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Model Checking paramétrico de workflows cientificos

Resumen

La computacién cientifica ha ganado un creciente interés en los dltimos anos en areas afines
a las ciencias de la vida. Los workflows cientificos son un tipo especial de workflow que se
utilizan en escenarios de grandes dimensiones y gran complejidad computacional como modelos
climaticos, estructuras biologicas, quimica, cirugia o simulacién de desastres, por ejemplo, y
cuya ejecucién es un proceso que consume una gran cantidad de tiempo y recursos. Uno de
los objetivos principales de la computacién cientifica ha sido la mejora progresiva a través de
la introduccion de nuevos paradigmas y tecnologias para poder abordar desafios cada vez mas
complejos, siendo uno de estos paradigmas la adicién de aspectos seménticos a los workflows.
Disponer de una serie de herramientas y técnicas que posibiliten el anélisis del comportamiento
del workflow antes de su ejecucion resulta de gran interés. El objetivo de ese analisis es poder
garantizar un comportamiento adecuado y correcto, asi como verificar la correcta gestion y
utilizacion de los recursos involucrados. El anéalisis deberia permitir la predicciéon de la calidad
de los resultados, asi como identificar aquellos pardmetros que son necesarios para obtener los
resultados esperados. Desde el punto de vista del usuario, la incorporaciéon de aspectos seméanticos
permite a los cientificos realizar una navegacion, interrogacién, integraciéon y composicion de
conjuntos de datos y servicios mucho més eficiente.

Sin embargo, el analisis del estado del arte en el area de la semantica aplicada a los modelos
en la computacién cientifica muestra carencias significativas en el grado de madurez y aplicacion
de este enfoque, asi como la carencia de técnicas y herramientas para su aplicacién. Es necesario,
por tanto, proponer y desarrollar nuevas técnicas de modelado y anélisis que puedan manejar
dichos aspectos seménticos.

En este Trabajo Fin de Master se aborda el analisis, diseno y desarrollo de un método
y una herramienta de model checking basados en la introduccién de aspectos y anotaciones
seménticas tanto en los modelos como en las propiedades que deben verificarse. Como resultado,
la herramienta COMBAS (COmprobador de Modelos BAsado en Semdntica) proporciona un
entorno de integraciéon para la verificaciéon de este tipo de modelos y la navegaciéon por las
estructuras resultantes del proceso. Para la descripcion de los modelos de workflows cientificos
se ha utilizado una clase de Redes de Petri de alto nivel anotadas con informacién semantica
en RDF, las U-RDF-PN. A lo largo de este trabajo se ha abordado la adiciéon de las técnicas,
metodologias y modelos necesarios para extender el framework con analisis paramétrico, que
consiste en un anélisis mucho méas potente y expresivo mediante la utilizaciéon de parametros cuyo
valor es indeterminado al inicio del proceso, de forma que es posible estudiar el comportamiento
del workflow respecto a los posibles valores de dichos pardmetros. Para restringir los valores de
los parametros en cada uno de los caminos de ejecucion del workflow se utiliza el concepto de
guardas, expresadas en logica proposicional, en el modelo del workflow. Para ello, es necesario
estudiar primero qué herramientas permiten tratar dichas proposiciones, por lo que se analizan
los Satisfiability Modulo Theories (SMTs), el estado actual de los estandares relacionados, la
flexibilidad de los solvers disponibles y las herramientas que soporten la semantica que se va a
aplicar.

Finalmente, la viabilidad y usabilidad del enfoque propuesto se ha demostrado mediante su
aplicacion al analisis del workflow EBI InterProScan, verificando propiedades de interés para el
cientifico sin necesidad de implementar, desplegar ni ejecutar el workflow.
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Capitulo 1 | Introducciéon

Los workflows cientificos han ganado una relevancia notable en los tltimos anos, especialmente
en areas relacionadas con las ciencias de la vida. Estos workflows, que se han aplicado a tareas de
computo en el mundo cientifico, representan un tipo especial de workflow por las particularidades
del campo de aplicaciéon. En general, engloban tareas de un alto coste computacional y tratan
datos de gran tamaifo, en aplicaciones tan diversas como el modelado climético, simulacién de
reacciones quimicas o bioldgicas o cirugia, entre otros. Con el tiempo, se ha detectado la necesidad
de desarrollo en este campo, y se han incorporado nuevas técnicas y paradigmas al mundo de los
workflows cientificos.

Es habitual encontrar workflows cientificos compuestos por tareas muy costosas desde el punto
de vista computacional. Su ejecucion puede alargarse en el tiempo y requerir una gran cantidad
de recursos. Es por esto, por lo que resulta de gran interés disponer de técnicas y herramientas
que permitan analizar el comportamiento del workflow antes de su ejecucion. El objetivo de
dicho analisis es garantizar un funcionamiento adecuado del workflow y una 6ptima utilizacion
de recursos. Ademés, la deteccién temprana de errores permite reducir costes en presupuesto y
tiempo.

Uno de los enfoques principales que se ha abordado en la computacion cientifica es la inclu-
sion de técnicas y tecnologias seménticas a los modelos, y como esto permitira tratar el problema
planteado mediante técnicas de verificacion. El uso de aspectos semanticos aporta grandes venta-
jas en cuanto al modelado, ya que permite una expresividad mucho mayor al poder especificar, no
solo propiedades estructurales, sino también informacion sobre los datos y el flujo de los mismos
en el workflow.

El analisis del estado del arte muestra como en la actualidad existen trabajos que hacen uso
de la seméntica en los workflows con fines como la mejora en la descripcion y descubrimiento de
servicios, asi como de recursos u otros workflows. Sin embargo, queda manifiesta una carencia
muy significativa en cuanto al nivel de madurez y el desarrollo de técnicas y herramientas que
integren el enfoque basado en la adiciéon de aspectos seménticos, y que permitan su analisis
posterior.

La introduccién de aspectos seménticos en los workflows requiere nuevos modelos y técnicas
de analisis que sean capaces de manejar este tipo de sistemas con informacién seméntica. El
formalismo de las Redes de Petri Unarias Anotadas con RDF (U-RDF-PN en adelante), es un
subtipo de las redes de Petri que consideran este tipo de sistemas (las ventajas de utilizar Redes
de Petri para modelar workflows han sido ampliamente tratadas en la literatura [29, [16]). En
ellas, se usan anotaciones seméanticas utilizando Resource Description Framework, RDF [I§]. Las
transiciones de la red de Petri corresponderian a acciones del sistema que cambien el estado del
workflow. Dichas transiciones cuentan con anotaciones que representan la especificacién formal
de la tarea, incluyendo la descripcion de las entradas y salidas. Algunas de las salidas podrian
corresponder a datos generados u obtenidos en tiempo de ejecuciéon, por tanto se hace necesario
usar parametros simbolicos para su representacion. A su vez, pueden incluir referencias a precon-
diciones, que serén expresiones que especifican la tarea utilizando los pardmetros de entrada. Para
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tratar dichas precondiciones, se utilizan herramientas de Satisfiability Modulo Theories (SMT).
Estas nos permiten trabajar con predicados logicos, de acuerdo a una combinacion de teorfas.
Asi, estas herramientas permiten saber si una colecciéon de proposiciones logicas es satisfacible
o no. El analisis del workflow se lleva a cabo usando técnicas de Model Checking que definen el
modo en que el modelo sera verificado, a través de su grafo de alcanzabilidad, usando consultas
expresadas en términos de la Computation Tree Logic (CTL).

1.1 Problema a resolver y objetivos

A pesar de la existencia de herramientas independientes, hasta ahora no se disponia de nin-
gun entorno completo que integrase todas las fases del proceso de verificacion, y mucho menos
que facilitara la automatizacion de las mismas. Es esta necesidad la que se trata de solucionar
con el objetivo principal de este Trabajo Fin de Maéster, el desarrollo de framework COMBAS
(COmprobador de Modelos BAsado en Semdntica), un entorno completo de modelado y verifi-
cacion que considera el formalismo de las U-RDF-PN con anotaciones en RDF, haciendo més
sencillo el proceso y permitiendo al disenador del sistema comprobar la validez de sus workflows
graficamente de forma automética y muy intuitiva.

En este trabajo se introduce una extension significativa en las funcionalidades de dicho fra-
mework, en concreto la inclusién de analisis paramétrico, que consiste en un anélisis mucho méas
potente y expresivo, utilizando pardmetros de valor indeterminado al inicio del proceso. De esta
forma, es posible estudiar el comportamiento del workflow respecto a los posibles valores de
dichos parametros.

Para restringir dichos valores en cada uno de los caminos de ejecucion, se utiliza el concepto
de guardas, expresadas en logica proposicional en el modelo del workflow. Para realizar esto es
necesario estudiar las herramientas que permiten tratar dichas proposiciones. Por tanto, se anali-
zaran los Satisfiability Modulo Theories (SMT5), el estado actual de los estandares relacionados,
la flexibilidad de los solvers disponibles, y las herramientas que soporten seméntica que se van a
aplicar.

Finalmente, la viabilidad del enfoque y herramienta propuestos se demostrard mediante su
aplicaciéon a un caso real en el ambito de la computaciéon cientifica, como es el workflow EBI
InterProScan para el procesamiento de secuencias de proteinas.

1.2 Organizaciéon de la memoria

El resto de esta memoria estd compuesta por varios capitulos y un anexo, y queda organizada
de la siguiente forma:

e Capitulo [2I Se introducen los conceptos y estandares més importantes en los que se basa
este trabajo.

e Capitulo B Se hace un analisis del estado del arte, se presentan las alternativas existentes
en el campo de la verificacion de workflows cientificos y se identifican algunas de sus
carencias y necesidades.

e Capitulo @} Se expone el framework COMBAS, presentando su funcionamiento, diseno y
algunos detalles de su implementacion.

e Capitulo Bl Se expone un caso de aplicaciéon real, analizando un workflow de procesado
de proteinas, evidenciando la utilidad de COMBAS.
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e Capitulo [6l Se presentan las conclusiones extraidas de este trabajo. A su vez, se indican
las principales lineas de trabajo para continuar el desarrollo en el futuro.

e Anexo[Al Se proporcionan datos adicionales acerca de las anotaciones seménticas, ficheros
y datos que complementan la red de Petri del ejemplo mostrado en el Capitulo [






Capitulo 2 | Puesta en contexto

En este capitulo se presentan algunos de los conceptos en los que se basa este trabajo, y que se
hace necesario conocer para comprender el fundamento del mismo. Se introduce el formalismo
de las U-RDF-PN, se explica de modo escueto el fundamento de RDF, asi como los SMT, se
hablara brevemente de la logica temporal y por ultimo se presenta la técnica de model checking.

2.1 U-RDF-PNs

Las redes de Petri unarias con anotaciones en RDF (U-RDF-PN en adelante) representan un
formalismo de modelado de sistemas anotados semanticamente. Este puede ser utilizado tanto
para modelar procesos de negocio, workflows cientificos o cualquier otro tipo de sistema. Su
principal ventaja es que consideran tanto el control como el flujo de datos, para lo cual se
utilizan anotaciones semanticas en RDF.

[mgl,mg2] [mg3,mg4] [mg2] ] [ ]
! ! !gl g!Z gl 92

of 5o

g3

Figura 2.1: Ejemplo de binding en una U-RDF-PN.

