000078806 001__ 78806
000078806 005__ 20200117221639.0
000078806 0247_ $$2doi$$a10.1016/j.cma.2018.03.036
000078806 0248_ $$2sideral$$a105921
000078806 037__ $$aART-2018-105921
000078806 041__ $$aeng
000078806 100__ $$0(orcid)0000-0003-3379-7688$$aGonzález-Valverde, I.$$uUniversidad de Zaragoza
000078806 245__ $$aMechanical modeling of collective cell migration: An agent-based and continuum material approach
000078806 260__ $$c2018
000078806 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078806 5203_ $$aWe develop a novel modeling approach that combines a discrete agent-based model and a continuum material model to simulate collective cell migration in epithelial layers. In this approach, cells are represented as particles located at their geometrical center, but also as a polygonal body derived from the Voronoi diagram. Furthermore, we model the tissue as a continuum medium with different spatial domains that represent cell and substrate materials. In fact, the mechanical behavior of each domain is affected by the presence of cells from the discrete model. Moreover, we solve this mechanical problem using the finite element method (FEM). The forces generated by cells are projected to the FE mesh, that is created dynamically during the simulation from the discrete cell representation. After the FE resolution, we use the mesh displacements to determine the new cell positions in the agent-based model. Finally, to demonstrate the potential of this approach to model epithelial tissue mechanics, we simulate two well-studied cases of collective cell migration: durotaxis and gap closure. We use the experimental data from the literature to validate our numerical results. Therefore, the modeling strategy here presented offers a new perspective for a deeper understanding of tissue mechanics that emerge from cell dynamics in epithelial layers.
000078806 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/DPI2015-64221-C2-1-R$$9info:eu-repo/grantAgreement/EC/FP7/306571/EU/Predictive modelling and simulation in mechano-chemo-biology: a computer multi-approach/INSILICO-CELL
000078806 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000078806 590__ $$a4.821$$b2018
000078806 591__ $$aMECHANICS$$b6 / 134 = 0.045$$c2018$$dQ1$$eT1
000078806 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b2 / 105 = 0.019$$c2018$$dQ1$$eT1
000078806 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b6 / 88 = 0.068$$c2018$$dQ1$$eT1
000078806 592__ $$a2.996$$b2018
000078806 593__ $$aComputational Mechanics$$c2018$$dQ1
000078806 593__ $$aComputer Science Applications$$c2018$$dQ1
000078806 593__ $$aPhysics and Astronomy (miscellaneous)$$c2018$$dQ1
000078806 593__ $$aMechanics of Materials$$c2018$$dQ1
000078806 593__ $$aMechanical Engineering$$c2018$$dQ1
000078806 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078806 700__ $$0(orcid)0000-0002-9864-7683$$aGarcía-Aznar, J.M.$$uUniversidad de Zaragoza
000078806 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000078806 773__ $$g337 (2018), 246-262$$pComput. methods appl. mech. eng.$$tCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING$$x0045-7825
000078806 8564_ $$s1172011$$uhttps://zaguan.unizar.es/record/78806/files/texto_completo.pdf$$yPostprint
000078806 8564_ $$s38806$$uhttps://zaguan.unizar.es/record/78806/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078806 909CO $$ooai:zaguan.unizar.es:78806$$particulos$$pdriver
000078806 951__ $$a2020-01-17-22:03:25
000078806 980__ $$aARTICLE