
Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es  

 

 

 

 

 

 

 

 
 

Trabajo Fin de Máster 
 
 
 

Model checking paramétrico de workflows 
 
 

Autor/es 

 

Eduardo González López de Murillas 
 

 
 

Director/es 

 
Francisco Javier Fabra Caro 

 
 

 
Grupo de Integración de Sistemas Distribuidos y Heterogéneos (GIDHE) 

Departamento de Informática e Ingeniería de Sistemas 
Escuela de Ingeniería y Arquitectura 

2012 

 



Trabajo Fin de Máster

Máster en Ingeniería de Sistemas e Informática

Model Checking paramétrico de

workflows científicos

Eduardo González López de Murillas

Director: Francisco Javier Fabra Caro

Grupo de Integración de Sistemas Distribuidos y Heterogéneos (GIDHE)
Departamento de Informática e Ingeniería de Sistemas

Escuela de Ingeniería y Arquitectura
Universidad de Zaragoza

Curso 2011/2012
Junio 2012





Model Checking paramétrico de workflows científicos

Resumen

La computación científica ha ganado un creciente interés en los últimos años en áreas afines
a las ciencias de la vida. Los workflows científicos son un tipo especial de workflow que se
utilizan en escenarios de grandes dimensiones y gran complejidad computacional como modelos
climáticos, estructuras biológicas, química, cirugía o simulación de desastres, por ejemplo, y
cuya ejecución es un proceso que consume una gran cantidad de tiempo y recursos. Uno de
los objetivos principales de la computación científica ha sido la mejora progresiva a través de
la introducción de nuevos paradigmas y tecnologías para poder abordar desafíos cada vez más
complejos, siendo uno de estos paradigmas la adición de aspectos semánticos a los workflows.
Disponer de una serie de herramientas y técnicas que posibiliten el análisis del comportamiento
del workflow antes de su ejecución resulta de gran interés. El objetivo de ese análisis es poder
garantizar un comportamiento adecuado y correcto, así como verificar la correcta gestión y
utilización de los recursos involucrados. El análisis debería permitir la predicción de la calidad
de los resultados, así como identificar aquellos parámetros que son necesarios para obtener los
resultados esperados. Desde el punto de vista del usuario, la incorporación de aspectos semánticos
permite a los científicos realizar una navegación, interrogación, integración y composición de
conjuntos de datos y servicios mucho más eficiente.

Sin embargo, el análisis del estado del arte en el área de la semántica aplicada a los modelos
en la computación científica muestra carencias significativas en el grado de madurez y aplicación
de este enfoque, así como la carencia de técnicas y herramientas para su aplicación. Es necesario,
por tanto, proponer y desarrollar nuevas técnicas de modelado y análisis que puedan manejar
dichos aspectos semánticos.

En este Trabajo Fin de Máster se aborda el análisis, diseño y desarrollo de un método
y una herramienta de model checking basados en la introducción de aspectos y anotaciones
semánticas tanto en los modelos como en las propiedades que deben verificarse. Como resultado,
la herramienta COMBAS (COmprobador de Modelos BAsado en Semántica) proporciona un
entorno de integración para la verificación de este tipo de modelos y la navegación por las
estructuras resultantes del proceso. Para la descripción de los modelos de workflows científicos
se ha utilizado una clase de Redes de Petri de alto nivel anotadas con información semántica
en RDF, las U-RDF-PN. A lo largo de este trabajo se ha abordado la adición de las técnicas,
metodologías y modelos necesarios para extender el framework con análisis paramétrico, que
consiste en un análisis mucho más potente y expresivo mediante la utilización de parámetros cuyo
valor es indeterminado al inicio del proceso, de forma que es posible estudiar el comportamiento
del workflow respecto a los posibles valores de dichos parámetros. Para restringir los valores de
los parámetros en cada uno de los caminos de ejecución del workflow se utiliza el concepto de
guardas, expresadas en lógica proposicional, en el modelo del workflow. Para ello, es necesario
estudiar primero qué herramientas permiten tratar dichas proposiciones, por lo que se analizan
los Satisfiability Modulo Theories (SMTs), el estado actual de los estándares relacionados, la
flexibilidad de los solvers disponibles y las herramientas que soporten la semántica que se va a
aplicar.

Finalmente, la viabilidad y usabilidad del enfoque propuesto se ha demostrado mediante su
aplicación al análisis del workflow EBI InterProScan, verificando propiedades de interés para el
científico sin necesidad de implementar, desplegar ni ejecutar el workflow.

i





Índice

1 Introducción 1

1.1 Problema a resolver y objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Organización de la memoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Puesta en contexto 5

2.1 U-RDF-PNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Resource Description Framework (RDF) . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Lógica temporal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Estado del arte 9

3.1 Semántica en Workflows científicos . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Estándares y herramientas para el Model checking . . . . . . . . . . . . . . . . . . 10
3.3 Estándares y herramientas de SMT . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 COMBAS: un Comprobador de Modelos Basado en Semántica 13

4.1 Proceso de verificación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Diseño . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Descripción de algoritmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Implementación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Análisis del workflow EBI InterProScan 27

5.1 Planteamiento original . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Modelado del workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Generación del RG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Comprobación de propiedades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusiones y trabajo futuro 33

6.1 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Trabajo futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliografía 35

A Anotaciones semánticas del workflow EBI InterProScan 37

A.1 Anotaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii





Capítulo 1 | Introducción

Los workflows científicos han ganado una relevancia notable en los últimos años, especialmente
en áreas relacionadas con las ciencias de la vida. Estos workflows, que se han aplicado a tareas de
cómputo en el mundo científico, representan un tipo especial de workflow por las particularidades
del campo de aplicación. En general, engloban tareas de un alto coste computacional y tratan
datos de gran tamaño, en aplicaciones tan diversas como el modelado climático, simulación de
reacciones químicas o biológicas o cirugía, entre otros. Con el tiempo, se ha detectado la necesidad
de desarrollo en este campo, y se han incorporado nuevas técnicas y paradigmas al mundo de los
workflows científicos.

Es habitual encontrar workflows científicos compuestos por tareas muy costosas desde el punto
de vista computacional. Su ejecución puede alargarse en el tiempo y requerir una gran cantidad
de recursos. Es por esto, por lo que resulta de gran interés disponer de técnicas y herramientas
que permitan analizar el comportamiento del workflow antes de su ejecución. El objetivo de
dicho análisis es garantizar un funcionamiento adecuado del workflow y una óptima utilización
de recursos. Además, la detección temprana de errores permite reducir costes en presupuesto y
tiempo.

Uno de los enfoques principales que se ha abordado en la computación científica es la inclu-
sión de técnicas y tecnologías semánticas a los modelos, y cómo esto permitirá tratar el problema
planteado mediante técnicas de verificación. El uso de aspectos semánticos aporta grandes venta-
jas en cuanto al modelado, ya que permite una expresividad mucho mayor al poder especificar, no
sólo propiedades estructurales, sino también información sobre los datos y el flujo de los mismos
en el workflow.

El análisis del estado del arte muestra cómo en la actualidad existen trabajos que hacen uso
de la semántica en los workflows con fines como la mejora en la descripción y descubrimiento de
servicios, así como de recursos u otros workflows. Sin embargo, queda manifiesta una carencia
muy significativa en cuanto al nivel de madurez y el desarrollo de técnicas y herramientas que
integren el enfoque basado en la adición de aspectos semánticos, y que permitan su análisis
posterior.

La introducción de aspectos semánticos en los workflows requiere nuevos modelos y técnicas
de análisis que sean capaces de manejar este tipo de sistemas con información semántica. El
formalismo de las Redes de Petri Unarias Anotadas con RDF (U-RDF-PN en adelante), es un
subtipo de las redes de Petri que consideran este tipo de sistemas (las ventajas de utilizar Redes
de Petri para modelar workflows han sido ampliamente tratadas en la literatura [29, 16]). En
ellas, se usan anotaciones semánticas utilizando Resource Description Framework, RDF [18]. Las
transiciones de la red de Petri corresponderían a acciones del sistema que cambien el estado del
workflow. Dichas transiciones cuentan con anotaciones que representan la especificación formal
de la tarea, incluyendo la descripción de las entradas y salidas. Algunas de las salidas podrían
corresponder a datos generados u obtenidos en tiempo de ejecución, por tanto se hace necesario
usar parámetros simbólicos para su representación. A su vez, pueden incluir referencias a precon-
diciones, que serán expresiones que especifican la tarea utilizando los parámetros de entrada. Para

1



Eduardo González López de Murillas

tratar dichas precondiciones, se utilizan herramientas de Satisfiability Modulo Theories (SMT).
Éstas nos permiten trabajar con predicados lógicos, de acuerdo a una combinación de teorías.
Así, estas herramientas permiten saber si una colección de proposiciones lógicas es satisfacible
o no. El análisis del workflow se lleva a cabo usando técnicas de Model Checking que definen el
modo en que el modelo será verificado, a través de su grafo de alcanzabilidad, usando consultas
expresadas en términos de la Computation Tree Logic (CTL).

1.1 Problema a resolver y objetivos

A pesar de la existencia de herramientas independientes, hasta ahora no se disponía de nin-
gún entorno completo que integrase todas las fases del proceso de verificación, y mucho menos
que facilitara la automatización de las mismas. Es esta necesidad la que se trata de solucionar
con el objetivo principal de este Trabajo Fin de Máster, el desarrollo de framework COMBAS
(COmprobador de Modelos BAsado en Semántica), un entorno completo de modelado y verifi-
cación que considera el formalismo de las U-RDF-PN con anotaciones en RDF, haciendo más
sencillo el proceso y permitiendo al diseñador del sistema comprobar la validez de sus workflows

gráficamente de forma automática y muy intuitiva.
En este trabajo se introduce una extensión significativa en las funcionalidades de dicho fra-

mework, en concreto la inclusión de análisis paramétrico, que consiste en un análisis mucho más
potente y expresivo, utilizando parámetros de valor indeterminado al inicio del proceso. De esta
forma, es posible estudiar el comportamiento del workflow respecto a los posibles valores de
dichos parámetros.

Para restringir dichos valores en cada uno de los caminos de ejecución, se utiliza el concepto
de guardas, expresadas en lógica proposicional en el modelo del workflow. Para realizar esto es
necesario estudiar las herramientas que permiten tratar dichas proposiciones. Por tanto, se anali-
zarán los Satisfiability Modulo Theories (SMTs), el estado actual de los estándares relacionados,
la flexibilidad de los solvers disponibles, y las herramientas que soporten semántica que se van a
aplicar.

Finalmente, la viabilidad del enfoque y herramienta propuestos se demostrará mediante su
aplicación a un caso real en el ámbito de la computación científica, como es el workflow EBI
InterProScan para el procesamiento de secuencias de proteínas.

1.2 Organización de la memoria

El resto de esta memoria está compuesta por varios capítulos y un anexo, y queda organizada
de la siguiente forma:

• Capítulo 2: Se introducen los conceptos y estándares más importantes en los que se basa
este trabajo.

• Capítulo 3: Se hace un análisis del estado del arte, se presentan las alternativas existentes
en el campo de la verificación de workflows científicos y se identifican algunas de sus
carencias y necesidades.

• Capítulo 4: Se expone el framework COMBAS, presentando su funcionamiento, diseño y
algunos detalles de su implementación.

• Capítulo 5: Se expone un caso de aplicación real, analizando un workflow de procesado
de proteínas, evidenciando la utilidad de COMBAS.

2



Capítulo 1. Introducción

• Capítulo 6: Se presentan las conclusiones extraídas de este trabajo. A su vez, se indican
las principales líneas de trabajo para continuar el desarrollo en el futuro.

• Anexo A: Se proporcionan datos adicionales acerca de las anotaciones semánticas, ficheros
y datos que complementan la red de Petri del ejemplo mostrado en el Capítulo 5.

3





Capítulo 2 | Puesta en contexto

En este capítulo se presentan algunos de los conceptos en los que se basa este trabajo, y que se
hace necesario conocer para comprender el fundamento del mismo. Se introduce el formalismo
de las U-RDF-PN, se explica de modo escueto el fundamento de RDF, así como los SMT, se
hablará brevemente de la lógica temporal y por último se presenta la técnica de model checking.

