles fallos podian suceder.

Al realizar esta clasificacion en un dispositivo movil he obtenido numerosos errores
debidos a distintas causas. Es importante diferenciar los que s6lo suceden en el movil de
los que también sucederian en PC, para conocer las limitaciones del dispositivo movil.

La Tabla 3 muestra el nimero de ontologias en las que no se ha llegado a realizar la
clasificacion, causado por distintos errores. En el caso del razonador Mini-ME, carece
de sentido decir los errores que ocurririan en PC por ser especifico para dispositivos

moviles. Aun asi se han anotado los errores no causados por las limitaciones de estos

dispositivos (memoria, tiempo).

Soélo en movil También en PC

Correctas

HermiT

JFacT

MiniME

Tabla 3. Numero de errores segun el razonador producidos durante la clasificacion

Vemos que todos los razonadores han tenido algun problema para clasificar alguna

ontologia, siendo la limitacion en memoria el error que méas se repite. También vemos
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que el razonador TrOWL es el que mejor resultados ha obtenido, aunque es un dato

poco significativo debido al tamafio reducido del conjunto de ontologias.

Seguidamente, se paso a hacer las pruebas de los razonadores con un conjunto de
ontologias mucho mayor, como en el caso de las métricas. Se trata de una fusion de los
conjuntos ORE 2013 y ORE 2015, seleccionando el perfil EL, como se ha comentado
anteriormente.

Teniendo en cuenta los resultados obtenidos con el conjunto reducido, se puede
predecir que las ontologias que sean mayores que un determinado tamafio daran
problemas de ejecucion en la aplicacion. En un principio, el limite de tamafio maximo
fue el de la ontologia que la aplicacion no pudo ejecutar en ninguno de los 4 casos en la
primera prueba (34.5 MB), pero cuando comencé las pruebas tuve que ir reduciendo adn
mas este margen, el cual finalmente rondé los 20 MB. De hecho, la idea inicial fue
realizar la clasificacion sélo con el conjunto ORE 2013, pero como se fue reduciendo
por los descartes realizados, se opt6 por afiadir también el conjunto ORE 2015, ya que
cuanto mayor y mas variada fuera la muestra de ontologias, mejores serian las
predicciones.

Esta aplicacion ha sido mas problemética que la anterior, debido a errores de
memoria para realizar la clasificacion de ontologias de las que se habian obtenido sus
métricas. Por ello, muchas de las métricas halladas han quedado inutilizadas para poder
predecir los costes del razonamiento y, finalmente, solo han podido utilizarse 102
ontologias.

Para realizar las consultas he subido los archivos “.owl” de las ontologias a
000webhost, como en el caso de las métricas. EI programa va descargando una a una
cada ontologia, crea el razonador, realiza su tarea y mide los costes. Estos son
almacenados en un fichero “.txt” en forma de tabla.

Los distintos costes que he medido han sido el tiempo que le cuesta realizar la

clasificacion, la potencia y la memoria que ocupa.

A continuacion se muestran algunos fragmentos del cédigo implementado:
- Se crea un razonador u otro dependiendo del parametro de entrada
reasoner_type. Para poder utilizarlos, se debe incluir en el proyecto sus

correspondientes librerias.
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switch (reasoner type) {
case REASONER JFACT:
return new JFactFactory () .createNonBufferingReasoner (ontology);
case REASONER HERMIT:
Configuration conf = new Configuration();
conf.ignoreUnsupportedDatatypes = true;
return new Reasoner (conf, ontology);
case REASONER MINIME:
MicroReasonerFactory reasonerFactory = new
MicroReasonerFactory () ;
OWLReasoner reasoner =
reasonerFactory.createMicroReasoner (ontology) ;
return reasoner;
case REASONER TROWL:
RELReasonerFactory relfactory = new RELReasonerFactory();
RELReasoner reasoner = relfactory.createReasoner (ontology):;
return reasoner;
default:
throw new IllegalArgumentException ( ) ;

}

- Clasificacion de una ontologia con el razonador JFacT:

/ . 7 T s
// Carga la ontologia

IRI ontologyIRI = IRI.create(
+ ontologyNames|[n]) ;
OWLOntologyManager manager = OWLManager.createOWLOntologyManager() ;
OWLOntology ontology =
manager.loadOntologyFromOntologyDocument (ontologyIRT) ;
// Crea un razonador para dicha ontologia

OWLReasoner reasoner = createOWLReasoner (ontology, REASONER JFACT);

i1ricacion

0]

// Realiza su cla

reasoner.precomputeInferences (InferenceType.CLASS HIERARCHY) ;

Este procedimiento es el mismo para todos los razonadores probados excepto para

Mini-ME, ya que su clasificacion se realiza directamente cuando es creado.

