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1. Introduction

The Standard Model [1] is the more complete physics theory we have nowadays to explain how every particle
and force interacts, except for gravity. It consists of 4 particles who carry the forces, called bosons, and 12
particles, that form all the matter we know for now: 6 particles called quarks and another 6 called leptons.
Although it has turned out to be the most precise theory in the history of physics it still lacks some phenomena
understanding, which suggests that there must be a more complete theory. A lot of physicists around the
world are developing new theories that could fill the gaps that the SM has, like supersymmetry (SUSY) [2]
or string theory [3]. These theories require more energy that the one is being produced in the LHC [4] to be
verified, but in a few years it can be achieved, and scientists have to be prepared to know what to look at
when they accomplish that range of energies.
In the LHC, beams formed by protons travel through a giant loop until they smash against each other,
reaching energies of 14 TeV [5]. This reproduces the early universe conditions, around a fraction of second
after the Big Bang [5], and can help to discover new physics.
The first challenge related with LHC data is the storage and selection of particular or interesting events among
all the massive data coming from the events. But even after that, there is still one problem remaining, and
it is that the selected events only have information about the decaying products, and not about the original
signal.
This is the reason why some years ago some training series, called The LHC Olympics [6], were created at
CERN. These series consisted of some challenges for theoretical physicists in which they had to interpret
some data sets, known as black boxes, that were simulations of the real data obtained in the LHC collisions.
Scientists were encouraged to apply different techniques to these data files in order to reconstruct the events
that had taken place and discuss their results. These challenges were also an effective training for physicists
to prepare them for new physics discoveries, teaching them what to look for in this scenario.
In this project we reproduce the physics developed in the LHC Olympics. We analyse the data files using
Microsoft Excel [7] and apply some algorithms written in VBA [8] to simulate different analysis techniques.
Using the samples provided [9] we try to determine the W and Z bosons mass in order to check that the
invariant and transverse mass methods [10] work properly. After this, we use these methods to determine
the top quark mass through its decaying products and discuss the results obtained.
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2. Theoretical background

2.1 Standard Model

2.1.1 Components

This theory was developed in the early 1970’s and it has proved through the years and experiments to be
the best explanation for now of how the subatomic world works.
According to the Standard Model, there are two types of elementary particles (depending on one property
called spin): fermions, which form all the matter we observe in the universe (their spin is half-integer), and
bosons, which carry the forces between the fermions (their spin is integer). All of them have their own
anti-particle, with same mass but opposite electric charge, isospin, etc.

• Fermions:
They are subdivided at the same time into two types of particles: quarks and leptons. Leptons partake
in the weak and electromagnetic interactions, but they do not interact strongly and are not found
inside the nucleus. Quarks partake in all interactions and are the basic constituents of the particles
inside the nucleus and other unstable ones. There are 6 particles of each type and they are usually
organised into three different groups, called families, that are formed by 2 quarks and 2 leptons, as we
can see in Figure 2.1:

Figure 2.1: Components of the Standard Model and their properties [11].

The first family (formed by up and down quark, electron neutrino and electron) is the most stable
one, and ordinary matter is compound of it. The following families are a “copy” of the first one in the
following sense: particles that compose these families have the same properties (electric charge, spin,
isospin, etc) as particles of the first family, but they are heavier, which makes them more unstable.
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The heaviest particle of the SM is the top quark, with a mass of 173.1± 0.6GeV [12], which makes it
a very unstable and difficult to detect particle.

• Bosons:
There are 4 fundamental interactions of nature, and each of them is associated with one gauge boson:
the electromagnetic force is carried by photons, the weak nuclear force by W and Z bosons and the
strong nuclear force by gluons. Although the model does not explain how gravity works, it has to
provide a mechanism whereby particles gain their mass, and so there is a Higgs boson, which was
discovered on 2012 at LHC [13].

2.1.2 Production process

As well as Top quarks, Z and W bosons are also very unstable, so we will not detect them in the collisions
but their decaying products. However, according to SM, these particles have infinite different ways of
decaying into more stable particles, each process with different probabilities. Moreover, at the LHC millions
of collisions happen every second, most of them with different final state particles detected. Because of this,
knowing which ones are the more probable decaying processes is crucial if we want to detect and reconstruct
these kind of particles.
The SM provides accurate predictions about the probabilities of each decaying process, and these calculations
have been far more simplified due to a poweful tool: Feynman diagrams [14]. Now we are going to take a
look to the particles whose mass is going to be estimated in this project:

• Z boson [12]: this boson has enough mass to be unstable and it decays into other particles. Its main
decay routes are: the leptonic decay, where the final state particles are two charged leptons, each of
them with opposite charge (l+ l−), or a pair neutrino-antineutrino (νν̄); and the hadronic decay, with
final state particles being a quark and an anti-quark of the same kind (q q̄).

proton

antiproton

q

q

Z 
0

e+

e–

Figure 2.2: Example of production and decay of a Z0 boson [15].