2.1 U-RDF-PNs

Las redes de Petri unarias con anotaciones en RDF (U-RDF-PN en adelante) representan un
formalismo de modelado de sistemas anotados semánticamente. Éste puede ser utilizado tanto
para modelar procesos de negocio, workflows científicos o cualquier otro tipo de sistema. Su
principal ventaja es que consideran tanto el control como el flujo de datos, para lo cual se
utilizan anotaciones semánticas en RDF.

Figura 2.1: Ejemplo de binding en una U-RDF-PN.

Basadas en las high level Petri nets, constituyen una extensión en forma de anotaciones pre-
sentes en lugares, transiciones y arcos de las mismas. Las anotaciones en los lugares representan
el marcado, de forma que substituimos los tokens de las redes de Petri por grafos RDF (RDFG).
Estos grafos contienen una serie de tripletas RDF. A su vez, los arcos están anotados con patro-
nes RDF (RDFGP), los cuales indican cómo deben ser los grafos RDF de los lugares de origen
para que se pueda realizar el emparejamiento (binding).

En la Figura 2.1 se puede apreciar el proceso de binding en un caso sencillo. Vemos que la
transición t tiene dos arcos de origen, que están anotados con los patrones RDF g1 y g2, y cuyos
lugares de origen son p1 y p2 respectivamente. Dichos lugares están marcados con grafos RDF,
mg1 y mg2 en p1 y mg3 y mg4 en p2. Por tanto, teniendo en cuenta que tenemos que coger un
grafo RDF de cada lugar, existen cuatro combinaciones posibles a la hora de hacer binding: 1)
mg1 y mg3; 2) mg1 y mg4; 3) mg2 y mg3 y 4) mg2 y mg4. Cualquiera de estas combinaciones
podría darse, siempre y cuando satisfagan el patrón RDF correspondiente a su arco. Un patrón
RDF es, al fin y al cabo, un grafo RDF, en el cual ciertas componentes de las tripletas pueden
ser variables en lugar de URIs, literales o bnodes. Dichas variables son las que se emparejan
con valores concretos de los grafos RDF. Así, si existe una variable común entre varios arcos de

5



Eduardo González López de Murillas

entrada de una misma transición, para hacer binding dichas variables han de tomar el mismo
valor. Volviendo al ejemplo, supongamos que tomamos la opción mg1 y mg3, y que el binding es
posible. Entonces se procede al disparo de la transición t, que a su vez dispone de dos arcos de
salida, con los patrones g3 y g4 que van a los lugares p3 y p4 respectivamente. Las variables de
dichos patrones serán substituidas por los valores tomados en el binding de los arcos de entrada,
y se colocará el grafo resultante en el lugar de salida. Así, vemos que se generan dos nuevos
grafos, mg5 y mg6, que satisfacen los patrones g3 y g4 respectivamente.

Las transiciones de la red de Petri se corresponden con acciones del sistema modelado que
cambian el estado del workflow. La información semántica adjunta a dichas transiciones co-
rresponde a la especificación formal de la tarea, incluyendo la descripción de los parámetros de
entrada y salida. Dado que algunas de las salidas pueden corresponder a datos recibidos o compu-
tados en tiempo de ejecución, se requiere el uso de parámetros simbólicos para representarlos.
Por otro lado, hay que considerar las precondiciones de las tareas, que se describirán como expre-
siones que incluyen los parámetros presentes en la especificación de dicha tarea. Así, encontramos
las precondiciones definidas en las transiciones como condiciones necesarias, previas al disparo
de una transición. El tratamiento de estas expresiones requiere el uso de los SMT solvers que se
presentarán más adelante.

Este formalismo es el utilizado en este trabajo para modelar los workflows que se van a ana-
lizar, sobre los que se aplicarán las técnicas de model checking adaptadas. Para más información
sobre el formalismo, consultar [21], donde se presentan las U-RDF-PN con un mayor nivel de
detalle. En nuestro caso, sólo consideraremos modelos acíclicos, es decir, modelos cuya estructura
sea de tipo DAG (Directed acyclic graph). Esto es así porque de esta forma evitamos la posi-
bilidad de que el grafo de alcanzabilidad sea infinito. Aunque lo pueda parecer, esta restricción
no representa una desventaja notable, ya que, por norma general, en nuestro dominio de aplica-
ción, workflows científicos, es habitual que los workflows sean acíclicos. Esta consideración ya ha
sido tenida en cuenta en otras aproximaciones al manejo de workflows, como DAGMan [13], un
meta-scheduler para Condor que maneja dependencias entre tareas dentro de un workflow.

2.2 Resource Description Framework (RDF)

El Resource Description Framework (RDF) es un modelo de metadatos, el cual forma parte de
la familia de especificaciones del World Wide Web Consortium (W3C). Se ha convertido en un
método de descripción de conceptos o modelado de información muy utilizado en recursos Web,
usando una gran variedad de formatos y sintaxis. RDF está basado en la idea de identificar
cosas usando identificadores Web (Uniform Resource Identifiers, o URIs), y describir recursos
en términos de simples tripletas (conocidas como tripletas RDF) las cuales contienen sujetos,
propiedades y valores para esas propiedades. El sujeto es el recurso, aquello que es descrito. El
predicado representa la propiedad o relación que se quiere expresar del sujeto. En último lugar,
el objeto es el valor de la propiedad que se describe del sujeto o recurso. Es posible combinar
RDF con otras tecnologías tales como RDFS y OWL para añadir expresividad.

RDF Schema (RDFS) es un lenguaje basado en RDF que proporciona elementos para cons-
truir ontologías, permitiendo estructurar los recursos descritos en RDF. Es muy extensible, y
está formado por clases que facilitan la clasificación de recursos o la creación de relaciones entre
ellos.

Otro lenguaje de ontologías es el Web Ontology Language (OWL), el cual proporciona una
mayor expresividad que RDFS gracias a la diversidad de directivas y clases que introduce. Existen
diversas variantes de OWL, que incluyen subconjuntos del mismo, tales como OWL Lite, OWL
DL o OWL Full. En [4] se puede encontrar más información sobre estos lenguajes de descripción
de ontologías.

6



Capítulo 2. Puesta en contexto

2.3 SMT

Los Satisfiability Modulo Theories solvers (SMT solvers) son herramientas que permiten trabajar
con predicados lógicos, y resolver problemas de decisión usando una serie de teorías expresadas
en lógica de primer orden con igualdad. La lógica de primer orden se distingue de la lógica
proposicional en que la primera hace uso de variables cuantificables. Así, algunos ejemplos de
teorías usadas con frecuencia son la teoría de números reales, la de enteros, o incluso de otras
estructuras de datos como listas, vectores, vectores de bits, etc.

En realidad, los SMT representan generalizaciones del problema de satisfacibilidad booleana
(Boolean SAT ). Sin embargo, permiten una expresividad mucho mayor que la disponible con
fórmulas booleanas. Esto es así porque es posible tratar problemas a un nivel más alto, por
ejemplo en el conjunto de los enteros, en lugar de hacerlo a nivel de bits con variables booleanas.

En el ámbito que presentamos, se hace necesario el uso de los SMT solvers a la hora de
procesar las pre y postcondiciones presentes en el modelo.

2.4 Lógica temporal

La lógica temporal presenta proposiciones lógicas cuyo valor es condicionado por el tiempo.
A diferencia de la lógica clásica, en la cual las proposiciones se evalúan a un valor estático,
una expresión en lógica temporal podrá cambiar de valor dependiendo del momento en el que
se evalúe. El uso de este tipo de lógica proporciona una expresividad mucho mayor, y ofrece
una herramienta extremadamente útil a la hora de interrogar los modelos de nuestro sistema.
Se distinguen, principalmente, dos corrientes dentro de la lógica temporal: Linear Temporal
Logic (LTL) y Computation Tree Logic (CTL). En el caso que nos atañe, nos centraremos en
la lógica CTL, ya que es la que mejor se adapta al tipo de consultas que queremos expresar.
Computation Tree Logic (CTL) es un tipo de lógica temporal que considera la existencias de
varias líneas temporales paralelas, que representan posibles evoluciones futuras, ramificaciones.
Esto encaja con la idea de grafo de alcanzabilidad, que presenta ramificaciones según elecciones
que se tomarán en el sistema. Es esta lógica la que nos permitirá expresar fórmulas que usaremos
para consultar el comportamiento del sistema.

2.5 Model checking

La comprobación de modelos, o model checking, es una técnica de verificación formal usada
para verificar la corrección de sistemas, especialmente software o hardware. La validación supone
una parte muy importante dentro de la fase de diseño. Con el fin de realizar dicha validación,
existen diversas técnicas, entre las que destacan las de simulación, testeo, o verificación formal.
Las técnicas de simulación y testeo exploran algunos de los posibles comportamientos del sistema
estudiado, en ciertos entornos. Sin embargo, dejan abierta opción a la existencia de fallos en casos
no explorados. Las técnicas de verificación formal, por el contrario, realizan una comprobación
exhaustiva del conjunto de escenarios posibles, partiendo de una especificación dada. Así, cuando
un diseño es correcto según una técnica de verificación formal, queda garantizado que el diseño
está libre de fallos. Como es lógico, la detección de fallos queda supeditada a la corrección de la
especificación proporcionada.

Se denominan verificaciones formales a los métodos basados en lógica para comprobar la
corrección de un sistema. A su vez existen diversas técnicas dentro de las verificaciones formales.
Nos centraremos en la técnica de model checking. La idea principal del model checking consiste
en describir un sistema y sus estados por medio de una especificación formal, y aplicar un

7



Eduardo González López de Murillas

verificador lógico automático que verifique su corrección. Para esto, debemos contar con tres
elementos básicos:

• Especificación formal: modelo M de una determinada teoría lógica.

• Propiedad a verificar: Fórmula φ de un lenguaje lógico.

• Método de verificación: model checking, que comprobará si un modelo M satisface la pro-
piedad φ. M | = φ

En el trabajo que se presenta, se utiliza la técnica de model checking sobre fórmulas en
lógica temporal. Por lo tanto, el modelo M se corresponde con un sistema de transiciones (un
grafo de alcanzabilidad que habrá sido generado a partir de una U-RDF-PN), la fórmula será
enunciada en un lenguaje de lógica temporal (CTL en nuestro caso, extendido con semántica
y proposiciones lógicas de primer orden), y la técnica de verificación comprobará si el modelo
verifica dicha fórmula.

8



Capítulo 3 | Estado del arte

La revisión del trabajo relacionado para abordar los objetivos de este Trabajo Fin de Máster
se centra en tres áreas bien diferenciadas. En primer lugar, se analizan los principales trabajos
y herramientas que consideran la adición de aspectos semánticos a los workflows científicos. En
segundo lugar, se abordarán los principales estándares y enfoques para realizar model checking.
La adición de anotaciones paramétricos sobre el modelo inicial de las U-RDF-PN implica la
utilización de SMTs, por lo que, finalmente, se estudian los diferentes mecanismos para atacar
este problema.

3.1 Semántica en Workflows científicos

En el Capítulo 1, se ha hablado de la importancia que han cobrado los workflows científicos
en la actualidad. Esto ha motivado el desarrollo en este área, introduciendo nuevas técnicas y
paradigmas, tratando de mejorar el comportamiento de dichos workflows.

En este trabajo, tratamos de resaltar la importancia de realizar tareas de verificación sobre
este tipo de workflows, dada su gran complejidad computacional y coste en tiempo y recursos.
Estas características proporcionan motivos más que suficientes para invertir esfuerzo en asegurar
su corrección, de forma previa a la ejecución de los experimentos, con el fin de ahorrar costes en
presupuesto y tiempo que podrían ocasionar errores de diseño de los workflows.

Como se ha mencionado, diversas técnicas han sido aplicadas a este campo. Entre ellas,
destaca la inclusión de aspectos semánticos en la descripción de los workflows. Esto ha aportado
numerosas ventajas, como mejoras en la descripción y descubrimiento de servidos, recursos o
workflows, o el análisis de datos de provenance.

