000078710 001__ 78710
000078710 005__ 20191126134630.0
000078710 0247_ $$2doi$$a10.1016/j.jmaa.2018.03.041
000078710 0248_ $$2sideral$$a105253
000078710 037__ $$aART-2018-105253
000078710 041__ $$aeng
000078710 100__ $$0(orcid)0000-0002-3698-6719$$aFerreira, C.$$uUniversidad de Zaragoza
000078710 245__ $$aThe use of two-point Taylor expansions in singular one-dimensional boundary value problems I
000078710 260__ $$c2018
000078710 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078710 5203_ $$aWe consider the second-order linear differential equation (x+1)y¿+f(x)y'+g(x)y=h(x) in the interval (-1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet–Neumann). The functions f(x), g(x) and h(x) are analytic in a Cassini disk Dr with foci at x=±1 containing the interval [-1, 1]. Then, the end point of the interval x=-1 may be a regular singular point of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the analytic solutions when they exist.
000078710 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MTM2014-52859-P
000078710 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000078710 590__ $$a1.188$$b2018
000078710 591__ $$aMATHEMATICS$$b65 / 313 = 0.208$$c2018$$dQ1$$eT1
000078710 591__ $$aMATHEMATICS, APPLIED$$b117 / 254 = 0.461$$c2018$$dQ2$$eT2
000078710 592__ $$a0.966$$b2018
000078710 593__ $$aApplied Mathematics$$c2018$$dQ2
000078710 593__ $$aAnalysis$$c2018$$dQ2
000078710 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078710 700__ $$aLópez, J.L.
000078710 700__ $$0(orcid)0000-0002-8021-2745$$aPérez Sinusía, E.$$uUniversidad de Zaragoza
000078710 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000078710 773__ $$g463, 2 (2018), 708-725$$pJ. math. anal. appl.$$tJournal of Mathematical Analysis and Applications$$x0022-247X
000078710 8564_ $$s182799$$uhttps://zaguan.unizar.es/record/78710/files/texto_completo.pdf$$yPostprint
000078710 8564_ $$s78993$$uhttps://zaguan.unizar.es/record/78710/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078710 909CO $$ooai:zaguan.unizar.es:78710$$particulos$$pdriver
000078710 951__ $$a2019-11-26-13:40:47
000078710 980__ $$aARTICLE