• W boson [12]: this charged boson (W− or W+) is also a relatively huge massive particle, so it under-
goes further decay. The two main routes for decay of W+ (W−) are similar to the ones of the Z boson:
the leptonic one, where it decays into a charged lepton l+ (l−) and same generation neutrino ν (ν̄);
and the hadronic one, where it decays into a pair of light quark-antiquark of different kind (q q̄).
Although the pair q q̄ is different for W than for Z bosons, these particles are not detected as only
two, but as a spray of light hadrons (usually referred as a jet) due to QCD interactions, which makes
the pair look like the same object (a jet) when is detected, no matters from which boson is coming from.

Miguel Pardo
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Figure 2.3: Example of production and decay of a W+ boson [15].

• Top quark [12, 16]: This quark can be considered as a bare one, as its mean lifetime (∼ 10−25) is
relatively small compared with the hadronization time (∼ 10−23), and so it decays before any QCD
effects can affect it.
The two main process for top quark pairs production are through the strong interaction: 90 % of the
times comes from gluon fusion:

Figure 2.4: Examples of production of a pair tt̄ through gluon fusion [15].

The remaining 10 % is due to quark-antiquark annihilation:

Figure 2.5: Example of production of a pair tt̄ through qq̄ annihilation [15].

The top quark t (t̄) decays almost 100 % of the times into a W+ (W−) boson and a bottom quark b
(b̄). The bottom quark is also unstable and it fragments into a jet due to QCD interactions.

Figure 2.6: Examples of production and decay of a pair tt̄. On the left: di-lepton decay route. On the right:
hadronic decay route [15].

BSc project: LHC Olympics
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We have already seen the possible main decay products of W boson, so the three different decay routes
for a top quark pair produced are:

– Di-lepton decay channel:
t t̄ → b+ b̄+ l+ + l− + ν + ν̄ (2.1)

– Lepton+jets decay channel:
t t̄ → b+ b̄+ q + q̄ + l± + ν (2.2)

– Hadronic decay channel:
t t̄ → b+ b̄+ q + q + q̄ + q̄ (2.3)

2.2 Colliders and detectors

2.2.1 Collision geometry

In the LHC, the proton beams that collide travel in opposite directions along the beam-pipe, which corre-
sponds to z-axis in Figure 2.7 [10].

Figure 2.7: Collision geometry for an outgoing particle with momentum ~P .

If the protons have any motion perpendicular to the beam-pipe, then they have a component in the
transverse plane, and we can split any proton momentum ~P into two components: the one in the transverse

plane ~PT and the one along the beam-pipe ~P z:

~P = ~P z + ~PT (2.4)

They can be denoted as transverse and longitudinal momentum and can be defined using the angle subtended
by the beam-pipe and the total momentum vector:∣∣∣ ~P z∣∣∣ =

∣∣∣~P ∣∣∣ · sin θ (2.5)∣∣∣ ~PT ∣∣∣ =
∣∣∣~P ∣∣∣ · cos θ (2.6)

However, as it simplifies calculations involving θ, it is more common to use a variable called pseudo-rapidity,
that is defined as [10]:

η = − ln

∣∣∣∣tan
θ

2

∣∣∣∣ (2.7)

Miguel Pardo
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Figure 2.8: Projections of the transverse momentum along the x and y axis.

Taking a look to Figure 2.8 we see that is also possible to split the transverse momentum into its
projections along the x and y axis using the azimuthal angle φ:∣∣∣ ~P x∣∣∣ =

∣∣∣ ~PT ∣∣∣ · cosφ (2.8)∣∣∣ ~P y∣∣∣ =
∣∣∣ ~PT ∣∣∣ · sinφ (2.9)

2.2.2 Detectors

Detectors in particle accelerators are usually divided up to different components so that a particle will pass
through them sequentially.
Fast-moving particles of a life-time τ > 10−10 s will still interact with the detector and they can be detected
[10]. However, as we have seen for the W and Z bosons or the top quark in Section 2.1.2, most of the particles
in the SM are not directly “seen” in the detectors. Instead, only their decay products, stable particles such
as p,p̄,e±,γ, will show up as energy deposit or charge tracks in the different layers of the detector.
The layers are surrounding the beam-pipe, as we can see in Figure 2.9, and we can identify the particles
depending on how they interact with each layer.

Figure 2.9: CMS detector scheme [17].

