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Modelo optimizado para la estimación de pares articulares y 

contribución muscular a partir de información sEMG 

 

Resumen 

Este trabajo desarrolla una técnica basada en modelo de músculo de Hill para estimar el 

par de fuerza del codo humano a partir de electromiografía superficial (sEMG). Se han 

incluido algunos nuevos parámetros del modelo en el proceso de optimización con el fin 

de mejorar el par estimado resultante. Estos parámetros corresponden a los niveles de 

activación de los músculos involucrados en la generación de movimiento y que no se 

han utilizado previamente en otros trabajos que se ocupan de este tipo de modelo. Los 

resultados de experimentos con varios sujetos en diferentes condiciones, como fatiga y 

fuerzas de resistencia al movimiento, y el uso de los nuevos parámetros optimizados 

lleva a algunas conclusiones acerca de la generalidad del optimizado y la influencia de 

los nuevos parámetros en la mejora de la estimación del par de fuerza. 
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1.  Introducción 
 

Hay una gran variedad de trastornos motores debido a algún daño producido en el 

sistema nervioso central (hemiplejia, paraplejia, tetraplejia, etc.). Estos trastornos 

motores pueden tener origen en el cerebro o en la médula espinal y afectan a funciones 

motoras tales como el caminar o dificultades de movimiento de miembro superior. 

El proceso de rehabilitación motora puede ser mejorado mediante el uso de 

exoesqueletos robóticos de asistencia con el fin de realizar los ejercicios bajo el 

paradigma assist-as-needed. Este es uno de los objetivos del proyecto HYPER [9] en el 

que estamos involucrados (El Anexo 2 contiene una descripción del proyecto), el 

desarrollo de un dispositivo híbrido neuroprotésico (NP) y neurorrobótico (NR), Fig. 1, 

para la compensación funcional y la rehabilitación de los trastornos motores.  

Una NP constituye una forma de abordar la restauración de la función motora por medio 

del control artificial de los músculos o de los nervios musculares con la Estimulación 

Eléctrica Funcional (FES). Los impulsos eléctricos estimulan los nervios sensoriales y 

motores, lo que genera el movimiento mediante la activación de los músculos 

paralizados. Un NR utilizar los comandos  volitivos (señales neurales) para controlar un 

exoesqueleto que, a su vez, aplica las fuerzas necesarias para impulsar las extremidades 

paralizadas. 

 

Figura 1.  Esquema de un sistema Neurorrobótico/Neuroprotésico. 

 

El uso de robots para la neurorehabilitación ha sido una línea activa de trabajo en los 

últimos años en distintas disciplinas: medicina, biomecánica, electrónica, etc. En la Fig. 

2 se muestran algunos de los robots más destacados actualmente. Un asunto clave para 
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la buena aplicación de estos dispositivos es la integración de forma óptima de toda la 

información procedente del sistema sensorial del aparato híbrido NR y NP. Este trabajo 

se centra en el desarrollo de un Neuroestimador, que se encargará de esta tarea. 

Básicamente, la información sensorial es: 

• Señales fisiológicas: EEG y EMG. 

• Sensores del NR: fuerza, par, posición, velocidad y aceleración. 

• Electrodos de la NP: intensidad y frecuencia de la electroestimulación. 

•Otras: humedad, sudor, temperatura,… 

La integración de esta información tiene como objetivo final conseguir una 

interpretación funcional a través de la estimación de variables fisiológicas del paciente y 

parámetros de control de la NP/NR. 

 

Figura 2.  Se muestran dos de los dispositivos más destacados de rehabilitación. A la 

izquierda: ARMEO, exoesqueleto para la rehabilitación motora de la extremidad superior que 

combina un soporte de brazo ajustable con feedback aumentado. A la derecha: LOKOMAT, 

dispositivo robótico para una terapia funcional de locomoción mejorada, con feedback 

aumentado. 

 

Un Neuroestimator procesará distintos tipos de señales neuronales y biológicas con el 

fin de controlar el robot en ese paradigma. El robot sólo proporcionará el nivel de ayuda 

que se defina por el terapeuta, por ello dependerá también de la fuerza / energía que el 

sujeto pueda ejercer, razón por la que tiene que ser estimada. Uno de los módulos de 

este Neuroestimador será el estimador de par ejercido por el sujeto a partir de sensores 

sEMG (electromiografía superficial). Para este objetivo es necesario un modelo preciso 

y adaptativo, sin olvidar que una característica importante de este Neuroestimador es 

que tiene que trabajar en tiempo real. 

Se han dedicado varios trabajos a desarrollar diferentes modelos para estimar los pares 

articulares de las extremidades para diferentes movimientos. Esta gama de modelos va  

desde ‘cajas negras’ (por ejemplo, las redes neuronales [3]) hasta modelos más 
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fisiológicos cuyos parámetros tienen un sentido físico. En este trabajo nos hemos 

centrado en el clásico  modelo de músculo de Hill [16] perteneciente a este último tipo, 

ya que los parámetros pueden ser modelados y ajustados con un razonamiento 

fisiológico. Este trabajo se centra en la estimación de la fuerza muscular a partir de 

señales EMG para elaborar una primera aproximación de un parámetro de control clave 

para el sistema de rehabilitación, como es el par o la fuerza ejercida. Se pueden 

encontrar varios trabajos en los que se intenta controlar un aparato robótico con fines de 

rehabilitación teniendo en cuenta la señal EMG como comando primario.  Las 

investigaciones que más se aproximan a nuestro modo de enfocar el neuroestimador son 

[4, 7], por trabajar con el misma perspectiva del modelo de músculo y el mismo tipo de 

movimientos analíticos para la validación del modelo. En todos ellos es necesario 

ajustar el modelo para cada sujeto realizando una optimización. 

Durante los últimos años se han realizado diferentes trabajos sobre el ajuste y la 

experimentación de los modelos de Hill para el control de un exoesqueleto. En [8] se 

propone un método de optimización para el ajuste de algunos parámetros de Hill, como 

los ángulos de las articulaciones incluidas en el modelo, pero no se ocupa de otros 

parámetros fisiológicos. [10] describe una técnica de optimización de dos pasos para 

estimar la fuerza muscular con EMG, se centra en una comparación entre dos técnicas y 

en algunas restricciones fisiológicas basada en los parámetros. Por lo general, sólo 

algunos parámetros del modelo han sido afinados u optimizados y los experimentos se 

limitan a un sujeto con las condiciones de movimiento limitadas. 

Estas características y problemas del enfoque actual nos llevan a plantearnos preguntas 

fundamentales que van a ser objetivo del presente análisis. En este trabajo planteamos el 

estudio tratando de obtener conclusiones más generales sobre los mejores parámetros 

del modelo para ajustar, con varios sujetos, y en diferentes condiciones del ejercicio, 

tanto de fatiga como de resistencia. El objetivo general es el diseño óptimo de un 

estimador de par articular a partir de la señal sEMG. Por simplificación, nos hemos 

centrado en la estimación en el codo con los movimientos de flexión/extensión. Los 

cuatro objetivos específicos principales son estudios necesarios para ver la viabilidad de 

plantearse trabajar con un modelo genérico: 

i) analizar la validez del modelo optimizado para las diferentes condiciones de 

movimiento: diferentes niveles de resistencia impuestas en el brazo robótico, y 

situaciones de fatiga.  

ii) realizar una valoración de lo apropiado de ajustar los parámetros para diferentes 

personas.  

iii) estudiar la influencia de nuevos parámetros a optimizar en la exactitud del modelo 

para estimar los pares. 

iv) incorporación del algoritmo en una plataforma de tiempo real.
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El documento está estructurado de la siguiente manera: en la sección 2 se realiza una 

introducción a la electromiografía, a continuación, en la sección 3, se  presenta el 

modelo de los músculos para la estimación del par articular y el enfoque de 

optimización de parámetros. La experimentación, el protocolo y el equipo para validar 

se describen en la sección 4. En la sección 5 se presentan los resultados. La 

implementación del Neuroestimador se detalla en la sección 6. El documento se 

concluye en la sección 7. 
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2. Electromiografía 

 

2.1 Fundamentos de la electromiografía 

El músculo esquelético es un músculo estriado que rodea al esqueleto. Una Unidad 

Motora (UM) son todas las células musculares controladas por una sola neurona 

(muchos terminales) y es la unidad funcional del sistema neuromuscular, Fig. 3. A la 

neurona que interviene en este proceso se le denomina motoneurona, y es aquella 

neurona que va a conectar con el músculo esquelético a través de las fibras. 