Una de las posibles aplicaciones de la utilización de aspectos semánticos es el modelado de
workflows científicos. [5] fue una de las primeras propuestas en el ámbito de la investigación, que
combina metadatos y servicios Web ofreciendo soporte para workflows científicos y presenta cómo
los descriptores semánticos son incorporados a la tecnología de servicios.[7] analiza las ventajas
de usar aspectos semánticos en workflows científicos, y pone de manifiesto su utilidad a la hora de
descubrir y ejecutar workflows, la reutilización de los mismos, y cómo esta información semántica
puede ser utilizada como datos de provenance. Vemos que estas propuestas introducen técnicas
de tecnología de servicios al ámbito de los workflows científicos.

En [28] se incluye información de calidad en workflows científicos, utilizando una aproxima-
ción basada en anotaciones RDF de ontologías OWL DL. [24] propone soporte de reasoning en
workflows científicos, y utiliza dicha técnica en descubrimiento de recursos. Destaca el plantea-
miento del proyecto myExperiment [14]. Éste, presenta una red social basada en tecnologías de la
Web semántica que facilita la búsqueda y compartición de workflows científicos de gran utilidad
en investigación. Como parte de este proyecto, [27] propone una ontología OWL DL que permite
que los datos sean publicados en un formato RDF estándar mejorando su descubrimiento.

Existe una gran iniciativa, dentro del análisis de workflows científicos, centrada en el estu-
dio de datos de provenance. Dichos datos son de una gran relevancia en el mundo científico,

9



Eduardo González López de Murillas

permitiendo la reproducción de experimentos, detección de comportamientos anómalos y pro-
porcionando información de gran utilidad a la hora de verificar la autenticidad de los datos. En
este campo se ha realizado un gran esfuerzo en la captura y la compartición de los datos, que
son obtenidos como resultados de la ejecución de los experimentos. Existen trabajos que tratan
de mejorar el uso y análisis de dichos datos, como [30], que introduce el uso de base de datos
relacionales para su análisis, o [11] que presenta un nuevo lenguaje de consulta para expresar
preguntas sobre dichos datos.

Cabe destacar la reciente aparición de una propuesta de entorno de verificación llamado
CosyVerif 1. Esta iniciativa, propuesta por el grupo MeFoSyLoMa 2, consiste en un entorno que
trata de integrar diversos formalismos de especificación y verificación de sistemas dinámicos,
además de herramientas de visualización que faciliten su uso. A día de hoy, soportan autómatas
y Redes de Petri como formalismos de modelado, e integran técnicas de análisis estructural,
por medio de cálculo de invariantes, así como análisis de comportamiento, usando técnicas de
construcción de grafos de alcanzabilidad simbólicos, unfolding o simulaciones estocásticas, entre
otras. Aunque dicho entorno se encuentra en sus fases iniciales, y pretende ser extendido con más
formalismos y técnicas, no ofrece soluciones inmediatas a las carencias detectadas anteriormente,
como verificación en workflows científicos y modelado de flujo de datos.

Por tanto, vemos que no hay estudios que traten de analizar el comportamiento de workflows

antes de conocer los resultados de su ejecución y recursos requeridos. En [21] se presenta el
formalismo de las Redes de Petri Unarias Anotadas (U-RDF-PNs) y la técnica de Model Checking

RDF, que son aplicados a procesos de negocio. Es este el formalismo en el que nos basamos para
la realización de este trabajo, aplicándolo a los workflows científicos y mostrando su validez en
este campo.

3.2 Estándares y herramientas para el Model checking

En la Tabla 3.1 se presentan las principales (por su utilización en la literatura y su grado de
madurez) herramientas de Model Checking, que pueden clasificarse según varios criterios. En la
segunda columna se presenta qué técnica o técnicas de Model Checking utiliza cada herramienta
para realizar la verificación. La tercera columna lista los lenguajes o formalismos de modelado
que soportan, siendo el lenguaje utilizado para especificar el sistema que se verificará. La cuarta
columna indica qué lenguajes se pueden usar para especificar propiedades a verificar sobre el
modelo. La quinta columna muestra el lenguaje o lenguajes de programación utilizados en la
implementación de la herramienta. Por último, se muestran las plataformas sobre las que se
puede ejecutar.

Una característica importante de los trabajos presentados en la tabla es que nos hemos
concentrado en aquellas alternativas más representativas que soporten CTL como lenguaje de
propiedades. Esto es así ya que CTL representa el lenguaje de lógica temporal que mejor se ajusta
a la naturaleza de los modelos que utilizamos. CTL permite expresar consultas que aprovechan
la ramificación del modelo, en nuestro caso una estructura de Kripke anotada.

Si revisamos la tabla vemos que ninguna de las alternativas admite como lenguaje de mo-
delado las Redes de Petri, excepto la herramienta CosyVerif, de la que ya se ha hablado en la
sección 3.1. Esto es un dato muy significativo, ya que la utilización de cualquiera de las herra-
mientas para analizar modelos expresados en términos de las U-RDF-PN requeriría un trabajo

1Entorno de verificación software CosyVerif. Disponible en http://www.cosyverif.org/
2Grupo MeFoSyLoMa, asociación formada por los laboratorios Cedric (Cnam), IBISC (Univ. Evry), LACL

(Univ. Paris 12), LIP6 (UPMC), LIPN (Univ. Paris 13), LRDE (Epita), LSV (École Normale Supérieure de
Cachan) y LTCI (TELECOM ParisTech). Más información disponible en http://www.mefosyloma.fr/

10



Capítulo 3. Estado del arte

Nombre

Técnica de

Model

Checking

Lenguaje

de

modelado

Lenguaje

de propie-

dades

Lenguaje de

programa-

ción usado

Plataforma

APMC [19]
Aproximado y
probabilístico

Reactive
Modules

PCTL,
PLTL

C Unix

ARC [1] Plano AltaRica
µ-calculus,
CTL*

ANSI C Unix

BANDERA [10]
Análisis de
código

Java CTL, LTL Java
Windows y
Unix

CADENCE
SMV [26]

Plano

Cadence
SMV,
SMV,
Verilog

CTL, LTL ?
Windows y
Unix

CWB-NC [9]
Plano y
temporizado

CCS, CSP,
LOTOS,
TCCS

AFMC,
CTL,
GCTL

SML of New
Jersey

Windows y
Unix

GEAR [3] Plano ?
AFMC,
CTL,
µ-calculus

Java
Windows y
Unix

MCMAS [25]
Plano y
epistémico

ISPL
CTL,
CTLK

C++
Windows,
Unix,
MacOS

MRMC [22]
Tiempo real y
probabilístico

Plain MC

CSL,
CSRL,
PCTL,
PRCTL

C
Windows,
Linux,
MacOS

NuSMV [8] Plano SMV
CTL, LTL,
PSL

C
Unix,
Windows,
MacOSX

PRISM [20] Probabilístico

PEPA,
PRISM
language,
Plain MC

CSL,
PLTL,
PCTL

C++, Java
Windows,
Linux,
MacOS

TAPAs [6] Plano CCSP
CTL,
µ-calculus

Java
Windows,
Unix,
MacOS

CosyVerif [2]
Plano,
simbólico
y estocástico

Petri Nets,
autómatas

? Java
Windows,
Unix,
MacOS

COMBAS [15]
Semántico y
paramétrico

U-RDF-PN CTL Java
Windows,
Unix,
MacOS

Tabla 3.1: Relación de herramientas de Model Checking con soporte CTL.

11



Eduardo González López de Murillas

de adaptación complejo que considere las limitaciones y la expresividad del modelo de entrada
del sistema destino.

Además, ninguna de las principales herramientas contempla la introducción de semántica, por
lo que la expresividad dentro del modelo está limitada. Resulta evidente que estas alternativas
no son válidas para analizar los modelos de U-RDF-PN, tan siquiera mediante la adaptación de
éstos a los modelos de entrada de las herramientas por la carencia de soporte para la semántica
en los mismos. Esto refuerza el objetivo inicial de proporcionar una herramienta que acepte
modelos más expresivos reforzados con anotaciones semánticas, así como un lenguaje de consulta
que aproveche dicha expresividad. Como se ha descrito anteriormente, en este trabajo se propone
definirlos como redes de petri anotadas semánticamente (U-RDF-PN), con descripción del flujo
de datos y dependencias, y el lenguaje CTL extendido con semántica.

3.3 Estándares y herramientas de SMT

Respecto al uso de SMT solvers, existe una amplia variedad de herramientas entre las que elegir.
Entre las características más representativas están: la colección de teorías y lenguajes soportados,
el lenguaje de programación en que están implementados y su portabilidad y reusabilidad. Sin
embargo, hay otros aspectos a tener en cuenta, como la actividad de la comunidad de usuarios,
la frecuencia con que se publican nuevas versiones, y la calidad de la documentación. De acuerdo
con estos conceptos, la lista de opciones se reduce considerablemente. CVC, OpenSMT y STP
representan los proyectos más activos. STP sólo soporta fórmulas en la teoría de bit-vectors y
arrays, por lo tanto no supone una solución válida para nuestro problema, ya que la teoría básica
que necesitamos es la de aritmética lineal, en concreto sobre los reales, enteros y booleanos.
A pesar de que OpenSMT es una opción válida, elegimos CVC porque es una alternativa más
estable y apta para entornos de producción. En concreto, elegimos CVC3, que es una versión
estable, a diferencia de CVC4 que se encuentra en fase beta.

En cuanto a la descripción de predicados para realizar el proceso de model checking, cada
año, desde el 2005, se celebra la competición Satisfiability Modulo Theories Competition (SMT-
COMP), con el propósito de impulsar el desarrollo de los SMT solvers y promover la adopción de
la librería estándar de SMT (SMT-LIB 3). SMT-LIB es un formato diseñado por la comunidad
que trata de unificar la descripción de teorías y las entradas/salidas de los solvers, así como pro-
porcionar una colección de benchmarks para fomentar el desarrollo de este tipo de herramientas.
Por tanto, comparado con otros formatos como CVC o DIMACS, SMT-LIB representa la opción
más recomendable para mantener la compatibilidad y portabilidad de nuestros predicados.

3Disponible en http://www.smtlib.org/

12



Capítulo 4 | COMBAS: un
Comprobador de Modelos
Basado en Semántica

El objetivo de este trabajo es presentar el framework COMBAS, el cual permite cubrir algunas de
las carencias en las herramientas y técnicas existentes en el campo de la verificación de workflows

científicos, identificadas en la sección 3.
En las siguientes secciones se irán desgranando las características del framework, así como

el modo de trabajo que su uso plantea. Se abordará el proceso de verificación desde el punto
de vista del diseñador de sistemas, y más adelante nos adentraremos en el diseño de COMBAS.
Una de las contribuciones de este trabajo es la incorporación al framework de soporte para tratar
modelos y consultas paramétricas, y es explicada en mayor detalle en la sección 4.2. Concluiremos
el capítulo mostrando los detalles de su implementación.

4.1 Proceso de verificación

Desde el punto de vista del ingeniero o diseñador de sistemas (e.g. un científico o un analista
de procesos de negocio), existen una serie de pasos a seguir en el proceso de verificación que la
herramienta propone. Estos pasos, que se corresponden con los componentes y estructuras de
datos descritos en la Figura 4.1, se enumeran a continuación:

1. En primer lugar, el ingeniero debe diseñar el wofkflow del proceso usando una Red de
Petri. Para dicho fin, puede usar herramientas gráficas como Renew [23]. Tanto el marcado
inicial del modelo, como el propio modelo deben ser anotados semánticamente. Un asistente
gráfico será de ayuda en este proceso.

2. A continuación, se llevan a cabo una serie de procesos transparentes para el usuario, quien
puede revisar los resultados de cada fase. El generador de grafos de alcanzabilidad toma
los ficheros del paso anterior y genera dos salidas: el grafo de alcanzabilidad (RG), y un
conjunto de ficheros que contienen la relación entre los estados y sus marcados, así como
los RDFGs (grafos RDF) correspondientes a cada marcado. También se obtiene la repre-
sentación gráfica del grafo de alcanzabilidad. Todos estos resultados son visibles por medio
de un visor Web, incluido en la aplicación Web interface de COMBAS.

3. Ahora, es necesario crear la fórmula CTL que se verificará con el Model checker. El diseñador
puede construir dicha fórmula usando el interfaz de usuario proporcionado por el editor
web.