The innermost layer is usually embedded with a magnetic field causing the charge particles, either pos-
itive or negative, to curve in different directions. Depending on the degree of curvature we can determine
the momentum of the tracking particle [5].
The next layers are usually calorimeters, like the electromagnetic and hadronic ones. Calorimeters are com-
posed of different materials depending on which particle they are stopping, and are able to detect even
neutral particles such as neutrons or photons (not visible in the tracking chamber).
The muon chamber is the outermost layer due to muons require passing through metres of dense material

BSc project: LHC Olympics
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before being stopped and detected.

Figure 2.10: ATLAS detector scheme [18].

Neutrinos and other weakly interacting particles are invisible to this type of detectors, so the only
way to detect them is using our knowledge about particle collisions. In the collisions, the particles that
interact are not really protons, but their constituent partons: quarks and gluons. Unfortunately we can only
determine the momentum of the proton, and not how it is distributed among its partons. However, proton
is motionless in the transverse plane, which implies that any transverse momentum of a parton has to be
negligible compared to its longitudinal momentum and sets up collisions with no net transverse momentum.
Hence, by adding the transverse momentum of all the final state particles detected and comparing it to zero,
we can determine if there is some undetected particle with a missing transverse momentum often referred
as Missing Energy [10].

2.2.3 Triggering

All missing energies or particles detected in a collision are described by a list of objects which is referred
as an event. If we consider pp̄ collisions, there is a continuous output of data coming from every event in
real-time while the detector is running: sensors deliver data 30 million times per second at LHC experiments
[5], which makes too many data to process and store (in e+e− collisions there are no such problems due to
the lower reaction rate). Moreover, only several hundred collisions per second provide useful or interesting
data. Thus, there is a process called triggering whereby the 30 million collisions per second are compared
with a list of requirements. The events that do not match the requirements are thrown away [10], cutting the
amount of data down to a manageable quantity that can be stored. Modern detectors for hadron colliders
such as CMS or ATLAS at LHC typically adopt three levels of triggering [10, 19].

2.3 Data simulations

2.3.1 Black boxes

Data files used in the LHC Olympics are created using simulation programmes known as event generators,
that simulate the creation, decay and detection of particles at colliders. Two examples of these programmes
are PYTHIA [20] and Herwig [21]. The stages for the creation of these black boxes are:

1. Feynman diagrams are calculated for a particular short distance physics production process.

2. The evolution of this process is simulated, taking into account all decay routes.

Miguel Pardo
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3. The resulting final state particles are then processed by a software called PGS [22] that behaves as a
detector and triggering takes place. The final output becomes the black box [19].

A black box file can contain different physics processes, although there are limitations on how many of them
can be processed accurately. LHC Olympics black boxes do not contain any SM background [23], which
makes Olympics unrealistic in this aspect.

2.3.2 Understanding black box files

We have used Microsoft Excel [7] as the analysis tool for our data files [9]. The overall appearance of a black
box file when using this programme is shown in Figure 2.11:

Figure 2.11: Diboson sample [9] shown in MS Excel [7].

An event consists of a set of rows, like the one we have highlighted as an example. Each row of the data
sheet describes a particle or decay product detected and some of its properties, like the collision angles we
have talked about in Section 2.2.1 and others we will discuss now in Table 2.1:

Column name Description

Number Counts how many objects are in an event, making
the start of a new one when its value is 1 again

Type Labels the kind of object using the integers
0,1,2,3,4,6 refering to a photon, electron, muon, tau,
jet and missing energy, respectively.

Pseudorapidity Gives the pseudorapidity η of the object.
Azimuthal angle Gives the azimuthal angle φ of the object (in radi-

ans).
Transverse momentum Gives the value of the transverse momentum modu-

lus
∣∣∣ ~PT ∣∣∣ of the object.

Invariant mass Gives the invariant mass in case the object is a jet
or the charge of the particle otherwise.

Number of tracks Gives the number of different particle tracks within
a jet.

Bottom tagging Its value is 1 if the object is a jet that comes from a
charm or bottom quark, otherwise is 0.

Table 2.1: Description of the values of each column in the data box file [19].

BSc project: LHC Olympics
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Now we can interpret the event highlighted in Figure 2.11: one antimuon µ+, one muon µ−, 2 jets, none
of them heavy, and missing energy.
Transverse momentum and invariant mass values are given in units such that the speed of light c is re-scaled
to unity, which implies that these quantities are in units of GeV (Giga electron Volt) [24]. The missing
energy does not have a defined pseudorapidity, as it cannot be calculated.
The resolution of the detector is determined by the one in the data file: 3 decimal places for azimuthal angle
and pseudorapidity and 2 decimal places for invariant mass and transverse momentum.