La contracción de una UM se inicia por un potencial de acción que viaja desde el soma 

de la motoneurona hasta el axón para alcanzar los terminales que son lo que están 

conectados con las fibras. Generando una apertura de los canales de sodio y potasio para 

poder despolarizar la fibra nerviosa y si se alcanza el punto crítico de disparo se 

producirá un potencial de acción [12].  

El potencial de acción viajará por las fibras musculares esqueléticas, una vez en las 

cisternas terminales liberarán el calcio, este calcio liberado interaccionará con las 

proteínas contráctiles del músculo (actina y miosina) y se producirá un acortamiento de 

los extremos terminales, lo que supondrá la contracción muscular. El músculo comienza 

a desarrollar fuerza, el tendón, que está en serie con el músculo, empieza a llevar carga 

también, transfiere la fuerza del músculo al hueso y se produce el movimiento. 

 

Figura 3.  Estructura músculo esquelético.
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Hay varios tipos de electrodos para medir la actividad muscular: 

•Electrodos de aguja: agujas de alrededor de 30 mm de largo con un diámetro de 

0,45mm. La desventaja es que estos electrodos son invasivos y sólo se pueden utilizar 

en las contracciones isométricas (contracción del músculo sin movimiento, este 

concepto se explica más en detalle en la siguiente sección), porque la aguja podría 

interferir con el movimiento de las extremidades. 

• Electrodos superficiales (sEMG): anillos concéntricos conductores, separados por un 

aislante apropiado. Una captura bipolar se puede hacer con dos electrodos colocados en 

el mismo músculo, pero separado algunos centímetros. Nosotros usaremos en este 

estudio este tipo de sensores. 

 

2.2 Procesamiento de datos 

La señal electromiográfica es una señal de voltaje positivo y negativo. Las variaciones 

en la magnitud de la señal (debido a muchos factores: tipos de electrodos, cantidad de 

tejido entre electrodo y músculo, sistema de captura, etc.), hacen que para usar una señal 

sEMG en un modelo neuroesqueletal, se necesite transformar la señal neural en una 

medida de activación del músculo normalizada [13]. 

La conversión de sEMG en activación neuronal consta de las siguientes fases y se puede 

observar en la Fig. 4: 

 1) Filtro paso alto Butterworth de 4º orden (frecuencia de corte 30Hz): Debido a la 

calidad del sistema de captura o al movimiento de los electrodos durante los 

experimentos, existe en la señal registrada ruido de baja frecuencia, por lo que se hace 

necesario la implementación de un filtro paso alto permitiendo pasar las componentes 

de alta frecuencia. La frecuencia de corte de este filtro tiene que estar entre 5 y 30Hz, y 

depende del tipo de electrodos y filtro usados. El filtro usado debe tener la propiedad de 

zero-phase delay para evitar cambios de la señal EMG en el tiempo. 

2) Rectificación de onda completa: tomando los valores absolutos de cada instante. Esto 

es debido a que la activación muscular toma sólo valores positivos.  

3) Filtro paso bajo Butterworth de 4 º orden (frecuencia de corte 6 Hz): el músculo, de 

forma natural, actúa como un filtro y queremos que esto se caracterice en la 

transformación de EMG-fuerza. Es decir, aunque la señal eléctrica que pasa a través del 

músculo tiene componentes de frecuencia de más de 100 Hz, la fuerza que el músculo 

genera es de frecuencias mucho más bajas (los perfiles de fuerza muscular son más 

suaves que los perfiles de la señal EMG en crudo). En los músculos hay muchos 

mecanismos que causan este filtrado, por ejemplo, la dinámica del calcio, la transmisión 

de los potenciales de acción musculares a lo largo del músculo, y viscoelasticidad del 

músculo-tendón. Por lo tanto, para que la señal EMG se correlacione con la fuerza 
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muscular, es importante filtrar las componentes de alta frecuencia. La frecuencia de 

corte puede variar típicamente en el intervalo de 3 a 10 Hz. 

4) La normalización respecto a las máximas contracciones voluntarias: la señal se divide 

entre la máxima contracción voluntaria obtenida con el test de máxima contracción 

voluntaria. 

Este test de máxima contracción voluntaria consiste en realizar un calentamiento inicial 

de 5-10 minutos. Por grupos musculares, incrementar gradualmente la fuerza hasta 

alcanzar la máxima contracción voluntaria isométrica y mantener durante 3 segundos. 

Se realizan 3 repeticiones con un descanso entre serie y serie de 3 segundos. Se alternan 

los grupos musculares, siguiendo un orden aleatorio, con el objetivo de evitar fatiga 

muscular. Se toma como valor de referencia la amplitud media de la porción de más alta 

señal en una ventana de 50ms de duración mediante técnica de ventana de rastreo. 

 

Figura 4.  Procesamiento EMG paso a paso del músculo Biceps Long Head. 

 

2.3 Estimación de la fuerza muscular 

En un proceso de rehabilitación es importante conocer la carga en la articulación para 

evitar posibles lesiones en los pacientes. Las fuerzas musculares son los principales 

determinantes de estas cargas y de la comprensión del control motor, lo que hace que su 

estudio sea interesante en el área de la biomecánica. Hay fundamentalmente dos 

enfoques para el estudio de la biomecánica del movimiento humano [14]: la dinámica 

directa y la dinámica inversa. Cualquiera de estos enfoques se puede utilizar para 

determinar la cinética de las articulaciones, como estimar los momentos de las 

articulaciones durante el movimiento. 
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En la dinámica directa se usan las señales neuronales para estimar la fuerza muscular y 

poder calcular los pares, Fig. 5. Debido a que las fuerzas musculares sólo se pueden 

medir mediante procedimientos invasivos, y sólo en algunos músculos, con frecuencia 

se ha usado la electromiografía superficial para obtener la activación muscular (u) y 

realizar una estimación. La transformación del modelo de activación en fuerza muscular 

(F) y momentos (M) se puede hacer bien usando algoritmos de aprendizaje, métodos de 

optimización o modelos biomecánicos del músculo: Hill [16], Zahalak [17], etc. 

Además, usando los momentos y fuerzas externas en las articulaciones, la dinámica 

multiarticular del movimiento puede ser utilizada para calcular las aceleraciones, 

velocidades y ángulos de cada articulación de interés, aunque no es muy conveniente, 

ya que pequeños errores en los pares articulares pueden llevar a grandes errores en la 

posición de las articulaciones. 

 

Figura 5. Dinámica directa 

 

En cambio, la dinámica inversa es la aproximación contraria, partiendo de la posición y 

fuerzas externas medidas se estima el par en las articulaciones, Fig. 6, a través de las 

ecuaciones de movimiento dadas por las leyes de la física.  

 

Figura 6. Dinámica inversa
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Mientras que con la dinámica inversa se puede calcular el momento neto en una 

articulación que genera el conjunto de músculos involucrados, se presenta el problema 

de distribución cuando queremos hallar la fuerza muscular, dada por la indeterminación 

mecánica de tener más músculos involucrados que grados de libertad. Debido a lo 

expuesto, se ha optado por una estimación de la fuerza muscular mediante un modelo 

basado en Hill dentro de la dinámica directa. 
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3. Estimación de pares de fuerza con el 
modelo de Hill 

 

Existen diversos estudios que analizan la relación EMG- fuerza muscular, sin llegar en 

general a un consenso por la gran cantidad de variables y condiciones que intervienen 

en la generación de dicha fuerza. Se puede afirmar que la relación entre sEMG-fuerza 

muscular no es necesariamente lineal, sino que depende entre otros factores de las fibras 

musculares, de la configuración de captura de la señal y principalmente del tipo de 

contracción muscular. Existen diferentes tipos de contracción muscular, Fig. 7, 

destacan: 

•Contracción isométrica o estática: el músculo desarrolla tensión pero no cambia en 

longitud, es una contracción muscular sin que exista movimiento (el ángulo articular se 

mantiene). Por ejemplo, mantener un peso constante. 

•Contracción isotónica o dinámica: en este caso el músculo varía en longitud durante la 

contracción al producirse movimiento articular. Se distinguen: i) contracción isotónica 

concéntrica: el músculo se acorta y varía su tensión mientras vence una resistencia 

constante. ii) contracción isotónica excéntrica: el músculo se alarga y varía su tensión al 

vencer una carga constante. Por ejemplo, la contracción que se produce durante el 

movimiento de flexión (isotónica concéntrica) y extensión (isotónica excéntrica) de la 

articulación del codo. 

 

Figura 7.  Contracción isométrica e isotónica, concéntrica (C) y excéntrica (E).  