19


https://mlanau.000webhostapp.com/files/

La obtencidn de los costes se ha realizado de la siguiente manera:

Tiempo [s]: Una variable toma el tiempo en el instante anterior de realizar la
clasificacion y otra lo toma justo después. Mediante la resta de ambas se obtiene
el resultado. Este es en nanosegundos pero se ha pasado a segundos.

Fragmento del cadigo:

startTime = System.nanoTime () ;
finishTime = System.nanoTime () ;

time = (finishTime-startTime) / 1e9;
Log. 1 (TAG, + time + ) 7

La clase System puede utilizarse en cualquier version de Android ya que esta
disponible desde el nivel de API 1.

Potencia [W]: Se ha realizado por software, a través de la clase BatteryManager
[29]. He obtenido el valor de la corriente y la tension en el instante que termina
la tarea y realizando el producto de ambas resulta la potencia en Vatios.

Antes de llegar a este resultado se han considerado varias opciones. Una de ellas
fue calcular la energia consumida en vez de la potencia. Esto suponia tener en
cuenta el tiempo que dura la tarea para obtener el consumo (Ws), lo cual se
descart6 para que las salidas no dependieran entre si. Otra opcion considerada
fue la propuesta por un articulo sobre el calculo de consumo energético en
dispositivos moviles [30]: ir midiendo el valor de la tension con un
BroadcastReceiver por si se producen cambios durante la clasificacion. Se
decidié comprobar si esto realmente sucedia mediante una App para el manejo
de la bateria (AccuBattery [31]). Esta aplicacion actualiza los valores en tension
de la bateria cada pocos segundos, y se observd que, ejecutando la aplicacion a
la vez que la consulta, las variaciones de tension eran minimas (unos pocos mV).
Por ello también se descarto esta opcion. Ademas, la férmula para el calculo de
la energia consumida que propone el articulo no es valida ya que utiliza el
tiempo dividiendo en vez de multiplicando a la tensién y la corriente.

Para que las medidas sean validas se debe tener el dispositivo movil

desconectado de cualquier fuente de energia.
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Fragmento del cadigo:

powerConsumption = new
PowerConsumption (getApplicationContext ());
double power = powerConsumption.getPower () ;

double current = powerConsumption.getCurrentNow () ;

double voltage powerConsumption.getVoltage () ;
Log. 1 (TAG, + power +
+ current +

+ voltage);

En la clase “powerConsumption”:

public double getCurrentNow () {

Integer currentNow =
mBatteryManager.getIntProperty (BatteryManager.BATTERY
__ PROPERTY CURRENT NOW) ;

return currentNow/ (le6) ;

alculo tension

public double getVoltage () {

int voltage =
batteryStatus.getIntExtra (BatteryManager.EXTRA VOLTAG
Er _l);

return voltage/ (1e3);

public double getPower () {

return (currentNow () *voltage());

La clase BatteryManager se afiadio en la primera versién de Android, pero ha
sufrido numerosas modificaciones. Su uso en esta aplicacién requiere un nivel

de API superior a 21, lo que equivale a la version Android 5.0 (Lollipop).

21



- Memoria [KB/MB]: Se ha obtenido la memoria ocupada (memoria total —
memoria libre) antes y después de realizar la clasificacion, calculando el
resultado mediante la diferencia de ambas medidas. Justo antes de la tarea del
razonador se llama al recolector de basura para mejorar la prediccion del
resultado. De todos modos, este es aproximado ya que no se puede evitar que
durante la clasificacion se libere memoria. El resultado se obtiene en bytes, pero
es convertido a KB/MB dependiendo del razonador utilizado.