Miguel Pardo
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3. Analysis methods

3.1 VB algorithms

After importing each data file [9] to MS Excel [7], we had to look for a software programme that enabled us
to carry out different tasks related with these data files, such as select events we are interested in or calculate
some variables like the invariant or transverse mass.
For this purpose we decided to use Visual Basic for Applications [8], a programming language that extends
the functionality of Office applications . VBA allows us to create algorithms that can be run over the Excel
data sheets. At the beginning we created some basic macros and algorithms to count how many objects of a
kind are within the data file and to delete or copy data from one data sheet to another. Then we built some
more complex ones to select or filter specific events and reconstruct properties of the decaying particles.
We will refer to some of the important macros and functions in this section and the followings, but we are
not going to discuss them here. Instead a list of all the algorithms used is provided in Appendix A, where
we describe them shortly.

3.2 Invariant mass method

The invariant mass is a variable that allows us to reconstruct short-living particles. If we have 2 particles
and we know their momentum, then the invariant mass is defined as [10]:

M2
Inv = (~p1 + ~p2)

2
(3.1)

where we have used the four momentum vector, a common variable in high energy physics, constructed with
the energy E and the usual three momentum vector ~P , that reproduces the relativistic mass:

pµ pµ = ~p 2 = E2 −
∣∣∣~P ∣∣∣2 = m2 (3.2)

The invariant mass can also be expressed as:

M2
Inv = (~p1 + ~p2)

2
= ~p1

2 + ~p2
2 + 2 ~p1 · ~p2 = m2

1 +m2
2 + 2

(
E1E2 − ~P1 · ~P2

)
(3.3)

For N particles, Eq. (3.1) changes to:

M2
Inv =

(
N∑
i=1

~pi

)2

(3.4)

which can be expressed as:

M2
Inv = (~p1 + ~p2 + ...+ ~pN )

2
=

(
N∑
i=1

Ei

)2

−

(
N∑
i=1

~Pi

)2

(3.5)

and remembering Eq. (2.4):

M2
Inv =

(
N∑
i=1

Ei

)2

−

(
N∑
i=1

~P zi

)2

−

(
N∑
i=1

~PTi

)2

(3.6)
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If we use the massless limit [10], in which light quarks and leptons are considered to have negligible mass (this

implies Ei =
∣∣∣ ~Pi∣∣∣ from Eq. (3.2)), and consider that in proton-proton collisions there is no net transverse

momentum:

M2
Inv =

(
N∑
i=1

∣∣∣ ~Pi∣∣∣)2

−

(
N∑
i=1

∣∣∣ ~P zi ∣∣∣
)2

(3.7)

Finally, remembering Eq. (2.5) and (2.6):

M2
Inv =

 N∑
i=1

∣∣∣ ~PTi ∣∣∣
sin θi

2

−

 N∑
i=1

∣∣∣ ~PTi ∣∣∣
tan θi

2

(3.8)

When we plot this invariant mass for one type of event we obtain a frequency distribution that can be
described by the Breit-Wigner formula [10]. The peak of the distribution corresponds with the rest mass
of the decaying particle and the width of the peak at half maximum Γ is determined by the lifetime of the
particle, although the structure of the distribution can change due to detector inefficiencies.

Figure 3.1: The Breit-Wigner resonance.

3.3 Transverse mass method

If we consider events that involve neutrinos, such as a W boson decaying into a lepton and a neutrino:

W− −→ l− + ν (3.9)

and now we calculate its invariant mass using Eq. (3.8):

M2
Inv =


∣∣∣ ~PTl− ∣∣∣
sin θl−

+

∣∣∣ ~PTν ∣∣∣
sin θν

2

−


∣∣∣ ~PTl− ∣∣∣

tan θl−
+

∣∣∣ ~PTν ∣∣∣
tan θν

2

(3.10)

We can notice that there is a problem: the pseudorapidity of the neutrino ην is not determined, and so is
the angle θν .
To solve this we define the missing transverse momentum [10] by applying momentum conservation in the
transverse plane:

~PTmiss = −
∑
visible

~PT (3.11)

The modulus of this momentum is the value given in the data sheet to an object labelled as missing energy.
We define the transverse mass for a system of N particles as (ignoring the longitudinal momentum of the

Miguel Pardo
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system):

M2
T =

(
N∑
i=1

ETi

)2

−

(
N∑
i=1

~PTi

)2

(3.12)

where the transverse energy ETi is given by:

ETi =

√∣∣∣ ~PTi ∣∣∣2 +m2
i (3.13)

and it can be simplified using the massless limit [10] to:

ETi =
∣∣∣ ~PTi ∣∣∣ (3.14)

If we compare Eq. (3.6) with Eq. (3.12), we can see they are the same if we neglect the longitudinal
component of the momentum, so this implies the following inequality:

0 ≤ MT ≤ MInv (3.15)

If we plot this transverse mass the same way as we talked about in Section 3.2 for invariant mass we should
observe a frequency distribution with a sharply cut off at the rest mass of the decaying particle due to the
resonance in the invariant mass distribution. However in practice we observe a cut off with a finite width
due to the Γ width of the invariant mass.