 

El Neuroestimador que forma parte del sistema NR/NP debe ser capaz de estimar la 

fuerza muscular para alimentar al controlador del sistema durante toda la terapia de 
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rehabilitación, lo que implica la generación de contracciones isotónicas en los ejercicios 

terapéuticos. Los ejercicios de rehabilitación son tanto ejercicios analíticos como 

funcionales: 

•Ejercicios funcionales: ejercicios que imitan la actividad que se requiere en el trabajo, 

vida diaria o deporte, como caminar, beber agua, etc. 

•Ejercicios analíticos: ejercicios con movimientos articulares sencillos. Normalmente 

maniobras realizadas por un terapeuta para mejorar la actividad motora: amplitud del 

movimiento, flexibilidad, extensibilidad, elasticidad, etc. 

Un tema crucial en el estudio de las fuerzas musculares que se generan durante una 

contracción, es elegir un modelo muscular adecuado. Mientras que en contracciones 

isométricas los modelos lineales pueden proporcionar una estimación razonable de 

fuerza, es verdad que una configuración monopolar en la captura lleva a relaciones más 

lineales que una configuración bipolar. Sin embargo, en contracciones dinámicas, la 

fuerza muscular a una activación muscular dada, depende de la longitud de músculo y la 

velocidad de contracción [13], y la linealidad ya no es aplicable en este caso.  

La producción de fuerza activa mantiene una relación parabólica inversa con la longitud 

de músculo, Fig. 8. A la longitud de fibra que produce la máxima fuerza activa se le 

denomina longitud óptima de fibra (LCE0), el pico máximo se genera con la máxima 

activación muscular y en todos los casos se reduce a cero en longitudes 

aproximadamente de 0.5LCE0 y 1.5LCE0. Además de la fuerza activa, debido al 

estiramiento de los tejidos elásticos del músculo, se produce una fuerza pasiva. Esta 

fuerza pasiva aumenta exponencialmente. Destacar que el elemento pasivo sólo ejerce 

tensión cuando el músculo se extiende más allá de la longitud óptima de fibra (LCE0). La 

fuerza total ejercida por el músculo es la suma de  la fuerza activa y la fuerza pasiva, 

cuyo resultado es un aumento más o menos monótono en la fuerza con la longitud. Esta 

dependencia de la fuerza muscular con la longitud implica que la estimación de la 

fuerza requiera de información cinemática, además de los datos de EMG. 

 

Figura 8.  Relación de la fuerza muscular con la longitud de fibra normalizada con la 

longitud de fibra óptima (LCE0).
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En cuanto a la relación con la velocidad de contracción, cuando un músculo se acorta, la 

fuerza disminuye de forma hiperbólica con velocidad creciente. Durante el estiramiento, 

se produce un leve aumento de la fuerza con una velocidad cada vez mayor. 

Los modelos basados en el modelo de Hill [16] (HB: Hill-Based) son bien conocidos 

por representar adecuadamente el comportamiento del músculo. Entre las distintas 

formulaciones de los modelos HB, uno de los más consistentes fue el desarrollado en 

[15], que tiene en cuenta la relación fuerza-longitud de músculo (fl) y la fuerza-

velocidad de contracción (fv). Además, cabe destacar que sus parámetros tienen un 

significado fisiológico, a diferencia de otros, como los basados en redes neuronales, lo 

que permite incluir nuevos parámetros de acuerdo con la fisiología del sujeto para 

obtener una estimación del mejor par. 

 

3.1 Modelo de Hill y parámetros 

El músculo se modela por un elemento contráctil (CE, parte activa, fibra), un elemento 

elástico y paralelo (PE, parte pasiva), y un elemento elástico en serie con CE (SE, parte 

pasiva, tendón), Fig. 9.  

 

Figura 9.  Elemento contráctil, elemento serie y paralelo del modelo de Hill.  

 

Lo que hace que se cumplan las siguientes ecuaciones para cualquier músculo i: 

���� � ����          (1) 

�� � ���������         (2) 

Las ecuaciones de fuerza de cada elemento presentadas en detalle, bajo la perspectiva de 

Winters [15], son las siguientes (en el Anexo1 se lista el significado de los parámetros y 

abreviaturas, no obstante, en esta sección se explican las más destacadas por ser los 

parámetros a optimizar):  

 F
� � 	
������������������ � �e� ���∆������ !�∆"�" !�# $ 1&      (3) 

Donde SSE es el factor de forma del elemento en serie y:
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∆L
�()* � 0.03L./          (4) 

F
�()* � 1.3F0�()*          (5) 

F1� �	 
��������������2��� � �e� �2�∆����3����	,���5	,� !6∆"�"��5	,	" !�# $ 1&     (6) 

Donde SPE el factor de forma del elemento paralelo, LCE0 la longitud de fibra óptima,  y: 

∆L1�()* � L()* $ �L0�7 � L./�        (7) 

F1�()* � 0.05F0�()*          (8) 

F0� � F0�()* 	u ∙ f<�L0�7� ∙ f=�V0�7�u, L0�7 , α��      (9) 

Siendo u la activación muscular normalizada, α el porcentaje de fibras rápidas del 

elemento contráctil y fl y fv la relación fuerza-longitud de músculo y fuerza-velocidad de 

contracción respectivamente, que se pueden expresar de la siguiente forma: 

@A�B��7� � expE$0.5F∆������G�7.7H7.�I JKL 	       (10) 

f=�V0�7� �	 7.�MNN7.�7OMP�*Q���.N /RST�K.U V��V��GP�.WM�#       (11) 

Con: 

V0�7 � 0.5�u � 1�V0�()*          (12) V0�()* � 2L0�7 � 8L0�7α         (13) 

 

La implementación de este modelo se ha realizado como muestra la Fig. 10:  

 

Figura 10.  Implementación derivada. Lm es la longitud de músculo.
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El momento neto generado en el codo es el sumatorio de los momentos individuales 

generados por cada uno de los músculos que intervienen: 

Z[\]^_ � ∑ ��\�a� b         (14) 

Siendo n el número de músculos considerados, r el brazo de momento de cada músculo 

para el movimiento coplanario que estamos considerando, y �� es la fuerza total 

generada por el músculo i. 

En este trabajo se estima el par del codo en los movimientos de flexión/extensión, a 

partir de este modelo, con los músculos agonistas y antagonistas implicados. Para la 

selección de los músculos que más contribuyen al momento en el codo, hemos utilizado 

el software OpenSim [1]. Esta plataforma nos permite estudiar las características 

musculares durante los movimientos. Una descripción del software puede encontrarse 

en el Anexo 3.  

La Fig. 11 muestra los músculos a modelar: 

 

Figura 11.  Músculos modelados para la estimación del par en movimientos de 

flexión/extensión.  

 

Trabajos anteriores sobre este tema consideran en el modelo sólo un subconjunto de 

estos músculos. Aquí añadimos al Biceps long head (BIClong), Biceps short head 

(BICshort), Brachioradialis (BRD), Brachialis (BRA), Triceps long head (TRIlong), 

Triceps lateral head (TRIlat), Triceps medium head (TRImed), los nuevos: Anconeus 

(ANC), Extensor carpi radialis longus (ECRL), Flexor carpi radialis (FCR) and Pronator 
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Teres (PT), cuya activación dan nuevos parámetros a ser optimizados, introduciendo 

mejoras en la estimación del par en el codo. Debido a que algunos músculos 

importantes del brazo y el antebrazo que se quieren tener en cuenta, no son 

superficiales, y por lo tanto no somos capaces de medir su actividad eléctrica, Tabla 1, 

se ha asumido que la actividad del BIClong, BRA, ANC and PT, respectivamente, es 

igual que la de su músculo vecino: BICshort, BRD, ECRL, FCR, pero con un factor de 

escala (basado en la teoría de las sinergias musculares [6]). 

 

 ABREVIATURA NOMBRE ¿MEDIDO? 
1 BIC long Biceps long head NO 

2 BICshort Biceps short head SI 

3 BRD Brachioradialis SI 

4 BRA Brachialis NO 

5 TRIlong Triceps long head SI 

6 TRIlat Triceps lateral head SI 

7 TRImed Triceps médium head NO 

8 ANC Anconeus NO 

9 ECRL Extensor carpi radialis 

longus 

SI 

10 PT Pronator teres NO 

11 FCR Flexor Carpi Radialis SI 

Tabla 1.  Músculos modelados medidos y no medidos con los sensores sEMG. 

 

3.2 Optimización de parámetros 

Se quiere lograr un ajuste óptimo de los parámetros. El método ajusta el par estimado 

del codo con la medida del sensor de fuerza del antebrazo. Se utiliza un algoritmo no 

lineal ‘trust-region-reflective’ [5] disponible en el Matlab Optimization toolbox para 

resolver este problema de ajuste de curvas mediante mínimos cuadrados ('lsqcurvefit 

"función de Matlab). 