Basadas en las high level Petri nets, constituyen una extension en forma de anotaciones pre-
sentes en lugares, transiciones y arcos de las mismas. Las anotaciones en los lugares representan
el marcado, de forma que substituimos los tokens de las redes de Petri por grafos RDF (RDFG).
Estos grafos contienen una serie de tripletas RDF. A su vez, los arcos estan anotados con patro-
nes RDF (RDFGP), los cuales indican como deben ser los grafos RDF de los lugares de origen
para que se pueda realizar el emparejamiento (binding).

En la Figura 2] se puede apreciar el proceso de binding en un caso sencillo. Vemos que la
transicion ¢ tiene dos arcos de origen, que estan anotados con los patrones RDF g1 y ¢2, y cuyos
lugares de origen son pl y p2 respectivamente. Dichos lugares estan marcados con grafos RDF,
mgl y mg2 en pl y mg3 y mg4 en p2. Por tanto, teniendo en cuenta que tenemos que coger un
grafo RDF de cada lugar, existen cuatro combinaciones posibles a la hora de hacer binding: 1)
mgl y mg3; 2) mgl y mgd; 3) mg2 y mg3 y 4) mg2 y mg4. Cualquiera de estas combinaciones
podria darse, siempre y cuando satisfagan el patron RDF correspondiente a su arco. Un patron
RDF es, al fin y al cabo, un grafo RDF, en el cual ciertas componentes de las tripletas pueden
ser variables en lugar de URIs, literales o bnodes. Dichas variables son las que se emparejan
con valores concretos de los grafos RDF. Asi, si existe una variable comtn entre varios arcos de
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entrada de una misma transicién, para hacer binding dichas variables han de tomar el mismo
valor. Volviendo al ejemplo, supongamos que tomamos la opcion mgl y mg3, v que el binding es
posible. Entonces se procede al disparo de la transiciéon ¢, que a su vez dispone de dos arcos de
salida, con los patrones g3 y g4 que van a los lugares p3 y p4 respectivamente. Las variables de
dichos patrones seran substituidas por los valores tomados en el binding de los arcos de entrada,
y se colocara el grafo resultante en el lugar de salida. Asi, vemos que se generan dos nuevos
grafos, mgb y mg6, que satisfacen los patrones g3 y g4 respectivamente.

Las transiciones de la red de Petri se corresponden con acciones del sistema modelado que
cambian el estado del workflow. La informaciéon seméantica adjunta a dichas transiciones co-
rresponde a la especificacion formal de la tarea, incluyendo la descripcion de los parametros de
entrada y salida. Dado que algunas de las salidas pueden corresponder a datos recibidos o compu-
tados en tiempo de ejecucion, se requiere el uso de pardmetros simbolicos para representarlos.
Por otro lado, hay que considerar las precondiciones de las tareas, que se describirdn como expre-
siones que incluyen los parametros presentes en la especificacion de dicha tarea. Asi, encontramos
las precondiciones definidas en las transiciones como condiciones necesarias, previas al disparo
de una transicion. El tratamiento de estas expresiones requiere el uso de los SMT solvers que se
presentaran més adelante.

Este formalismo es el utilizado en este trabajo para modelar los workflows que se van a ana-
lizar, sobre los que se aplicaran las técnicas de model checking adaptadas. Para mas informacion
sobre el formalismo, consultar [2I], donde se presentan las U-RDF-PN con un mayor nivel de
detalle. En nuestro caso, sélo consideraremos modelos aciclicos, es decir, modelos cuya estructura
sea de tipo DAG (Directed acyclic graph). Esto es asi porque de esta forma evitamos la posi-
bilidad de que el grafo de alcanzabilidad sea infinito. Aunque lo pueda parecer, esta restriccion
no representa una desventaja notable, ya que, por norma general, en nuestro dominio de aplica-
cion, workflows cientificos, es habitual que los workflows sean aciclicos. Esta consideraciéon ya ha
sido tenida en cuenta en otras aproximaciones al manejo de workflows, como DAGMan [13], un
meta-scheduler para Condor que maneja dependencias entre tareas dentro de un workflow.

2.2 Resource Description Framework (RDF)

El Resource Description Framework (RDF) es un modelo de metadatos, el cual forma parte de
la familia de especificaciones del World Wide Web Consortium (W3C). Se ha convertido en un
método de descripciéon de conceptos o modelado de informacion muy utilizado en recursos Web,
usando una gran variedad de formatos y sintaxis. RDF estd basado en la idea de identificar
cosas usando identificadores Web (Uniform Resource Identifiers, o URIs), y describir recursos
en términos de simples tripletas (conocidas como tripletas RDF) las cuales contienen sujetos,
propiedades y valores para esas propiedades. El sujeto es el recurso, aquello que es descrito. El
predicado representa la propiedad o relaciéon que se quiere expresar del sujeto. En dltimo lugar,
el objeto es el valor de la propiedad que se describe del sujeto o recurso. Es posible combinar
RDF con otras tecnologias tales como RDFS y OWL para anadir expresividad.

RDF Schema (RDFS) es un lenguaje basado en RDF que proporciona elementos para cons-
truir ontologfas, permitiendo estructurar los recursos descritos en RDF. Es muy extensible, y
estd formado por clases que facilitan la clasificacion de recursos o la creaciéon de relaciones entre
ellos.

Otro lenguaje de ontologias es el Web Ontology Language (OWL), el cual proporciona una
mayor expresividad que RDFS gracias a la diversidad de directivas y clases que introduce. Existen
diversas variantes de OWL, que incluyen subconjuntos del mismo, tales como OWL Lite, OWL
DL o OWL Full. En [4] se puede encontrar méas informacion sobre estos lenguajes de descripcion
de ontologias.

6
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2.3 SMT

Los Satisfiability Modulo Theories solvers (SMT solvers) son herramientas que permiten trabajar
con predicados légicos, y resolver problemas de decisién usando una serie de teorias expresadas
en logica de primer orden con igualdad. La légica de primer orden se distingue de la logica
proposicional en que la primera hace uso de variables cuantificables. Asi, algunos ejemplos de
teorias usadas con frecuencia son la teoria de nimeros reales, la de enteros, o incluso de otras
estructuras de datos como listas, vectores, vectores de bits, etc.

En realidad, los SMT representan generalizaciones del problema de satisfacibilidad booleana
(Boolean SAT). Sin embargo, permiten una expresividad mucho mayor que la disponible con
formulas booleanas. Esto es asi porque es posible tratar problemas a un nivel mas alto, por
ejemplo en el conjunto de los enteros, en lugar de hacerlo a nivel de bits con variables booleanas.

En el ambito que presentamos, se hace necesario el uso de los SMT solvers a la hora de
procesar las pre y postcondiciones presentes en el modelo.

2.4 Loégica temporal

La légica temporal presenta proposiciones légicas cuyo valor es condicionado por el tiempo.
A diferencia de la logica clasica, en la cual las proposiciones se evalian a un valor estatico,
una expresion en logica temporal podra cambiar de valor dependiendo del momento en el que
se evaliie. El uso de este tipo de légica proporciona una expresividad mucho mayor, y ofrece
una herramienta extremadamente ttil a la hora de interrogar los modelos de nuestro sistema.
Se distinguen, principalmente, dos corrientes dentro de la logica temporal: Linear Temporal
Logic (LTL) y Computation Tree Logic (CTL). En el caso que nos atafie, nos centraremos en
la logica CTL, ya que es la que mejor se adapta al tipo de consultas que queremos expresar.
Computation Tree Logic (CTL) es un tipo de logica temporal que considera la existencias de
varias lineas temporales paralelas, que representan posibles evoluciones futuras, ramificaciones.
Esto encaja con la idea de grafo de alcanzabilidad, que presenta ramificaciones segin elecciones
que se tomaran en el sistema. Es esta logica la que nos permitira expresar formulas que usaremos
para consultar el comportamiento del sistema.

2.5 Model checking

La comprobaciéon de modelos, o model checking, es una técnica de verificaciéon formal usada
para verificar la correccion de sistemas, especialmente software o hardware. La validacion supone
una parte muy importante dentro de la fase de disefio. Con el fin de realizar dicha validacion,
existen diversas técnicas, entre las que destacan las de simulacion, testeo, o verificacion formal.
Las técnicas de simulacion y testeo exploran algunos de los posibles comportamientos del sistema
estudiado, en ciertos entornos. Sin embargo, dejan abierta opcion a la existencia de fallos en casos
no explorados. Las técnicas de verificacion formal, por el contrario, realizan una comprobacion
exhaustiva del conjunto de escenarios posibles, partiendo de una especificacion dada. Asi, cuando
un diseno es correcto segin una técnica de verificacion formal, queda garantizado que el diseno
esta libre de fallos. Como es logico, la deteccion de fallos queda supeditada a la correccion de la
especificacion proporcionada.

Se denominan verificaciones formales a los métodos basados en logica para comprobar la
correccion de un sistema. A su vez existen diversas técnicas dentro de las verificaciones formales.
Nos centraremos en la técnica de model checking. La idea principal del model checking consiste
en describir un sistema y sus estados por medio de una especificacion formal, y aplicar un

7
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verificador l6gico automatico que verifique su correccién. Para esto, debemos contar con tres
elementos basicos:

e Especificacion formal: modelo M de una determinada teoria logica.
e Propiedad a verificar: Formula ¢ de un lenguaje logico.

e Método de verificacion: model checking, que comprobara si un modelo M satisface la pro-
piedad ¢. M| = ¢

En el trabajo que se presenta, se utiliza la técnica de model checking sobre féormulas en
logica temporal. Por lo tanto, el modelo M se corresponde con un sistema de transiciones (un
grafo de alcanzabilidad que habra sido generado a partir de una U-RDF-PN), la férmula sera
enunciada en un lenguaje de logica temporal (CTL en nuestro caso, extendido con semantica
y proposiciones logicas de primer orden), y la técnica de verificacion comprobara si el modelo
verifica dicha férmula.



Capitulo 3 | Estado del arte

La revisiéon del trabajo relacionado para abordar los objetivos de este Trabajo Fin de Méaster
se centra en tres areas bien diferenciadas. En primer lugar, se analizan los principales trabajos
y herramientas que consideran la adicion de aspectos semanticos a los workflows cientificos. En
segundo lugar, se abordarén los principales estandares y enfoques para realizar model checking.
La adiciéon de anotaciones paramétricos sobre el modelo inicial de las U-RDF-PN implica la
utilizacion de SMTs, por lo que, finalmente, se estudian los diferentes mecanismos para atacar
este problema.

3.1 Semantica en Workflows cientificos

En el Capitulo [l se ha hablado de la importancia que han cobrado los workflows cientificos
en la actualidad. Esto ha motivado el desarrollo en este area, introduciendo nuevas técnicas y
paradigmas, tratando de mejorar el comportamiento de dichos workflows.

En este trabajo, tratamos de resaltar la importancia de realizar tareas de verificacion sobre
este tipo de workflows, dada su gran complejidad computacional y coste en tiempo y recursos.
Estas caracteristicas proporcionan motivos més que suficientes para invertir esfuerzo en asegurar
su correccion, de forma previa a la ejecucion de los experimentos, con el fin de ahorrar costes en
presupuesto y tiempo que podrian ocasionar errores de disefio de los workflows.

Como se ha mencionado, diversas técnicas han sido aplicadas a este campo. Entre ellas,
destaca la inclusion de aspectos semanticos en la descripcion de los workflows. Esto ha aportado
numerosas ventajas, como mejoras en la descripciéon y descubrimiento de servidos, recursos o
workflows, o el analisis de datos de provenance.