Figure 3.2: Transverse Mass distribution for W → µν observed in CDF.

BSc project: LHC Olympics
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4. Results

4.1 Diboson sample

For our analysis of Z boson and W boson masses, we used the data files diboson 1005.dat.0.gz and diboson 1005.dat.1.gz
[9]. In these files, most of the registered events corresponded to collisions of the type: W+W−, Z0 Z0 or
W± Z0. The main possible final state products of these collisions are listed below in Table 4.1:

Type of collision Decay route Final state particles

W+W−
Both hadronic (q + q̄ + q + q̄)

One hadronic and one leptonic (q + q̄ + l± + ν)
Both leptonic (l+ + l− + ν + ν)

Z0 Z0
Both hadronic (q + q̄ + q + q̄)

One hadronic and one leptonic (q + q̄ + l+ + l−) or (q + q̄ + ν + ν̄)
Both leptonic (l+ + l− + l+ + l−) or (l+ + l− + ν + ν̄) or (ν + ν̄ + ν + ν̄)

W± Z0

Both hadronic (q + q̄ + q + q̄)
Hadronic W± and leptonic Z0 (q + q̄ + l+ + l−) or (q + q̄ + ν + ν̄)
Leptonic W± and hadronic Z0 (l± + ν + q + q̄)

Both leptonic (l± + ν + l+ + l−) or (l± + ν + ν + ν̄)

Table 4.1: List of main possible decay routes for W and Z boson collisions.

4.1.1 Z boson

Taking a look to Table 4.1, we decided that the events we were going to look for were the ones with final
state particles:

q + q̄ + l+ + l− (4.1)

since these products could only come from a collision of the type Z0 Z0 or W± Z0, where the charged leptons
came unmistakably from a Z boson. This implies that we could apply the invariant mass method to both of
these leptons to reconstruct the Z boson mass. We could not choose a final state with different particles that
the ones in Eq (4.1) since the other states produced ambiguity when it came to determine which particle
came from which boson.
Then we selected the events we were interested in from our data files making use of the algorithm JetStart.
To improve the statistics we did two different signatures: events where these two leptons were a pair of
electron-positron (e−e+) and events where they were a pair muon-antimuon (µ−µ+).
The signature we used at first was the same as in Eq (4.1) i.e, we looked for events with two light jets and two
leptons with opposite charge. However, there was not a single event in those data files with such detected
objects, but all the events with these signatures had also some missing energy. This fact can be explained
as detector inefficiencies, since the value of the transverse momentum for this missing energy was relatively
small, as we can see in Figure 4.1:
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Figure 4.1: Data sheet with events of the type of Eq (4.1). The value of the transverse momentum is
highlighted in orange.

We selected these events and then we calculated the invariant mass of the pair e−e+ or µ−µ+ using the
algorithm InvariantMass and InvariantMassWxy. The results obtained by the algorithm InvariantMass
were closer to the “real” value than the ones obtained by InvariantMassWxy, so we used the first one and
plotted the distribution.
To plot the distribution we used the software programme SciDAVis [25], since it has really powerful tools
for representing and analysing data. We obtained the following plots for a bin size of 1 GeV:

Figure 4.2: Z boson invariant mass frequency distributions from 0 to 200 GeV. On the left: distribution for
e−e+. On the right: distribution for µ−µ+.

If we take a closer look to Figure 4.2:

Miguel Pardo
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Figure 4.3: Z boson invariant mass frequency distributions from 80 to 100 GeV. On the left: distribution for
e−e+. On the right: distribution for µ−µ+. The peak of each distribution is highlighted.