Con un modelo completo experimental de la extremidad superior [1, 2], se obtuvieron 

los parámetros genéricos, para el percentil 50 de un varón de 170cm de altura, de Lmax, 

LC0, LTS, y Fcemax, Tabla 2. También usamos la longitud del tendón del músculo y brazos 

de momento de este trabajo experimental como datos para nuestro modelo. La Tabla 3 

representa los parámetros del modelo que se optimizan y los límites utilizados. Los 

parámetros α, SPE, y SSE fueron tomados de [4], al igual que algunos de los valores 

sobre los límites del intervalo inferior y superior de los parámetros. En total nuestro 

modelo contiene 60 parámetros que optimizar, 5 para cada músculo y 5 factores 

globales (los factores de activación de BIClong, BRA, ANC, PT y un factor de escala 

geométrico). Hay que tener en cuenta que los parámetros añadidos corresponden a los 

niveles de activación para los nuevos músculos considerados en el modelo.
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Músculo 

 

1 2 3 4 5 6 7 
Lmax 

[cm] 
Lceo 

[cm] 
LTS 

[cm] 
Fcemax 

[N] 
α 

[%] 
Spe 

 
Sse 

 
1 BIClong 43.1 11.57 27.23 624.3 56 9 2.8 

2 BICshort 34.8 13.21 19.23 435.56 56 9 2.8 

3 BRD 33.2 17.26 13.3 261.33 75 9 2.6 

4 BRA 14.6 8.58 5.35 987.26 38 9 3 

5 TRIlong 32.6 13.4 14.3 798.52 66 10 2.3 

6 TRIlat 21.5 11.38 9.8 624.3 66 10 2.3 

7 TRImed 20.2 11.38 9.08 624.3 66 10 2.3 

8 ECRL 33.4 8.1 22.4 304.89 50 8 3 

9 FCR 31.2 6.28 24.4 73.96 58 6 3 

10 ANC 4.8 2.7 1.8 350 50 8 2.6 

11 PT 15.8 4.92 9.8 566.22 50 8 2.6 

Tabla 2.  Parámetros genéricos usados para todos los sujetos en la optimización  

El valor genérico de los factores de activación de BIClong (f_BIC), BRA (f_BRA), 

ANC (f_ANC), PT (f_PT) y el factor de escala geométrico (f_geom) son: 1, 3, 1, 1 y 1  

respectivamente. 

Parámetro Límites Característica 
Lceo [0.8,1.2] por músculo 

Fcemax [0.5,1.5] por músculo 

α [0.5,1.5] por músculo 

SPE [0.8,1.2] por músculo 

SSE [0.8,1.2] por músculo 

f_BIC [0.8,1.2] Global 

f_BRA [0.5,4] Global 

f_ANC [0.3,1.5] Global 

f_PT [0.3,1.5] Global 

f_geom [0.8,1.2] Global 

Tabla 3.  Límites superiores e inferiores impuestos en el proceso de optimización.
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4. Experimentación 
 

Se realizaran una serie de sesiones experimentales con varios sujetos sanos que 

repetirán ejecuciones del  movimiento analítico de flexión/extensión del codo guiado 

por el robot KUKA con asistencia del 0%, mientras se registra de forma simultánea la 

actividad EMG y la fuerza ejercida por el robot en el end-effector. Para este movimiento 

analítico pasivo se definirán dos condiciones, la primera son diferentes niveles de fuerza 

de resistencia en condición de no fatiga, en la segunda, el participante realizará el 

movimiento con las mismas fuerzas de oposición pero en condiciones de fatiga. 

El resultado esperado de esta experimentación es la validación de nuestra estimación de 

par a lo largo de la trayectoria tras la optimización de parámetros, por comparación con 

los pares medidos en el end-effector del robot.  En la Fig.12 se muestra un esquema del 

estudio. 

 

Figura 12.  Esquema de estudio experimental.  

 

4.1 Sujetos 

Los experimentos se han realizado con cuatro sujetos varones, diestros y sanos (en esta 

etapa del proyecto nos interesa validar nuestro Neuroestimador, por lo que sujetos con 

trastornos neuromusculares podrían presentar problemas en la interpretación del EMG y 

afectar a esta primera valoración), que se ofrecieron voluntariamente para el estudio, 

entre 25 y 31 años de edad, y un peso y altura media de 78 ± 15 kg y 1,75 ± 0,05 m 

respectivamente.
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4.2 Equipo y adquisición de datos 

Los sensores de EMG que se utilizan son KENDAL Meditrace 200 y se colocaron de 

acuerdo a SENIAM (European project: Surface EMG for Non-Invasive Assessment of 

Muscles) [18] en los 8 músculos (Fig. 14) señalados en la Tabla 1 de la sección 3.1. Las 

señales se amplificaron utilizando un sistema gtec comercial (g.USBamp, Fig 13).  

 

 

Figure 13.  g.USBamp. 

 

El EMG se digitalizada a una frecuencia de muestreo de 2,4 kHz, se aplica un Notch 

filter a 50 Hz, y un filtro paso bandas a 5/500Hz. Las señales fueron capturadas y 

prefiltradas a través de ‘Simunlink Highspeed On-line Processing system’ [20] de gtec 

con una configuración bipolar. 

 

 

Figure 14.  A la izquierda: la colocación de los sensores de EMG. A la derecha: Las 

pruebas se realizaron utilizando un robot KUKA LWR sujeto en la mitad del antebrazo.  

 

Se utilizó un robot KUKA LWR (Fig. 14, 15) con el que cuenta el IBEC (Institute for 

Bioengineering of Catalonia), como exoesqueleto experimental, con 7 grados de libertad 

y un ATI Gamma force/torque sensor en el end-effector para calcular el par del codo a 

partir de mediciones de interacción directas. Este par se utiliza para compararlo con el 

obtenido por nuestro estimador. El robot está unido al antebrazo a través de una pieza de 
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agarre que está sujeta al end-effector (Fig. 14). Además, el robot nos proporciona la 

cinemática necesaria para el modelo: ángulos articulares, velocidades y aceleraciones. 

Puesto que el robot está sujeto a  la mitad del antebrazo del sujeto, se tiene que transferir 

la fuerza y el par medido a la articulación del codo basándose en la Mecánica de Sólidos 

Rígidos. 

 

Figura 15. Robot KUKA. 

 

Este robot cuenta con diferentes parámetros que se pueden variar para estudiar 

diferentes características en los movimientos: 

• Velocidad: rapidez de ejecución del movimiento. 

• Holgura: refleja la elasticidad de las articulaciones del robot. 

• Asistencia: la “asistencia” se refiere al grado de contribución del robot en la ejecución 

del movimiento. Una asistencia del 100% significa que es el robot quien realiza 

completamente los movimientos (esto es equivalente a movimientos pasivos por parte 

del sujeto). Una asistencia del 0% significa que es el participante quien realiza 

completamente los movimientos y el robot sigue el movimiento (esto es equivalente a 

movimientos activos del sujeto), no ofrece ninguna resistencia.  

• Fuerza de resistencia: sólo en asistencia del 0% se puede adicionar una fuerza ejercida 

por el robot pero que es opuesta a la que realiza el participante en la ejecución del 

movimiento. Con esto la fuerza total para realizar el movimiento es mayor a la pequeña 

fuerza requerida para vencer la inercia de mover el robot.  

 

4.3 Protocolo experimental 

El movimiento de trayectoria nominal se ha establecido como una flexión/extensión de 

un grado de libertad que corresponde a la articulación del codo en un rango de 0° a 

110°. El brazo del sujeto es adherido a una estructura fija y el antebrazo es sujeto al 
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end-effector del robot para asegurar una flexión/extensión exclusiva del codo. La 

descripción detallada del movimiento es: 

• Posición inicial: sujeto sentado con el codo totalmente extendido (0°) 

• Posición final: flexión máxima conseguida por el participante de forma natural sin 

realizar movimientos de compensación o movimientos del torso (alrededor de 110°). 

El experimento consta de cuatro etapas principales [11]: 

• Sesión de máxima contracción voluntaria (MVC): test de contracción voluntaria 

máxima de los diferentes grupos musculares del brazo, de acuerdo con SENIAM. Tras 

un calentamiento previo de unos minutos. Se solicita al sujeto que incremente 

gradualmente la fuerza hasta alcanzar la máxima contracción, y mantener durante 3s. Se 

realizan tres repeticiones y un descanso entre cada serie de 3s. Es conveniente alternar 

grupos musculares para evitar la fatiga. 