Una de las posibles aplicaciones de la utilizaciéon de aspectos semanticos es el modelado de
workflows cientificos. [5] fue una de las primeras propuestas en el ambito de la investigacion, que
combina metadatos y servicios Web ofreciendo soporte para workflows cientificos y presenta cémo
los descriptores seménticos son incorporados a la tecnologia de servicios.[7] analiza las ventajas
de usar aspectos seméanticos en workflows cientificos, y pone de manifiesto su utilidad a la hora de
descubrir y ejecutar workflows, la reutilizacion de los mismos, y como esta informacion semantica
puede ser utilizada como datos de provenance. Vemos que estas propuestas introducen técnicas
de tecnologia de servicios al &mbito de los workflows cientificos.

En [28] se incluye informacion de calidad en workflows cientificos, utilizando una aproxima-
cion basada en anotaciones RDF de ontologias OWL DL. [24] propone soporte de reasoning en
workflows cientificos, y utiliza dicha técnica en descubrimiento de recursos. Destaca el plantea-
miento del proyecto myExperiment [I4]. Este, presenta una red social basada en tecnologias de la
Web seméntica que facilita la biisqueda y comparticion de workflows cientificos de gran utilidad
en investigacion. Como parte de este proyecto, [27] propone una ontologia OWL DL que permite
que los datos sean publicados en un formato RDF estandar mejorando su descubrimiento.

Existe una gran iniciativa, dentro del analisis de workflows cientificos, centrada en el estu-
dio de datos de provenance. Dichos datos son de una gran relevancia en el mundo cientifico,
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permitiendo la reproduccién de experimentos, deteccién de comportamientos anémalos y pro-
porcionando informaciéon de gran utilidad a la hora de verificar la autenticidad de los datos. En
este campo se ha realizado un gran esfuerzo en la captura y la comparticion de los datos, que
son obtenidos como resultados de la ejecucion de los experimentos. Existen trabajos que tratan
de mejorar el uso y analisis de dichos datos, como [30], que introduce el uso de base de datos
relacionales para su anélisis, o [II] que presenta un nuevo lenguaje de consulta para expresar
preguntas sobre dichos datos.

Cabe destacar la reciente aparicion de una propuesta de entorno de verificacién llamado
Cosy Verif El Esta iniciativa, propuesta por el grupo MeFoSyLoMa E, consiste en un entorno que
trata de integrar diversos formalismos de especificacién y verificaciéon de sistemas dinamicos,
ademés de herramientas de visualizacion que faciliten su uso. A dia de hoy, soportan autématas
y Redes de Petri como formalismos de modelado, e integran técnicas de analisis estructural,
por medio de calculo de invariantes, asi como analisis de comportamiento, usando técnicas de
construccion de grafos de alcanzabilidad simbélicos, unfolding o simulaciones estocasticas, entre
otras. Aunque dicho entorno se encuentra en sus fases iniciales, y pretende ser extendido con mas
formalismos y técnicas, no ofrece soluciones inmediatas a las carencias detectadas anteriormente,
como verificacién en workflows cientificos y modelado de flujo de datos.

Por tanto, vemos que no hay estudios que traten de analizar el comportamiento de workflows
antes de conocer los resultados de su ejecucion y recursos requeridos. En [2I] se presenta el
formalismo de las Redes de Petri Unarias Anotadas (U-RDF-PNs) y la técnica de Model Checking
RDF, que son aplicados a procesos de negocio. Es este el formalismo en el que nos basamos para
la realizacion de este trabajo, aplicaindolo a los workflows cientificos y mostrando su validez en
este campo.

3.2 Estandares y herramientas para el Model checking

En la Tabla B] se presentan las principales (por su utilizacion en la literatura y su grado de
madurez) herramientas de Model Checking, que pueden clasificarse segtn varios criterios. En la
segunda columna se presenta qué técnica o técnicas de Model Checking utiliza cada herramienta
para realizar la verificacion. La tercera columna lista los lenguajes o formalismos de modelado
que soportan, siendo el lenguaje utilizado para especificar el sistema que se verificara. La cuarta
columna indica qué lenguajes se pueden usar para especificar propiedades a verificar sobre el
modelo. La quinta columna muestra el lenguaje o lenguajes de programaciéon utilizados en la
implementaciéon de la herramienta. Por tdltimo, se muestran las plataformas sobre las que se
puede ejecutar.

Una caracteristica importante de los trabajos presentados en la tabla es que nos hemos
concentrado en aquellas alternativas més representativas que soporten CTL como lenguaje de
propiedades. Esto es asi ya que CTL representa el lenguaje de logica temporal que mejor se ajusta
a la naturaleza de los modelos que utilizamos. CTL permite expresar consultas que aprovechan
la ramificaciéon del modelo, en nuestro caso una estructura de Kripke anotada.

Si revisamos la tabla vemos que ninguna de las alternativas admite como lenguaje de mo-
delado las Redes de Petri, excepto la herramienta CosyVerif, de la que ya se ha hablado en la
seccion Bl Esto es un dato muy significativo, ya que la utilizacion de cualquiera de las herra-
mientas para analizar modelos expresados en términos de las U-RDF-PN requeriria un trabajo

"Entorno de verificacion software CosyVerif. Disponible en http://www.cosyverif.org/

2Grupo MeFoSyLoMa, asociacion formada por los laboratorios Cedric (Cnam), IBISC (Univ. Evry), LACL
(Univ. Paris 12), LIP6 (UPMC), LIPN (Univ. Paris 13), LRDE (Epita), LSV (Ecole Normale Supérieure de
Cachan) y LTCI (TELECOM ParisTech). Mas informaciéon disponible en http://www.mefosyloma.fr/
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Estado del arte

Técnica de Lenguaje Lenguaje Lenguaje de
Nombre Model de de propie- | programa- Plataforma
Checking modelado | dades cion usado
Aproximado y | Reactive PCTL, .
APMC {19 probabilistico | Modules PLTL C Unix
ARC [1] Plano AltaRica /&filjums’ ANSI C Unix
BANDERA [10] QEEZIS de Java CTL, LTL | Java m&do‘”s y
Cadence
CADENCE SMV Windows y
’ ?
SMV [26] Plano SMV., CTL, LTL . Unix
Verilog
CCS, CSP, | AFMC
Plano y g ’ ’ SML of New | Windows y
CWE-NC [ temporizado LOTOS, CTL, Jersey Unix
TCCS GCTL
AFMC, Wind
GEAR [3] Plano ? CTL, Java Vai ows ¥
p-calculus
Windows,
MOMAS [25] | 0 ¥ ISPL i Cit Unix,
epistémico MacOS
Tiempo real ggg’L Windows,
MRMC [22] ebo T Y1 Plain MC ’ C Linux,
probabilistico PCTL, MacOS
PRCTL e
Unix,
NuSMV [§] Plano SMV SSTI% » LIL, C Windows,
MacOSX
iglljéAl\’/[ CSL, Windows,
PRISM [20] Probabilistico PLTL, C++, Java Linux,
language, | popy; MacOS
Plain MC
CTL Windows,
TAPAs [6] Plano CCSp —cal’culus Java Unix,
H MacOS
Plano, . Windows,
Cosy Verif [2] simbolico apig’;ln;f;zs, ? Java Unix,
y estocastico MacOS
Semanti Windows,
COMBAS [15] | MY Y U.RDF-PN | CTL Java Unix,
parameétrico MacOS

Tabla 3.1: Relacion de herramientas de Model Checking con soporte CTL.
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de adaptaciéon complejo que considere las limitaciones y la expresividad del modelo de entrada
del sistema destino.

Ademas, ninguna de las principales herramientas contempla la introducciéon de seméntica, por
lo que la expresividad dentro del modelo esta limitada. Resulta evidente que estas alternativas
no son validas para analizar los modelos de U-RDF-PN, tan siquiera mediante la adaptacion de
éstos a los modelos de entrada de las herramientas por la carencia de soporte para la seméantica
en los mismos. Esto refuerza el objetivo inicial de proporcionar una herramienta que acepte
modelos mas expresivos reforzados con anotaciones semanticas, asi como un lenguaje de consulta
que aproveche dicha expresividad. Como se ha descrito anteriormente, en este trabajo se propone
definirlos como redes de petri anotadas seméanticamente (U-RDF-PN), con descripcion del flujo
de datos y dependencias, y el lenguaje CTL extendido con semantica.

3.3 Estandares y herramientas de SMT

Respecto al uso de SMT solvers, existe una amplia variedad de herramientas entre las que elegir.
Entre las caracteristicas més representativas estan: la coleccion de teorias y lenguajes soportados,
el lenguaje de programacion en que estan implementados y su portabilidad y reusabilidad. Sin
embargo, hay otros aspectos a tener en cuenta, como la actividad de la comunidad de usuarios,
la frecuencia con que se publican nuevas versiones, y la calidad de la documentacién. De acuerdo
con estos conceptos, la lista de opciones se reduce considerablemente. CVC, OpenSMT y STP
representan los proyectos mas activos. STP solo soporta formulas en la teoria de bit-vectors y
arrays, por lo tanto no supone una solucién valida para nuestro problema, ya que la teoria basica
que necesitamos es la de aritmética lineal, en concreto sobre los reales, enteros y booleanos.
A pesar de que OpenSMT es una opcién valida, elegimos CVC porque es una alternativa mas
estable y apta para entornos de produccion. En concreto, elegimos CVC3, que es una version
estable, a diferencia de CVC4 que se encuentra en fase beta.

En cuanto a la descripcion de predicados para realizar el proceso de model checking, cada
ano, desde el 2005, se celebra la competicion Satisfiability Modulo Theories Competition (SMT-
COMP), con el proposito de impulsar el desarrollo de los SMT solvers y promover la adopcion de
la libreria estandar de SMT (SMT-LIB E) SMT-LIB es un formato diseiado por la comunidad
que trata de unificar la descripcion de teorias y las entradas/salidas de los solvers, asi como pro-
porcionar una coleccion de benchmarks para fomentar el desarrollo de este tipo de herramientas.
Por tanto, comparado con otros formatos como CVC o DIMACS, SMT-LIB representa la opcion
més recomendable para mantener la compatibilidad y portabilidad de nuestros predicados.

3Disponible en http://www.smtlib.org/
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Capitulo 4 | COMBAS: un
Comprobador de Modelos
Basado en Semantica

El objetivo de este trabajo es presentar el framework COMBAS, el cual permite cubrir algunas de
las carencias en las herramientas y técnicas existentes en el campo de la verificacion de workflows
cientificos, identificadas en la seccién

En las siguientes secciones se irdn desgranando las caracteristicas del framework, asi como
el modo de trabajo que su uso plantea. Se abordaré el proceso de verificacion desde el punto
de vista del diseniador de sistemas, y mas adelante nos adentraremos en el diseno de COMBAS.
Una de las contribuciones de este trabajo es la incorporacion al framework de soporte para tratar
modelos y consultas paramétricas, y es explicada en mayor detalle en la secciéon Concluiremos
el capitulo mostrando los detalles de su implementacion.