From these graphics is easy to determine where is the peak of the distribution, which corresponds with
the Z boson mass MZ . We estimated the following values for it:

90 ≤ Me
Z ≤ 91GeV ⇒ Me

Z = 90.5± 0.5GeV −→ for the e−e+ decay. (4.2)

91 ≤ Mµ
Z ≤ 92GeV ⇒ Mµ

Z = 91.5± 0.5GeV −→ for the µ−µ+ decay. (4.3)

In order to check the reliability of the invariant mass method, we also tried to determine the mean lifetime
of the Z boson using the Breit-Wigner formula [10]. This formula allows us to estimate the mean lifetime τ
of the particle by measuring the width of the peak of its invariant mass distribution at half-maximum Γ:

τ =
h̄

Γ
(4.4)

We estimated the following mean lifetimes, using the value of h̄ = 6.58212 · 10−16 eV · s [26]:

Γe = 2 · 109 eV ⇒ τe = 3.291 · 10−25 s −→ for the e−e+ decay. (4.5)

Γµ = 3 · 109 eV ⇒ τµ = 2.194 · 10−25 s −→ for the µ−µ+ decay. (4.6)

4.1.2 W boson

Following the same analysis as in Section 4.1.1 for the Z boson, the events we used for the calculations of
the W boson mass were the ones with the following final state products:

q + q̄ + l± + ν (4.7)

In this case, as there was a neutrino among the other products, we applied the transverse mass method to
the charged lepton and the neutrino in order to reconstruct the W boson mass. We chose as the charged
lepton an electron or positron, because almost all the events in the diboson samples involving Eq (4.7) were
of this kind and this way we had better statistics.
Applying the algorithm JetStart with a different signature to select the events we were interested in and the
algorithm TransverseMass to calculate the transverse mass of the electron or positron and the neutrino,
we obtained the following distribution:
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Figure 4.4: W boson transverse mass frequency distribution from 0 to 200 GeV.

In this case the bin size was also 1 GeV. Here it was harder to determine which one was the value for the
W boson mass MW , since instead of a sharply cut off it had some width. Taking a closer look to the cut off:

Figure 4.5: W boson transverse mass frequency distribution from 60 to 100 GeV. The bins highlighted
correspond to the estimated W boson mass.

Looking to Figure 4.5, the first highlighted bin is the first peak after the maximum of the distribution
that has far more number of events than the following peak. This bin could have been a good choice for
the W mass, but the other highlighted bin values have quite similar values for the number of events, so we
decided to select the three bins as the W boson mass, i.e:

78 ≤ MW ≤ 81GeV ⇒ MW = 79.5± 1.5GeV (4.8)
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4.2 Ttbar sample

In this section we tried to determine the top quark mass. For this purpose we used the following data files [9]:
ttbar 1005.dat.0.gz , ttbar 1005.dat.1.gz , ttbar 1005.dat.2.gz , ttbar 1005.dat.3.gz , ttbar 1005.dat.4.gz ,
ttbar 1005.dat.5.gz , ttbar 1005.dat.6.gz , ttbar 1005.dat.7.gz , ttbar 1005.dat.8.gz , ttbar 1005.dat.9.gz ,
ttbar 1005.dat.10.gz , ttbar 1005.dat.11.gz , ttbar 1005.dat.12.gz , ttbar 1005.dat.13.gz .
The general decay route of a pair tt̄ is:

t t̄ → W+ + b+W− + b̄ (4.9)

Remembering the possible specific decay routes we have seen in Eq. (2.1), (2.2) and (2.3), the events we
were going to look for were those ones that have followed a lepton+jets decay route. The reason is that this
decay route was the only one that allowed us to unmistakably determine which objects correspond to which
original particles, as we can see in Table 4.2:

Decay route name Final state particles Original particles determination problem

Di-lepton decay t t̄ → b+ b̄+l++l−+ν+ ν̄ Two neutrinos: ν and ν̄ ⇒ we only detect one ob-
ject called missing energy, so we miss the information
about both neutrinos.

Lepton+jets decay t t̄ → b+ b̄+ q+ q̄+ l± +ν No problem: l+ (l−) + ν comes from W+ (W−) and
q + q̄ comes from W− (W+).

Hadronic decay t t̄ → b+ b̄+ q+ q+ q̄+ q̄ Two quarks and two antiquarks: detected as 4 jets,
we cannot determine which pair qq̄ comes from which
W boson.

Table 4.2: Possible decay routes for top quark pair collisions.

To reconstruct the top quark mass, we selected events with the lepton+jets decay route signature using
the algorithm JetStart. In each event, the detected objects were: a lepton (e±, µ±, τ±), two light jets (qq̄),
two heavy jets (bb̄) and missing energy (ν). Then we should have applied the invariant mass method to the
pair qq̄ and the bottom quark b, and the transverse mass method to the lepton l±, the neutrino ν and the
bottom antiquark b̄. However, there was one problem: the pair bb̄ is detected as just two heavy jets, so we
don’t know which one comes from the top quark t and which one from the top antiquark t̄ i.e, we don’t know
which one use for the calculation of the invariant mass, and which one for the transverse mass.
In order to solve this, we designed the following strategy:
Using algorithm InvTransvMassTOP we calculated for each event 4 values: 2 invariant massesMInv1 ,MInv2

and 2 transverse masses MTrans1 ,MTrans2 . If the event objects were labelled as: l, j1, j2, hj1, hj2,me (lepton,
light jet, light jet, heavy jet, heavy jet, missing energy; respectively), then the values calculated were:

Value calculated Objects used

MTrans1 l,me, hj1
MInv1 j1, j2, hj2

MTrans2 l,me, hj2
MInv1 j1, j2, hj1

Table 4.3: Values calculated for each event using algorithm InvTransvMassTOP .