• Sesión dinámica en condición de no fatiga: Ejecución del movimiento guiado por el 

robot con 0% asistencia pero con 3 diferentes niveles de fuerza de oposición al 

movimiento (50%, 75%, 98% de la fuerza total que puede ejercer el robot). Tres 

movimientos de flexión/extensión se llevan a cabo para cada nivel de la fuerza de 

resistencia. 

• Sesión de fatiga isométrica: Los sujetos deben sostener una pesa en una posición de 

90° de flexión durante el máximo tiempo posible para crear la fatiga en los músculos 

implicados en el ejercicio. 

• Sesión dinámica en condición de fatiga: Inmediatamente después de la sesión de fatiga 

isométrica, los sujetos realizan la misma tanda de ejercicios que en la sesión dinámica 

en condición de no fatiga. 
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5. Resultados 
 

La Fig. 16 representa el par medido por el sensor de fuerza situado en el end-effector 

del robot y el par calculado por el estimador de un sujeto y un ejercicio. Concretamente 

corresponde a uno de los 3 ensayos para el sujeto 2 en el 50% de la condición de nivel 

de resistencia. 

 

Figura 16.  La línea azul son los valores de par procedentes del sensor de fuerza de robot. 

La línea roja es la estimación con el modelo de Hill implementado. 

 

Para cada sujeto, el movimiento de una flexión/extensión perteneciente al nivel de 

resistencia del robot de un 75% fue utilizado para optimizar el modelo. La captura de 

los otros datos se utilizó para validar la modelización y optimización. Los resultados 

mostrados en la Fig. 17 son la media y desviación estándar del error cuadrático medio 

(Erms) y el error máximo (Emax) de los 3 ensayos para cada condición de movimientos, 

como se menciona en el protocolo experimental, incluyendo condiciones de fatiga y no 

fatiga. Ambos errores se definen de la siguiente forma: 

cdef	 � ghijZk $ Zlm j 
cndo � p1qr3Zk $Zlm6Kla\

la�  

Por un lado, con respecto al nivel de resistencia en condiciones de no fatiga, el modelo 

se ajusta a las diferentes condiciones, pero parece haber una tendencia creciente en el 

error con el aumento en el nivel de resistencia del robot. Sin embargo, es necesario 
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señalar que tienen también una excursión en aumento (valor pico a pico) de 7,8 ± 0,23 

Nm, 7,94 ± 0,89 Nm, 8,37 ± 0,41 Nm para 50%, 75% y 98% respectivamente en 

condición de resistencia. Por lo tanto, los valores de error relativo (por ejemplo, 0,62, 

0,68, 0,65 en Emax para el sujeto 1 con un 50%, 75% y 98%) se mantienen para las 

diferentes condiciones. El movimiento se ha realizado a 0,3 ± 0,1 rad/s. Incluso 

habiéndose demostrado en trabajos anteriores que este modelo proporciona peores 

estimaciones con velocidades lentas, los errores aquí son inferiores a los presentados en 

[7] para velocidades equivalentes. 

En relación con la condición de fatiga, aunque el modelo parece que se ajusta bien, si 

consideramos la excursión de par en estas condiciones, 3,98 ± 0,28 Nm, 5,65 ± 1,54 

Nm, 6,47 ± 0,42 Nm para 50%, 75% y 98% de resistencia respectivamente, se aprecia 

una disminución de la generación del par motor con la fatiga muscular, por lo que en 

términos de valores normalizados, los resultados conducen a un incremento en el error. 

Aunque los errores son aceptables en comparación con los trabajos relacionados, es 

necesario un análisis adicional para determinar cómo deben ser manejados estos errores 

en la estimación momento de la extremidad en el control del exoesqueleto de asistencia. 

 

Figura 17.  La media y desviación estándar de Emax y Erms para distintas condiciones (50%, 

75%, 98% de resistencia al robot). NF, condición de no fatiga, y F, condición de fatiga.
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Con el fin de analizar si el modelo puede ser general o tiene que ser ajustado para cada 

persona, se presentan a continuación los datos estadísticos de 3 sujetos en el 75% de 

nivel (condición de no fatiga) con 3 conjuntos de parámetros diferentes. Los resultados 

se muestran en la Fig. 18. 

Como era de esperar, logramos los mejores resultados optimizando el modelo para cada 

persona. Sin embargo, si usamos la media de los parámetros óptimos de la población, 

obtenemos resultados lo suficiente buenos como para considerar que los mismos 

parámetros medios pueden ser utilizados para diferentes sujetos. Por otra parte, es 

notable que el error es peor cuando se prueba el modelo con los parámetros optimizados 

para otro sujeto (sujeto 4 en este caso). 

 

Figura 18.  Erms para los diferentes sujetos (S1, S2, S3) comparando diferentes conjuntos de 

diferentes parámetros optimizados: su propio conjunto de valores optimizados, los que se 

obtuvieron para el sujeto 4, y utilizando un valor medio de los parámetros optimizados de todos 

los sujetos. 

 

Creemos que la razón por la cual el sujeto 2 tiene peores resultados estadísticos se debe 

a los límites superiores e inferiores de los parámetros de ajuste en el proceso de 

optimización. Los mejores parámetros óptimos para este sujeto están fuera de límite. Al 

aumentar los límites en la fase de optimización se obtuvieron mejores parámetros 

óptimos para este sujeto y los resultados estadísticos se mejoraron: 1,92 ± 0,52 Nm para 

el sujeto 2 con límites extendidos en lugar de 2,42 ± 0,43 Nm en el caso del 75% al 

nivel de condición de no fatiga. Mientras que la media disminuye considerablemente y 

alcanza magnitudes similares a sujetos 1 y 3, la desviación estándar mantiene su valor. 

A fin de comparar los resultados del uso de los niveles de activación de los 11 músculos 

propuestos, con respecto a la 7 como se sugiere en [4], se ilustra la Fig. 19. 
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Naturalmente, si se tienen en cuenta más músculos que contribuyen al par en una 

articulación, se aumenta claramente la exactitud en la estimación. 

 

Figura 19.  La media y la desviación estándar del error máximo y el error cuadrático medio 

de nuestro modelo con 11 músculos frente a considerar sólo 7 de ellos. 
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6. Implementación del Neuroestimador 
 

El Neuroestimador trata de integrar de forma óptima toda la información procedente de 

los sistemas sensoriales del dispositivo Neurorrobótico/Neuroprotésico para establecer y 

desarrollar los mecanismos de control para los dispositivos de rehabilitación. En base a 

esta necesidad se trabaja en el Neuroestimator bajo el paradigma “assist-as-needed” con 

las adaptaciones dinámicas de acuerdo a las capacidades motoras latentes de los 

usuarios. Este Neuroestimador alimenta al controlador del sistema según Fig. 20. 

Figura 20. Neuroestimador (NE) en el esquema general del control de HYPER. 

 

Este Neuroestimator se ocupará de señales muy heterogéneas: 

• Los electrodos de EEG y EMG: señales fisiológicas. 

• Sensores de movimiento del NR: señales de posición, velocidad, aceleración, fuerza, 

etc.
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• Otros: humedad o el sudor. 

Todo ello, con el fin de proporcionar al sistema de control las mejores estimaciones en 

cada momento de: 

• Movimientos involuntarios: por ejemplo, temblores o espasmos para poder ser 

reducidos. 

• El movimiento voluntario real. 

• La fuerza muscular del paciente: para saber cuánta fuerza debe ser compensada. 

• Fatiga: con el fin de evitar sus efectos. 

• Otros: La intención del paciente. 

Todas estas variables modifican los parámetros de sistema de control para caracterizar 

los requerimientos del balance NR / NP teniendo en cuenta las capacidades latentes de 

los pacientes, es decir, qué porcentaje de compensación de movimiento debe realizar la 

NP y cuál el NR. Y por tanto modifican la consigna de fuerza del robot para que el NR 

aplique la fuerza compensatoria y la señal FES (intensidad y frecuencia) a los puntos de 

aplicación de la estimulación. Estos parámetros cambiarán a lo largo de la terapia de 

rehabilitación. 

La interconexión de hardware HYPER cuenta con dos buses, Fig. 21. Un bus CAN 

(representado por las líneas rojas) que se utilizará para la comunicación en tiempo real, 

y un bus Ethernet (UDP o TCP / IP, representado por líneas azules) a la comunicación 

de alto nivel.  

 

Figura 21. Esquema general de integración de HYPER
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La interfaz del Neuroestimator (NE), se muestra en la Fig. 22. La información necesaria 

para el NE estará disponible en el bus CAN (ángulos articulares, pares articulares, etc.) 

y enviará la información que estime al bus CAN y a la interfaz médica a través de UDP 

para permitir el análisis de datos a los clínicos. 