4.1 Proceso de verificacion

Desde el punto de vista del ingeniero o disenador de sistemas (e.g. un cientifico o un analista
de procesos de negocio), existen una serie de pasos a seguir en el proceso de verificacién que la
herramienta propone. Estos pasos, que se corresponden con los componentes y estructuras de
datos descritos en la Figura L] se enumeran a continuacion:

1. En primer lugar, el ingeniero debe disenar el wofkflow del proceso usando una Red de
Petri. Para dicho fin, puede usar herramientas graficas como Renew [23]. Tanto el marcado
inicial del modelo, como el propio modelo deben ser anotados semanticamente. Un asistente
grafico sera de ayuda en este proceso.

2. A continuacién, se llevan a cabo una serie de procesos transparentes para el usuario, quien
puede revisar los resultados de cada fase. El generador de grafos de alcanzabilidad toma
los ficheros del paso anterior y genera dos salidas: el grafo de alcanzabilidad (RG), y un
conjunto de ficheros que contienen la relacién entre los estados y sus marcados, asi como
los RDFGs (grafos RDF) correspondientes a cada marcado. También se obtiene la repre-
sentacion grafica del grafo de alcanzabilidad. Todos estos resultados son visibles por medio
de un visor Web, incluido en la aplicacion Web interface de COMBAS.

3. Ahora, es necesario crear la formula CTL que se verificara con el Model checker. El disenador
puede construir dicha féormula usando el interfaz de usuario proporcionado por el editor
web.

4. Finalmente, el model checker usa la formula CTL, junto con el RG para computar y generar
la salida. Dicha salida consiste en una coleccion de ficheros que representan y relacionan los
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estados del RG validados con los fragmentos correspondientes de la formula CTL. Tanto
los ficheros de entrada como los de salida pueden ser visualizados haciendo uso del interfaz
Web de forma sencilla e intuitiva.

Petri Net Reachability Graph Formula results
(PNML Format) (XML Format) (XML Format)
v
'
:
VLT pemm-
: [ U ]
EEE ! .
v 1 1
COMBAS Lol ' I memmmmma-a ===
L S T T : T
egen 1 '
¢ Y L A 4 Y A 4 L
Process flow RG Generator Web Interface Model Checker
Data fl T
ata flow * ' A
T

-

Initial marking CTL Formula
& annotations (XML Format)

Figura 4.1: Arquitectura simplificada del framework COMBAS.

4.2 Diseno

La Figura 2 muestra la arquitectura del framework, el cual integra un conjunto de herramientas
y técnicas que cubren el ciclo completo de verificacion y analisis de workflows anotados semanti-
camente: desde la generacion de modelos U-RDF-PN; el grafo de alcanzabilidad correspondiente
y su estructura de Kripke, la creacion y edicién de consultas y formulas CTL, la ejecucion del
proceso de model checking y, por tltimo, la visualizacién y revision de resultados.

Todos los componentes en COMBAS ofrecen un interfaz sencillo y flexible, y se ocultan al
usuario las tareas complejas como la generaciéon del RG, el almacenamiento en la base de datos
seméntica y el proceso de verificacion. Durante el proceso de model checking, se utiliza una base
de datos RDF (almacén de tripletas). El framework COMBAS permite utilizar diversas bases de
datos RDF, como AllegroGraph RDFStore, o Virtuoso RDF Store por ejemplo. El tnico requisito
que la base de datos debe cumplir es que sea accesible por medio de un interfaz SPARQL. En
este trabajo, se ha utilizado Virtuoso RDF Store. Tras el procesamiento, se obtiene el resultado
de la verificacion de la formula. Ademaés, es posible visualizar los estados de RG utilizando un
visor basado en un interfaz Web. De este modo, es posible encontrar situaciones especificas en
las que un predicado viola alguna situacién deseada, obteniendo una mejor comprensién del
comportamiento del workflow y facilitando la mejora del mismo.

4.2.1 Generador del grafo de alcanzabilidad (RG Generator)

El proceso de generacion del grafo de alcanzabilidad requiere de un modelo valido como entrada,
en nuestro caso una red de Petri de tipo U-RDF-PN, con un marcado inicial que se corresponda
con el estado inicial del sistema [2I]. Las anotaciones semanticas pueden aparecer asociadas a
tres elementos diferentes de la red:

e Arcos: son anotados con patrones RDF. Si el arco es de entrada (de lugar a transicion), el
patron RDF representa la entrada (input) de la transicion correspondiente, asi que dicho
patron debe ser satisfecho por alguno de los grafos RDF que marcan en lugar de origen
de dicho arco para que la transicion se sensibilice. Si el arco va de la transicién a un
lugar, el patron RDF representa la salida (output), y por tanto como sera el grafo RDF que
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Figura 4.2: Arquitectura del framework de model checking COMBAS.

marcara el lugar de destino. En este tltimo caso, las variables del patréon serdn substituidas
por valores concretos, obtenidos tanto del binding de las entradas como generados por la
transicion.

e Transiciones: contienen anotaciones, que llamaremos guardas, que representan la precon-
diciéon. Si la transicion esta sensibilizada, se evalia la guarda y en caso de que la guarda
sea cierta se procede al disparo.

e Lugares: pueden contener grafos RDF, que representan el marcado. Un lugar puede tener
una marca, representada por un grafo RDF, puede tener varias, que correspondera con
varios grafos RDF, o puede no estar marcado, con lo cual no habra ningtn grafo RDF
asociado. Cada grafo contendra tripletas RDF, en las que, ademas, pueden aparecer blank
nodes (bnodes) que representan parametros.

La generacion del grafo de alcanzabilidad esté basada en el algoritmo clasico usado en compu-
tacion de grafos de alcanzabilidad en redes de Petri, tras hacer las modificaciones necesarias para
adaptarlo a la naturaleza semantica de las anotaciones [2I]. El grafo de alcanzabilidad generado
se almacena como tripletas RDF, de acuerdo con la ontologia descrita en la Figura 3]
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URDFAPN hasNet

haslnitialNode
hasNode

hasPlace hasTransition hasvv

¢ hasRDFG hasParametncData
& = o

Figura 4.3: Ontologia del grafo de alcanzabilidad paramétrico.

En este trabajo, se considera la extension paramétrica sobre las U-RDF-PN definidas en [2]].
El concepto es muy simple: anadir pardmetros al modelo, en lugar de valores estéaticos. De este
modo, es posible representar casos mas generales de un proceso o un workflow anadiendo propo-
siciones logicas a las anotaciones, que luego etiquetaran cada estado en el grafo de alcanzabilidad.
Las guardas de las transiciones también deben ser definidas haciendo uso de dichas anotaciones.

A continuacion se describirdn las principales diferencias entre el enfoque paramétrico y el
planteamiento de model checking ordinario presentado en [2I] respecto a la generacion del grafo
de alcanzabilidad. En primer lugar, se tomara como entrada una red U-RDF-PN paramétrica,
que es una red U-RDF-PN ordinaria anotada con declaraciones paramétricas en algunas de
sus transiciones (como guardas), lugares (como marcado inicial) y arcos (como parte de los
patrones RDFG). Se hizo necesario desarrollar un wrapper que permitiera utilizar un solver
SMT, herramienta crucial para trabajar con logica y pardmetros. De esta forma, el proceso de
generacion del grafo de alcanzabilidad es similar al usado para redes U-RDF-PN ordinarias,
excepto por la siguientes consideraciones:

1. El estado inicial no esta formado tnicamente por el marcado inicial de cada lugar de la red,
sino también por el marcado inicial paramétrico de cada lugar. En el caso de que no exista
tal marcado, la declaraciéon logica true seré considerada como marcado inicial paramétrico.

2. Para cada transicién con una guarda paramétrica, se debe comprobar la validez de dicha
guarda. Esto es posible utilizando un SMT solver que comprobara si la conjunciéon de las
declaraciones logicas en la guarda y las del estado actual es satisfacible.

3. Cuando se genera un nuevo estado en el RG, su marcado paramétrico esta formado por la
conjuncién del marcado paramétrico del estado padre y la guarda de la transicion disparada.

4. Cuando se inserta un nuevo estado en el almacén, es necesario comprobar que es tnico.
Para ello, el generador debe comparar la parte seméantica, asi como la parte paramétrica.
Cuando compara esta ultima, se usa el SMT solver para comprobar la equivalencia de
ambas declaraciones logicas (P y Q), observando que la siguiente formula es satisfacible
P—-QNQ— P.

4.2.2 Consideraciones de la extensiéon paramétrica

La incorporacion del analisis paramétrico supone diversos cambios en la forma de especificar
el modelo de entrada y en la expresion de las formulas a verificar. En cuanto al modelo, los
parametros son usados en ciertos elementos de la red U-RDF-PN:

e Lugares: los pardametros aparecen en los grafos RDF de marcado, expresados como blank
nodes (bnodes). No representan un valor concreto, solo un identificador de parametro.
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e Arcos: contienen patrones RDF. En dichos patrones no se hace referencia explicita a los
pardmetros, sin embargo, las variables que componen estos patrones pueden tomar un
parametro como valor en el emparejamiento (binding) antes de disparar una transicion.

e Transiciones: las denominadas guardas son proposiciones logicas en lenguaje SMT-Lib, que
representan la precondicion de la transicion. Estas proposiciones contienen referencias a las
variables que forman parte del binding o emparejamiento que se produce al asociar grafos
RDF a patrones RDF presentes en los arcos de entrada de la transicion. Si una guarda hace
referencia a alguna variable de los patrones presentes en los arcos de entrada, se substituye
por el valor que ha tomado en el binding y se procede a su validaciéon usando el wrapper
SMT. Si la proposicién se evaltia a cierta, la transicion es disparable.

Si atendemos a la expresion de formulas, la principal diferencia radica en la adicion del ele-
mento literal SMT — EX P que contiene la proposiciéon paramétrica a verificar. Mas informacion
sobre las formulas se detalla en la seccion E.2.41

4.2.3 Interfaz Web ( Web Interface)

Las funcionalidades béasicas del interfaz Web son: 1) visualizacion del grafo de alcanzabilidad; 2)
creacion y edicion de formulas CTL que usara el model checker; y 3) revision de los resultados
del proceso de model checking. El objetivo inicial fue integrar todas estas funcionalidades en una
dnica interfaz. A continuacién se mostraran sus componentes con més detalle.

4.2.3.1 Visualizacion del RG

Como se ha mencionado anteriormente, la salida del generador de RG consiste en un fichero XML
principal que describe la estructura del grafo, y una colecciéon de ficheros XML que contienen
los grafos RDF que marcan cada estado del RG. En el caso de que se trate de un sistema para-
métrico, también se generaran varios ficheros SMT-Lib. Estos ficheros contienen los predicados
paramétricos correspondientes a cada estado. El grafo de alcanzabilidad computado contendra
una gran cantidad de estados, alrededor de cientos si es un modelo simple, pero se incrementa-
ra exponencialmente conforme la complejidad crezca. Por lo tanto, la revision del grafo puede
convertirse en una tarea tediosa o practicamente imposible. Esta fue una de las principales razo-
nes para desarrollar un visor, que represente el grafo como un diagrama, de forma que sea més
sencillo revisar el marcado de cada estado.

La aplicacion desarrollada hace posible seleccionar un RG determinado, y visualizar su es-
tructura de forma gréfica, permitiendo consultar el marcado de forma sencilla e intuitiva.