4. Finalmente, el model checker usa la fórmula CTL, junto con el RG para computar y generar
la salida. Dicha salida consiste en una colección de ficheros que representan y relacionan los

13



Eduardo González López de Murillas

estados del RG validados con los fragmentos correspondientes de la fórmula CTL. Tanto
los ficheros de entrada como los de salida pueden ser visualizados haciendo uso del interfaz
Web de forma sencilla e intuitiva.

RG Generator

Legend

Process flow

Data flow

Model Checker

COMBAS

Initial marking
& annotations

Petri Net
(PNML Format)

Reachability Graph
(XML Format)

Formula results
(XML Format)

CTL Formula
(XML Format)

Web Interface

Figura 4.1: Arquitectura simplificada del framework COMBAS.

4.2 Diseño

La Figura 4.2 muestra la arquitectura del framework, el cual integra un conjunto de herramientas
y técnicas que cubren el ciclo completo de verificación y análisis de workflows anotados semánti-
camente: desde la generación de modelos U-RDF-PN, el grafo de alcanzabilidad correspondiente
y su estructura de Kripke, la creación y edición de consultas y formulas CTL, la ejecución del
proceso de model checking y, por último, la visualización y revisión de resultados.

Todos los componentes en COMBAS ofrecen un interfaz sencillo y flexible, y se ocultan al
usuario las tareas complejas como la generación del RG, el almacenamiento en la base de datos
semántica y el proceso de verificación. Durante el proceso de model checking, se utiliza una base
de datos RDF (almacén de tripletas). El framework COMBAS permite utilizar diversas bases de
datos RDF, como AllegroGraph RDFStore, o Virtuoso RDF Store por ejemplo. El único requisito
que la base de datos debe cumplir es que sea accesible por medio de un interfaz SPARQL. En
este trabajo, se ha utilizado Virtuoso RDF Store. Tras el procesamiento, se obtiene el resultado
de la verificación de la fórmula. Además, es posible visualizar los estados de RG utilizando un
visor basado en un interfaz Web. De este modo, es posible encontrar situaciones específicas en
las que un predicado viola alguna situación deseada, obteniendo una mejor comprensión del
comportamiento del workflow y facilitando la mejora del mismo.

4.2.1 Generador del grafo de alcanzabilidad (RG Generator)

El proceso de generación del grafo de alcanzabilidad requiere de un modelo válido como entrada,
en nuestro caso una red de Petri de tipo U-RDF-PN, con un marcado inicial que se corresponda
con el estado inicial del sistema [21]. Las anotaciones semánticas pueden aparecer asociadas a
tres elementos diferentes de la red:

• Arcos: son anotados con patrones RDF. Si el arco es de entrada (de lugar a transición), el
patrón RDF representa la entrada (input) de la transición correspondiente, así que dicho
patrón debe ser satisfecho por alguno de los grafos RDF que marcan en lugar de origen
de dicho arco para que la transición se sensibilice. Si el arco va de la transición a un
lugar, el patrón RDF representa la salida (output), y por tanto cómo será el grafo RDF que

14



Capítulo 4. COMBAS: un Comprobador de Modelos Basado en Semántica

Figura 4.2: Arquitectura del framework de model checking COMBAS.

marcará el lugar de destino. En este último caso, las variables del patrón serán substituidas
por valores concretos, obtenidos tanto del binding de las entradas como generados por la
transición.

• Transiciones: contienen anotaciones, que llamaremos guardas, que representan la precon-
dición. Si la transición está sensibilizada, se evalúa la guarda y en caso de que la guarda
sea cierta se procede al disparo.

• Lugares: pueden contener grafos RDF, que representan el marcado. Un lugar puede tener
una marca, representada por un grafo RDF, puede tener varias, que corresponderá con
varios grafos RDF, o puede no estar marcado, con lo cual no habrá ningún grafo RDF
asociado. Cada grafo contendrá tripletas RDF, en las que, además, pueden aparecer blank

nodes (bnodes) que representan parámetros.

La generación del grafo de alcanzabilidad está basada en el algoritmo clásico usado en compu-
tación de grafos de alcanzabilidad en redes de Petri, tras hacer las modificaciones necesarias para
adaptarlo a la naturaleza semántica de las anotaciones [21]. El grafo de alcanzabilidad generado
se almacena como tripletas RDF, de acuerdo con la ontología descrita en la Figura 4.3.

15



Eduardo González López de Murillas

Figura 4.3: Ontología del grafo de alcanzabilidad paramétrico.

En este trabajo, se considera la extensión paramétrica sobre las U-RDF-PN definidas en [21].
El concepto es muy simple: añadir parámetros al modelo, en lugar de valores estáticos. De este
modo, es posible representar casos más generales de un proceso o un workflow añadiendo propo-
siciones lógicas a las anotaciones, que luego etiquetarán cada estado en el grafo de alcanzabilidad.
Las guardas de las transiciones también deben ser definidas haciendo uso de dichas anotaciones.

A continuación se describirán las principales diferencias entre el enfoque paramétrico y el
planteamiento de model checking ordinario presentado en [21] respecto a la generación del grafo
de alcanzabilidad. En primer lugar, se tomará como entrada una red U-RDF-PN paramétrica,
que es una red U-RDF-PN ordinaria anotada con declaraciones paramétricas en algunas de
sus transiciones (como guardas), lugares (como marcado inicial) y arcos (como parte de los
patrones RDFG). Se hizo necesario desarrollar un wrapper que permitiera utilizar un solver

SMT, herramienta crucial para trabajar con lógica y parámetros. De esta forma, el proceso de
generación del grafo de alcanzabilidad es similar al usado para redes U-RDF-PN ordinarias,
excepto por la siguientes consideraciones:

1. El estado inicial no está formado únicamente por el marcado inicial de cada lugar de la red,
sino también por el marcado inicial paramétrico de cada lugar. En el caso de que no exista
tal marcado, la declaración lógica true será considerada como marcado inicial paramétrico.

2. Para cada transición con una guarda paramétrica, se debe comprobar la validez de dicha
guarda. Esto es posible utilizando un SMT solver que comprobará si la conjunción de las
declaraciones lógicas en la guarda y las del estado actual es satisfacible.

3. Cuando se genera un nuevo estado en el RG, su marcado paramétrico está formado por la
conjunción del marcado paramétrico del estado padre y la guarda de la transición disparada.

4. Cuando se inserta un nuevo estado en el almacén, es necesario comprobar que es único.
Para ello, el generador debe comparar la parte semántica, así como la parte paramétrica.
Cuando compara esta última, se usa el SMT solver para comprobar la equivalencia de
ambas declaraciones lógicas (P y Q), observando que la siguiente fórmula es satisfacible
P → Q ∧Q → P .

4.2.2 Consideraciones de la extensión paramétrica

La incorporación del análisis paramétrico supone diversos cambios en la forma de especificar
el modelo de entrada y en la expresión de las fórmulas a verificar. En cuanto al modelo, los
parámetros son usados en ciertos elementos de la red U-RDF-PN:

• Lugares: los parámetros aparecen en los grafos RDF de marcado, expresados como blank

nodes (bnodes). No representan un valor concreto, sólo un identificador de parámetro.

16



Capítulo 4. COMBAS: un Comprobador de Modelos Basado en Semántica

• Arcos: contienen patrones RDF. En dichos patrones no se hace referencia explícita a los
parámetros, sin embargo, las variables que componen estos patrones pueden tomar un
parámetro como valor en el emparejamiento (binding) antes de disparar una transición.

• Transiciones: las denominadas guardas son proposiciones lógicas en lenguaje SMT-Lib, que
representan la precondición de la transición. Estas proposiciones contienen referencias a las
variables que forman parte del binding o emparejamiento que se produce al asociar grafos
RDF a patrones RDF presentes en los arcos de entrada de la transición. Si una guarda hace
referencia a alguna variable de los patrones presentes en los arcos de entrada, se substituye
por el valor que ha tomado en el binding y se procede a su validación usando el wrapper

SMT. Si la proposición se evalúa a cierta, la transición es disparable.

Si atendemos a la expresión de fórmulas, la principal diferencia radica en la adición del ele-
mento literal SMT −EXP que contiene la proposición paramétrica a verificar. Más información
sobre las fórmulas se detalla en la sección 4.2.4.

4.2.3 Interfaz Web (Web Interface)

Las funcionalidades básicas del interfaz Web son: 1) visualización del grafo de alcanzabilidad; 2)
creación y edición de fórmulas CTL que usará el model checker ; y 3) revisión de los resultados
del proceso de model checking. El objetivo inicial fue integrar todas estas funcionalidades en una
única interfaz. A continuación se mostrarán sus componentes con más detalle.

4.2.3.1 Visualización del RG

Como se ha mencionado anteriormente, la salida del generador de RG consiste en un fichero XML
principal que describe la estructura del grafo, y una colección de ficheros XML que contienen
los grafos RDF que marcan cada estado del RG. En el caso de que se trate de un sistema para-
métrico, también se generarán varios ficheros SMT-Lib. Estos ficheros contienen los predicados
paramétricos correspondientes a cada estado. El grafo de alcanzabilidad computado contendrá
una gran cantidad de estados, alrededor de cientos si es un modelo simple, pero se incrementa-
rá exponencialmente conforme la complejidad crezca. Por lo tanto, la revisión del grafo puede
convertirse en una tarea tediosa o prácticamente imposible. Esta fue una de las principales razo-
nes para desarrollar un visor, que represente el grafo como un diagrama, de forma que sea más
sencillo revisar el marcado de cada estado.

La aplicación desarrollada hace posible seleccionar un RG determinado, y visualizar su es-
tructura de forma gráfica, permitiendo consultar el marcado de forma sencilla e intuitiva.

4.2.3.2 Edición de fórmulas

Dado el propósito de este trabajo, es importante proporcionar herramientas efectivas para la edi-
ción de fórmulas CTL. Representa un beneficio evidente para el proceso de verificación, evitando
errores de escritura, y mejorando la experiencia de usuario, ya que reduce la curva de aprendizaje
desde el punto de vista del usuario, e incrementa la rapidez de creación y edición de fórmulas.
Es por esto por lo que es crucial diseñar una herramienta tan intuitiva como sea posible. Parecía
lógico desarrollar un constructor de fórmulas que proporcionara una lista de componentes y un
mecanismo para incluirlas dentro de la fórmula de forma interactiva. También, se pensó que sería
interesante incluir una fase de verificación para asegurar que la entrada está bien construida,
evitando errores sintácticos.

Entre las funcionalidades de esta parte, destaca la habilidad de crear y editar fórmulas,
visualizarlas de forma gráfica y la creación interactiva usando interfaces de usuario intuitivos.

17



Eduardo González López de Murillas

Figura 4.4: Ontología de la fórmula CTL con elementos paramétricos.

4.2.3.3 Revisión de resultados del model checker

Un paso muy importante dentro del proceso de model checking es la revisión de resultados. En
esta fase, el usuario ha de verificar los resultados y analizarlos con el fin de identificar los errores,
si existen, del modelo. Por lo tanto es crucial proveer herramientas para tratar la salida de nuestro
model checker.

El interfaz desarrollado permite seleccionar un RG e inspeccionar el resultado de la ejecución
de una determinada fórmula, usando la visualización del RG, y comprobar el marcado y la
satisfacibilidad de cada componente de la fórmula en los estados del RG.

4.2.4 Comprobador de modelos (Model Checker)

La ontología representada en la Figura 4.4 se usa para especificar la formula CTL de entrada para
el model checker. Puede contener cualquiera de los operadores CTL unarios AF , EF , AX, EX,
AG, EG y NOT , o binarios AND, OR, AU , EU y IMP , o cualquiera de los nodos terminales
TRUE, FALSE, RDFG, RDFGP y SMT −EXP , siendo RDFG un grafo RDF, RDFGP a
un patrón RDF, y SMT − EXP una declaración lógica en formato SMT-Lib.

La otra entrada de nuestro model checker es el grafo de alcanzabilidad, cuyo proceso de
generación ha sido explicado anteriormente. Debido a la posibilidad de que dicho grafo contenga
información paramétrica, necesitamos disponer de un SMT solver. Por lo tanto, se requiere el
mismo wrapper mencionado en 4.2.1.