 

Figura 22. Esquema integración del Neuroestimador dentro de HYPER 

 

Una característica importante de este Neuroestimador es que tiene que trabajar en 

tiempo real, por ello se usará un PC104 (Modelo PCM-4153-A2) como plataforma 

hardware para conseguir este objetivo y se implementará un primer prototipo en el 

entorno Simulink. El sistema completo se muestra en la Fig. 23. El bloque g.USBamp 

es proporcionado por Simulink Highspeed On-line Processing software [20], y nos 

permite capturar de forma sencilla la señal EMG y almacenarla en el entorno Simulink 

para poder postprocesarlar. 

El sistema se ha dividido en subsistemas atendiendo a su funcionalidad: bloque de 

captura de la señal EMG (azul oscuro), bloque de transformación de EMG en activación 

muscular (rosa), modelado de las activaciones de los músculos no medidos (naranja), 

subsistema de la cinemática (blanco), estimación de la fuerza muscular con el modelo 

de Hill (amarillo), y el cálculo del par en la articulación (verde). A continuación se 

muestran más en detalle cada uno de los subsistemas. 

El bloque de captura de la señal EMG, Fig. 24, almacena en una variable el valor de 

tiempo de la CPU a la vez que captura el EMG crudo, almacenándolo en una variable y 

visualizándolo. De los 16 canales del amplificador sólo se usan los canales impares usar 

una configuración bipolar de captura.   

El bloque de transformación de EMG en activación muscular, Fig. 25, simplemente 

realiza músculo a músculo los pasos descritos en la sección 2.2 de procesamiento de 

datos. Como entradas al subsistema se tienen  las máximas contracciones voluntarias de 

los músculos medidos, y la señal EMG en crudo. La activación muscular normalizada es 

la salida. 
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Figura 23. Sistema Simulink para la estimación del par en la articulación.
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Figura 24. Subsistema de captura de la señal EMG. 

 

El modelado de las activaciones de los músculos no medidos consiste en multiplicar el 

factor de escala para obtener la activación de los músculos imposibles de medir con 

sEMG. El bloque ‘transition rate’, Fig. 23,  asegura la transmisión de datos entre dos 

subsistemas que trabajan a distinta frecuencia. Mientras que la parte de adquisición de 

datos se ejecuta a 2400Hz, la estimación del par se realiza a 10Hz. 

El subsistema de la cinemática (ángulos articulares), Fig. 23, simula un movimiento de 

flexión y extensión de codo de robot de 0° a 130°. Este módulo se suprime con el uso 

del robot real, pues la cinemática se obtendría del robot. A continuación se necesita el 

subsistema de cálculo de la longitud y el brazo de momento para cada uno de los 

músculos modelados, Fig. 26. OpenSim permite exportar tablas de datos del modelo de 

extremidad superior utilizado [2]. El modelo de Hill necesita las longitudes y brazos de 

momento del músculo con el movimiento de flexión/extensión del codo, y este 

subsistema se encarga de buscar en esas tablas los datos geométricos correspondientes a 

la cinemática en cada instante y multiplicarlo por el factor geométrico. 

Por último el cálculo del par en la articulación, Fig. 27, es un subsistema que multiplica 

la fuerza total obtenida de cada músculo por su correspondiente brazo de momento en 

ese instante y realiza el sumatorio para hallar el momento neto instantáneo. 

En la Fig. 4 se han representado señales reales de sEMG y procesadas utilizando el 

sistema descrito. 
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Figura 25. Subsistema de transformación de EMG en activación muscular. 

 

Figura 26. Subsistema de cálculo de la longitud de músculo y el brazo de momento para 

cada uno de los músculos modelados.
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Figura 27. Subsistema de cálculo del momento neto en la articulación.
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7. Conclusiones 
 

Este trabajo desarrolla una técnica basada en modelo de músculo de Hill para estimar el 

par de fuerzas en codo humano a partir de mediciones de electromiografía superficial. 

Se han incluido algunos nuevos parámetros en el proceso de optimización con el fin de 

mejorar el par estimado resultante. Estos parámetros corresponden a niveles de 

activación de los músculos que intervienen en la generación de movimiento, pero no 

utilizados anteriormente en otros trabajos relacionados con este tipo de modelos. Con 

los resultados experimentales de diferentes sujetos, en diferentes condiciones de 

movimiento, y utilizando los nuevos parámetros optimizados se obtienen algunas 

conclusiones acerca de la generalidad de los modelos de músculos optimizados y de la 

influencia de los nuevos parámetros en la mejora de la estimación. 

Los resultados indican que un modelo general de músculo es posible para un grupo de la 

población con similares características fisiológicas (como el presente estudio). Para 

hacer frente a la heterogeneidad de la población, en un sentido físico, se cree que la 

población se puede agrupar en conjuntos y proporcionar un "banco" de sub-óptimos 

parámetros para cada grupo, en lugar de cada persona. Esto podría representar un gran 

avance en la ingeniería de rehabilitación, ya que reduce la tediosa tarea de calibrar el 

modelo para diferentes personas.  

Validado con sujetos sanos, este trabajo ha puesto de manifiesto la influencia, en la 

mejora de la estimación del par en el codo, de los nuevos parámetros fisiológico en el 

modelo de Hill correspondientes al nivel de activación de los músculos involucrados en 

el movimiento, pero no tratados en obras anteriores, incluyendo en el estudio diferentes 

condiciones de movimiento. 

El modelo propuesto es capaz de estimar, con errores bajos, el par para las condiciones 

de diferentes resistencias, incluso con bajas velocidades. Sin embargo, en condiciones 

de fatiga la estimación puede ser mejorada. Ya hay estudios actuales en esta línea de 

investigación [11]. La fatiga muscular aparece durante las sesiones de rehabilitación y 

se requiere que el modelo pueda hacer frente a este cambio en las señales de sEMG. 

Puesto que los datos de prueba de cuatro sujetos son insuficientes para sacar 

conclusiones universales, en el trabajo futuro incluirán poblaciones más grandes, lo que 

permitirá incluir discusiones acerca de las tendencias y los patrones de los parámetros 

cada músculo en detalle. Además, se pretende extender el estudio del modelo a 

movimientos de rehabilitación, tanto analíticos como funcionales (movimientos de 

caminar), para los miembros superiores e inferiores. En la misma dirección se incluirán 
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más músculos para estudiar su influencia en la estimación del par. También se extenderá 

la metodología a las personas con discapacidad con diferentes tipos de trastornos 

motores y con diferentes grados de capacidades motoras. Estos modelos serán utilizados 

en el Neuroestimator para el assist-as-needed control de un exoesqueleto. Además, se 

continuará con el desarrollo del Nueroestimador mediante la incorporación de EEG, 

sensores de movimiento, fuerza, etc. 

El trabajo ha sido aceptado para su presentación y publicación en el EMBC 2012 (The 

34th Annual International Conference of the Engineering in Medicine and Biology 

Society) [19] que se celebrará en Agosto en San Diego (EEUU). 



 

37 

 

 

 

 

Bibliografía 
 

[1] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T .John, E. 

Guendelman, D. G. Thelen, 'OpenSim:open-sorce software to create and analyze 

dynamic Simulations of movement'. IEEE Transactions on Biomedical Engineering, 

2007, vol. 55, pp. 1940-1950. 

[2] Holzbaur K R, Murray W M, Delp S L. 'A model of upper extremity for simulating 

musculoskeletal surgery and analyzing neuromuscular control., Ann Biomed Eng. 

2005 Jun; 33(6): 829-40. 

[3] Jacob Rosen, Moshe B.Fuchs, Mircea Arcan. 'Performances of Hill-Type and 

Neural Network Muscle Models- Towards a Myosignal-based exoskeleton'. 

Computers and Biomedical Research, 1999, vol.32, pp. 415-439. 

[4] E.Cavallaro, J.Rosen, J.C.Perry, S.Burns, B.Hannaford. 'Hill-Based Models as a 

Myoprocessor for a Neural Controlled Powered Exoskeleton Arm – Parameters 

Optimization. Proceedings. IEEE International Conference on Robotics and 

Automation Barcelona, Spain, 2005 pp 4525-30. 

[5] Moré, J.J. and D.C. Sorensen, "Computing a Trust Region Step," SIAM Journal on 

Scientific and Statistical Computing, Vol. 3, pp 553–572, 1983. 

[6] S. A. Safavynia, G. Torres-Oviedo, and L. H. Ting, “Muscle Synergies: Implications 

for Clinical Evaluation and Rehabilitation of Movement” Top Spinal Cord Inj 

Rehabil. 2011 ; 17(1): 16–24. 