4.2.3.2 Edicién de formulas

Dado el proposito de este trabajo, es importante proporcionar herramientas efectivas para la edi-
cion de formulas CTL. Representa un beneficio evidente para el proceso de verificacion, evitando
errores de escritura, y mejorando la experiencia de usuario, ya que reduce la curva de aprendizaje
desde el punto de vista del usuario, e incrementa la rapidez de creaciéon y edicion de formulas.
Es por esto por lo que es crucial disenar una herramienta tan intuitiva como sea posible. Parecia
logico desarrollar un constructor de féormulas que proporcionara una lista de componentes y un
mecanismo para incluirlas dentro de la formula de forma interactiva. También, se penso que seria
interesante incluir una fase de verificaciéon para asegurar que la entrada estd bien construida,
evitando errores sintacticos.

Entre las funcionalidades de esta parte, destaca la habilidad de crear y editar féormulas,
visualizarlas de forma gréfica y la creaciéon interactiva usando interfaces de usuario intuitivos.

17



Eduardo Gonzalez Lopez de Murillas

CTLFormula

haslnitialNode

Formula

LiteralFormula

BinaryFormula
'\ "
(TRUE) (RDFG) (RDFGP) (FALSE)(SMT—EXP)

Figura 4.4: Ontologia de la formula CTL con elementos paramétricos.

4.2.3.3 Revision de resultados del model checker

Un paso muy importante dentro del proceso de model checking es la revision de resultados. En
esta fase, el usuario ha de verificar los resultados y analizarlos con el fin de identificar los errores,
si existen, del modelo. Por lo tanto es crucial proveer herramientas para tratar la salida de nuestro
model checker.

El interfaz desarrollado permite seleccionar un RG e inspeccionar el resultado de la ejecucion
de una determinada férmula, usando la visualizacion del RG, y comprobar el marcado y la
satisfacibilidad de cada componente de la formula en los estados del RG.

4.2.4 Comprobador de modelos (Model Checker)

La ontologia representada en la Figurafd]se usa para especificar la formula CTL de entrada para
el model checker. Puede contener cualquiera de los operadores CTL unarios AF, FF, AX, EX,
AG, EG y NOT, o binarios AND, OR, AU, EU y IMP, o cualquiera de los nodos terminales
TRUE, FALSE, RDFG, RDFGP y SMT — EXP, siendo RDFG un grafo RDF, RDFGP a
un patrén RDF, y SMT — EX P una declaraciéon logica en formato SMT-Lib.

La otra entrada de nuestro model checker es el grafo de alcanzabilidad, cuyo proceso de
generacion ha sido explicado anteriormente. Debido a la posibilidad de que dicho grafo contenga
informacion paramétrica, necesitamos disponer de un SMT solver. Por lo tanto, se requiere el
mismo wrapper mencionado en 271

El proceso de verificacion es similar al usado con las U-RDF-PN ordinarias y formulas CTL
tal y como se describe en [21]]. La principal diferencia radica en el nodo terminal SMT — EXP,
el cual representa una declaracion logica en formato SMT-Lib. Con el fin de saber si un estado
satisface una declaracion, es necesario usar el wrapper. Por lo tanto, el marcado paramétrico de
dicho estado debe ser comparado a la declaracion de la formula. Siendo P la parte paramétrica
del estado, y @ el contenido del nodo SMT — EX P de la féormula, se usa la expresion logica PV Q)
para comprobar la validez del marcado paramétrico del estado (P) y la expresion de la formula
(Q). De esta forma sabremos si ambas declaraciones logicas son compatibles o contradictorias.

4.3 Descripciéon de algoritmos

Anteriormente se ha descrito el diseno de los componentes que conforman el framework COMBAS.
Sin embargo, los detalles sobre el funcionamiento de ciertos algoritmos ha sido omitido por mo-
tivos de brevedad. A continuacién se presentan, con mayor nivel de detalle, los principales al-
goritmos del sistema, como el de generacion del grafo de alcanzabilidad, o el de model checking.
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El interés de presentar dichos algoritmos es presentar las modificaciones introducidas en este

trabajo para adaptar su funcionamiento al enfoque propuesto.

4.3.1 Algoritmo de generacion del RG

El algoritmo utilizado para la generacion del grafo de alcanzabilidad esta basado en el algorit-
mo clasico de generacion para redes de Petri. Sin embargo, presenta numerosas modificaciones
dada la naturaleza seméntica de la variante que usamos, asi como la extension paramétrica. A
continuaciéon se tratard de definir el algoritmo adaptado.

En primer lugar, como elementos y estructuras de datos utilizadas, encontramos:

Pila de No revisados: pila de marcados del RG (m;) de los que ain se deben obtener los
estados sucesores.

Lista de estados del RG: conjunto de estados de RG que ya han sido generados. Esta lista
representa la base de datos.

Red de Petri del modelo inicial: modelo, del que se obtendra el RG, que contiene la estruc-
tura de la red ademés de las anotaciones semanticas y paramétricas.

Tabla hash de estados del RG: tabla hash que, por medio de una clave asociada a cierta
caracteristica de cada estado, permite comprobar la existencia previa de forma rapida. La
clave utilizada es un hash de una cadena que especifica el nimero de marcas que el estado
posee para cada lugar de la red, siempre en un orden prefijado. Aunque la clave no es tinica
por estado, si que divide el conjunto de ellos en pequenas listas, que quedan almacenadas
en la citada tabla hash asociadas a su cédigo. De este modo es posible saber si un estado
no existe previamente (si su hash no existe en la tabla), o en caso de que exista, ha de ser
comparado con un numero de estados mucho menor que el total de los generados hasta el
momento.

Tabla hash de marcado paramétrico por estados: tabla que asocia a cada estado generado
del RG, su marcado paramétrico.

Tabla hash de guardas en transiciones: esta tabla utiliza como clave el nombre de la tran-
sicion, y asocia a cada una de ellas la guarda paramétrica expresada en el modelo. Aunque
esta informaciéon ya estd definida de forma implicita en el modelo almacenado en la ba-
se de datos, mantener esta estructura en memoria mejora el rendimiento y evita acceder
repetidamente a los mismos datos.

Una vez vistas las estructuras de datos, se enumeran los pasos, a grandes rasgos, que el
algoritmo sigue en el proceso de generacion:

1.

Procesamiento del fichero PNML de la red de Petri anotada para introducirla en el Triple
Store como RDF, asi como la informacién asociada a las anotaciones.

Inicializacion del SMT solver con los parametros definidos en la red.

. Introduccién del marcado inicial mg en la pila de No revisados, en la base de datos y en

las tablas hash de estados y de marcados paramétricos.

. Bucle principal: mientras (No revisados = vacia) {

(a) Desapilado de la cima de No revisados (m;)

(b) Obtencion de las transiciones del modelo sensibilizadas por el marcado m;
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(c) Calculo de posibles bindings para cada transicion, y verificacion de guardas (usando
el SMT) para cada binding.

(d) Generacion de los marcados resultantes de las transiciones disparadas
(e) Bucle: para cada m; generado en el paso anterior {

i. Comprobacion de la existencia de un estado equivalente a m; {
A. Si existe, no se hace nada.

B. Sino, se anade a la base de datos, se apila en No revisados, se anade a la tabla
hash de estados y a la de marcados paramétricos.

ii. Enlace del estado m; con el estado m; como sucesor.

(f) Sino se generd ningtin marcado, enlazar el estado m; con si mismo, para convertirlo
en un estado de deadlock o final.

5. Generacion del XML de descripcion del RG a partir de la representacion RDF.

Tras estos pasos, el grafo de alcanzabilidad correspondiente se encontrard almacenado en la
base de datos, asi como en ficheros XML devueltos como resultado del proceso.

Como anotacion, cabe destacar que, gracias a las optimizaciones introducidas anadiendo
tablas hash y division del espacio de estados, es posible reducir el tiempo de generacion de forma
significativa. Esto queda demostrado aplicando el algoritmo al ejemplo presentado anteriormente
en [I5], en el que, para un caso complejo del workflow First Provenance Challenge, en el que se
generan 11664 estados, el tiempo de cémputo original era de 44 horas y 23 minutos, y se vio
reducido, ejecutandose sobre la misma plataforma y configuracion, a 12 horas y 14 minutos.

4.3.2 Algoritmo de model checking

El model checker desarrollado basa su técnica en el algoritmo de etiquetado propuesto en [12],
pero adaptado a las U-RDF-PN, tal y como se presenta en [2I]. Sin embargo, ha sido necesario
introducir modificaciones para soportar los aspectos paramétricos con los que se extienden las
U-RDF-PN en este trabajo. Ya se ha explicado anteriormente céomo se trata este aspecto, sin
embargo no se detalla como esta estructurado el algoritmo.

Podemos establecer una serie de elementos y estructuras de datos utilizados por el algoritmo:

e Lista de estados del RG: representa la base de datos, en la que se almacena el RG, sus
anotaciones semanticas y paramétricas.

e Formula RDF-CTL: representa la férmula a analizar, almacenada en la base de datos
subdividida en subférmulas anidadas.

El algoritmo consta de los siguientes pasos que determinan el proceso de model checking
planteado:

1. Carga de la formula, en formato XML, a la base de datos, transforméndola en RDF.

2. Carga del modelo, en formato XML, a la base de datos en formato RDF. En el caso de que
el modelo ya esté almacenado, se especifica el identificador del mismo dentro del almacén
de tripletas.

3. Inicializacion del SMT con los parametros definidos en la red asociada al modelo.

4. Se selecciona el nodo raiz de la formula, fy y el nodo raiz del modelo (estado inicial), my.
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5. Se llama a la funcion SAT(fy, mp), la cual devolvera cierto o falso, dependiendo de si el
estado inicial satisface dicha férmula.

6. Generacion de la coleccion de ficheros XML que indican qué partes de la formula se satis-
facen en cada estado del RG. Esto conforma el contraejemplo, en caso de no validarse, o el
ejemplo, en caso de que el modelo valide la férmula.

A su vez, vemos que se hace una llamada al algoritmo SAT'. Esta funcién toma dos parame-
tros: 1) fi, que representa el nodo de la formula a verificar; 2) m;, estado del RG sobre el que
verificar la subférmula f;. Su funcionamiento se presenta a continuacion:

1. Se verifica si f; ya ha sido comprobado para m; y, si es asi, se devuelve el valor correspondiente.

2. Sino, identificamos el tipo de subformula {

(a) fi == OR:
i. Si SAT(f;.left(),m; ) : setChecked(f;,mj,true) y devolver true.
ii. Sino, si SAT(f;.right(),m;) : setChecked(f;, m;,true) y devolver true.
ili. Sino: setChecked(f;, m;, false) y devolver false.
(b) fi == AND:
i. St SAT(f;.left(),m;) {
A. Si SAT(fi.right(), m;) : setChecked(f;, m;,true) y devolver true.
B. Sino: setChecked(f;, m;, false) y devolver false.
ii. Sino: setChecked(f;,m;j, false) y devolver false.
(c) fi == NEG:
i. Si SAT(f;.phi(),m;) : setChecked(f;,m;, false) y devolver false.
ii. Sino: setChecked(f;,mj,true) y devolver true.
(d) fi == TRUE:
i. Devolver true.
(e) f; == FALSE:
i. Devolver false.
(f) fi == AF:
i. Si SAT(f;.phi(), m;) : setChecked(f;, m;j,true) y devolver true.
ii. Sino, si isChecking(f;, m;) : setChecked(f;, m;, false) y devolver false.
iii. Sino {
A. setChecking(fi,m;)
B. Si f;.hasSuccessors() : Para cada sucesor my {
a. Si SAT(f;, m;i) : siguiente.
b. Sino: setChecked(f;,mj, false) y devolver false.
C. Si para todo mjy, fue cierto: setChecked(f;, m;,true) y devolver true.
D. Sino: setChecked(f;,m;, false) y devolver false.