El proceso de verificación es similar al usado con las U-RDF-PN ordinarias y fórmulas CTL
tal y como se describe en [21]. La principal diferencia radica en el nodo terminal SMT −EXP ,
el cual representa una declaración lógica en formato SMT-Lib. Con el fin de saber si un estado
satisface una declaración, es necesario usar el wrapper. Por lo tanto, el marcado paramétrico de
dicho estado debe ser comparado a la declaración de la fórmula. Siendo P la parte paramétrica
del estado, y Q el contenido del nodo SMT−EXP de la fórmula, se usa la expresión lógica P ∨Q
para comprobar la validez del marcado paramétrico del estado (P ) y la expresión de la fórmula
(Q). De esta forma sabremos si ambas declaraciones lógicas son compatibles o contradictorias.

4.3 Descripción de algoritmos

Anteriormente se ha descrito el diseño de los componentes que conforman el framework COMBAS.
Sin embargo, los detalles sobre el funcionamiento de ciertos algoritmos ha sido omitido por mo-
tivos de brevedad. A continuación se presentan, con mayor nivel de detalle, los principales al-
goritmos del sistema, como el de generación del grafo de alcanzabilidad, o el de model checking.

18



Capítulo 4. COMBAS: un Comprobador de Modelos Basado en Semántica

El interés de presentar dichos algoritmos es presentar las modificaciones introducidas en este
trabajo para adaptar su funcionamiento al enfoque propuesto.

4.3.1 Algoritmo de generación del RG

El algoritmo utilizado para la generación del grafo de alcanzabilidad está basado en el algorit-
mo clásico de generación para redes de Petri. Sin embargo, presenta numerosas modificaciones
dada la naturaleza semántica de la variante que usamos, así como la extensión paramétrica. A
continuación se tratará de definir el algoritmo adaptado.

En primer lugar, como elementos y estructuras de datos utilizadas, encontramos:

• Pila de No revisados: pila de marcados del RG (mi) de los que aún se deben obtener los
estados sucesores.

• Lista de estados del RG: conjunto de estados de RG que ya han sido generados. Esta lista
representa la base de datos.

• Red de Petri del modelo inicial: modelo, del que se obtendrá el RG, que contiene la estruc-
tura de la red además de las anotaciones semánticas y paramétricas.

• Tabla hash de estados del RG: tabla hash que, por medio de una clave asociada a cierta
característica de cada estado, permite comprobar la existencia previa de forma rápida. La
clave utilizada es un hash de una cadena que especifica el número de marcas que el estado
posee para cada lugar de la red, siempre en un orden prefijado. Aunque la clave no es única
por estado, sí que divide el conjunto de ellos en pequeñas listas, que quedan almacenadas
en la citada tabla hash asociadas a su código. De este modo es posible saber si un estado
no existe previamente (si su hash no existe en la tabla), o en caso de que exista, ha de ser
comparado con un número de estados mucho menor que el total de los generados hasta el
momento.

• Tabla hash de marcado paramétrico por estados: tabla que asocia a cada estado generado
del RG, su marcado paramétrico.

• Tabla hash de guardas en transiciones: esta tabla utiliza como clave el nombre de la tran-
sición, y asocia a cada una de ellas la guarda paramétrica expresada en el modelo. Aunque
esta información ya está definida de forma implícita en el modelo almacenado en la ba-
se de datos, mantener esta estructura en memoria mejora el rendimiento y evita acceder
repetidamente a los mismos datos.

Una vez vistas las estructuras de datos, se enumeran los pasos, a grandes rasgos, que el
algoritmo sigue en el proceso de generación:

1. Procesamiento del fichero PNML de la red de Petri anotada para introducirla en el Triple
Store como RDF, así como la información asociada a las anotaciones.

2. Inicialización del SMT solver con los parámetros definidos en la red.

3. Introducción del marcado inicial m0 en la pila de No revisados, en la base de datos y en
las tablas hash de estados y de marcados paramétricos.

4. Bucle principal: mientras (No revisados != vacía) {

(a) Desapilado de la cima de No revisados (mi)

(b) Obtención de las transiciones del modelo sensibilizadas por el marcado mi

19



Eduardo González López de Murillas

(c) Cálculo de posibles bindings para cada transición, y verificación de guardas (usando
el SMT) para cada binding.

(d) Generación de los marcados resultantes de las transiciones disparadas

(e) Bucle: para cada mj generado en el paso anterior {

i. Comprobación de la existencia de un estado equivalente a mj {

A. Si existe, no se hace nada.

B. Sino, se añade a la base de datos, se apila en No revisados, se añade a la tabla
hash de estados y a la de marcados paramétricos.

ii. Enlace del estado mi con el estado mj como sucesor.

(f) Si no se generó ningún marcado, enlazar el estado mi con sí mismo, para convertirlo
en un estado de deadlock o final.

5. Generación del XML de descripción del RG a partir de la representación RDF.

Tras estos pasos, el grafo de alcanzabilidad correspondiente se encontrará almacenado en la
base de datos, así como en ficheros XML devueltos como resultado del proceso.

Como anotación, cabe destacar que, gracias a las optimizaciones introducidas añadiendo
tablas hash y división del espacio de estados, es posible reducir el tiempo de generación de forma
significativa. Esto queda demostrado aplicando el algoritmo al ejemplo presentado anteriormente
en [15], en el que, para un caso complejo del workflow First Provenance Challenge, en el que se
generan 11664 estados, el tiempo de cómputo original era de 44 horas y 23 minutos, y se vio
reducido, ejecutándose sobre la misma plataforma y configuración, a 12 horas y 14 minutos.

4.3.2 Algoritmo de model checking

El model checker desarrollado basa su técnica en el algoritmo de etiquetado propuesto en [12],
pero adaptado a las U-RDF-PN, tal y como se presenta en [21]. Sin embargo, ha sido necesario
introducir modificaciones para soportar los aspectos paramétricos con los que se extienden las
U-RDF-PN en este trabajo. Ya se ha explicado anteriormente cómo se trata este aspecto, sin
embargo no se detalla cómo está estructurado el algoritmo.

Podemos establecer una serie de elementos y estructuras de datos utilizados por el algoritmo:

• Lista de estados del RG: representa la base de datos, en la que se almacena el RG, sus
anotaciones semánticas y paramétricas.

• Fórmula RDF-CTL: representa la fórmula a analizar, almacenada en la base de datos
subdividida en subfórmulas anidadas.

El algoritmo consta de los siguientes pasos que determinan el proceso de model checking

planteado:

1. Carga de la fórmula, en formato XML, a la base de datos, transformándola en RDF.

2. Carga del modelo, en formato XML, a la base de datos en formato RDF. En el caso de que
el modelo ya esté almacenado, se especifica el identificador del mismo dentro del almacén
de tripletas.

3. Inicialización del SMT con los parámetros definidos en la red asociada al modelo.

4. Se selecciona el nodo raíz de la fórmula, f0 y el nodo raíz del modelo (estado inicial), m0.

20



Capítulo 4. COMBAS: un Comprobador de Modelos Basado en Semántica

5. Se llama a la función SAT (f0,m0), la cual devolverá cierto o falso, dependiendo de si el
estado inicial satisface dicha fórmula.

6. Generación de la colección de ficheros XML que indican qué partes de la fórmula se satis-
facen en cada estado del RG. Esto conforma el contraejemplo, en caso de no validarse, o el
ejemplo, en caso de que el modelo valide la fórmula.

A su vez, vemos que se hace una llamada al algoritmo SAT . Esta función toma dos paráme-
tros: 1) fi, que representa el nodo de la fórmula a verificar; 2) mj , estado del RG sobre el que
verificar la subfórmula fi. Su funcionamiento se presenta a continuación:

1. Se verifica si fi ya ha sido comprobado para mj y, si es así, se devuelve el valor correspondiente.

2. Sino, identificamos el tipo de subfórmula {

(a) fi == OR:

i. Si SAT (fi.left(),mj) : setChecked(fi,mj , true) y devolver true.

ii. Sino, si SAT (fi.right(),mi) : setChecked(fi,mj , true) y devolver true.
iii. Sino: setChecked(fi,mj , false) y devolver false.

(b) fi == AND:

i. Si SAT (fi.left(),mj) {

A. Si SAT (fi.right(),mj) : setChecked(fi,mj, true) y devolver true.

B. Sino: setChecked(fi,mj, false) y devolver false.
ii. Sino: setChecked(fi,mj , false) y devolver false.

(c) fi == NEG:

i. Si SAT (fi.phi(),mj) : setChecked(fi,mj, false) y devolver false.

ii. Sino: setChecked(fi,mj , true) y devolver true.

(d) fi == TRUE:

i. Devolver true.

(e) fi == FALSE:

i. Devolver false.

(f) fi == AF:

i. Si SAT (fi.phi(),mj) : setChecked(fi,mj, true) y devolver true.

ii. Sino, si isChecking(fi,mj) : setChecked(fi,mj , false) y devolver false.

iii. Sino {
A. setChecking(fi,mj)

B. Si fi.hasSuccessors() : Para cada sucesor mjk {
a. Si SAT (fi,mjk) : siguiente.

b. Sino: setChecked(fi,mj , false) y devolver false.

C. Si para todo mjk fue cierto: setChecked(fi,mj, true) y devolver true.
D. Sino: setChecked(fi,mj, false) y devolver false.

(g) fi == AG:

i. Si SAT (fi.phi(),mj) {

A. Si isChecking(fi,mj) : setChecked(fi,mj , true) y devolver true.
B. Sino {

a. setChecking(fi,mj)

b. Para cada mjk sucesor de mj {
i. Si SAT (fi,mjk) : siguiente.

ii. Sino: setChecked(fi,mj , false) y devolver false.

21



Eduardo González López de Murillas

c. Si para todo mjk fue cierto: setChecked(fi,mj , true) y devolver true.
ii. Sino: setChecked(fi,mj , false) y devolver false.

(h) fi == EF:

i. Si SAT (fi.phi(),mj) : setChecked(fi,mj , true) y devolver true.
ii. Sino, si isChecking(fi,mj) : setChecked(fi,mj, false) y devolver false.

iii. Sino {
A. setChecking(fi,mj)

B. Para cada mjk sucesor de mj {
a. Si SAT (fi,mjk) : setChecked(fi,mj, true) y devolver true.

b. Sino: siguiente.
C. Si para todo mjk fue falso: setChecked(fi,mj , false) y devolver false.

(i) fi == EG:

i. Si SAT (fi.phi(),mj) {
A. Si isChecking(fi,mj) : setChecked(fi,mj , true) y devolver true.

B. Sino {
a. setChecking(fi,mj)

b. Para cada mjk sucesor de mj {
i. Si SAT (fi,mjk) : setChecked(fi,mj, true) y devolver true.

ii. Sino: siguiente.
c. Si para todo mjk fue falso: setChecked(fi,mj , false) y devolver false.

ii. Sino: setChecked(fi,mj , false) y devolver false.

(j) fi == AX:

i. Si mj.hasSuccessors() {
A. Para cada mjk sucesor de mj {

a. Si SAT (fi.phi(),mjk) : siguiente.
b. Sino: setChecked(fi,mj , false) y devolver false.

B. Si para todo mjk fue cierto: setChecked(fi,mj , true) y devolver true.
ii. Sino: setChecked(fi,mj , false) y devolver false.

(k) fi == EX:

i. Si mj.hasSuccessors() {
A. Para cada mjk sucesor de mj {

a. Si SAT (fi.phi(),mjk) : setChecked(fi,mj, true) y devolver true.
b. Sino: siguiente.

B. Si para todo mjk fue falso: setChecked(fi,mj , false) y devolver false.
ii. Sino: setChecked(fi,mj , false) y devolver false.

(l) fi == AU:

i. Si isChecking(fi,mj) : setChecked(fi,mj, false) y devolver false.
ii. Sino {

A. setChecking(fi,mj)

B. Si SAT (fi.left(),mjk) {

a. Para todo mjk sucesor de mj {
i. Si SAT (fi.right(),mjk) : siguiente.

ii. Sino, si SAT (fi,mjk) : siguiente.
iii. Sino: setChecked(fi,mj , false) y devolver false.

b. Si para todo mjk fue cierto: setChecked(fi,mj , true) y devolver true.
C. Sino: setCheched(fi,mj , false) y devolver false.