[7] E.Cavallaro, J.Rosen, J.C.Perry, and S.Burns, “Real-Time myoprocessor for a 

neural controlled powered exoskeleton arm” IEEE Transactions On biomedical 

Engineering, Vol. 53, No. 111, Nov. 2006: 2387-2393. 

[8] K. Mountjoy, E. Morin, K. Hashtrudi-Zaad, “Use of the Fast Orthogonal Search 

Method to estimate optimal joint angle for upper limb Hill-muscle models. IEEE 

Transactions on Biomedical Engineering, Vol. 57, No. 4, April. 2010: 790-798. 

[9] Hyper project, “Hybrid Neuroprothetic and Neurorobotic Devices for Functional 

Compensation and Rehabilitation of Motor Disorders”. CSD2009-00067. 

http://www.iai.csic.es/hyper/contacts.html.



Bibliografía 

 

38 

 

[10] D. Amarantini, G. Rao, EricBerton, “A two-step EMG-and-optimization process 

to estimate muscle force during dynamic movement. Journal of Biomechanics Vol. 

43, 2010: 1827–1830. 

[11] G. Rao, E. Berton, D. Amarantini, L. Vigouroux, T. S. Buchanan. “An EMG-

Driven Biomechanical Model That Accounts for the Decrease in Moment 

Generation Capacity During a Dynamic Fatigued Condition”. Journal of 

Biomechanical Engineering vol.132, July 2010. 

[12] R. Merletti, P. A. Parker. “Electromyography. Physiology, Engineering and 

Noninvasive Applications”. IEEE Press Series on Biomedical Engineering. July  

2004. 

[13] D. Staudenmann, K. Roeleveld, D.F. Stegeman, J.H. van Dieën. 

“Methodological aspects of sEMG recordings for force estimation – A tutorial and 

review”. Journal of Electromyography and Kinesiology 20 (2010) 375-387. 

[14] T.S. Buchanan, D.G. Lloyd, K. Manal, T.F. Besier. “Neuromusculoskeletal 

Modeling: Estimation of Muscle Forces and Joint Moments and Movements From 

Measurements of Neural Command”. J Appl Biomech. 2004 November; 20(4):367-

395. 

[15] J. M. Winters, “Hill-based muscle models: A systems engineering perspective,” 

in Multiple Muscle Systems: Biomechanics and Movement Organization, Eds. New 

York: Springer-Verlag, 1990, pp. 69–93.  

[16] A. V. Hill, “The heat of shortening and the dynamic constants of muscle,” Proc. 

R. Soc. Lond. Biol., vol. 126, pp. 136–195, 1938. 

[17] G. L. Zahalak, “Modeling muscle mechanics (and energetics),” in Multiple 

Systems: Biomechanics and Movement Organization, Eds. New York: Springer-

Verlag, 1990, pp. 1–23. 

[18] SENIAM (European project: Surface EMG for Non-Invasive Assessment of 

Muscles): http://www.seniam.org/ 

[19] EMBC 2012 (The 34th Annual International Conference of the Engineering in 

Medicine and Biology Society): http://embc2012.embs.org/ 

[20] Simulink Highspeed On-line Processing software: 

http://www.gtec.at/Products/Software/High-Speed-Online-Processing-under-

Simulink-Specs-Features



 

 

 



 

 

 



 

 

 

 

 

 

 

 

 

 

ANEXOS 



 

 

 



 

43 

 

 

 

 

ANEXO 1: Abreviaturas 
 

α  % de fibras rápidas del elemento contráctil 

ANC  Anconeus 

BIC long Biceps long head 

BICshort Biceps short head 

BRA  Brachialis 

BRD  Brachioradialis 

ECRL  Extensor carpi radialis longus 

Emax  error máximo 

Erms  error cuadrático medio 

f_ANC factor de escala de la activación de músculo ANC 

f_BIC  factor de escala de la activación de músculo BIC long 

f_BRA  factor de escala de la activación de músculo BRA 

FCE   fuerza del elemento contráctil 

FCEmax  fuerza máxima del elemento contráctil 

FCR  Flexor Carpi Radialis 

f_geom factor geométrico del modelo 

Fi  Fuerza muscular total del músculo i 

fl  relación entre fuerza muscular y longitud de músculo 

FPE   fuerza del elemento paralelo 

FPEmax  fuerza máxima del elemento paralelo 

f_PT  factor de escala de la activación de músculo PT



Anexo 1: Abreviaturas 

 

44 

 

FSE  fuerza del elemento en serie 

FSEmax   fuerza máxima del elemento en serie 

fv  relación entre fuerza muscular y velocidad de contracción 

HB  modelos de músculo basado en los modelos de Hill 

LCE0  longitud de fibra óptima 

∆LCE   variación de longitud del elemento contráctil con respecto al reposo 

∆LCEmax variación máxima de la longitud del elemento contráctil  

Lm  longitud de músculo 

Bds   longitud de músculo-fibra normalizada 

∆LPE   variación de longitud del elemento paralelo con respecto al reposo 

∆LPEmax variación máxima de la longitud del elemento paralelo 

∆LSE   variación de longitud del elemento en serie con respecto al reposo 

∆LSEmax variación máxima de la longitud del elemento en serie  

LTS  longitud del tendón en reposo 

Mneto  momento neto en la articulación 

MVC  maxima contracción voluntaria 

PT  Pronator teres 

SPE  factor de forma del elemento paralelo  

SSE  factor de forma del elemento contráctil 

TRIlat  Triceps lateral head 

TRIlong Triceps long head 

TRImed Triceps medium head 

U  activación muscular normalizada 

VCE0  máxima velocidad elemento contráctil con nivel de activación máximo 

VCE  velocidad de contracción del elemento contráctil 

VCEmax  velocidad máxima del elemento contráctil con 
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ANEXO 2: HYPER Consolider 2010 
 

El proyecto HYPER pretende representar un avance significativo en la investigación de 

dispositivos neurorrobóticos (NR) y neuroprotésicos (MNP) en interacción cercana con 

el cuerpo humano, tanto en la rehabilitación como en la compensación funcional de 

trastornos motores en actividades de la vida diaria. El proyecto centrará sus actividades 

científico-tecnológicas en el desarrollo de configuraciones novedosas de neurorrobots y 

neuroprótesis que, mediante su acción combinada, potenciarán y ayudarán a restablecer 

las capacidades latentes de personas que, afectadas de lesiones cerebrovasculares, 

parálisis cerebral o lesión medular, presentan trastornos motores en miembro inferior o 

superior. 

 Los principales objetivos del proyecto son la restauración de la función motora en 

pacientes con lesión medular a través de la compensación funcional y promover el re-

aprendizaje del control motor en pacientes afectados por accidente cerebro vascular y 

parálisis cerebral, por medio de un uso integrado de neurorrobots y neuroprótesis.  

El proyecto validará funcional y clínicamente el concepto de sistemas neurorrobóticos-

neuroprotésicos híbridos para la rehabilitación compensación funcional de trastornos 

motores bajo el paradigma de asistencia bajo demanda. En la visión HYPER, se asume 

que el avance en las terapias de rehabilitación física depende de la obtención de una 

comunicación más transparente entre los sistemas humanos y las máquinas, y por lo 

tanto, se explorarán diferentes niveles de actividad neural humana. El proyecto plantea 

preguntas fundamentales en diferentes disciplinas tecnológicas y científicas. Estas 

preguntas dan lugar al planteamiento de seis líneas de investigación (biomecánica, 

control neuromotor, tecnologías de control, tecnologías de sensores, actuadores y 

energía, interfaces multimodales cerebro-máquina, adaptación de sistemas híbridos a 

escenarios de aplicación) con interacciones horizontales:  

• Los sistemas tratarán la variabilidad en las estructuras neuromusculares humanas, con 

adaptaciones dinámicas acordes a las capacidades (motrices) latentes de los usuarios.  

• La aproximación propuesta promoverá el reentrenamiento del control sensorial y 

motor, y la plasticidad cerebral. Esto podrá conducir a potenciales soluciones de 

rehabilitación de pacientes con apoplejía y parálisis cerebral, y a soluciones para la 

compensación funcional de pacientes con lesión medular. 
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HYPER propone una interfaz multimodal cerebro-máquina(BNMI), cuyo objetivo 

principal es la exploración de diferentes niveles de actividad neural, caracterizando las 

demandas específicas de apoyo y la participación del paciente, y poder así modificar la 

intervención a nivel periférico con los sistemas híbridos NR-MNP.  

HYPER adopta un enfoque nuevo y poco convencional. El control motor de las 

extremidades humanas durante la manipulación y la locomoción será el resultado de tres 

sistemas que actúan mecánicamente en paralelo: 

• El sistema biológico a través de las capacidades motoras latentes de los pacientes. 