(8) fi == AG:
i. Si SAT(f;.phi(),m;) {
A. SiisChecking(f;,m;) : setChecked(f;, m;,true) y devolver true.
B. Sino {
a. setChecking(f;, m;)
b. Para cada m,j sucesor de m; {
i. Si SAT(f;, m;i) : siguiente.
ii. Sino: setChecked(fi,m;, false) y devolver false.
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c. Sipara todo myy fue cierto: setChecked(f;, m;,true) y devolver true.
ii. Sino: setChecked(f;,m;, false) y devolver false.
(h) f; == EF:
i. Si SAT(f;.phi(),m;) : setChecked(f;,m;j,true) y devolver true.
ii. Sino, si isChecking(f;, m;) : setChecked(f;, m;, false) y devolver false.
iii. Sino {
A. setChecking(fi,m;)
B. Para cada mj sucesor de m; {
a. Si SAT(f;, mji) : setChecked(f;, m;,true) y devolver true.
b. Sino: siguiente.
C. Si para todo mj fue falso: setChecked(f;, m;, false) y devolver false.
(i) fi == EG:
i. Si SAT(f;.phi(),m;) {
A. SiisChecking(fi,m;) : setChecked(f;, m;,true) y devolver true.
B. Sino {
a. setChecking(fi, m;)
b. Para cada mjj sucesor de m; {
i. Si SAT(f;, mji) : setChecked(fi,mj,true) y devolver true.
ii. Sino: siguiente.
c. Si para todo mjy fue falso: setChecked(f;, m;, false) y devolver false.
ii. Sino: setChecked(f;,m;j, false) y devolver false.
() fi == AX:
i. Si mj;.hasSuccessors() {
A. Para cada mjj sucesor de m; {
a. Si SAT(f;.phi(), mji) : siguiente.
b. Sino: setChecked(f;,mj, false) y devolver false.
B. Si para todo mj fue cierto: setChecked(f;,mj,true) y devolver true.
ii. Sino: setChecked(f;,m;j, false) y devolver false.
(k) fi == EX:
i. Si mj.hasSuccessors() {
A. Para cada mjj sucesor de m; {
a. Si SAT(f;.phi(), mji) : setChecked(f;, m;,true) y devolver true.
b. Sino: siguiente.
B. Si para todo mj fue falso: setChecked(f;, m;, false) y devolver false.
ii. Sino: setChecked(f;,m;j, false) y devolver false.
(1) fi == AU:
i. SiisChecking(f;,m;) : setChecked(f;, m;, false) y devolver false.
ii. Sino {
A. setChecking(fi,m;)
B. Si SAT(f;.left(),mji) {
a. Para todo myj, sucesor de m; {
i. Si SAT(f;.right(), mji) : siguiente.
ii. Sino, si SAT(fi, mjx) : siguiente.
ili. Sino: setChecked(f;, m;, false) y devolver false.
b. Si para todo mj fue cierto: setChecked(f;, mj,true) y devolver true.
C. Sino: setCheched(f;, m;, false) y devolver false.

(m) f; == EU:
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i. SiisChecking(f;,m;) : setChecked(f;, m;, false) y devolver false.
ii. Sino {
A. setChecking(fi,m;)
B. Si SAT(f;.left(),mjx) {
a. Para todo myj sucesor de m; {
i. Si SAT(f;.right(), mji) : setChecked(f;, m;,true) y devolver true.
ii. Sino, si SAT(fi,mjk) : setChecked(f;, m;,true) y devolver true.
iii. Sino: siguiente.
b. Si para todo mjj fue falso: setChecked(f;, m;, false) y devolver false.
C. Sino: setCheched(f;,m;, false) y devolver false.
(n) f; == IMP:
i. St SAT(f;.left(),m;) {
A. Si SAT(fi.right(), m;) : setChecked(f;, m;,true) y devolver true.
B. Sino: setChecked(f;, m;, false) y devolver false.
ii. Sino: setChecked(f;,mj,true) y devolver true.
(o) fi == RDFG:
i. Si SAT _RDFG(fi,m;) : setChecked(f;,m;,true) y devolver true.
ii. Sino: setChecked(f;,m;, false) y devolver false.
(p) fi == RDFGP:
i. Si SAT _RDFGP(f;,m; ) : setChecked(f;, mj,true) y devolver true.
ii. Sino: setChecked(f;,m;, false) y devolver false.
(q) fi == PARAMETRIC:

i. Si SAT _PARAMETRIC(f;, m;) : setChecked(f;, m;,true) y devolver true.
ii. Sino: setChecked(f;,m;, false) y devolver false.

En el pseudocoddigo presentado, aparecen llamadas a varias funciones que no habian sido explicadas
anteriormente. A continuacion se comenta el significado de cada una de ellas:

o setCheched(f;,mj,boolean) : establece que el estado m; ha sido comprobado usando la formula f;,
y el resultado es true o false, dependiendo de la constante booleana que se pase como argumento.

o setChecking(f;,m;) : establece que el estado m; estda actualmente siendo comprobado con la
formula f;.

o isChecking(fi,m;) : devuelve el valor establecido por la funciéon anterior.
e SAT RDFG(f;,m;) : verifica si el estado m; verifica el grafo RDF declarado en f;.
e SAT RDFGP(f;,m;) : verifica si el estado m; verifica el patrén RDF declarado en f;.

o SAT PARAMETRIC(f;,m;) : verifica si el estado m; verifica la declaracion paramétrica espe-
cificada en f;, usando el SMT solver para comprobar si la formula P A @ es cierta, siendo P el
marcado paramétrico del estado m;, y @ la declaracién paramétrica definida en f;.

4.4 Implementacion
La implementacion del framework supone la integracion de tecnologias muy diversas, tanto para el pro-
cesado de la informacién semantica, su almacenamiento, el interfaz Web, el procesado de declaraciones

logicas, y otros aspectos de la herramienta. A continuacion se detallan, de forma separada para cada uno
de los componentes del framework, qué tecnologias han sido utilizadas en la implementacion.
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4.4.1 Generador de RGs

Este componente del framework ha sido desarrollado en el lenguaje Java El, concretamente usando la
version 1.6 de la JVM de Oracle. Ademas, como entorno de programacion se ha recurrido a Eclipse E, el
cual tiene soporte multilenguaje y es muy extensible por medio de plugins.

Una de las librerias mas utilizadas es JDOM . Esta, permite tratar y generar, con un API accesible
desde Java, documentos XML H, lenguaje con el que se codifica la informacion de intercambio generada
en cada paso de la herramienta.

En el generador de RGs se hace necesario utilizar una base de datos semantica, o Triple Store.
Como requisito, debe ofrecer un interfaz de consulta utilizando el lenguaje SPARQL, al menos la version
1.1. Esto se debe a que, para hacer consultas complejas, se requiere de anidaciéon de consultas, entre
otras caracteristicas, lo cual esta disponible solo a partir de la version 1.1 del estandar SPARQL. En
este aspecto, la base de datos hibrida Virtuoso & representa una alternativa adecuada, dado su buen
rendimiento, soporte para SPARQL 1.1 y API basada en Sesame [. Este ultimo es un framework open-
source para consultar y analizar datos RDF [. Ofrece una interfaz (apilable) a través de la cual se pueden
anadir funcionalidades, y se abstrae el motor de almacenamiento del motor de consultas. Existen multitud
de Triple-stores que pueden usarse por medio de la API de Sesame.

El formato PNML ﬁ, que también es utilizado en el generador de RGs, es una sintaxis basada en
XML para describir high-level Petri nets. Se requiere para importar las redes anotadas, desde las que se
generara el grafo de alcanzabilidad.

Cuando se genera el grafo de alcanzabilidad, el lenguaje DOTH es utilizado para describir la estructura
de dicho grafo. A partir de esta descripcion, se generara un diagrama del mismo haciendo uso del paquete
de herramientas Graphviz 9. La libreria Apache loglj también es utilizada en la herramienta para
funciones de logging.

Una parte importante en la extension paramétrica de COMBAS, es el procesado de los predicados
logicos. Para esta tarea, se decidio utilizar alguno de los SMT solvers existentes. La herramienta seleccio-
nada, por motivos de especificaciones, rendimiento y soporte, fue CVC3 . Aunque la aplicacion dispone
de un API, ésta presenta limitaciones como la falta de soporte del lenguaje SMT-Lib. Es por esto por lo
que se decidi6é implementar un wrapper para utilizar el binario de cvc3. Este wrapper carga en memoria
la utilidad, la inicializa y la mantiene en ejecucion para evitar la sobrecarga de instanciar el ejecutable
varias veces en cada iteracion. De esta forma se mejora el rendimiento.

4.4.2 Model checker

Este componente del framework se parece bastante, en cuanto a tecnologias utilizadas, al generador de
RGs. Ha sido desarrollado en Java y, al igual que el generador, hace uso de la base de datos Virtuoso para
almacenar las tripletas. Utiliza las librerias JDOM, para la interpretacion y generacion de XML, y Apache
log4j, para el registro de logs. Adicionalmente, requiere del wrapper desarrollado para la herramienta SMT,
va que las formulas CTL pueden contener expresiones paramétricas en formato SMT-Lib.

"http://www.oracle.com/technetwork /java/index.html
2http:/ /www.eclipse.org
Shttp://www.jdom.org

“http://www.w3.org/ TR/REC-xml

Shttp:/ /virtuoso.openlinksw.com
Shttp://www.openrdf.org
"http://www.w3.org/RDF
S8http://www.pnml.org
http://www.graphviz.org/Documentation.php
Yhttp:/ /www.graphviz.org
Hhttp://logging.apache.org/log4j
Phttp://www.cs.nyu.edu/acsys/cve3
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4.4.3 Visor Web

Para la implementacion del visor Web, se ha utilizado Google-Web-Toolkit (GWT) , un entorno de
desarrollo Java para construir aplicaciones AJAX manteniendo la compatibilidad entre navegadores. Y
para incluir nuevos elementos en el interfaz (widgets) se ha recurrido a la libreria SmartGWT . Otra
libreria usada en este componente es GWT-dnd [19, que proporciona funcionalidades de Drag-and-Drop
para el entorno GWT, a la cual se ha recurrido para la implementaciéon del editor de férmulas. En
la parte servidor del visor Web, también se uso el paquete Commons-FileUpload , que proporciona
funciones para procesar ficheros subidos desde el navegador Web de forma robusta. Ademaés, se hizo uso
del formato JSON , que permite intercambiar datos de forma ligera. Es un subconjunto de la notacion
literal de objetos JavaScript y que no requiere el uso de XML. Para procesar este formato, la libreria
JSON.simple [ fue de gran utilidad.

Model checker

Model upleader & Formula generator

Model Tool

info §| Upload J List § Diagram
No model selected.

Formula Tool Bar Formula Space RDFG Tool

Unary operators Tree §| Source | Upload || Catalog New || Delete | Save

I A+ [T Root Node Bubpeet Type  Predicale Type  Object Type
E EF No items to show.,

B Ac

BEM =c

Ll AX

Ex
=S noT
Binary operators
IEETH AnD
TN o=
[Fime FLY
ETH Au

[ eu =
Literals

& roFG
[CIEE] roFGP

1113 TRUE
(L4503 FALSE

Eduardo Gonzalez

Figura 4.5: Vista general de la aplicacion Web de COMBAS.