Fragmento del cadigo:

System.gc() ;

Runtime runtime = Runtime.getRuntime() ;

memoryUsedl = (runtime.totalMemory () - runtime.freeMemory()) /
1024;

memoryUsed2 = (runtime.totalMemory () - runtime.freeMemory()) /
1024;

Log. 1 (TAG, + (memoryUsed2 - memoryUsedl) +

)7

Recordemos que la clase Runtime puede utilizarse en cualquier version de

Android ya que esta disponible desde el nivel de API 1.

4.2.3 Andlisis de los resultados y comparativa entre

razonadores

Durante la ejecucién de la aplicacion se genera un fichero de texto en el que se van
escribiendo los costes de las ontologias en forma de tabla.

Como se ha visto en la prueba con el conjunto reducido de ontologias, cada
razonador tenia diferentes problemas para realizar la clasificacion. De las 139
ontologias disponibles, el nimero de ontologias que ha sido capaz de clasificar cada
razonador se muestra en la dltima columna de la Tabla 4. La mayor diferencia se
observa con el razonador JFacT.

Para comparar los costes en tiempo, potencia y memoria entre los 4 razonadores, se

han tenido en cuenta solo las ontologias que todos los razonadores han sabido clasificar,
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es decir, 102 ontologias. En la Tabla 4 se muestran la media de estos costes para cada

Tiempo (S) Potencia (W) N° ontologias

razonador.

6.16 1.216 3.91 MB 111
3E-4 1.206 3.53 KB 129
1.10 1.513 5.07 MB 131
3.05 1.082 15.53 MB 124

Tabla 4. Coste medio de la clasificacion segun el razonador (para 102 ontologias) y

n° de ontologias que ha sabido clasificar cada razonador

Se aprecia una gran diferencia en cuanto al tiempo y la memoria consumida con el
razonador Mini-ME respecto a los demas, ya que es el Unico especificamente disefiado
para su uso en dispositivos moviles, es decir, adaptado a sus limitaciones.

El razonador HermiT ocupa una gran cantidad de memoria de media y, junto con el
razonador JFacT, son los que méas tiempo tardan en realizar la consulta. Ademas,
HermiT y JFacT son los que menos ontologias han sabido clasificar. Por todo ello, se ha
llegado a la conclusidn que los razonadores que dan mejores resultados son TrOWL y
Mini-ME.

4.3 Algoritmo de aprendizaje automatico

Una vez adquiridas las métricas de la ontologia y los costes que conlleva realizar su
clasificacion, se necesita la implementacién de un algoritmo para predecir estos costes,
dadas unas métricas de entrada.

Como se ha comentado en la etapa de disefio, se trata de un algoritmo de

“aprendizaje automatico”. Existen distintos tipos de algoritmos que realizan esta

23



funcién, pero segin hemos comprobado, su eficiencia varia de unos casos a otros. En el
articulo de 1JSWIS [7] en el que se realizan predicciones sobre conjuntos de ontologias
se decide utilizar “Bosques aleatorios”. En el articulo “Trees vs neurons” [32] comparan
el uso de Redes Neuronales Artificiales y de Bosques Aleatorios. La conclusion a la que
Ilega es que en el caso de prediccion de consumo energético en edificios es mejor el uso
de Redes Neuronales. Es por ello que se ha decidido implementar ambos algoritmos y

comparar cuél ofrece mejores predicciones.

El razonador para el que se ha desarrollado el aprendizaje es TrOWL debido a que,
aunque con Mini-ME se hayan obtenido buenos resultados, este razonador aun est4 en
desarrollo.

4.3.1 Redes Neuronales Artificiales

El objetivo es predecir, con el minimo error, el valor de las salidas (tiempo,
potencia, memoria) partiendo del valor de las entradas (51 métricas).

En primer lugar, se deben normalizar los datos que utilizard la RNA. Para la
normalizacion de los datos, en algunas métricas no se ha utilizado su maximo real por
tener valores muy superiores al resto; por ello, se ha escogido como méaximo un namero
inferior.