(m) fi == EU:

22



Capítulo 4. COMBAS: un Comprobador de Modelos Basado en Semántica

i. Si isChecking(fi,mj) : setChecked(fi,mj , false) y devolver false.

ii. Sino {

A. setChecking(fi,mj)

B. Si SAT (fi.left(),mjk) {

a. Para todo mjk sucesor de mj {

i. Si SAT (fi.right(),mjk) : setChecked(fi,mj , true) y devolver true.

ii. Sino, si SAT (fi,mjk) : setChecked(fi,mj , true) y devolver true.

iii. Sino: siguiente.

b. Si para todo mjk fue falso: setChecked(fi,mj, false) y devolver false.

C. Sino: setCheched(fi,mj, false) y devolver false.

(n) fi == IMP:

i. Si SAT (fi.left(),mj) {

A. Si SAT (fi.right(),mj) : setChecked(fi,mj, true) y devolver true.

B. Sino: setChecked(fi,mj, false) y devolver false.

ii. Sino: setChecked(fi,mj , true) y devolver true.

(o) fi == RDFG:

i. Si SAT_RDFG(fi,mj) : setChecked(fi,mj , true) y devolver true.

ii. Sino: setChecked(fi,mj , false) y devolver false.

(p) fi == RDFGP:

i. Si SAT_RDFGP (fi,mj) : setChecked(fi,mj , true) y devolver true.

ii. Sino: setChecked(fi,mj , false) y devolver false.

(q) fi == PARAMETRIC:

i. Si SAT_PARAMETRIC(fi,mj) : setChecked(fi,mj , true) y devolver true.

ii. Sino: setChecked(fi,mj , false) y devolver false.

En el pseudocódigo presentado, aparecen llamadas a varias funciones que no habían sido explicadas
anteriormente. A continuación se comenta el significado de cada una de ellas:

• setCheched(fi,mj , boolean) : establece que el estado mj ha sido comprobado usando la fórmula fi,
y el resultado es true o false, dependiendo de la constante booleana que se pase como argumento.

• setChecking(fi,mj) : establece que el estado mj está actualmente siendo comprobado con la
fórmula fi.

• isChecking(fi,mj) : devuelve el valor establecido por la función anterior.

• SAT_RDFG(fi,mj) : verifica si el estado mj verifica el grafo RDF declarado en fi.

• SAT_RDFGP (fi,mj) : verifica si el estado mj verifica el patrón RDF declarado en fi.

• SAT_PARAMETRIC(fi,mj) : verifica si el estado mj verifica la declaración paramétrica espe-
cificada en fi, usando el SMT solver para comprobar si la fórmula P ∧ Q es cierta, siendo P el
marcado paramétrico del estado mj , y Q la declaración paramétrica definida en fi.

4.4 Implementación

La implementación del framework supone la integración de tecnologías muy diversas, tanto para el pro-
cesado de la información semántica, su almacenamiento, el interfaz Web, el procesado de declaraciones
lógicas, y otros aspectos de la herramienta. A continuación se detallan, de forma separada para cada uno
de los componentes del framework, qué tecnologías han sido utilizadas en la implementación.

23



Eduardo González López de Murillas

4.4.1 Generador de RGs

Este componente del framework ha sido desarrollado en el lenguaje Java 1, concretamente usando la
versión 1.6 de la JVM de Oracle. Además, como entorno de programación se ha recurrido a Eclipse 2, el
cual tiene soporte multilenguaje y es muy extensible por medio de plugins.

Una de las librerías más utilizadas es JDOM 3. Ésta, permite tratar y generar, con un API accesible
desde Java, documentos XML 4, lenguaje con el que se codifica la información de intercambio generada
en cada paso de la herramienta.

En el generador de RGs se hace necesario utilizar una base de datos semántica, o Triple Store.
Como requisito, debe ofrecer un interfaz de consulta utilizando el lenguaje SPARQL, al menos la versión
1.1. Esto se debe a que, para hacer consultas complejas, se requiere de anidación de consultas, entre
otras características, lo cual está disponible sólo a partir de la versión 1.1 del estándar SPARQL. En
este aspecto, la base de datos híbrida Virtuoso 5 representa una alternativa adecuada, dado su buen
rendimiento, soporte para SPARQL 1.1 y API basada en Sesame 6. Éste último es un framework open-
source para consultar y analizar datos RDF 7. Ofrece una interfaz (apilable) a través de la cual se pueden
añadir funcionalidades, y se abstrae el motor de almacenamiento del motor de consultas. Existen multitud
de Triple-stores que pueden usarse por medio de la API de Sesame.

El formato PNML 8, que también es utilizado en el generador de RGs, es una sintaxis basada en
XML para describir high-level Petri nets. Se requiere para importar las redes anotadas, desde las que se
generará el grafo de alcanzabilidad.

Cuando se genera el grafo de alcanzabilidad, el lenguaje DOT 9 es utilizado para describir la estructura
de dicho grafo. A partir de esta descripción, se generará un diagrama del mismo haciendo uso del paquete
de herramientas Graphviz 10. La librería Apache log4j 11 también es utilizada en la herramienta para
funciones de logging.

Una parte importante en la extensión paramétrica de COMBAS, es el procesado de los predicados
lógicos. Para esta tarea, se decidió utilizar alguno de los SMT solvers existentes. La herramienta seleccio-
nada, por motivos de especificaciones, rendimiento y soporte, fue CVC3 12. Aunque la aplicación dispone
de un API, ésta presenta limitaciones como la falta de soporte del lenguaje SMT-Lib. Es por esto por lo
que se decidió implementar un wrapper para utilizar el binario de cvc3. Este wrapper carga en memoria
la utilidad, la inicializa y la mantiene en ejecución para evitar la sobrecarga de instanciar el ejecutable
varias veces en cada iteración. De esta forma se mejora el rendimiento.

4.4.2 Model checker

Este componente del framework se parece bastante, en cuanto a tecnologías utilizadas, al generador de
RGs. Ha sido desarrollado en Java y, al igual que el generador, hace uso de la base de datos Virtuoso para
almacenar las tripletas. Utiliza las librerías JDOM, para la interpretación y generación de XML, y Apache
log4j, para el registro de logs. Adicionalmente, requiere del wrapper desarrollado para la herramienta SMT,
ya que las fórmulas CTL pueden contener expresiones paramétricas en formato SMT-Lib.

1http://www.oracle.com/technetwork/java/index.html
2http://www.eclipse.org
3http://www.jdom.org
4http://www.w3.org/TR/REC-xml
5http://virtuoso.openlinksw.com
6http://www.openrdf.org
7http://www.w3.org/RDF
8http://www.pnml.org
9http://www.graphviz.org/Documentation.php

10http://www.graphviz.org
11http://logging.apache.org/log4j
12http://www.cs.nyu.edu/acsys/cvc3

24



Capítulo 4. COMBAS: un Comprobador de Modelos Basado en Semántica

4.4.3 Visor Web

Para la implementación del visor Web, se ha utilizado Google-Web-Toolkit (GWT) 13, un entorno de
desarrollo Java para construir aplicaciones AJAX manteniendo la compatibilidad entre navegadores. Y
para incluir nuevos elementos en el interfaz (widgets) se ha recurrido a la librería SmartGWT 14. Otra
librería usada en este componente es GWT-dnd 15, que proporciona funcionalidades de Drag-and-Drop
para el entorno GWT, a la cual se ha recurrido para la implementación del editor de fórmulas. En
la parte servidor del visor Web, también se usó el paquete Commons-FileUpload 16, que proporciona
funciones para procesar ficheros subidos desde el navegador Web de forma robusta. Además, se hizo uso
del formato JSON 17, que permite intercambiar datos de forma ligera. Es un subconjunto de la notación
literal de objetos JavaScript y que no requiere el uso de XML. Para procesar este formato, la librería
JSON.simple 18 fue de gran utilidad.

Figura 4.5: Vista general de la aplicación Web de COMBAS.

En la Figura 4.5 se muestra el aspecto general del interfaz Web. Vemos que se integran paneles
para trabajar con cada uno de los componentes: fórmulas, grafos RDF, y grafos de alcanzabilidad. La
Figura 4.6 muestra una captura del proceso de revisión de resultados. En ella se puede ver un grafo de

13http://code.google.com/webtoolkit
14http://code.google.com/p/smartgwt
15http://code.google.com/p/gwt-dnd
16http://commons.apache.org/fileupload
17http://www.json.org
18http://code.google.com/p/json-simple

25



Eduardo González López de Murillas

Figura 4.6: Revisión del marcado de un grafo de alcanzabilidad en la aplicación Web de COMBAS.

alcanzabilidad, y una ventana que muestra el marcado correspondiente a uno de los estados de dicho
grafo.

26



Capítulo 5 | Análisis del workflow EBI
InterProScan

Para mostrar la utilidad del framework COMBAS, en esta sección se analiza un caso de gran interés en
la comunidad científica. Se trata del workflow InterProScan. Este workflow, que utiliza el servicio EBI’s
WSInterProScan 1, puede ser consultado en la comunidad Myexperiment.org 2.

5.1 Planteamiento original

El workflow, cuya estructura puede ser visualizada en la Figura 5.1 recibe como entrada una secuencia de
proteínas, una dirección de correo electrónico y algunos parámetros adicionales para el análisis. Partiendo
de dichos datos, se busca la caracterización de una secuencia proteica en una base de datos de familias
de proteínas integradas dentro de InterPro 3. Como resultado, se obtiene un conjunto de coincidencias
debidamente formateadas. Dichos resultados son anotados con las asignaciones de términos InterPro y
GO correspondientes (para más detalles sobre la asignación de dichos términos, consultar la Web del
experimento). Para llevar a cabo la ejecución de la tarea runInterProScan, existen dos servicios Web en
el repositorio: runInterProScan1 y runInterProScan2. Ambos servicios son capaces de realizar el análisis
de proteínas, que representa la parte más cara del experimento, en términos computacionales.

Workflow Inputs

Workflow Outputs

Input_data

Content_list

Get_XML_result

Unpack_XML_resultFormat_as_GFF

InterProScan_GFF

Job_params

runInterProScan

InterProScan_XML_result

Get_text_result

Unpack_text_result

checkStatus

Job_ID InterProScan_text_result

Input_data_type_defaultValue

Get_XML_result_type_defaultValue

Job_params_crc_defaultValue Job_params_seqtype_defaultValueJob_params_goterms_defaultValue Job_params_async_defaultValue

Get_text_result_type_defaultValue

status

Email_address Sequence_or_ID

Figura 5.1: Planteamiento en taberna del workflow InterProScan para el análisis de proteínas, extraído de la
comunidad Myexperiment.org.

1http://www.ebi.ac.uk/Tools/webservices/services/interproscan
2http://www.myexperiment.org/workflows/814.html
3 http://www.ebi.ac.uk/interpro/

27



Eduardo González López de Murillas

5.2 Modelado del workflow

La Figura 5.2 muestra el workflow modelado como una red de Petri de algo nivel usando la herramienta
Renew [23] y anotada semánticamente de acuerdo con el formalismo U-RDF-PN paramétrico. Los nodos
que corresponden al workflow original aparecen representados en colores azul, verde y naranja, mientras
que algunas estructuras adicionales han sido añadidas con el fin de proporcionar más generalidad en el
grafo de alcanzabilidad generado (representando una mayor variedad de casos y estados a analizar) que
aparecen en color púrpura.

Figura 5.2: U-RDF-PN paramétrica que modela el workflow InterProScan para el análisis de una secuencia de
proteínas.

A continuación se describirá brevemente la red. Podemos decir que se trata de una red paramétrica,
ya que incluye referencias a parámetros en su marcado, en el sentido de que no tienen, a priori, asociado
un valor concreto. Los siete lugares anotados en la parte superior de la red (en color azul) son las entra-
das principales del workflow. Cinco de estas entradas, que representan los parámetros de la tarea y son
necesarias para configurar correctamente el servicio InterProScan, están agrupadas en el lado izquierdo:

28



Capítulo 5. Análisis del workflow EBI InterProScan

goterms_default, async_default, crc_default, seqtype_default y email_address. Estas entradas son ne-
cesarias para que la transición job_params se sensibilice y pueda ser disparada. En el lado derecho, dos
lugares representan los datos de la secuencia de proteínas: sequence_or_ID y input_datatype_default.
Dichos datos son también necesarios para disparar la transición Input_data.