En la Figura se muestra el aspecto general del interfaz Web. Vemos que se integran paneles
para trabajar con cada uno de los componentes: féormulas, grafos RDF, y grafos de alcanzabilidad. La
Figura muestra una captura del proceso de revision de resultados. En ella se puede ver un grafo de

http://code.google.com /webtoolkit
Mhttp://code.google.com/p/smartgwt
http://code.google.com /p/gwt-dnd
http://commons.apache.org/fileupload
"http:/ /www.json.org
Bhttp://code.google.com /p/json-simple

25



Eduardo Gonzalez Lopez de Murillas

T NN NN\

(el () 127.0.0.1:83888/CombasWeb.html b W A

State: state 0

' RG Inspector § Formula inspector

e i ;

Figura 4.6: Revision del marcado de un grafo de alcanzabilidad en la aplicacion Web de COMBAS.

alcanzabilidad, y una ventana que muestra el marcado correspondiente a uno de los estados de dicho
grafo.
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Capitulo 5 | Analisis del workflow EBI
InterProScan

Para mostrar la utilidad del framework COMBAS, en esta seccion se analiza un caso de gran interés en
la comunidad cientifica. Se trata del workflow InterProScan. Este workflow, que utiliza el servicio EBI’s
WSInterProScan EI, puede ser consultado en la comunidad Myexperiment.orgqﬁ.

5.1 Planteamiento original

El workflow, cuya estructura puede ser visualizada en la Figura[Elrecibe como entrada una secuencia de
proteinas, una direccion de correo electréonico y algunos parametros adicionales para el anélisis. Partiendo
de dichos datos, se busca la caracterizaciéon de una secuencia proteica en una base de datos de familias
de proteinas integradas dentro de InterPro B. Como resultado, se obtiene un conjunto de coincidencias
debidamente formateadas. Dichos resultados son anotados con las asignaciones de términos InterPro y
GO correspondientes (para méas detalles sobre la asignacion de dichos términos, consultar la Web del
experimento). Para llevar a cabo la ejecucion de la tarea runlnterProScan, existen dos servicios Web en
el repositorio: runinterProScanl y runinterProScan2. Ambos servicios son capaces de realizar el analisis
de proteinas, que representa la parte més cara del experimento, en términos computacionales.

Workflow Inputs

Job_params_goterms_defaultvalue || Job_params_async_defaultValue || Job_params_crc_defaultvaiue || Job_params_seatype_defaultvalue | * [ Email_address || Sequence_or 0 | A [ input_data_type_defaultvalue

-Comenust

runinterProScan

Y

Get_text_result_type_defaultValue | checkStatus ,\| Get_XML_result_type_defaultValue
Get_text_result Get_XML_result
Unpack_text_result

| Format_as_GFF | l Unpack_XML_result ]

Workflgh Outputs

| Job_ID || InterProScan_text_result || InterProScan_GFF || InterProScan_XML_result |v

Figura 5.1: Planteamiento en taberna del workflow InterProScan para el anélisis de proteinas, extraido de la
comunidad Myexperiment.oryg.

"http://www.ebi.ac.uk /Tools/webservices /services /interproscan
2http://www.myexperiment.org/workflows/814.html
% http://www.ebi.ac.uk/interpro/
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5.2 Modelado del workflow

La Figura B2l muestra el workflow modelado como una red de Petri de algo nivel usando la herramienta
Renew [23] y anotada semanticamente de acuerdo con el formalismo U-RDF-PN paramétrico. Los nodos
que corresponden al workflow original aparecen representados en colores azul, verde y naranja, mientras
que algunas estructuras adicionales han sido anadidas con el fin de proporcionar mas generalidad en el
grafo de alcanzabilidad generado (representando una mayor variedad de casos y estados a analizar) que
aparecen en color purpura.

goterms_default async_default crc_default seqtype_default email_address sequence_or_ID input_datatype_default

email_pattern
email_pattern

goterm_pattern async_pattern cre_pattern seqtype_pattern
goterm_pattern async_pattern cre_pattern seqtype_pattern

datatype_pattern
seq_pattern

| lemail_patter

seq_pattern
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Figura 5.2: U-RDF-PN paramétrica que modela el workflow InterProScan para el analisis de una secuencia de
proteinas.

A continuacion se describiréd brevemente la red. Podemos decir que se trata de una red paramétrica,
ya que incluye referencias a parametros en su marcado, en el sentido de que no tienen, a priori, asociado
un valor concreto. Los siete lugares anotados en la parte superior de la red (en color azul) son las entra-
das principales del workflow. Cinco de estas entradas, que representan los parametros de la tarea y son
necesarias para configurar correctamente el servicio InterProScan, estan agrupadas en el lado izquierdo:
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goterms__default, async__default, crc_default, seqtype default y email address. Estas entradas son ne-
cesarias para que la transicion job params se sensibilice y pueda ser disparada. En el lado derecho, dos
lugares representan los datos de la secuencia de proteinas: sequence or ID y input datatype default.
Dichos datos son también necesarios para disparar la transicion Input data.

Observando la estructura de la red, es visible que los pardmetros mencionados son necesarios para
la ejecucion del servicio InterProScan. Cuando este servicio es ejecutado, el proceso entra en la mitad
inferior de la red, en la cual la salida es transformada al formato adecuado. Hay dos lugares encargados
de seleccionar dicho formato, y también representan una entrada (en color azul) del workflow: 1) text
y 2) XML. Estos lugares estan anotados seméanticamente conteniendo, cada uno de ellos, la referencia a
un parametro. Bajo ambos lugares, hay una seccién anadida en color purpura. El fin de dicha estructura
es asignar dos valores diferentes a estos parametros (cierto o falso), de forma que sea posible analizar el
comportamiento del workflow en cualquier situacion, usando un solo grafo de alcanzabilidad. La misma
técnica se ha utilizado en la parte superior de la red, donde se sittian los cinco parametros descritos
anteriormente.

En la parte inferior (en color naranja), hay cinco lugares de salida: Job _ID, GFF _Result, Text Result,
XML _Result y Status. Estos son los lugares en los que se almacenara el resultado del workflow. Repre-
sentan los cinco tipos de datos que podemos obtener: el identificador del trabajo, el resultado en formato
GFF, texto y XML, y el valor de estado, respectivamente.

5.3 Generacion del RG

El modelo presentado es, entonces, procesado por el generador de RG con el fin de computar el grafo. El
grafo de alcanzabilidad resultante fue construido (en un sistema Debian GNU/Linux con kernel optimi-
zado 2.6.38.4, procesador Intel Core 2 Duo E7400 de 64bits de dos cores a 2.80 GHz, 4GB de RAM, E/S
SATA y JVM JREG6Gu25) en 1343 segundos, y esta compuesto de 798 estados. Debido al tamafio de la
estructura resultante, se presenta una version resumida en la Figura B3] que esquematiza su morfologia.

Res

Figura 5.3: Vista parcial del grafo de alcanzabilidad correspondiente al modelo de la Figura 5.2

La parte superior del grafo de alcanzabilidad generado (parte A) estd compuesta por una coleccion
de 731 estados. De acuerdo con el modelo descrito en la Figura[5.2] es sencillo calcular aproximadamente
el namero de estados esperados. En la parte superior, encontramos cinco entradas (arriba a la izquierda),
y cada una puede estar en tres estados diferentes. Esto se traduce en 3° combinaciones. Entonces, otro
estado se anade como resultado del disparo de la transicion job Params. Finalmente, la parte derecha
muestra otros tres estados posibles: 1) los lugares de entrada estan marcados; 2) input_ data es disparado;
3) content_list es disparado. Estos tres estados, combinados con los del lado izquierdo suponen un total
de (3° + 1) * 3 = 732 estados. En el diagrama se ha descompuesto la suma en dos grupos (A y B),
siendo el estado en B el correspondiente al momento justamente anterior a la ejecuciéon de la transicion
runinterProScan. Por lo tanto, la parte inferior del grafo muestra una complejidad menor, estando formada
por 66 estados (C), los cuales, sumados a los grupos A y B, hacen un total de 798 estados.
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5.4 Comprobacién de propiedades

Debido al tamano del grafo de alcanzabilidad generado, realizar una verificacion manual no es factible,
y supondria una tarea extremadamente compleja y tediosa. Esto presenta la situacion perfecta para
aplicar la solucion propuesta para analizar el problema. A continuacién pasamos a disenar y formular
algunas consultas sobre el modelo, con el fin de verificar su correcciéon. Dichas consultas son expresadas
como férmulas en lenguaje CTL y han sido implementadas usando el formato XML correspondiente, el
cual es utilizado para su procesamiento por COMBAS. El model checker es el encargado de verificar la
satisfacibilidad de cada formula.

La primera consulta a considerar cuando se verifica un workflow podria ser la que comprueba si el
proceso es capaz, en algin caso, de finalizar de forma adecuada. Esto ocurriré si los lugares de salida
de la red son marcados con un grafo resultado. Existen cinco lugares de salida diferentes: Job ID place;
Text_Result place; GFF_Result place; Status place y, finalmente, XML Result place. Estos lugares
se corresponden con los localizados en la parte inferior de la red presentada en la Figura Por lo
tanto, para verificar si dichos lugares son alcanzados, es posible comprobar si existe algin estado en el
que dichos lugares se encuentren marcados con cualquier grafo (el grafo vacio representa el concepto
de ’cualquier grafo’). Esta consulta aparece expresada como un predicado CTL de la siguiente forma:
EF(RDFGTewt_Result \ RDFGGFF_Result \ RDFGXML_Result \ RDFGStatus \ RDFGJob_ID)

Cuando esta formula es ejecutada en el model checker, se obtiene la siguiente salida:

INFO [main] (CombasApp.java:240) - Model satisfies the formula!
INFO [main] (CombasApp.java:250) - Output files generated.

INFO [main] (CombasApp.java:254) - Checked in 17159 millis

INFO [main] (CombasApp.java:255) - Formula: formula_lh9wbb3xwwj7c
INFO [main] (CombasApp.java:256) - Model: netId1337458105565_RG

Esto quiere decir que el modelo satisface la férmula, y por tanto es posible alcanzar un estado donde
alguno de los lugares especificados esté marcado. Es posible comprobar el resultado haciendo uso del
interfaz Web. En la Figura 5.4l podemos consultar el resultado de la formula en el estado inicial del grafo
de alcanzabilidad (state_0), de forma que vemos qué nodos de la formula se satisfacen.

7 — —
State: state 0
E
! :
| FormulaTest0ol «| @ [[lsTad Root Node
i o B eF
,, = T or
| 2] on U
! © IEI or
© IETH or
I ' = roFo
'
=& roFe
|
{ =55 roFo
,’ DX roFe
| Formula parsed! m ROFS
fllok
| select

Figura 5.4: Vista del resultado de la féormula en el interfaz Web.
Vemos que algunos nodos aparecen en rojo (no se satisfacen) y otros en verde (si se satisfacen). Esto

quiere decir si se satisfacen o no en el estado actual. El la Figura[5.4] se trata del estado inicial, en el cual
no se cumple ninguna de las condiciones OR ni RDF G, ya que este estado no contiene dichas marcas en
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los lugares especificados. Sin embargo, si que existe algin camino futuro en el cual, en algiun estado, se
cumple alguna de esas propiedades. Por eso el nodo EF' aparece en color verde.