Para poder realizar las predicciones hay que entrenar la red neuronal. Para ello se
ha utilizado el 80 % de la muestra de los datos normalizados. Se deben establecer varios
parametros como la tasa de aprendizaje, el momentum, el nimero méaximo de
iteraciones y la norma de aprendizaje. La norma de aprendizaje que he establecido para
entrenar la red es Momentum Backpropagation (propagacién hacia atras con

momentum).

Después del entrenamiento, la red es capaz de deducir el valor de las salidas con un
error de mayor o menor grado. Por ello, el siguiente paso es realizar un test para saber
cual es el error de estas predicciones. Para ello he utilizado el 20 % restante de la
muestra de datos. El test calcula las salidas a partir de las entradas y compara estos

resultados con las salidas deseadas.
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De esta manera se va calculando y acumulando el error, el cual se muestra al final
del proceso. Para calcular el error he utilizado el “Error cuadratico medio” [33] entre los

valores deseados y los de la prediccion.
_1n (% 2
ECM =— i1 (Yi - Yi)

Este error es dependiente de los parametros establecidos en el proceso de
entrenamiento. Por ello, para minimizar el error lo maximo posible, he ido variando
estos pardmetros hasta conseguir un error muy pequefio. En la Tabla 5 se muestran los

valores de error segun diferentes parametros.

Momentum

0.6 0.7 0.8
0.4 0.2061299 0.2592956 0.3576868
Tasa de 0.5 0.3107389 0.2614297 0.3714283
aprendizaje
0.6 0.4420598 0.2485813 0.1927562

Tabla 5. Error en funcion de la tasa de aprendizaje y el momentum

Debido a causas de aleatoriedad en el proceso, para los mismos parametros no
siempre resulta el mismo valor de error. Por ello, el programa realiza el calculo 20 veces
y después se obtiene la media para una mayor fiabilidad de los resultados.

Una vez minimizado el error, esos parametros son los definitivos. En este caso, el
error minimo (0.1927562) se consigue para una tasa de aprendizaje de 0.6 y un
momentum de 0.8.

Este programa ha sido desarrollado en el lenguaje Java utilizando el entorno
Eclipse [34] y posteriormente se ha portado a Android. Las ventajas de utilizar Eclipse
han sido la comodidad de programar y realizar las numerosas pruebas del entrenamiento
y test modificando los pardmetros (tasa de aprendizaje y momentum). Una vez
ajustados, se ha entrenado la red definitiva en Android y guardado en un archivo “.nnet”
para poder utilizarla sin tener que volver a ejecutar el codigo de entrenamiento. El

problema de realizar el entrenamiento en Eclipse, guardar el archivo e importarlo desde
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un proyecto Android es que para escribir en el fichero, el programa utiliza el mecanismo
de "serializacion". Este permite escribir objetos Java en un fichero, pero realmente lo
que escribe es el "bytecode" de Java que no es directamente compatible con el de
Android.

Para trabajar con redes neuronales se ha incluido en el proyecto la biblioteca
Neuroph [35]. Esta biblioteca tiene clases incompatibles con Android, y por ello ha
habido que modificarla para poder utilizarla en dispositivos moviles. En concreto se han
eliminado un par de atributos de la clase Listener que se heredan de la biblioteca gréafica

para Java swing, no permitida en Android.

A continuacion, se muestran algunos fragmentos del codigo desarrollado:
- Se definen el nimero de neuronas por capa, se crea la red neuronal y se definen
los parametros para el entrenamiento.
String dataSetFileName = ;
int inputsCount = 51;
int outputsCount = 3;
int hiddensCount

Math. round(inputsCount * outputsCount) ;

String separator = ",";

DataSet dataSet =
TrainingSetImport.importFromFile (dataSetFileName,

inputsCount, outputsCount, separator);

// Crea red neuronal
MultilLayerPerceptron neuralNet = new
MultilLayerPerceptron (TransferFunctionType.SIGMOID,

inputsCount, hiddensCount, outputsCount);