Observando la estructura de la red, es visible que los parámetros mencionados son necesarios para
la ejecución del servicio InterProScan. Cuando este servicio es ejecutado, el proceso entra en la mitad
inferior de la red, en la cual la salida es transformada al formato adecuado. Hay dos lugares encargados
de seleccionar dicho formato, y también representan una entrada (en color azul) del workflow : 1) text
y 2) XML. Estos lugares están anotados semánticamente conteniendo, cada uno de ellos, la referencia a
un parámetro. Bajo ambos lugares, hay una sección añadida en color púrpura. El fin de dicha estructura
es asignar dos valores diferentes a estos parámetros (cierto o falso), de forma que sea posible analizar el
comportamiento del workflow en cualquier situación, usando un solo grafo de alcanzabilidad. La misma
técnica se ha utilizado en la parte superior de la red, donde se sitúan los cinco parámetros descritos
anteriormente.

En la parte inferior (en color naranja), hay cinco lugares de salida: Job_ID, GFF_Result, Text_Result,
XML_Result y Status. Estos son los lugares en los que se almacenará el resultado del workflow. Repre-
sentan los cinco tipos de datos que podemos obtener: el identificador del trabajo, el resultado en formato
GFF, texto y XML, y el valor de estado, respectivamente.

5.3 Generación del RG

El modelo presentado es, entonces, procesado por el generador de RG con el fin de computar el grafo. El
grafo de alcanzabilidad resultante fue construido (en un sistema Debian GNU/Linux con kernel optimi-
zado 2.6.38.4, procesador Intel Core 2 Duo E7400 de 64bits de dos cores a 2.80 GHz, 4GB de RAM, E/S
SATA y JVM JRE6u25) en 1343 segundos, y está compuesto de 798 estados. Debido al tamaño de la
estructura resultante, se presenta una versión resumida en la Figura 5.3, que esquematiza su morfología.

Figura 5.3: Vista parcial del grafo de alcanzabilidad correspondiente al modelo de la Figura 5.2.

La parte superior del grafo de alcanzabilidad generado (parte A) está compuesta por una colección
de 731 estados. De acuerdo con el modelo descrito en la Figura 5.2, es sencillo calcular aproximadamente
el número de estados esperados. En la parte superior, encontramos cinco entradas (arriba a la izquierda),
y cada una puede estar en tres estados diferentes. Esto se traduce en 35 combinaciones. Entonces, otro
estado se añade como resultado del disparo de la transición job_Params. Finalmente, la parte derecha
muestra otros tres estados posibles: 1) los lugares de entrada están marcados; 2) input_data es disparado;
3) content_list es disparado. Estos tres estados, combinados con los del lado izquierdo suponen un total
de (35 + 1) ∗ 3 = 732 estados. En el diagrama se ha descompuesto la suma en dos grupos (A y B),
siendo el estado en B el correspondiente al momento justamente anterior a la ejecución de la transición
runInterProScan. Por lo tanto, la parte inferior del grafo muestra una complejidad menor, estando formada
por 66 estados (C), los cuales, sumados a los grupos A y B, hacen un total de 798 estados.

29



Eduardo González López de Murillas

5.4 Comprobación de propiedades

Debido al tamaño del grafo de alcanzabilidad generado, realizar una verificación manual no es factible,
y supondría una tarea extremadamente compleja y tediosa. Esto presenta la situación perfecta para
aplicar la solución propuesta para analizar el problema. A continuación pasamos a diseñar y formular
algunas consultas sobre el modelo, con el fin de verificar su corrección. Dichas consultas son expresadas
como fórmulas en lenguaje CTL y han sido implementadas usando el formato XML correspondiente, el
cual es utilizado para su procesamiento por COMBAS. El model checker es el encargado de verificar la
satisfacibilidad de cada fórmula.

La primera consulta a considerar cuando se verifica un workflow podría ser la que comprueba si el
proceso es capaz, en algún caso, de finalizar de forma adecuada. Esto ocurrirá si los lugares de salida
de la red son marcados con un grafo resultado. Existen cinco lugares de salida diferentes: Job_ID place;
Text_Result place; GFF_Result place; Status place y, finalmente, XML_Result place. Estos lugares
se corresponden con los localizados en la parte inferior de la red presentada en la Figura 5.2. Por lo
tanto, para verificar si dichos lugares son alcanzados, es posible comprobar si existe algún estado en el
que dichos lugares se encuentren marcados con cualquier grafo (el grafo vacío representa el concepto
de ’cualquier grafo’). Esta consulta aparece expresada como un predicado CTL de la siguiente forma:
EF (RDFGText_Result ∨RDFGGFF_Result ∨RDFGXML_Result ∨RDFGStatus ∨RDFGJob_ID)

Cuando esta fórmula es ejecutada en el model checker, se obtiene la siguiente salida:

INFO [main] (CombasApp.java:240) - Model satisfies the formula!

INFO [main] (CombasApp.java:250) - Output files generated.

INFO [main] (CombasApp.java:254) - Checked in 17159 millis

INFO [main] (CombasApp.java:255) - Formula: formula_1h9wbb3xwwj7c

INFO [main] (CombasApp.java:256) - Model: netId1337458105565_RG

Esto quiere decir que el modelo satisface la fórmula, y por tanto es posible alcanzar un estado donde
alguno de los lugares especificados esté marcado. Es posible comprobar el resultado haciendo uso del
interfaz Web. En la Figura 5.4 podemos consultar el resultado de la fórmula en el estado inicial del grafo
de alcanzabilidad (state_0 ), de forma que vemos qué nodos de la fórmula se satisfacen.

Figura 5.4: Vista del resultado de la fórmula en el interfaz Web.

Vemos que algunos nodos aparecen en rojo (no se satisfacen) y otros en verde (sí se satisfacen). Esto
quiere decir si se satisfacen o no en el estado actual. El la Figura 5.4 se trata del estado inicial, en el cual
no se cumple ninguna de las condiciones OR ni RDFG, ya que este estado no contiene dichas marcas en

30



Capítulo 5. Análisis del workflow EBI InterProScan

los lugares especificados. Sin embargo, sí que existe algún camino futuro en el cual, en algún estado, se
cumple alguna de esas propiedades. Por eso el nodo EF aparece en color verde.

El siguiente paso será verificar si el workflow es siempre capaz de finalizar. La fórmula correspondiente
es: AF (RDFGText_Result ∨RDFGGFF_Result ∨RDFGXML_Result ∨RDFGStatus ∨RDFGJob_ID)

Como se puede observar, la fórmula es muy similar a la anterior, a excepción del nodo raíz que en
este caso, en lugar de EF , es AF . Esto quiere decir que, en lugar de buscar un camino que satisfaga la
condición, buscamos que todos los caminos la satisfagan. El resultado del model checker establece que
dicha fórmula no es satisfecha por el modelo. Esto quiere decir que dicho modelo no siempre es capaz
de alcanzar alguno de esos lugares en la red. Esto puede ocurrir, por ejemplo, cuando la red alcanza un
estado de bloqueo en el que ninguna transición está lista para ser disparada.

Debido a la morfología de la red, para que la transición runInterProScan sea disparable, sus lugares
fuente deben estar marcados. Estos lugares, a los que nos referiremos como params y content_list, estarán
marcados en alguna situación. Si no fuera así, la primera consulta no habría sido satisfecha por el modelo
(la que pregunta si es posible alcanzar en algún caso un lugar de salida). Entonces, sería interesante
saber si siempre que los dos lugares mencionados estén marcados, sería posible alcanzar algún estado de
salida. La fórmula CTL que expresa esta consulta es la siguiente:AG((RDFGparams ∧RDFGcontent) →
AF (RDFGGFF_Result ∨RDFGText_Result ∨RDFGStatus)).

Vemos que está formada por un operador P → Q, que quiere decir que será cierto siempre que P y Q

sean ciertos, o P sea falso. Esto es, que la fórmula será evaluada a cierto si, siempre que existan marcas
en ambos lugares, se cumple que para todos los caminos desde dicho lugar existe algún estado futuro
en el que los lugares de salida estén marcados. Cuando es procesada, el model checker establece que el
modelo satisface la propiedad.

Otra consulta útil es la que verifica si siempre que se obtiene un resultado (al menos uno de los
lugares de salida está marcado), el valor del resultado de estado es true (es decir, que el token en el lugar
status tiene el valor true para la variable status). Dicha propiedad en CTL es: AG((RDFGText_Result ∨
RDFGGFF_Result ∨ RDFGXML_Result) → RDFGPStatus(true)). Se ha usado el operador AG para
indicar que la propiedad ha de cumplirse siempre, se comprueba que si alguno de los resultados ha sido
obtenido (alguno de los lugares de salida está marcado), entonces el lugar de status debe estar marcado
y con valor true. Si no existe resultado, entonces la fórmula también será cierta, por el significado del
operador →. El predicado es satisfecho por el modelo, lo que quiere decir que siempre que obtenemos un
resultado, la variable status tendrá valor true.

Tal y como se a demostrado, el modelo es susceptible de ser analizado por medio de consultas CTL
correspondientes a las propiedades que queremos verificar. Una vez que el modelo inicial y sus anotacio-
nes correspondientes han sido definidos, COMBAS permite realizar de forma sencilla una comprobación
del modelo, visualizar en el grafo de alcanzabilidad qué estados no verifican las propiedades, revisar los
resultados, etc. No se requiere conocimiento previo del algoritmo de model checking ni detalles inter-
nos y tecnológicos por parte del científico. El interfaz incluido en el framework, ofrece un conjunto de
funcionalidades y herramientas avanzadas para el análisis de sistemas complejos.

Información adicional sobre las anotaciones semánticas y paramétricas del modelo objeto de estudio
puede ser consultada en el Anexo A.

31





Capítulo 6 | Conclusiones y trabajo
futuro

Para finalizar, en este capítulo se presentan las conclusiones extraídas de este Trabajo Fin de Máster, y
se presentan las líneas de investigación que se han abierto a partir de su desarrollo. Estas líneas engloban
áreas como la optimización en la ejecución de los algoritmos relacionados con el proceso de model checking
por medio de técnicas de ejecución Grid y Cloud, extensión de COMBAS para dar soporte a los principales
estándares de modelado en computación científica y, finalmente, la utilización de la herramienta para el
análisis de problemas complejos en entornos reales.

6.1 Conclusiones

A lo largo de este trabajo se ha resaltado la importancia que han cobrado los workflows científicos en el
mundo de la computación. Los workflows científicos abarcan tareas de cómputo del mundo científicoque
generalmente representan un gran coste computacional, tanto en tiempo como en recursos. Por tanto, la
verificación de estos sistemas adquiere una gran importancia, especialmente la comprobación previa a la
ejecución.

El análisis de las alternativas actuales en el campo de la verificación de modelos basados en semántica
dentro del área de la computación científica ha dejado en evidencia las carencias existentes, especialmente
en cuanto al alcance y la expresividad de los mismos, y ha asentado las bases para el desarrollo de este
Trabajo Fin de Máster. En concreto, refiriéndonos a la utilización de semántica en el mundo de los
workflows científicos, vemos que se está aplicando, aunque de forma más orientada a la recolección y
análisis de datos de provenance y descubrimiento de servicios y recursos, entre otros. Sin embargo, no se
utiliza para la verificación previa.

La importancia de integrar semántica en los modelos radica en el aumento de la expresividad que
ofrece. Gracias a su uso, es posible especificar workflows con mayor detalle, modelando propiedades de
los datos y su flujo a través del mismo y permitiendo describir problemas de mayor complejidad. Por
esto, vemos la necesidad de contar con herramientas de verificación que permitan comprobar el correcto
funcionamiento de workflows, haciendo uso de aspectos semánticos.