Then we had to select one of the two pair of values MInv,MTrans, since only one of them represented
the decay that has taken place. For this purpose we defined the variables:

R1 = MInv1 −MTrans1 (4.10)

R2 = MInv2 −MTrans2 (4.11)
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As we have seen in Section 3.2 and 3.3, the invariant and transverse mass distributions have a peak at the
rest mass of the reconstructed particle. This means that in most of the events the R which corresponds to
the correct pair of values will be the smallest one, since its values are closer to each other.
Because of this we used algorithm SelectTOP with R1 and R2 and we finally obtained the right value for
the invariant and transverse mass of the top quark for each event.

4.2.1 Top quark transverse mass distribution

Plotting with SciDAVis [25] the transverse mass frequency distribution for a bin size of 1 GeV:

Figure 4.6: Top quark transverse mass frequency distribution from 0 to 500 GeV.

It was hard to determine where was the cut off, but taking a closer look and using the same approach as
in Section 4.1.2 for the W boson mass, we estimated the top quark mass:

Figure 4.7: Top quark transverse mass frequency distribution from 50 to 250 GeV. The bins highlighted
correspond to the estimated top quark mass.
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We can see the difference in the number of events for each peak after the maximum of the distribution.
After the bins highlighted, the peaks have far less number of events, so these bins were a good estimation of
the top quark mass:

157 ≤ Mt ≤ 159GeV ⇒ Mt = 158± 1GeV (4.12)

However, if we took a bin size of 2.5 GeV and repeated the same procedure:

Figure 4.8: Top quark transverse mass frequency distribution from 50 to 250 GeV. The bin highlighted
corresponds to the estimated top quark mass.

This time the difference between the number of events for each peak indicated us that the top quark
mass was:

170 ≤ Mt ≤ 172.5GeV ⇒ Mt = 171.25± 1.25GeV (4.13)

4.2.2 Top quark invariant mass distribution

We plotted the invariant mass distribution for a bin size of 1 GeV:
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Figure 4.9: Top quark invariant mass frequency distribution from 0 to 500 GeV.

Here it was also difficult to estimate the exact peak of the distribution, so to help us we fitted the data
to a Lorentzian function [27] of the type:

f(x) = y0 + 2 · A
π
· w

4(x− xc)2 + w2
(4.14)

Figure 4.10: Top quark invariant mass frequency distribution from 0 to 500 GeV. The black line is the
Lorentzian fit function.

This fit enabled us the following value for the peak of the distribution, which is the invariant top quark
mass:

xc = Mt = 163.34± 0.02GeV (4.15)
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We repeated the same procedure for a bin size of 2.5 GeV:

Figure 4.11: Top quark invariant mass frequency distribution from 0 to 500 GeV. The black line is the
Lorentzian fit function.

xc = Mt = 163.628± 0.005GeV (4.16)
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5. Conclusions

5.1 Z and W bosons

For the Z boson we obtained:

Me
Z = 90.5± 0.5GeV −→ for the e−e+ decay. (5.1)

Mµ
Z = 91.5± 0.5GeV −→ for the µ−µ+ decay. (5.2)

We can now average the results for each decay route:

MZ = 91.0± 0.5GeV (5.3)

To compare this last value we will use as a reference the data from [12] i.e, M
[12]
Z = 91.1876± 0.0021GeV .

This value M
[12]
Z is inside the interval of MZ , so our obtained value is reliable.

Regarding the mean lifetime, we obtained:

τe = 3.3 · 10−25 s −→ for the e−e+ decay. (5.4)

τµ = 2.2 · 10−25 s −→ for the µ−µ+ decay. (5.5)

So the mean value is:
τ = 2.8 · 10−25 s (5.6)

The mean lifetime of the Z boson is [28]: τ ' 2.6 · 10−25 s, so our obtained value is not just in the same
order of magnitude, but also quite close to it, which is a good signal.

In the case of the W boson:

MW = 79.5± 1.5GeV −→ for the e±ν decay. (5.7)

The reference value for the W boson mass [12] is M
[12]
W = 80.385 ± 0.015GeV , which is inside the interval

of MW . In the case of the transverse mass we have more indetermination, as it was harder to determine the
cut off of this distribution than the peak of the invariant mass one.