Introduccion de parametros
MomentumBackpropagation learningRule = new
MomentumBackpropagation () ;
learningRule.setLearningRate (0.6);
learningRule.setMomentum (0.8) ;
learningRule.setMaxIterations (1000000) ;

neuralNet.setLearningRule (learningRule) ;
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- Entrenamiento y test de la red
Divisidén del DataSet para entrenamiento y test
DataSet [] dataSet8020 =
trainingSet.createTrainingAndTestSubsets (80,20);
// Entrenamiento (con el 80% de la muestra original)
neuralNet.learn (dataSet8020[0]) ;
Test (con el 20% restante)

testCostesRazonador (neuralNet, dataSet8020[1]);

- Fragmento del método testCostesRazonador:
for (DataSetRow trainingElement : dset.getRows()) {
counter+=1;
nnet.setInput (trainingElement.getInput());
nnet.calculate();
double[] networkOutput = nnet.getOutput/():;
double[] desiredOutput

trainingElement.getDesiredOutput () ;

~a A o 13 fF5+mi1] 3 Iin]1 TOM
2dor de la formula del ECM

or ae 14d Lrormulad aedl

errorNUM += difSquared (networkOutput, desiredOutput)
}

error = errorNUM/counter;

- Fragmento del método difSquared:
for(int 1 = 0; i < N; 1i++)

diff += Math.pow (networkOutput[i] - desiredOutput[i], 2);

4.3.2 Bosques Aleatorios

Como en el caso de las RNA, contamos con 51 métricas de entrada y queremos
obtener el valor de las salidas (tiempo, potencia y memoria).
Para realizar el entrenamiento se consideraron dos opciones: calcular de una vez las tres
salidas (prediccion multivariable) o, con un mismo conjunto de entrenamiento calcular
las 3 salidas de una en una. La opcién multivariable seria necesaria si los valores de
salida tuvieran influencia entre ellos, pero se ha decidido escoger la otra opcion por

similitud a la RNA, ya que en este caso no se utilizan las salidas como variable de
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entrada. Por ello se han creado 3 conjuntos de entrenamiento, uno para cada salida.
Estos conjuntos son idénticos entre si, exceptuando que se han eliminado las columnas

con las salidas no utilizadas en cada caso.

A continuacion, se muestra parte del codigo desarrollado en R:
# Semilla para el generador de numeros aleatorios

set.seed (101)

# Definicidén de los conjuntos de entrenamiento (80% de los datos) y
# test (el resto)

samp <- sample (nrow (dataset), 0.8 * nrow(dataset))

train <- dataset[samp, |

test <- dataset[-samp, |

# Se crea un conjunto de entrenamiento para cada salida

trainl <- train[l:nrow(train), 1l: (ncol(train) - 2)]

train2 <- train[l:nrow(train), c(l:(ncol(train) - 3),ncol(train)-1)]
train3 <- train[l:nrow(train), c(l:(ncol(train) - 3),ncol(train))]

# Algoritmo de aprendizaje, para predecir Time, Power y Memory

resultl <- randomForest (Time~., data=trainl)
result?2 <- randomForest (Power~., data=train2?)

result3 <- randomForest (Memory~., data=train3)

# Predicciones sobre el conjunto de test
predl <- predict(resultl, test)
pred2 <- predict(result2, test)
pred3 <- predict(result3, test)

# Calculo del Mean Squared Error

errorl <- with(test, mean ((Time - predl)”"2))
print (errorl)

error?2 <- with(test, mean ((Power - pred2)”"2))
print (error2)

error3 <- with(test, mean ((Memory - pred3)"2))

print (error3)

En la Tabla 6 se muestra el error obtenido para cada variable asi como el error total.
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Error

Tiempo 0.01312135
Potencia 0.07773907
Memoria 0.06839997

0.15926039

Tabla 6. Error en la prediccion de cada variable y total

Comparando ambos algoritmos de aprendizaje automatico, vemos que el error es
menor en los Bosques Aleatorios que en las RNA (0.15926039< 0.1927562), aunque

con una diferencia minima.

4.4 Algoritmo de toma de decisiones

El siguiente paso es implementar un algoritmo de toma de decisiones que diga si el
razonamiento debe realizarse en remoto o en local, en funcién de las métricas obtenidas
de una ontologia. Para ello se utiliza un algoritmo de prediccion (RNA) ya entrenado en
el que se introducen unas entradas (métricas) y obtiene las salidas aproximadas (costes).

A partir del valor de estas salidas toma la decision de dénde se deberia realizar el
razonamiento.