Así, se ha desarrollado el framework COMBAS con el fin de suplir dichas carencias y, además,
se ha extendido la herramienta para incorporar el análisis paramétrico de workflows científicos. Como
resultado se ha desarrollado un framework que abarca el ciclo completo de verificación, desde el modelado
hasta el análisis de resultados y retroalimentación, pasando por la verificación, creación y edición de
consultas y visualización de resultados. COMBAS representa una herramienta extensible, escalable y
de fácil utilización por parte del usuario que facilita la tarea de definición y verificación de workflows
anotados semánticamente. Es posible modelar sistemas complejos usando redes de Petri con anotaciones
semánticas, incluir condiciones en lógica proposicional, y analizar casos generales usando parámetros cuyo
valor inicial no está especificado.

Uno de los puntos clave de este trabajo ha sido la incorporación de soporte paramétrico en la herra-
mienta. Los parámetros permiten modelar datos en el sistema a los que no se asigna un valor concreto
de entrada. De esta forma, podemos verificar los sistemas desde un punto de vista general, sin tener en
cuenta datos de entrada concretos que limitan el comportamiento del workflow a un caso determinado.
Esto ha implicado la integración en el framework de técnicas y herramientas que permitan tratar con
dichos parámetros. Para ello se ha recurrido a las Satisfiability Modulo Theories (SMT) que nos permiten

33



Eduardo González López de Murillas

resolver el problema de decisión para las fórmulas lógicas que especifican los parámetros, y se han valorado
las herramientas SMT existentes, así como estándares y lenguajes de descripción de proposiciones.

Finalmente se ha demostrado la utilidad de COMBAS aplicándolo a un caso de uso concreto, el aná-
lisis del workflow de análisis de proteínas EBI InterProScan. Se ha mostrado el proceso de modelado, que
incluye la adición de anotaciones en base al estándar RDF, la creación de consultas mediante lógica tem-
poral y la verificación de propiedades sobre el modelo, mostrando los resultados obtenidos para consultas
relevantes sobre el funcionamiento del workflow y ciertas características que resultan de interés para el
diseñador del sistema o el científico. Ha sido posible detectar casos de bloqueo, y analizar condiciones
de finalización del workflow que, de otra forma, habría sido imposible detectar sin una implementación
previa del experimento y su ejecución, hechos que implican unos costes elevados en tiempo y recursos.

En definitiva, se ha mostrado la viabilidad del uso de COMBAS y su gran utilidad como verificador y
analizador de workflows en el ámbito científico. Se han cumplido los objetivos propuestos y se han resuelto
las necesidades más inmediatas detectadas en el campo. COMBAS representa una solución viable y útil,
basada en un formalismo bien estudiado, y que resuelve una necesidad relevante y creciente dentro del
mundo de los workflows científicos.

6.2 Trabajo futuro

El desarrollo y el análisis previo de este Trabajo Fin de Máster han abierto una serie de líneas de
investigación que se abordarán como parte de la carrera investigadora inmediata del autor. A continuación
se detallan las principales líneas.

• Búsqueda de un algoritmo de generación de RGs que aproveche la potencia de infraestructuras
distribuidas de Cloud y Grid. Los tiempos de generación de las estructuras internas para el proceso
de model checking resultan excesivos cuando la complejidad del modelo de entrada aumenta. Esto
resulta especialmente evidente en el caso de la generación del grafo de alcanzabilidad. La posibili-
dad de utilizar infraestructuras de computación Grid y Cloud en el Instituto de Investigación en
Ingeniería de Aragón (I3A) y en el Instituto Universitario de Investigación, Biocomputación y Físi-
ca de Sistemas Complejos (BIFI) abre una puerta para la investigación de cómo estos paradigmas
pueden resultar beneficiosos para la mejora y optimización de los algoritmos relacionados. Esto
permitirá tiempos de generación menores y mayor capacidad de almacenamiento, extendiendo la
aplicación de COMBAS a modelos de escala mucho mayor, cuyo tratamiento está muy limitado
con el enfoque actual.

• Extensión del framework, ofreciendo soporte para otros formalismos de modelado y estándares
de diseño, como por ejemplo Business Process Model and Notation 1 (BPMN), o herramientas
específicas para el modelado de workflows científicos muy extendidas y populares (como Taverna
o Kepler, por ejemplo).

• Aplicación de la técnica de verificación a más ejemplos de problemas complejos. Evidentemente,
la mejora y extensión de COMBAS permitirá resolver problemas con una complejidad mayor, lo
que permitirá demostrar su utilidad, a la par que impulsar la búsqueda de nuevas necesidades en
el framework.

• Aplicación del framework para la verificación de nuevas fuentes de datos. Un caso de especial
interés es el análisis de datos de provenance, los cuales pueden tener un origen variado, por ejemplo
de resultados de ejecución de workflows. Esto permitirá estudiar el comportamiento de acciones
ocurridas en el pasado y ayudar en la reproducción de experimentos. También es de interés el
análisis de datos de provenance en la Web de Linked Data, tema tratado en [17], de forma que sea
posible estudiar la procedencia de la información compartida en ámbitos científicos y comprobar
su fiabilidad y origen.

• Extensión de los mecanismos de deducción. Actualmente es posible hacer uso de la inferencia que
nos ofrece la semántica. Sin embargo, sería interesante ampliar el framework dotándolo de mayor
capacidad de deducción, de forma que sea capaz de analizar o predecir comportamientos de forma
más eficaz, a la vez que extraer conclusiones de mayor utilidad.

1Para más información sobre el estándar BPMN, consultar http://www.bpmn.org/

34



Bibliografía

[1] Arc - altarica checker. http://altarica.labri.fr/forge/projects/arc.

[2] Cosyverif environment. http://www.cosyverif.org/.

[3] Game-based, easy and reverse model-checking. http://jabc.cs.tu-dortmund.de/modelchecking/.

[4] Dean Allemang and James Hendler. Semantic Web for the Working Ontologist: Effective Modeling
in RDFS and OWL. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[5] Chad Berkley, Shawn Bowers, Matthew Jones, Bertram Ludäscher, Mark Schildhauer, and Jing Tao.
Incorporating Semantics in Scientific Workflow Authoring. In SSDBM 2005, pages 75–78, 2005.

[6] F. Calzolai, R. De Nicola, M. Loreti, and F. Tiezzi. Tapas: a tool for the analysis of process algebras.
Transactions on Petri Nets and Other Models of Concurrency I, pages 54–70, 2008.

[7] Maria Cláudia Cavalcanti, Rafael Targino, Fernanda Bai ao, Shaila C. Rössle, Paulo M. Bisch, Pau-
lo F. Pires, Maria Luiza M. Campos, and Marta Mattoso. Managing Structural Genomic Workflows
using Web Services. Data and Knowledge Engineering, 53(1):45–74, 2005.

[8] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking. In Computer Aided
Verification, pages 241–268. Springer, 2002.

[9] R. Cleaveland, T. Li, and S. Sims. The concurrency workbench of the new century, version 1.2-user’s
manual. 2000.

[10] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, H. Zheng, et al. Bandera:
Extracting finite-state models from java source code. In Software Engineering, 2000. Proceedings of
the 2000 International Conference on, pages 439–448. IEEE, 2000.

[11] Tommy Ellqvist, David Koop, Juliana Freire, Cláudio Silva, and Lena Stromback. Using mediation
to achieve provenance interoperability. In Proceedings of the 2009 Congress on Services (SERVICES
2009), Los Angeles, California, USA, July 6-10, 2009, pages 291–298, Washington, DC, USA, 2009.
IEEE Computer Society.

[12] E. Allen Emerson. Temporal and Modal Logic. Handbook of Theoretical Computer Science, Formal
Models and Semantics:995–1072, 1990.

[13] J. Frey. Condor dagman: Handling inter-job dependencies. University of Wisconsin, Dept. of Com-
puter Science, Tech. Rep, 2002.

[14] Carole Goble, Jiten Bhagat, Sergejs Aleksejevs, Don Cruickshank, Danius Michaelides, David New-
man, Mark Borkum, Sean Bechhofer, Marco Roos, Peter Li, and David De Roure. myExperiment: a
repository and social network for the sharing of bioinformatics workflows. Nucleic Acids Research,
2010.

[15] E. González-López de Murillas, J. Fabra, P. Álvarez, and J. Ezpeleta. Combas: una herramienta
para el análisis de procesos con información semántica. In VII Jornadas de Ciencia e Ingeniería de
Servicios (JCIS), 2011.

[16] Tomasz Gubala, Daniel Herezlak, Marian Bubak, and Maciej Malawski. Semantic composition of
scientific workflows based on the petri nets formalism. In E-SCIENCE’06.

35



Eduardo González López de Murillas

[17] Olaf Hartig and Jun Zhao. Publishing and consuming provenance metadata on the web of linked data.
In Deborah McGuinness, James Michaelis, and Luc Moreau, editors, Provenance and Annotation of
Data and Processes, volume 6378 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2010.

[18] Patrick Hayes. RDF Semantics. Technical report, W3C, February 2004. http://www.w3.org/TR/rdf-
mt/.

[19] T. Herault, R. Lassaigne, and S. Peyronnet. Apmc 3.0: Approximate verification of discrete and
continuous time markov chains. In Quantitative Evaluation of Systems, 2006. QEST 2006. Third
International Conference on, pages 129–130. IEEE, 2006.

[20] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for automatic verification
of probabilistic systems. Tools and Algorithms for the Construction and Analysis of Systems, pages
441–444, 2006.

[21] María José Ibáñez, Javier Fabra, Pedro Álvarez, and Joaquín Ezpeleta. Model checking analysis of
semantically annotated business processes. Systems, Man, and Cybernetics – Part A: Systems and
Humans, 2012.

[22] J.P. Katoen, M. Khattri, and IS Zapreevt. A markov reward model checker. In Quantitative Eva-
luation of Systems, 2005. Second International Conference on the, pages 243–244. IEEE, 2005.

[23] O. Kummer and F. Wienberg. Renew - the Reference Net Workshop. In Tool Demonstrations, 21st
International Conference on Application and Theory of Petri Nets, pages 87–89, 2000.

[24] Zoé Lacroix, Christophe Legendre, and S. Tuzmen. Reasoning on Scientific Workflows. In Proceedings
of the 2009 IEEE Congress on Services (SERVICES 2009), Los Angeles, California, USA, July 6-10,
2009, pages 306–313, 2009.

[25] A. Lomuscio and F. Raimondi. Mcmas: A model checker for multi-agent systems. Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 450–454, 2006.

[26] K. McMillan. Applying sat methods in unbounded symbolic model checking. In Computer Aided
Verification, pages 303–323. Springer, 2002.

[27] David Newman, Sean Bechhofer, and David De Roure. myexperiment: An ontology for e-research.
In Semantic Web Applications in Scientific Discourse, August 2009.

[28] Alun D. Preece, Binling Jin, Edoardo Pignotti, Paolo Missier, Suzanne M. Embury, David Stead,
and Al Brown. Managing Information Quality in e-Science Using Semantic Web Technology. In
Procedings of the 3rd European Semantic Web Conference (ESWC 2006), Budva, Montenegro, June
11-14, 2006, Proceedings, pages 472–486, 2006.

[29] Wil M. P. van der Aalst. The application of petri nets to workflow management. Journal of Circuits,
Systems, and Computers, 8(1):21–66, 1998.

[30] Yong Zhao, Michael Wilde, and Ian T. Foster. Applying the Virtual Data Provenance Model. In
Provenance and Annotation of Data, International Provenance and Annotation Workshop (IPAW
2006), Chicago, IL, USA, May 3-5, 2006, pages 148–161, 2006.

36


	Modelo_caratula_TFM_Zaguan
	main
	Introducción
	Problema a resolver y objetivos
	Organización de la memoria

	Puesta en contexto
	U-RDF-PNs
	Resource Description Framework (RDF)
	SMT
	Lógica temporal
	Model checking

	Estado del arte
	Semántica en Workflows científicos
	Estándares y herramientas para el Model checking
	Estándares y herramientas de SMT

	COMBAS: un Comprobador de Modelos Basado en Semántica
	Proceso de verificación
	Diseño
	Descripción de algoritmos
	Implementación

	Análisis del workflow EBI InterProScan
	Planteamiento original
	Modelado del workflow
	Generación del RG
	Comprobación de propiedades

	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro

	Bibliografía
	Anotaciones semánticas del workflow EBI InterProScan
	Anotaciones