This way, applying techniques from the LHC Olympics such as the invariant and transverse mass meth-
ods to our data [9], we have obtained results which are in great accordance with others obtained in particle
accelerators experiments. Hence this proves that these methods are reliable and we can apply them to
reconstruct the mass of a particle that has decayed into two products.

5.2 Top quark

Our values for the top quark lepton+jets decay t t̄ → b+ b̄+ q + q̄ + l± + ν were:

• Transverse mass method t → b+ l± + ν:

1 GeV bin size −→ Mt = 158± 1GeV (5.8)

2.5 GeV bin size −→ Mt = 171.25± 1.25GeV (5.9)
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• Invariant mass method t → b+ q + q̄:

1 GeV bin size −→ Mt = 163.34± 0.02GeV (5.10)

2.5 GeV bin size −→ Mt = 163.628± 0.005GeV (5.11)

The top quark mass reference value [12] is: M
[12]
t = 173.1± 0.6GeV .

In the case of the transverse mass values, they are quite different, with a discrepancy between them of 13.25
GeV. The reference value is not inside either of both intervals, and the first result differs in 8,7 %, although
the second one only in 1,1 %. However, this dependence on the scale we are using to look at the distribution
tells us that we cannot trust either of the results.
In the case of the invariant mass, both of the values obtained are quite similar between them, but far apart
from the reference value, as they differ from it in around the 5,6 % of its value.
The discrepancies observed in the results of the top quark mass can be interpreted as a failure of these mass
methods for events with more complexity than just 2 decay products. This can be due to the methods are
not powerful enough to correctly predict the values of complex events, but also because our procedure to
select the correct invariant and transverse mass for each event does not always work, just most of the times.
The values obtained the rest of the times can influence in the statistics making the distributions shift to
another value or widen them.
Looking to the dependence on the scale in the transverse mass values we can also infer that the results could
be improved using more data, as the final number of selected events for the transverse and invariant mass
was 2611. This number is really small if we compare it with the number of total events, since in each of the
files [9] we had around 190,000 objects labelled.

Analysis of statistics for our samples [9] has shown that reconstruction of the top quark mass at hadron
colliders is not as simple as it could seem when looking at its decay products. Reconstruction algorithms,
detector inefficiencies or QCD effects makes the identification of resonances harder. Even for simpler events
like the W and Z boson decays the methods we have used are not good enough to precisely determine their
masses, as the values obtained have too much indetermination compared with the reference ones [12].
One way of continuing this project could be taking into account the SM background. At real colliders physics
signals are swamped by this SM “noise”, requiring more sophisticated analysis techniques to be developed.
We could try to apply these techniques to more realistic data and learn about new challenges faced in the
LHC.

Miguel Pardo



31

Appendix A

VB functions and subroutines

Function or subroutine name Description

Function NObjects Counts how many objects of a specific type are in a given range
Function Jets Counts how many light jets are in a given range
Function HeavyJets Counts how many heavy jets are in a given range
Sub CopyPaste Copies the first 15 cells of the selected row into another data sheet.
Sub Delete Deletes the content of the given range of cells.
Sub CopyPasteRange Executes CopyPaste for each row of the given range.
Function Signature Compares the number of objects of each type with selected values.

If they are the same, the function returns TRUE, else FALSE.
Sub SingleEventJets Counts the number of objects of each type of the given range

making use of NObjects, Jets and HeavyJets. Then Signature
is run and, if the result is TRUE, CopyPasteRange is also run.

Sub JetStart Executes SingleEventJets for each event inside the given range.
Sub InvariantMass Calculates the invariant mass (using Eq. (3.6)) of the selected

type of objects for each event in the given range.
Sub InvariantMassWxy Does the same as InvariantMass but it calculates the invariant

mass using Eq. (3.7).
Sub TransverseMass Calculates the transverse mass (using Eq. (3.12)) of the selected

type of objects for each event in the given range.
Sub InvTransvMass Calculates the invariant mass (using Eq. (3.6)) of an electron or

muon and a neutrino and the transverse mass (using Eq. (3.12))
of two light jets for each event in the given range.

Sub InvTransvMassTOP Calculates the invariant mass (using Eq. (3.6)) of an electron
or muon, a neutrino and a bottom jet; and the transverse mass
(using Eq. (3.12)) of two light jets and another bottom jet. Then
the bottom jets are exchanged and it calculates the invariant and
transverse mass again. All of this is run for each event in the given
range.

Sub SelectTOP Compares two values and copies in another data sheet the smaller
one for each row in the given range.

Table A.1: Description of each function and subroutine used to select and analyse data.
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