Para realizar la prediccion, las métricas no pueden ser introducidas directamente en
la red neuronal. Por este motivo, una vez obtenidas se deben normalizar utilizando los
valores empleados en la normalizacion del conjunto de datos del entrenamiento y test.
Si el valor de alguna métrica es superior al tomado como maximo en el conjunto de
datos, su valor normalizado serd 1. De la misma manera, si un valor es inferior al valor
minimo del conjunto, su valor normalizado sera 0.

Es necesario decidir cuales son los valores limite para los cuales, si el resultado es
menor, se aconsejara realizar el razonamiento en local, y si es mayor, en un dispositivo
externo con mas recursos. Estos valores son pardmetros del algoritmo, que podrian
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variar en funcién del dispositivo movil en el que se quiera realizar el razonamiento

(siempre entre 0 y 1 por ser cifras normalizadas). Por ejemplo, la capacidad del movil

podria influir en el tiempo y la memoria que cuesta, y para la potencia podria tenerse en

cuenta el nivel de bateria restante.

En mi caso, he decidido utilizar los siguientes pardmetros:

t (tiempo) = 0.25: puesto que 1 equivale a 47 segundos, he considerado que un
usuario podria esperar una cuarta parte de este maximo a que se realizara el
razonamiento.

p (potencia) = 0.9: es un valor cercano a la unidad ya que también se ha decidido
tener en cuenta el nivel de bateria restante en el dispositivo movil. Si tiene un
valor inferior al 15% de la bateria total, el sistema aconsejard que el
razonamiento Se ejecute en remoto.

m (memoria) = 0.95: se ha optado por un valor elevado ya que en vez de utilizar
para la normalizacion de los datos el valor maximo de la muestra (82 MB) se
utilizé uno inferior (18 MB). EI motivo de esta decision es conseguir una mayor
precision, es decir, un error inferior en la prediccion debido a que en la muestra

solo habia dos valores superiores a 18 MB, muy alejados del resto.

El algoritmo actual es muy sencillo pero ilustrativo. Para generalizarlo se

necesitarian datos de mas dispositivos moviles. El disefio de aplicacion permite

ejecutarlo en otros dispositivos de manera inmediata.

A continuacién, se muestra un fragmento del cddigo desarrollado con redes

neuronales:
double networkInput[] = ontologyMetrics();
System.out.println( + Arrays.toString (networkInput)) ;

NeuralNetwork neuralNet =

load (getResources () .openRawResource (R.raw.neuralnet)) ;
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double [] networkOutput = outputPrediction (neuralNet, networkInput):;

// toma de decisiones
int battery = batterylevel.getBatteryPercentage();
double t = 0.25 ;

double p = 0.9 ;
double m = 0.98 ;
if (networkOutput[0] > t || networkOutput[l] > p || battery < 15 ||

networkOutput[2] > m)
System.out.println("Realizar en remoto");
else

System.out.println("Realizar en local');

- Obtencion de salidas de la red:
public double[] outputPrediction (NeuralNetwork nnet,
double [] input) {
nnet.setInput (input);
nnet.calculate();
double[] networkOutput = nnet.getOutput();
System.out.println ("Output: " +
Arrays.toString (networkOutput)) ;

return networkOutput;

- Normalizacién de métricas:

switch (n _metric) {

case O:
min = 30;
max = 35531;
break;

case 50:
min = 0;
max = 6.46;

break;



if (metricValue <= min)
normalMetric = 0;
else{
if (metricValue >= max)
normalMetric = 1;
else

normalMetric = (metricValue-min)/ (max-min) ;

Obtencidn del nivel de bateria, en la clase BatteryLevel

public int getBatteryPercentage () {

int level =

batteryStatus.getIntExtra (BatteryManager.EXTRA LEVEL,
int scale =

batteryStatus.getIntExtra (BatteryManager.EXTRA SCALE,
float batteryPct = level / (float) scale;
return Math. round(batteryPct * 100);
}

seccion 5.

4.5 Sistema Inteligente completo

prediccién (RNA), decide dénde realizar el razonamiento.

superior a 19 (version Android 4.4).