•El control del motor de las extremidades humanas por medio de la neuroprótesis (NP). 

•El control motor de las extremidades humanas por medio de un neurorrobot (NR), 

ligero y portátil. 

El "Assist-as-Needed" paradigma supone, tener en cuenta la variabilidad en las 

estructuras neuromusculares humanos, una propiedad intrínseca del control 

neuromuscular en la actuación. Por lo tanto, la actuación en paralelo (NR-NP) no es fija 

sino que se adapta de manera dinámica y está sujeta a los cambios debidos a las 

organizaciones neuronales y adaptaciones musculares. 

Con el fin de cumplir con este ambicioso objetivo, se deben abordar: 

• El desarrollo de un modelo preciso del sistema músculo-esquelético humano (ambos 

miembros superiores e inferiores) para una aplicación segura y eficiente de la FES por 

el NP y un modelo preciso de la anatomía humana (tanto las articulaciones de los tejidos 

superiores y las extremidades inferiores) para una transmisión segura y eficaz de las 

fuerzas de la NR para al usuario. 

•El desarrollo de modelos de los mecanismos neuromotores humanos para ser 

implementados en el control de caminar, balance, alcanzar y agarrar objetos en los seres 

humanos sanos. Se cuantificará en el modelo para el control el papel relativo del control 

del motor volitivo, los reflejos, generadores de patrones centrales y otros mecanismos 

en el desempeño de la función. 

•Desarrollar una estructura de control y los algoritmos que imitan el modelo biológico 

para un trabajo eficiente y seguro de los tres actores: (1) características humanas 

latentes, (2) NP y NR (3), en dos escenarios: (a) la compensación funcional de los 

pacientes de lesión medular (3) control de motor re-entrenamiento en los lesionados 

cerebrovasculares. 

• Desarrollar el actuador, sensor y tecnologías de gestión de energía para que el NR-NP 

pueda ser incorporado en un portátil, una solución ambulatoria, útil y aceptable para el 

paciente y el terapeuta. 

•Desarrollar un cerebro multimodal y neuronal a la interfaz de la máquina (BNMI) 

capaz de descifrar los comandos volitivos de manera exhaustiva. Esto también involucra
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el manejo de movimiento no deseado, por ejemplo, espasmos o temblores, y la 

evaluación de la capacidad humana latente. 

•Obtener del paciente y terapeutas sus necesidades para una solución aceptable y 

proporcionar medios para el compromiso del paciente y la validación del sistema 

HYPER. Con el apoyo del desarrollo de realidad virtual (VR), el sistema permitirá la 

simulación fiel de todo el proceso, la obtención de la información sensorial y la 

generación de la respuesta de los actuadores. Se utiliza tanto para poner a prueba el 

sistema como para poner en marcha programas de rehabilitación con los usuarios reales, 

sin riesgo. 

Los siguientes párrafos dan más detalles de la investigación científica y tecnológica que 

se están llevando a cabo en el marco de HYPER. 

• Biomecánica. El desarrollo de híbridos de NR y NP requerirá el apoyo científico 

biomecánico para superar los problemas críticos para la eficiencia, la seguridad y la 

fiabilidad. El nuevo concepto implica nuevos retos en Biomecánica 

•Control neuromotor. El desarrollo de controladores robustos y viables para el sistema 

híbrido requiere un conocimiento preciso de diversos mecanismos de control biológico. 

Este itinerario de investigación tiene como objetivo desplegar los principios de control 

del movimiento humano en los niveles neuronales y musculoesqueléticos mediante el 

desarrollo de modelos funcionales. Estos modelos, más allá de su verosimilitud 

biológica, se pueden utilizar para controlar el NP y dispositivos NR. 

•Tecnologías de control. NR y NP son integrados. La naturaleza de esta integración se 

rige por el sistema de control. Este arbitra cómo las estructuras biológicas y artificiales 

se coordinan de manera dinámica. En HYPER, esta integración tiene lugar en una 

estructura de control motor complejo en el que dos sistemas artificiales interactúan con 

el cuerpo humano. De este modo, diversos retos científicos necesitan superarse para 

diseñar los diferentes controladores con nuestro enfoque. 

•Actuadores, sensores y tecnologías de gestión de energía. Tecnologías que la mayoría 

de las veces representan cuellos de botella en soluciones portátiles y fiables en los 

escenarios de rehabilitación.  

•Cerebro Multimodal e Interfaces Neuronales de la máquina (BNMI). Mejora de las 

terapias de rehabilitación, con nuevos sistemas híbridos requiere la exploración de los 

diferentes niveles de la actividad neuronal humana. Esto ha sido demostrado ser muy 

importante en: (1) evaluar la calidad de las intervenciones, y (2) obtener una 

comunicación más transparente y relacionándose entre sí entre el sistema nervioso 

humano y las máquinas.  

•Adaptación de la NP y el NRS a los usuarios y los escenarios de aplicación. La 

aplicación de los NR y MNPS requiere una evaluación funcional y clínica. 
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ANEXO 3: Visión general de OpenSim 
 

En los últimos años, ha aumentado de forma considerable la utilización de los llamados 

sistemas de análisis de movimiento humano por parte de la industria de animación por 

ordenador y de videojuegos en el sector audiovisual, para generar movimientos 

tridimensionales análogos a los realizados por un objeto o persona real. OpenSim es un 

software libre que permite crear y analizar modelos del sistema musculoesquletal y 

simulaciones dinámicas de su movimiento. El software proporciona una plataforma que 

facilita a todos los investigadores, en particular de la biomecánica,  la creación de una 

biblioteca de simulaciones que se pueden intercambiar, probar, analizar y mejorar. 

El software está escrito en C++, y la interfaz de usuario gráfica (GUI) está escrito en 

Java. OpenSim permite el desarrollo de modelos personalizados, análisis, y modelos de 

músculos entre otras cosas. Estos complementos pueden ser compartidos sin necesidad 

de modificar o compilar el código fuente. Se pueden analizar los modelos y las 

simulaciones existentes y desarrollar nuevos modelos y simulaciones dentro de la 

interfaz gráfica. 

OpenSim incluye varias características. Algunas de las características más útiles: 

• La escala en tamaño y peso de un modelo músculo-esquelético. 

• Realizar análisis de cinemática inversa para el cálculo de ángulos de las articulaciones 

a partir de las posiciones de marcadores. 

• Realizar análisis de la dinámica inversa para el cálculo de momentos netos en las 

articulaciones y las fuerzas externas. 

• Generación de la dinámica directa para simulaciones de movimiento. 

• Análisis de simulaciones dinámicas. 

OpenSim proporciona una interfaz gráfica de usuario que da acceso a muchas de las 

características del software. Por ejemplo, puede importar datos de análisis de 

movimiento, la escala de un modelo del sistema músculo-esquelético, realizar análisis 

de la dinámica inversa, y los resultados de la trama, todo desde la interfaz gráfica. A 

continuación se muestra el aspecto de la interfaz: 
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En cuanto a las opciones de menú: 

 

Permite importar y exportar información, cargar modelos y movimientos. 
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Permite modificar las características o parámetros de los músculos, activaciones 

musculares, marcadores virtuales o ficheros del musculoesqueleto. 

 

La opción de Tools permite de forma fácil acceder a las herramientas para generar y 

analizar simulaciones del musculoesqueleto. 

 

Window simplemente controla qué ventana es visible en la interfaz gráfica. Más en 

profundidad, estas ventanas son: 
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View Window: proporciona una visualización 3D y de la animación del 

musculoesqueleto. Se pueden añadir varias vistas del mismo modelo. 

 

 

Navigation Window: proporciona información sobre el modelo con el que se está 

trabajando, como los segmentos, articulaciones, músculos, etc. 
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Coordinates Window: permite modificar interactivamente las coordenadas de las 

articulaciones del modelo. También aparece en la interfaz una toolbar: 

 

 

Que sirve para controlar el video de las simulaciones. 

 

 

En este trabajo se ha usado OpenSim para exportar la información geométrica del 

músculo que el modelo de Hill necesita y que depende de la cinemática del movimiento. 

En concreto se usa la longitud de músculo y el brazo de momento, que varía con cada 

grado de flexión de la articulación de codo.  

A continuación se muestras dos gráficas en las que se ha representado la variación de la 

longitud y brazo de momento de los músculos BIClong y BICshort con la flexión de 

codo. Destacar que el brazo de momento de los dos músculos coincide. Estos datos son 

exportados a un fichero de texto que posteriormente se procesa en el Neuroestimador. 

Dada la cinemática del robot, el algoritmo busca en estas tablas de datos la geometría de 

músculo correspondiente para poder realizar el cálculo del par de fuerza articular en el 

codo.
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