El siguiente paso sera verificar si el workflow es siempre capaz de finalizar. La formula correspondiente
es: AF(RDFGrest Resuit V RDFGGFRF_ Resutt V RDFGxyr Rresuit V RDFGstatus V RDFG job_1D)

Como se puede observar, la formula es muy similar a la anterior, a excepciéon del nodo raiz que en
este caso, en lugar de FF, es AF. Esto quiere decir que, en lugar de buscar un camino que satisfaga la
condicion, buscamos que todos los caminos la satisfagan. El resultado del model checker establece que
dicha férmula no es satisfecha por el modelo. Esto quiere decir que dicho modelo no siempre es capaz
de alcanzar alguno de esos lugares en la red. Esto puede ocurrir, por ejemplo, cuando la red alcanza un
estado de bloqueo en el que ninguna transicion esta lista para ser disparada.

Debido a la morfologia de la red, para que la transicion runiInterProScan sea disparable, sus lugares
fuente deben estar marcados. Estos lugares, a los que nos referiremos como params y content_list, estaran
marcados en alguna situacion. Si no fuera asi, la primera consulta no habria sido satisfecha por el modelo
(la que pregunta si es posible alcanzar en algin caso un lugar de salida). Entonces, seria interesante
saber si siempre que los dos lugares mencionados estén marcados, seria posible alcanzar algtin estado de
salida. La formula CTL que expresa esta consulta es la siguiente: AG((RDFGparams N RDFGeontent) —
AF(RDFGGFF_Result \ RDFGTemt_Result \ RDFGStatus))-

Vemos que esté formada por un operador P — @, que quiere decir que sera cierto siempre que Py @
sean ciertos, o P sea falso. Esto es, que la formula seréd evaluada a cierto si, siempre que existan marcas
en ambos lugares, se cumple que para todos los caminos desde dicho lugar existe algin estado futuro
en el que los lugares de salida estén marcados. Cuando es procesada, el model checker establece que el
modelo satisface la propiedad.

Otra consulta util es la que verifica si siempre que se obtiene un resultado (al menos uno de los
lugares de salida est4 marcado), el valor del resultado de estado es true (es decir, que el token en el lugar
status tiene el valor true para la variable status). Dicha propiedad en CTL es: AG((RDFGrext Resuit V
RDFGGrr Resutt V RDFGx L Resut) — RDFGPsyqpustrue))- Se ha usado el operador AG para
indicar que la propiedad ha de cumplirse siempre, se comprueba que si alguno de los resultados ha sido
obtenido (alguno de los lugares de salida est4 marcado), entonces el lugar de status debe estar marcado
y con valor true. Si no existe resultado, entonces la féormula también sera cierta, por el significado del
operador —. El predicado es satisfecho por el modelo, lo que quiere decir que siempre que obtenemos un
resultado, la variable status tendré valor true.

Tal y como se a demostrado, el modelo es susceptible de ser analizado por medio de consultas CTL
correspondientes a las propiedades que queremos verificar. Una vez que el modelo inicial y sus anotacio-
nes correspondientes han sido definidos, COMBAS permite realizar de forma sencilla una comprobaciéon
del modelo, visualizar en el grafo de alcanzabilidad qué estados no verifican las propiedades, revisar los
resultados, etc. No se requiere conocimiento previo del algoritmo de model checking ni detalles inter-
nos y tecnolégicos por parte del cientifico. El interfaz incluido en el framework, ofrece un conjunto de
funcionalidades y herramientas avanzadas para el analisis de sistemas complejos.

Informacién adicional sobre las anotaciones semanticas y paramétricas del modelo objeto de estudio
puede ser consultada en el Anexo [Al
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Capitulo 6 | Conclusiones y trabajo
futuro

Para finalizar, en este capitulo se presentan las conclusiones extraidas de este Trabajo Fin de Master, y
se presentan las lineas de investigacion que se han abierto a partir de su desarrollo. Estas lineas engloban
areas como la optimizacion en la ejecuciéon de los algoritmos relacionados con el proceso de model checking
por medio de técnicas de ejecucion Grid y Cloud, extension de COMBAS para dar soporte a los principales
estandares de modelado en computacion cientifica y, finalmente, la utilizacion de la herramienta para el
analisis de problemas complejos en entornos reales.

6.1 Conclusiones

A lo largo de este trabajo se ha resaltado la importancia que han cobrado los workflows cientificos en el
mundo de la computaciéon. Los workflows cientificos abarcan tareas de computo del mundo cientificoque
generalmente representan un gran coste computacional, tanto en tiempo como en recursos. Por tanto, la
verificacion de estos sistemas adquiere una gran importancia, especialmente la comprobacion previa a la
ejecucion.

El analisis de las alternativas actuales en el campo de la verificacion de modelos basados en seméntica
dentro del area de la computacion cientifica ha dejado en evidencia las carencias existentes, especialmente
en cuanto al alcance y la expresividad de los mismos, y ha asentado las bases para el desarrollo de este
Trabajo Fin de Master. En concreto, refiriéndonos a la utilizacion de semantica en el mundo de los
workflows cientificos, vemos que se esta aplicando, aunque de forma més orientada a la recoleccion y
analisis de datos de provenance y descubrimiento de servicios y recursos, entre otros. Sin embargo, no se
utiliza para la verificaciéon previa.

La importancia de integrar semantica en los modelos radica en el aumento de la expresividad que
ofrece. Gracias a su uso, es posible especificar workflows con mayor detalle, modelando propiedades de
los datos y su flujo a través del mismo y permitiendo describir problemas de mayor complejidad. Por
esto, vemos la necesidad de contar con herramientas de verificacién que permitan comprobar el correcto
funcionamiento de workflows, haciendo uso de aspectos semanticos.

Asi, se ha desarrollado el framework COMBAS con el fin de suplir dichas carencias y, ademaés,
se ha extendido la herramienta para incorporar el analisis paramétrico de workflows cientificos. Como
resultado se ha desarrollado un framework que abarca el ciclo completo de verificacion, desde el modelado
hasta el analisis de resultados y retroalimentacion, pasando por la verificacion, creacion y edicion de
consultas y visualizacion de resultados. COMBAS representa una herramienta extensible, escalable y
de facil utilizacién por parte del usuario que facilita la tarea de definicion y verificacion de workflows
anotados seméanticamente. Es posible modelar sistemas complejos usando redes de Petri con anotaciones
semanticas, incluir condiciones en logica proposicional, y analizar casos generales usando parametros cuyo
valor inicial no estéa especificado.

Uno de los puntos clave de este trabajo ha sido la incorporacion de soporte paramétrico en la herra-
mienta. Los pardmetros permiten modelar datos en el sistema a los que no se asigna un valor concreto
de entrada. De esta forma, podemos verificar los sistemas desde un punto de vista general, sin tener en
cuenta datos de entrada concretos que limitan el comportamiento del workflow a un caso determinado.
Esto ha implicado la integracion en el framework de técnicas y herramientas que permitan tratar con
dichos parametros. Para ello se ha recurrido a las Satisfiability Modulo Theories (SMT) que nos permiten
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resolver el problema de decision para las formulas l6gicas que especifican los parametros, y se han valorado
las herramientas SMT existentes, asi como estandares y lenguajes de descripcion de proposiciones.

Finalmente se ha demostrado la utilidad de COMBAS aplicandolo a un caso de uso concreto, el ana-
lisis del workflow de anélisis de proteinas EBI InterProScan. Se ha mostrado el proceso de modelado, que
incluye la adicién de anotaciones en base al estaindar RDF, la creaciéon de consultas mediante logica tem-
poral y la verificacion de propiedades sobre el modelo, mostrando los resultados obtenidos para consultas
relevantes sobre el funcionamiento del workflow y ciertas caracteristicas que resultan de interés para el
disenador del sistema o el cientifico. Ha sido posible detectar casos de bloqueo, y analizar condiciones
de finalizacion del workflow que, de otra forma, habria sido imposible detectar sin una implementacién
previa del experimento y su ejecucion, hechos que implican unos costes elevados en tiempo y recursos.

En definitiva, se ha mostrado la viabilidad del uso de COMBAS y su gran utilidad como verificador y
analizador de workflows en el Ambito cientifico. Se han cumplido los objetivos propuestos y se han resuelto
las necesidades més inmediatas detectadas en el campo. COMBAS representa una solucion viable y util,
basada en un formalismo bien estudiado, y que resuelve una necesidad relevante y creciente dentro del
mundo de los workflows cientificos.

6.2 Trabajo futuro

El desarrollo y el anélisis previo de este Trabajo Fin de Méster han abierto una serie de lineas de
investigacion que se abordaran como parte de la carrera investigadora inmediata del autor. A continuacion
se detallan las principales lineas.

e Busqueda de un algoritmo de generaciéon de RGs que aproveche la potencia de infraestructuras
distribuidas de Cloud y Grid. Los tiempos de generacion de las estructuras internas para el proceso
de model checking resultan excesivos cuando la complejidad del modelo de entrada aumenta. Esto
resulta especialmente evidente en el caso de la generacion del grafo de alcanzabilidad. La posibili-
dad de utilizar infraestructuras de computacién Grid y Cloud en el Instituto de Investigaciéon en
Ingenieria de Aragon (I3A) y en el Instituto Universitario de Investigacion, Biocomputacion y Fisi-
ca de Sistemas Complejos (BIFI) abre una puerta para la investigacion de como estos paradigmas
pueden resultar beneficiosos para la mejora y optimizacion de los algoritmos relacionados. Esto
permitird tiempos de generaciéon menores y mayor capacidad de almacenamiento, extendiendo la
aplicacion de COMBAS a modelos de escala mucho mayor, cuyo tratamiento estd muy limitado
con el enfoque actual.

e Extension del framework, ofreciendo soporte para otros formalismos de modelado y estdndares
de diseno, como por ejemplo Business Process Model and Notation ] (BPMN), o herramientas
especificas para el modelado de workflows cientificos muy extendidas y populares (como Taverna
o Kepler, por ejemplo).

e Aplicacion de la técnica de verificacion a més ejemplos de problemas complejos. Evidentemente,
la mejora y extension de COMBAS permitira resolver problemas con una complejidad mayor, lo
que permitird demostrar su utilidad, a la par que impulsar la busqueda de nuevas necesidades en
el framework.

e Aplicacion del framework para la verificacion de nuevas fuentes de datos. Un caso de especial
interés es el analisis de datos de provenance, los cuales pueden tener un origen variado, por ejemplo
de resultados de ejecucion de workflows. Esto permitira estudiar el comportamiento de acciones
ocurridas en el pasado y ayudar en la reproducciéon de experimentos. También es de interés el
analisis de datos de provenance en la Web de Linked Data, tema tratado en [17], de forma que sea
posible estudiar la procedencia de la informacion compartida en ambitos cientificos y comprobar
su fiabilidad y origen.

e Extensién de los mecanismos de deduccion. Actualmente es posible hacer uso de la inferencia que
nos ofrece la seméntica. Sin embargo, seria interesante ampliar el framework dotandolo de mayor
capacidad de deduccién, de forma que sea capaz de analizar o predecir comportamientos de forma
mas eficaz, a la vez que extraer conclusiones de mayor utilidad.

!Para mas informacién sobre el estandar BPMN, consultar http://www.bpmn.org/
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