El desarrollo de la toma de decisiones mediante Bosques Aleatorios es interesante
ya que su nivel de precision es ligeramente mayor que en las Redes Neuronales

Artificiales. Sin embargo, queda pendiente como trabajo futuro, del cual se habla en la

Para obtener el Sistema Inteligente completo en Android, se ha creado una
aplicacion que retne todo lo explicado en la Seccion 4: dada una ontologia de entrada,

calcula sus métricas y, en funcion de las salidas obtenidas con un algoritmo de

Esta aplicacion final puede ejecutarse en dispositivos moviles con un nivel de API
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Su funcionamiento es el siguiente:
Introduccion de la ontologia, para lo cual se dan dos opciones: almacenarla en la
carpeta “Downloads” del almacenamiento externo del dispositivo o cargarla
mediante una URL.
Se calculan sus meétricas, las cuales se escriben en un fichero llamado
“MetricasOntologias.txt” que se guarda en “Downloads”.
La aplicacion lee el fichero, normaliza estos valores y los introduce en un vector.
Este vector se utiliza como entrada en el algoritmo de prediccion y obtiene tres
salidas (tiempo, potencia y memoria).
Se toma la decision de donde realizar el razonamiento mediante la comparacion
del valor de las salidas y unos parametros. Ademas, se tiene en cuenta la bateria

restante en el dispositivo.
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5.Conclusiones y trabajo futuro

Una vez finalizada la elaboracion del proyecto, es el momento de evaluar algunos
aspectos como el alcance de los resultados, las dificultades afrontadas, el aprendizaje
adquirido... Ademas, de cara a un futuro, cabe comentar algunas ideas que seria

interesante introducir para la mejora del proyecto.

Como resultado de este trabajo, se ha obtenido una aplicacion para dispositivos
Android que recomienda el lugar 6ptimo para el razonamiento de una determinada
ontologia en funcion de sus caracteristicas. Las distintas formas de uso del razonador
tienen sus ventajas e inconvenientes. Por ejemplo, la ventaja principal de realizar el
razonamiento externamente es que uno puede considerar un servidor tan potente como
requiera la aplicacion. Sin embargo, el problema que surge es que el envio masivo de
datos a través de la red se ve limitado por la conectividad. En cambio, un razonador
local puede ser utilizado sin conexion a la red, donde también se ve beneficiada la
privacidad de datos, importante en algunos casos. [36] Algunas de las limitaciones de
este tipo de razonamiento son las probadas en el proyecto, como por ejemplo, un

excesivo tiempo de razonamiento.

Durante la realizacion del proyecto he afrontado numerosas dificultades por ser un
campo desconocido para mi. Desde la introduccion en el ambito de las ontologias,
(utilizando Protége para una mejor comprension) hasta el aprendizaje sobre nuevos
lenguajes de programacion como Android y R. Ademas, este proyecto me ha permitido
conocer algunos métodos de “machine learning”, como las Redes Neuronales
Artificiales o los Bosques Aleatorios. Como base para la elaboracion de este trabajo he
tenido los conocimientos adquiridos durante el grado, en especial, la programacién en

lenguaje Java.

Cabe decir que es la primera vez que me enfrento a la elaboracién de un proyecto
de estas dimensiones y que necesita tantas horas de dedicacién. Esto ha requerido de
una planificacion y administracion del tiempo, aunque siempre aproximada debido a

algunas dudas en las que he empleado més tiempo del previsto.
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En el proyecto hay algunos aspectos mejorables a tener en cuenta como trabajo
futuro. Seria interesante hacer pruebas con ontologias DL ademas del perfil EL utilizado
en la aplicacion, asi como experimentar con méas razonadores. Otra idea es realizar
pruebas con maés dispositivos moviles para poder generalizar los resultados obtenidos.
Otro aspecto a introducir en la aplicacion final seria tener en cuenta los Bosques
Aleatorios en la toma de decisiones. Una manera de hacerlo podria ser guardar el
random forest ya entrenado en un archivo y posteriormente cargarlo en Android para
que realice la prediccion segun la ontologia introducida y, en consecuencia, se tome la
decision sobre el lugar de razonamiento. Sin embargo, el uso de R en Android presenta

ciertas dificultades.
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